1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
|
<pre>Network Working Group S. Crocker
Request for Comments #70 UCLA
15 October 70
A Note on Padding
The padding on a message is a string of the form 10*. For Hosts with
word lengths 16, 32, 48, etc., bits long, this string is necessarily in
the last word received from the Imp. For Hosts with word lengths which
are not a multiple of 16 (but which are at least 16 bits long), the 1
bit will be in either the last word or the next to last word. Of
course if the 1 bit is in the next to last word, the last word is all
zero.
An unpleasant coding task is discovering the bit position of the 1 bit
within its word. One obvious technique is to repeatedly test the
low-order bit, shifting the word right one bit position if the
low-order bit is zero. The following techniques are more pleasant.
Isolating the Low-Order Bit
Let W be a non-zero word, where the word length is n. Then W is of the
form
x....x10....<a href="#page-0">0</a>
\__ __/\__ __/
V V
n-k-1 k
where 0<=k<n
and the x's are arbitrary bits.
Assuming two's complement arithmetic,
W-1 = x....x01....<a href="#page-1">1</a>
_ _
-W = x....x10....<a href="#page-0">0</a>
_ _ _
<a href="#appendix-W">W</a> = x....x01....<a href="#page-1">1</a>
By using AND, OR and exclusive OR with various pairs of these
quantities, useful new forms are obtained.
For example,
<span class="grey"> [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey">Network Working Group A Note on Padding <a href="./rfc70">RFC 70</a></span>
<a href="#appendix-W">W</a> AND W-1 xx...x00....<a href="#page-0">0</a>
\__ __/\__ __/
V V
n-k-1 k
thus removing the low-order 1 bit;
also W AND -W = 0....010....<a href="#page-0">0</a>
__ __/__ __/
V V
n-k-1 k
thus isolating the low-order bit.
Below, we will focus solely on this last result; however, in a
particular application it may be advantageous to use a variation.
Determining the Position of an Isolated Bit
The two obvious techniques for finding the bit position of an isolated
bit are to shift repetitively with tests, as above, and to use floating
normalization hardware. On the PDP-10, in particular, the JFFO
instruction is made to order*. On machines with hexadecimal
normalization, e.g. IBM 360's and XDS Sigma 7's, the normalization
hardware may not be very convenient. A different approach uses
division and table look-up.
k
A word with a single bit on has an unsigned integer value of 2 for
k
0<=k<n. If we choose a p such that mod(2 ,p) is distinct for each
0<=k<n, we can make a table of length p which gives the correspondence
k
between mod(2 ,p) and k. The remainder of this paper is concerned with
the selection of an appropriate divisor p for each word length n.
*Some of the CDC machines have a "population count" instruction which
k
gives the number of bits in a word. Note the 2 -1 has exactly k bits
on.
<span class="grey"> [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey">Network Working Group A Note on Padding <a href="./rfc70">RFC 70</a></span>
Example
Let n = 8 and p = 11
Then
0
mod(2, 11) = 1
1
mod(2, 11) = 2
2
mod(2, 11) = 4
3
mod(2, 11) = 8
4
mod(2, 11) = 5
5
mod(2, 11) = 10
6
mod(2, 11) = 9
7
mod(2, 11) = 7
This yields a table of the form
remainder bit position
0 --
1 0
2 1
3 --
4 2
5 4
6 --
7 7
8 3
9 6
10 5
<span class="grey"> [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey">Network Working Group A Note on Padding <a href="./rfc70">RFC 70</a></span>
Good Divisors
The divisor p should be as small as possible in order to minimize the
length of the table. Since the divisor must generate n distinct
remainders, the divisor will certainly need to be at least n. A
remainder of zero, however, can occur only if the divisor is a power of
j
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. If the divisor is a small power of 2, say 2 </span>for j < n-1, it will
not generate n distinct remainders; if the divisor is a larger power of
n-1 n
2, the correspondence table is either 2 or 2 in length. We can
thus rule out zero as a remainder value, so the divisor must be at
least one more than the word length. This bound is in fact achieved
for some word lengths.
Let R(p) be the number of distinct remainders p generates when divided
into successively higher powers of 2. The distinct remainders all occur
for the R(p) lowest powers of 2. Only odd p are interesting and the
following table gives R(p) for odd p between 1 and 21.
p R(p) p R(p)
1 1 13 12
3 2 15 4
5 4 17 8
7 3 19 18
9 6 21 6
11 10
This table shows that 7, 15, 17 and 21 are useless divisors because
there are smaller divisors which generate a larger number of distinct
remainders. If we limit our attention to p such that p > p' =>
R(p) > R(p'), we obtain the following table of useful divisors for
p < 100.
<span class="grey"> [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey">Network Working Group A Note on Padding <a href="./rfc70">RFC 70</a></span>
p R(p) p R(p)
1 1 29 28
3 2 37 36
5 4 53 52
9 6 59 58
11 10 61 60
13 12 67 66
19 18 83 82
25 20
Notice that 9 and 25 are useful divisors even though they generate only
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a> and 20 remainders, respectively.</span>
Determination of R(p)
If p is odd, the remainders
0
mod(2 ,p)
1
mod(2 ,p)
.
.
.
t
will be between 1 and p-1 inclusive. At some power of 2, say 2 , there
k t
will be a repeated remainder, so that for some k < t, 2 = 2 mod p.
t+1 k+1
Since 2 = 2 mod p
t+2 k+2
and 2 = 2 mod p
.
.
.
etc.
0 t-1
all of the distinct remainders occur for 2 ...2 . Therefore, R(p)=t.
<span class="grey"> [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey">Network Working Group A Note on Padding <a href="./rfc70">RFC 70</a></span>
Next we show that
R(p)
2 = 1 mod p
R(p) k
We already know that 2 = 2 mod p
for some 0<=k<R(p). Let j=R(p)-k so 0<j<=R(p). Then
k+j k
2 = 2 mod p
j k k
or 2 *2 = 2 mod p
j k
or (2 -1)*2 = 0 mod p
k j
Now p does not divide 2 because p is odd, so p must divide 2 -1. Thus
j
2 -1 = 0 mod p
j
2 = 1 mod p
Since j is greater than 0 by hypothesis and since ther is no k other
than 0 less than R(p) such that
k 0
2 = 2 mod p,
R(p)
we must have j=R(p), or 2 = 1 mod p.
k
We have thus shown that for odd p, the remainders mod(2 ,p) are unique
for k = 0, 1,..., R(p)-1 and then repeat exactly, beginning with
R(p)
2 = 1 mod p.
We now consider even p. Let
q
p = p'*2 ,
k k k
where p' is odd. For k<q, mod(2 ,p) is clearly just 2 because 2 <p.
For k>=q,
k q k-q
mod(2 ,p) = 2 *mod(2 ,p').
<span class="grey"> [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey">Network Working Group A Note on Padding <a href="./rfc70">RFC 70</a></span>
From this we can see that the sequence of remainders will have an
q-1
initial segment of 1, 2, ...2 of length q, and repeating segments of
length R(p'). Therefore, R(p) = q+R(p'). Since we normally expect
R(p) ~ p,
even p generally will not be useful.
I don't know of a direct way of choosing a p for a given n, but the
previous table was generated from the following Fortran program run
under the SEX system at UCLA.
0
CALL IASSGN('OC ',56)
1 FORMAT(I3,I5)
M=0
DO 100 K=1,100,2
K=1
L=0
20 L=L+1
N=MOD(2*N,K)
IF(N.GT.1) GO TO 20
IF(L.LE.M) GO TO 100
M=L
WRITE(56,1)K,L
100 CONTINUE
STOP
END
Fortran program to computer useful divisors
In the program, K takes on trial values of p, N takes on the values of
the successive remainders, L counts up to R(p), and M remembers the
previous largest R(p). Execution is quite speedy.
<span class="grey"> [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey">Network Working Group A Note on Padding <a href="./rfc70">RFC 70</a></span>
Results from Number Theory
The quantity referred to above as R(p) is usually written Ord 2 and is
p
read "the order of 2 mod p". The maximum value of Ord 2 is given by
p
Euler's phi-function, sometimes called the totient. The totient of a
positive integer p is the number of integers less than p which are
relatively prime to p. The totient is easy to compute from a
representation of p as a product of primes:
n n n
Let p = p 1 * p 2 ... p k
1 2 k
where the p are distinct primes. Then
i
k -1 k -1 k -1
phi(p) = (p - 1) * p 1 * (p - 1) * p 2 ... (p - 1) * p k
1 1 2 2 k k
If p is prime, the totient of p is simply
phi(p) = p-1.
If p is not prime, the totient is smaller.
If a is relatively prime to p, then Euler's generalization of Fermat's
theorem states
phi(m)
a = 1 mod p.
It is this theorem which places an upper bound Ord 2, because Ord 2 is
p p
the smallest value such that
Ord 2
2 p = 1 mod p
Moreover it is always true that phi(p) is divisible by Ord 2.
p
<span class="grey"> [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey">Network Working Group A Note on Padding <a href="./rfc70">RFC 70</a></span>
Acknowledgements
Bob Kahn read an early draft and made many comments which improved the
exposition. Alex Hurwitz assured me that a search technique is
necessary to compute R(p), and supplied the names for the quantities
and theorems I uncovered.
[ This RFC was put into machine readable form for entry ]
[ into the online RFC archives by Guillaume Lahaye and ]
[ John Hewes 6/97 ]
[Page 9]
</pre>
|