1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
|
<pre>Internet Engineering Task Force (IETF) M. Boucadair
Request for Comments: 7488 France Telecom
Updates: <a href="./rfc6887">6887</a> R. Penno
Category: Standards Track D. Wing
ISSN: 2070-1721 P. Patil
T. Reddy
Cisco
March 2015
<span class="h1">Port Control Protocol (PCP) Server Selection</span>
Abstract
This document specifies the behavior to be followed by a Port Control
Protocol (PCP) client to contact its PCP server(s) when one or
several PCP server IP addresses are configured.
This document updates <a href="./rfc6887">RFC 6887</a>.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in <a href="./rfc5741#section-2">Section 2 of RFC 5741</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc7488">http://www.rfc-editor.org/info/rfc7488</a>.
Copyright Notice
Copyright (c) 2015 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
<span class="grey">Boucadair, et al. Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc7488">RFC 7488</a> PCP Server Selection March 2015</span>
Table of Contents
<a href="#section-1">1</a>. Introduction . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-2">2</a>
<a href="#section-2">2</a>. Terminology and Conventions . . . . . . . . . . . . . . . . . <a href="#page-3">3</a>
<a href="#section-2.1">2.1</a>. Requirements Language . . . . . . . . . . . . . . . . . . <a href="#page-3">3</a>
<a href="#section-2.2">2.2</a>. Terminology . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-3">3</a>
3. IP Address Selection: PCP Server with Multiple IP Addresses . 3
<a href="#section-4">4</a>. IP Address Selection: Multiple PCP Servers . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-5">5</a>. Example: Multiple PCP Servers on a Single Interface . . . . . <a href="#page-5">5</a>
<a href="#section-6">6</a>. Security Considerations . . . . . . . . . . . . . . . . . . . <a href="#page-7">7</a>
<a href="#section-7">7</a>. References . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-7">7</a>
<a href="#section-7.1">7.1</a>. Normative References . . . . . . . . . . . . . . . . . . <a href="#page-7">7</a>
<a href="#section-7.2">7.2</a>. Informative References . . . . . . . . . . . . . . . . . <a href="#page-8">8</a>
<a href="#appendix-A">Appendix A</a>. Multihoming . . . . . . . . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#appendix-A.1">A.1</a>. IPv6 Multihoming . . . . . . . . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#appendix-A.2">A.2</a>. IPv4 Multihoming . . . . . . . . . . . . . . . . . . . . <a href="#page-10">10</a>
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-11">11</a>
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-12">12</a>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
A host may have multiple network interfaces (e.g., 3G, IEEE 802.11,
etc.), each configured with different PCP servers. Each PCP server
learned must be associated with the interface on which it was
learned. Generic multi-interface considerations are documented in
<a href="./rfc6887#section-8.4">Section 8.4 of [RFC6887]</a>. Multiple PCP server IP addresses may be
configured on a PCP client in some deployment contexts such as
multihoming (see <a href="#appendix-A">Appendix A</a>). A PCP server may also have multiple IP
addresses associated with it. It is out of the scope of this
document to enumerate all deployment scenarios that require multiple
PCP server IP addresses to be configured.
If a PCP client discovers multiple PCP server IP addresses, it needs
to determine which actions it needs to undertake (e.g., whether PCP
entries are to be installed in all or a subset of discovered IP
addresses, whether some PCP entries are to be removed, etc.). This
document makes the following assumptions:
o There is no requirement that multiple PCP servers configured on
the same interface have the same capabilities.
o PCP requests to different PCP servers are independent, the result
of a PCP request to one PCP server does not influence another.
o The configuration mechanism must distinguish IP addresses that
belong to the same PCP server.
<span class="grey">Boucadair, et al. Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc7488">RFC 7488</a> PCP Server Selection March 2015</span>
This document specifies the behavior to be followed by a PCP client
[<a href="./rfc6887" title=""Port Control Protocol (PCP)"">RFC6887</a>] to contact its PCP server(s) [<a href="./rfc6887" title=""Port Control Protocol (PCP)"">RFC6887</a>] when it is
configured with one or several PCP server IP addresses (e.g., using
DHCP [<a href="./rfc7291" title=""DHCP Options for the Port Control Protocol (PCP)"">RFC7291</a>]). This document does not make any assumption on the
type of these IP addresses (i.e., unicast/anycast).
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Terminology and Conventions</span>
<span class="h3"><a class="selflink" id="section-2.1" href="#section-2.1">2.1</a>. Requirements Language</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in <a href="./rfc2119">RFC 2119</a> [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
<span class="h3"><a class="selflink" id="section-2.2" href="#section-2.2">2.2</a>. Terminology</span>
o PCP client: denotes a PCP software instance responsible for
issuing PCP requests to a PCP server. Refer to [<a href="./rfc6887" title=""Port Control Protocol (PCP)"">RFC6887</a>].
o PCP server: denotes a software instance that receives and
processes PCP requests from a PCP client. A PCP server can be co-
located with or be separated from the function it controls (e.g.,
Network Address Translation (NAT) or firewall). Refer to
[<a href="./rfc6887" title=""Port Control Protocol (PCP)"">RFC6887</a>].
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. IP Address Selection: PCP Server with Multiple IP Addresses</span>
This section describes the behavior a PCP client follows to contact
its PCP server when the PCP client has multiple IP addresses for a
single PCP server.
1. A PCP client should construct a set of candidate source addresses
(see <a href="./rfc6724#section-4">Section 4 of [RFC6724]</a>) based on application input and PCP
[<a href="./rfc6887" title=""Port Control Protocol (PCP)"">RFC6887</a>] constraints. For example, when sending a PEER or a MAP
with a FILTER request for an existing TCP connection, the only
candidate source address is the source address used for the
existing TCP connection. But when sending a MAP request for a
service that will accept incoming connections, the candidate
source addresses may be all of the node's IP addresses or some
subset of IP addresses on which the service is configured to
listen.
2. The PCP client then sorts the PCP server IP addresses as per
<a href="./rfc6724#section-6">Section 6 of [RFC6724]</a> using the candidate source addresses
selected in the previous step as input to the destination address
selection algorithm.
<span class="grey">Boucadair, et al. Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc7488">RFC 7488</a> PCP Server Selection March 2015</span>
3. The PCP client initializes its Maximum Retransmission Count (MRC)
to 4.
4. The PCP client sends its PCP messages following the
retransmission procedure specified in <a href="./rfc6887#section-8.1.1">Section 8.1.1 of [RFC6887]</a>.
If no response is received after MRC attempts, the PCP client
retries the procedure with the next IP address in the sorted
list.
The PCP client may receive a response from an IP address after
exhausting MRC attempts for that particular IP address. The PCP
client SHOULD ignore such a response because receiving a delayed
response after exhausting four retransmissions sent with
exponentially increasing intervals is an indication that problems
are to be encountered in the corresponding forwarding path and/or
when processing subsequent requests by that PCP server instance.
If, when sending PCP requests, the PCP client receives a hard
ICMP error [<a href="./rfc1122" title=""Requirements for Internet Hosts - Communication Layers"">RFC1122</a>], it MUST immediately try the next IP address
from the list of PCP server IP addresses.
5. If the PCP client has exhausted all IP addresses configured for a
given PCP server, the procedure SHOULD be repeated every 15
minutes until the PCP request is successfully answered.
6. Once the PCP client has successfully received a response from a
PCP server's IP address, all subsequent PCP requests to that PCP
server are sent on the same IP address until that IP address
becomes unresponsive. In case the IP address becomes
unresponsive, the PCP client clears the cache of sorted
destination addresses and follows the steps described above to
contact the PCP server again.
For efficiency, the PCP client SHOULD use the same Mapping Nonce for
requests sent to all IP addresses belonging to the same PCP server.
As a reminder, nonce validation checks are performed when operating
in the Simple Threat Model (see <a href="./rfc6887#section-18.1">Section 18.1 of [RFC6887]</a>) to defend
against some off-path attacks.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. IP Address Selection: Multiple PCP Servers</span>
This section describes the behavior a PCP client follows to contact
multiple PCP servers, with each PCP server reachable on a list of IP
addresses. There is no requirement that these multiple PCP servers
have the same capabilities.
<span class="grey">Boucadair, et al. Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc7488">RFC 7488</a> PCP Server Selection March 2015</span>
Note that how PCP clients are configured to separate lists of IP
addresses of each PCP server is implementation specific and
deployment specific. For example, a PCP client can be configured
using DHCP with multiple lists of PCP server IP addresses; each
list is referring to a distinct PCP server [<a href="./rfc7291" title=""DHCP Options for the Port Control Protocol (PCP)"">RFC7291</a>].
If several PCP servers are configured, each with multiple IP
addresses, the PCP client contacts all PCP servers using the
procedure described in <a href="#section-3">Section 3</a>.
As specified in Sections <a href="#section-11.2">11.2</a> and <a href="#section-12.2">12.2</a> of [<a href="./rfc6887" title=""Port Control Protocol (PCP)"">RFC6887</a>], the PCP client
must use a different Mapping Nonce for each PCP server with which it
communicates.
If the PCP client is configured, using some means, with the
capabilities of each PCP server, a PCP client may choose to contact
all PCP servers simultaneously or iterate through them with a delay.
This procedure may result in a PCP client instantiating multiple
mappings maintained by distinct PCP servers. The decision to use all
these mappings or delete some of them depends on the purpose of the
PCP request. For example, if the PCP servers are configuring
firewall (not NAT) functionality, then the client would, by default
(i.e., unless it knows that they all replicate state among them),
need to use all the PCP servers.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Example: Multiple PCP Servers on a Single Interface</span>
Figure 1 depicts an example that is used to illustrate the server
selection procedure specified in Sections <a href="#section-3">3</a> and <a href="#section-4">4</a>. In this example,
PCP servers (A and B) are co-located with edge routers (rtr1 and
rtr2) with each PCP server controlling its own device.
<span class="grey">Boucadair, et al. Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc7488">RFC 7488</a> PCP Server Selection March 2015</span>
ISP Network
| |
.........................................................
| | Subscriber Network
+----------+-----+ +-----+----------+
| PCP-Server-A | | PCP-Server-B |
| (rtr1) | | (rtr2) |
+-------+--------+ +--+-------------+
192.0.2.1 | | 198.51.100.1
2001:db8:1111::1 | | 2001:db8:2222::1
| |
| |
-------+-------+------+-----------
|
| 203.0.113.0
| 2001:db8:3333::1
+---+---+
| Host |
+-------+
Edge Routers (rtr1, rtr2)
Figure 1: Single Uplink, Multiple PCP Servers
The example describes behavior when a single IP address for one PCP
server is not responsive. The PCP client is configured with two PCP
servers for the same interface, PCP-Server-A and PCP-Server-B, each
of which have two IP addresses: an IPv4 address and an IPv6 address.
The PCP client wants an IPv4 mapping, so it orders the addresses as
follows:
o PCP-Server-A:
* 192.0.2.1
* 2001:db8:1111::1
o PCP-Server-B:
* 198.51.100.1
* 2001:db8:2222::1
<span class="grey">Boucadair, et al. Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc7488">RFC 7488</a> PCP Server Selection March 2015</span>
Suppose that:
o The path to reach 192.0.2.1 is broken
o The path to reach 2001:db8:1111::1 is working
o The path to reach 198.51.100.1 is working
o The path to reach 2001:db8:2222::1 is working
It sends two PCP requests at the same time, the first to 192.0.2.1
(corresponding to PCP-Server-A) and the second to 198.51.100.1
(corresponding to PCP-Server-B). The path to 198.51.100.1 is
working, so a PCP response is received. Because the path to
192.0.2.1 is broken, no PCP response is received. The PCP client
retries four times to elicit a response from 192.0.2.1 and finally
gives up on that address and sends a PCP message to 2001::db8:1111:1.
That path is working, and a response is received. Thereafter, the
PCP client should continue using that responsive IP address for PCP-
Server-A (2001:db8:1111::1). In this particular case, it will have
to use the THIRD_PARTY option for IPv4 mappings.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Security Considerations</span>
PCP-related security considerations are discussed in [<a href="./rfc6887" title=""Port Control Protocol (PCP)"">RFC6887</a>].
This document does not specify how PCP server addresses are
provisioned on the PCP client. It is the responsibility of PCP
server provisioning document(s) to elaborate on security
considerations to discover legitimate PCP servers.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. References</span>
<span class="h3"><a class="selflink" id="section-7.1" href="#section-7.1">7.1</a>. Normative References</span>
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997,
<<a href="http://www.rfc-editor.org/info/rfc2119">http://www.rfc-editor.org/info/rfc2119</a>>.
[<a id="ref-RFC6724">RFC6724</a>] Thaler, D., Ed., Draves, R., Matsumoto, A., and T. Chown,
"Default Address Selection for Internet Protocol Version 6
(IPv6)", <a href="./rfc6724">RFC 6724</a>, September 2012,
<<a href="http://www.rfc-editor.org/info/rfc6724">http://www.rfc-editor.org/info/rfc6724</a>>.
[<a id="ref-RFC6887">RFC6887</a>] Wing, D., Ed., Cheshire, S., Boucadair, M., Penno, R., and
P. Selkirk, "Port Control Protocol (PCP)", <a href="./rfc6887">RFC 6887</a>, April
2013, <<a href="http://www.rfc-editor.org/info/rfc6887">http://www.rfc-editor.org/info/rfc6887</a>>.
<span class="grey">Boucadair, et al. Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc7488">RFC 7488</a> PCP Server Selection March 2015</span>
<span class="h3"><a class="selflink" id="section-7.2" href="#section-7.2">7.2</a>. Informative References</span>
[<a id="ref-RFC1122">RFC1122</a>] Braden, R., Ed., "Requirements for Internet Hosts -
Communication Layers", STD 3, <a href="./rfc1122">RFC 1122</a>, October 1989,
<<a href="http://www.rfc-editor.org/info/rfc1122">http://www.rfc-editor.org/info/rfc1122</a>>.
[<a id="ref-RFC4116">RFC4116</a>] Abley, J., Lindqvist, K., Davies, E., Black, B., and V.
Gill, "IPv4 Multihoming Practices and Limitations", <a href="./rfc4116">RFC</a>
<a href="./rfc4116">4116</a>, July 2005, <<a href="http://www.rfc-editor.org/info/rfc4116">http://www.rfc-editor.org/info/rfc4116</a>>.
[<a id="ref-RFC7291">RFC7291</a>] Boucadair, M., Penno, R., and D. Wing, "DHCP Options for
the Port Control Protocol (PCP)", <a href="./rfc7291">RFC 7291</a>, July 2014,
<<a href="http://www.rfc-editor.org/info/rfc7291">http://www.rfc-editor.org/info/rfc7291</a>>.
<span class="grey">Boucadair, et al. Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc7488">RFC 7488</a> PCP Server Selection March 2015</span>
<span class="h2"><a class="selflink" id="appendix-A" href="#appendix-A">Appendix A</a>. Multihoming</span>
The main problem of a PCP multihoming situation can be succinctly
described as "one PCP client, multiple PCP servers." As described in
<a href="#section-3">Section 3</a>, if a PCP client discovers multiple PCP servers, it should
send requests to all of them with assumptions described in <a href="#section-1">Section 1</a>.
The following sub-sections describe multihoming examples to
illustrate the PCP client behavior.
<span class="h3"><a class="selflink" id="appendix-A.1" href="#appendix-A.1">A.1</a>. IPv6 Multihoming</span>
In this example of an IPv6 multihomed network, two or more routers
co-located with firewalls are present on a single link shared with
the host(s). Each router is, in turn, connected to a different
service provider network, and the host in this environment would be
offered multiple prefixes and advertised multiple DNS servers.
Consider a scenario in which firewalls within an IPv6 multihoming
environment also implement a PCP server. The PCP client learns the
available PCP servers using DHCP [<a href="./rfc7291" title=""DHCP Options for the Port Control Protocol (PCP)"">RFC7291</a>] or any other provisioning
mechanism. In reference to Figure 2, a typical model is to embed
DHCP servers in rtr1 and rtr2. A host located behind rtr1 and rtr2
can contact these two DHCP servers and retrieve from each server the
IP address(es) of the corresponding PCP server.
The PCP client will send PCP requests in parallel to each of the PCP
servers.
<span class="grey">Boucadair, et al. Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc7488">RFC 7488</a> PCP Server Selection March 2015</span>
==================
| Internet |
==================
| |
| |
+----+-+ +-+----+
| ISP1 | | ISP2 |
+----+-+ +-+----+ ISP Network
| |
.........................................................
| |
| | Subscriber Network
+-------+---+ +----+------+
| rtr1 with | | rtr2 with |
| FW1 | | FW2 |
+-------+---+ +----+------+
| |
| |
-------+----------+------
|
+---+---+
| Host |
+-------+
Figure 2: IPv6 Multihoming
<span class="h3"><a class="selflink" id="appendix-A.2" href="#appendix-A.2">A.2</a>. IPv4 Multihoming</span>
In this example of an IPv4 multihomed network described in "NAT- or
<a href="./rfc2260">RFC2260</a>-based Multihoming" (<a href="./rfc4116#section-3.3">Section 3.3 of [RFC4116]</a>), the gateway
router is connected to different service provider networks. This
method uses Provider-Aggregatable (PA) addresses assigned by each
transit provider to which the site is connected. The site uses NAT
to translate the various provider addresses into a single set of
private-use addresses within the site. In such a case, two PCP
servers might have to be present to configure NAT to each of the
transit providers. The PCP client learns the available PCP servers
using DHCP [<a href="./rfc7291" title=""DHCP Options for the Port Control Protocol (PCP)"">RFC7291</a>] or any other provisioning mechanism. In
reference to Figure 3, a typical model is to embed the DHCP server
and the PCP servers in rtr1. A host located behind rtr1 can contact
the DHCP server to obtain IP addresses of the PCP servers. The PCP
client will send PCP requests in parallel to each of the PCP servers.
<span class="grey">Boucadair, et al. Standards Track [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc7488">RFC 7488</a> PCP Server Selection March 2015</span>
=====================
| Internet |
=====================
| |
| |
+----+--------+ +-+------------+
| ISP1 | | ISP2 |
| | | |
+----+--------+ +-+------------+ ISP Network
| |
| |
..............................................................
| |
| Port1 | Port2 Subscriber Network
| |
+----+--------------+----+
|rtr1: NAT & PCP servers |
| GW Router |
+----+-------------------+
|
|
|
-----+--------------
|
+-+-----+
| Host | (private address space)
+-------+
Figure 3: IPv4 Multihoming
Acknowledgements
Many thanks to Dave Thaler, Simon Perreault, Hassnaa Moustafa, Ted
Lemon, Chris Inacio, and Brian Haberman for their reviews and
comments.
<span class="grey">Boucadair, et al. Standards Track [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc7488">RFC 7488</a> PCP Server Selection March 2015</span>
Authors' Addresses
Mohamed Boucadair
France Telecom
Rennes 35000
France
EMail: mohamed.boucadair@orange.com
Reinaldo Penno
Cisco Systems, Inc.
United States
EMail: repenno@cisco.com
Dan Wing
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, California 95134
United States
EMail: dwing@cisco.com
Prashanth Patil
Cisco Systems, Inc.
Bangalore
India
EMail: praspati@cisco.com
Tirumaleswar Reddy
Cisco Systems, Inc.
Cessna Business Park, Varthur Hobli
Sarjapur Marathalli Outer Ring Road
Bangalore, Karnataka 560103
India
EMail: tireddy@cisco.com
Boucadair, et al. Standards Track [Page 12]
</pre>
|