1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
|
<pre>Internet Engineering Task Force (IETF) M. Petit-Huguenin
Request for Comments: 7983 Impedance Mismatch
Updates: <a href="./rfc5764">5764</a> G. Salgueiro
Category: Standards Track Cisco Systems
ISSN: 2070-1721 September 2016
<span class="h1">Multiplexing Scheme Updates</span>
<span class="h1">for Secure Real-time Transport Protocol (SRTP) Extension</span>
<span class="h1">for Datagram Transport Layer Security (DTLS)</span>
Abstract
This document defines how Datagram Transport Layer Security (DTLS),
Real-time Transport Protocol (RTP), RTP Control Protocol (RTCP),
Session Traversal Utilities for NAT (STUN), Traversal Using Relays
around NAT (TURN), and ZRTP packets are multiplexed on a single
receiving socket. It overrides the guidance from <a href="./rfc5764">RFC 5764</a> ("SRTP
Extension for DTLS"), which suffered from four issues described and
fixed in this document.
This document updates <a href="./rfc5764">RFC 5764</a>.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in <a href="./rfc7841#section-2">Section 2 of RFC 7841</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc7983">http://www.rfc-editor.org/info/rfc7983</a>.
<span class="grey">Petit-Huguenin & Salgueiro Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc7983">RFC 7983</a> Multiplexing Scheme Updates for <a href="./rfc5764">RFC 5764</a> September 2016</span>
Copyright Notice
Copyright (c) 2016 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.
Table of Contents
<a href="#section-1">1</a>. Introduction . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-3">3</a>
<a href="#section-2">2</a>. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-3">3</a>. Implicit Allocation of Codepoints for New STUN Methods . . . <a href="#page-4">4</a>
<a href="#section-4">4</a>. Multiplexing of ZRTP . . . . . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
5. Implicit Allocation of New Codepoints for TLS ContentTypes . 5
<a href="#section-6">6</a>. Multiplexing of TURN Channels . . . . . . . . . . . . . . . . <a href="#page-7">7</a>
<a href="#section-7">7</a>. Updates to <a href="./rfc5764">RFC 5764</a> . . . . . . . . . . . . . . . . . . . . . <a href="#page-8">8</a>
<a href="#section-8">8</a>. Security Considerations . . . . . . . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-9">9</a>. IANA Considerations . . . . . . . . . . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-9.1">9.1</a>. STUN Methods . . . . . . . . . . . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-9.2">9.2</a>. TLS ContentType . . . . . . . . . . . . . . . . . . . . . <a href="#page-10">10</a>
9.3. Traversal Using Relays around NAT (TURN) Channel Numbers 11
<a href="#section-10">10</a>. References . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-11">11</a>
<a href="#section-10.1">10.1</a>. Normative References . . . . . . . . . . . . . . . . . . <a href="#page-11">11</a>
<a href="#section-10.2">10.2</a>. Informative References . . . . . . . . . . . . . . . . . <a href="#page-12">12</a>
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-13">13</a>
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-13">13</a>
<span class="grey">Petit-Huguenin & Salgueiro Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc7983">RFC 7983</a> Multiplexing Scheme Updates for <a href="./rfc5764">RFC 5764</a> September 2016</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
<a href="#section-5.1.2">Section 5.1.2</a> of "Datagram Transport Layer Security (DTLS) Extension
to Establish Keys for the Secure Real-time Transport Protocol (SRTP)"
[<a href="./rfc5764" title=""Datagram Transport Layer Security (DTLS) Extension to Establish Keys for the Secure Real-time Transport Protocol (SRTP)"">RFC5764</a>] defines a scheme for a Real-time Transport Protocol (RTP)
[<a href="./rfc3550" title=""RTP: A Transport Protocol for Real-Time Applications"">RFC3550</a>] receiver to demultiplex DTLS [<a href="./rfc6347" title=""Datagram Transport Layer Security Version 1.2"">RFC6347</a>], Session Traversal
Utilities for NAT (STUN) [<a href="./rfc5389" title=""Session Traversal Utilities for NAT (STUN)"">RFC5389</a>], and Secure Real-time Transport
Protocol (SRTP) / Secure Real-time Transport Control Protocol (SRTCP)
[<a href="./rfc3711" title=""The Secure Real-time Transport Protocol (SRTP)"">RFC3711</a>] packets that are arriving on the RTP port. Unfortunately,
this demultiplexing scheme has created problematic issues:
1. It implicitly allocated codepoints for new STUN methods without
an IANA registry reflecting these new allocations.
2. It did not take into account the fact that ZRTP [<a href="./rfc6189" title=""ZRTP: Media Path Key Agreement for Unicast Secure RTP"">RFC6189</a>] also
needs to be demultiplexed with the other packet types explicitly
mentioned in <a href="./rfc5764#section-5.1.2">Section 5.1.2 of RFC 5764</a>.
3. It implicitly allocated codepoints for new Transport Layer
Security (TLS) ContentTypes without an IANA registry reflecting
these new allocations.
4. It did not take into account the fact that the Traversal Using
Relays around NAT (TURN) usage of STUN can create TURN channels
that also need to be demultiplexed with the other packet types
explicitly mentioned in <a href="./rfc5764#section-5.1.2">Section 5.1.2 of RFC 5764</a>.
Having overlapping ranges between different IANA registries becomes
an issue when a new codepoint is allocated in one of these registries
without carefully analyzing the impact it could have on the other
registries when that codepoint is demultiplexed. Among other
downsides of the bad design of the demultiplexing algorithm detailed
in [<a href="./rfc5764" title=""Datagram Transport Layer Security (DTLS) Extension to Establish Keys for the Secure Real-time Transport Protocol (SRTP)"">RFC5764</a>], it creates a requirement for coordination between
codepoint assignments where none should exist, and that is
organizationally and socially undesirable. However, <a href="./rfc5764">RFC 5764</a> has
been widely deployed, so there must be an awareness of this issue and
how it must be dealt with. Thus, even if the feature related to a
codepoint is not initially thought to be useful in the context of
demultiplexing, the respective IANA registry expert should at least
raise a flag when the allocated codepoint irrevocably prevents
multiplexing.
<span class="grey">Petit-Huguenin & Salgueiro Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc7983">RFC 7983</a> Multiplexing Scheme Updates for <a href="./rfc5764">RFC 5764</a> September 2016</span>
The first goal of this document is to make sure that future
allocations in any of the affected protocols are done with the full
knowledge of their impact on multiplexing. This is achieved by
updating [<a href="./rfc5764" title=""Datagram Transport Layer Security (DTLS) Extension to Establish Keys for the Secure Real-time Transport Protocol (SRTP)"">RFC5764</a>], which includes modifying the IANA registries with
instructions for coordination between the protocols at risk.
A second goal is to permit the addition of new protocols to the list
of existing multiplexed protocols in a manner that does not break
existing implementations.
At the time of this writing, the flaws in the demultiplexing scheme
were unavoidably inherited by other documents, such as [<a href="./rfc7345" title=""UDP Transport Layer (UDPTL) over Datagram Transport Layer Security (DTLS)"">RFC7345</a>] and
[<a href="#ref-SDP-BUNDLE">SDP-BUNDLE</a>]. So in addition, these and any other affected documents
will need to be corrected with the updates this document provides.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Terminology</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Implicit Allocation of Codepoints for New STUN Methods</span>
The demultiplexing scheme in [<a href="./rfc5764" title=""Datagram Transport Layer Security (DTLS) Extension to Establish Keys for the Secure Real-time Transport Protocol (SRTP)"">RFC5764</a>] states that the receiver can
identify the packet type by looking at the first byte. If the value
of this first byte is 0 or 1, the packet is identified to be STUN.
The problem with this implicit allocation is that it restricts the
codepoints for STUN methods (as described in <a href="./rfc5389#section-18.1">Section 18.1 of
[RFC5389]</a>) to values between 0x000 and 0x07F, which in turn reduces
the number of possible STUN method codepoints assigned by IETF Review
(i.e., the range 0x000 - 0x7FF) from 2048 to only 128 and eliminates
the possibility of having STUN method codepoints assigned by
Designated Expert (i.e., the range 0x800 - 0xFFF).
To preserve the Designated Expert range, this document allocates the
values 2 and 3 to also identify STUN methods.
The IANA Registry for STUN methods has been modified to mark the
codepoints from 0x100 to 0xFFF as Reserved. These codepoints can
still be allocated, but require IETF Review with a document that will
properly evaluate the risk of an assignment overlapping with other
registries.
<span class="grey">Petit-Huguenin & Salgueiro Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc7983">RFC 7983</a> Multiplexing Scheme Updates for <a href="./rfc5764">RFC 5764</a> September 2016</span>
In addition, this document also updates the IANA registry such that
the STUN method codepoints assigned in the 0x080-0x0FF range are also
assigned via Designated Expert. The "STUN Methods" registry has been
changed as follows:
OLD:
0x000-0x7FF IETF Review
0x800-0xFFF Designated Expert
NEW:
0x000-0x07F IETF Review
0x080-0x0FF Designated Expert
0x100-0xFFF Reserved
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Multiplexing of ZRTP</span>
ZRTP [<a href="./rfc6189" title=""ZRTP: Media Path Key Agreement for Unicast Secure RTP"">RFC6189</a>] is a protocol for media path Diffie-Hellman exchange
to agree on a session key and parameters for establishing unicast
SRTP sessions for Voice over IP (VoIP) applications. The ZRTP
protocol is media path keying because it is multiplexed on the same
port as RTP and does not require support in the signaling protocol.
In order to prevent future documents from assigning values from the
unused range to a new protocol, this document modifies the [<a href="./rfc5764" title=""Datagram Transport Layer Security (DTLS) Extension to Establish Keys for the Secure Real-time Transport Protocol (SRTP)"">RFC5764</a>]
demultiplexing algorithm to properly account for ZRTP [<a href="./rfc6189" title=""ZRTP: Media Path Key Agreement for Unicast Secure RTP"">RFC6189</a>] by
allocating the values from 16 to 19 for this purpose.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Implicit Allocation of New Codepoints for TLS ContentTypes</span>
The demultiplexing scheme in [<a href="./rfc5764" title=""Datagram Transport Layer Security (DTLS) Extension to Establish Keys for the Secure Real-time Transport Protocol (SRTP)"">RFC5764</a>] dictates that if the value of
the first byte is between 20 and 63 (inclusive), then the packet is
identified to be DTLS. For DTLS 1.0 [<a href="./rfc4347" title=""Datagram Transport Layer Security"">RFC4347</a>] and DTLS 1.2
[<a href="./rfc6347" title=""Datagram Transport Layer Security Version 1.2"">RFC6347</a>], that first byte corresponds to the TLS ContentType field.
Considerations must be taken into account when assigning additional
ContentTypes in the codepoint ranges 0 to 19 and 64 to 255, so this
does not prevent demultiplexing when this functionality is desirable.
Note that [<a href="./rfc5764" title=""Datagram Transport Layer Security (DTLS) Extension to Establish Keys for the Secure Real-time Transport Protocol (SRTP)"">RFC5764</a>] describes a narrow use of DTLS that works as long
as the specific DTLS version used abides by the restrictions on the
demultiplexing byte (the ones that this document imposes on the "TLS
ContentType Registry"). Any extension or revision to DTLS that
causes it to no longer meet these constraints should consider what
values may occur in the first byte of the DTLS message and what
impact it would have on the multiplexing that [<a href="./rfc5764" title=""Datagram Transport Layer Security (DTLS) Extension to Establish Keys for the Secure Real-time Transport Protocol (SRTP)"">RFC5764</a>] describes.
<span class="grey">Petit-Huguenin & Salgueiro Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc7983">RFC 7983</a> Multiplexing Scheme Updates for <a href="./rfc5764">RFC 5764</a> September 2016</span>
With respect to TLS packet identification, this document explicitly
adds a warning to the codepoints from 0 to 19 and from 64 to 255
indicating that allocations in these ranges require coordination, as
described in this document. The "TLS ContentType Registry" has been
changed as follows:
OLD:
0-19 Unassigned
20 change_cipher_spec
21 alert
22 handshake
23 application_data
24 heartbeat
25-255 Unassigned
NEW:
0-19 Unassigned (Requires coordination; see <a href="./rfc7983">RFC 7983</a>)
20 change_cipher_spec
21 alert
22 handshake
23 application_data
24 heartbeat
25-63 Unassigned
64-255 Unassigned (Requires coordination; see <a href="./rfc7983">RFC 7983</a>)
<span class="grey">Petit-Huguenin & Salgueiro Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc7983">RFC 7983</a> Multiplexing Scheme Updates for <a href="./rfc5764">RFC 5764</a> September 2016</span>
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Multiplexing of TURN Channels</span>
When used with Interactive Connectivity Establishment (ICE)
[<a href="./rfc5245" title=""Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal for Offer/Answer Protocols"">RFC5245</a>], an implementation of <a href="./rfc5764">RFC 5764</a> can receive packets on the
same socket from three different paths, as shown in Figure 1:
1. Directly from the source
2. Through a NAT
3. Relayed by a TURN server
+------+
| TURN |<------------------------+
+------+ |
| |
| +-------------------------+ |
| | | |
v v | |
NAT ----------- | |
| | +---------------------+ | |
| | | | | |
v v v | | |
+----------+ +----------+
| <a href="./rfc5764">RFC 5764</a> | | <a href="./rfc5764">RFC 5764</a> |
+----------+ +----------+
Figure 1: Packet Reception by an Implementation of <a href="./rfc5764">RFC 5764</a>
Even if the ICE algorithm succeeded in selecting a non-relayed path,
it is still possible to receive data from the TURN server. For
instance, when ICE is used with aggressive nomination, the media path
can quickly change until it stabilizes. Also, freeing ICE candidates
is optional, so the TURN server can restart forwarding STUN
connectivity checks during an ICE restart.
TURN channels are an optimization where data packets are exchanged
with a 4-byte prefix instead of the standard 36-byte STUN overhead
(see <a href="./rfc5766#section-2.5">Section 2.5 of [RFC5766]</a>). The problem is that the <a href="./rfc5764">RFC 5764</a>
demultiplexing scheme does not define what to do with packets
received over a TURN channel since these packets will start with a
first byte whose value will be between 64 and 127 (inclusive). If
the TURN server was instructed to send data over a TURN channel, then
the demultiplexing scheme specified in <a href="./rfc5764">RFC 5764</a> will reject these
packets. Current implementations violate <a href="./rfc5764">RFC 5764</a> for values 64 to
127 (inclusive) and they instead parse packets with such values as
TURN.
<span class="grey">Petit-Huguenin & Salgueiro Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc7983">RFC 7983</a> Multiplexing Scheme Updates for <a href="./rfc5764">RFC 5764</a> September 2016</span>
In order to prevent future documents from assigning values from the
unused range to a new protocol, this document modifies the
demultiplexing algorithm in <a href="./rfc5764">RFC 5764</a> to properly account for TURN
channels by allocating the values from 64 to 79 for this purpose.
This modification restricts the TURN channel space to a more limited
set of possible channels when the TURN client does the channel
binding request in combination with the demultiplexing scheme
described in [<a href="./rfc5764" title=""Datagram Transport Layer Security (DTLS) Extension to Establish Keys for the Secure Real-time Transport Protocol (SRTP)"">RFC5764</a>].
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Updates to <a href="./rfc5764">RFC 5764</a></span>
This document updates the text in <a href="./rfc5764#section-5.1.2">Section 5.1.2 of [RFC5764]</a> as
follows:
OLD TEXT
The process for demultiplexing a packet is as follows. The receiver
looks at the first byte of the packet. If the value of this byte is
0 or 1, then the packet is STUN. If the value is in between 128 and
191 (inclusive), then the packet is RTP (or RTCP, if both RTCP and
RTP are being multiplexed over the same destination port). If the
value is between 20 and 63 (inclusive), the packet is DTLS. This
process is summarized in Figure 3.
+----------------+
| 127 < B < 192 -+--> forward to RTP
| |
packet --> | 19 < B < 64 -+--> forward to DTLS
| |
| B < 2 -+--> forward to STUN
+----------------+
Figure 3: The DTLS-SRTP receiver's packet demultiplexing algorithm.
Here the field B denotes the leading byte of the packet.
END OLD TEXT
<span class="grey">Petit-Huguenin & Salgueiro Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc7983">RFC 7983</a> Multiplexing Scheme Updates for <a href="./rfc5764">RFC 5764</a> September 2016</span>
NEW TEXT
The process for demultiplexing a packet is as follows. The receiver
looks at the first byte of the packet. If the value of this byte is
in between 0 and 3 (inclusive), then the packet is STUN. If the
value is between 16 and 19 (inclusive), then the packet is ZRTP. If
the value is between 20 and 63 (inclusive), then the packet is DTLS.
If the value is between 64 and 79 (inclusive), then the packet is
TURN Channel. If the value is in between 128 and 191 (inclusive),
then the packet is RTP (or RTCP, if both RTCP and RTP are being
multiplexed over the same destination port). If the value does not
match any known range, then the packet MUST be dropped and an alert
MAY be logged. This process is summarized in Figure 3.
+----------------+
| [0..3] -+--> forward to STUN
| |
| [16..19] -+--> forward to ZRTP
| |
packet --> | [20..63] -+--> forward to DTLS
| |
| [64..79] -+--> forward to TURN Channel
| |
| [128..191] -+--> forward to RTP/RTCP
+----------------+
Figure 3: The DTLS-SRTP receiver's packet demultiplexing algorithm.
END NEW TEXT
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Security Considerations</span>
This document updates existing IANA registries and adds a new range
for TURN channels in the demultiplexing algorithm.
These modifications do not introduce any specific security
considerations beyond those detailed in [<a href="./rfc5764" title=""Datagram Transport Layer Security (DTLS) Extension to Establish Keys for the Secure Real-time Transport Protocol (SRTP)"">RFC5764</a>].
<span class="grey">Petit-Huguenin & Salgueiro Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc7983">RFC 7983</a> Multiplexing Scheme Updates for <a href="./rfc5764">RFC 5764</a> September 2016</span>
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. IANA Considerations</span>
<span class="h3"><a class="selflink" id="section-9.1" href="#section-9.1">9.1</a>. STUN Methods</span>
This specification contains the registration information for reserved
STUN Methods codepoints, as explained in <a href="#section-3">Section 3</a> and in accordance
with the procedures defined in <a href="./rfc5389#section-18.1">Section 18.1 of [RFC5389]</a>.
Value: 0x100-0xFFF
Name: Reserved (For DTLS-SRTP multiplexing collision avoidance, see
<a href="./rfc7983">RFC 7983</a>. Cannot be made available for assignment without IETF
Review.)
Reference: <a href="./rfc5764">RFC 5764</a>, <a href="./rfc7983">RFC 7983</a>
This specification also reassigns the ranges in the STUN Methods
Registry as follows:
Range: 0x000-0x07F
Registration Procedures: IETF Review
Range: 0x080-0x0FF
Registration Procedures: Designated Expert
<span class="h3"><a class="selflink" id="section-9.2" href="#section-9.2">9.2</a>. TLS ContentType</span>
This specification contains the registration information for reserved
TLS ContentType codepoints, as explained in <a href="#section-5">Section 5</a> and in
accordance with the procedures defined in <a href="./rfc5246#section-12">Section 12 of [RFC5246]</a>.
Value: 0-19
Description: Unassigned (Requires coordination; see <a href="./rfc7983">RFC 7983</a>)
DTLS-OK: N/A
Reference: <a href="./rfc5764">RFC 5764</a>, <a href="./rfc7983">RFC 7983</a>
Value: 64-255
Description: Unassigned (Requires coordination; see <a href="./rfc7983">RFC 7983</a>)
DTLS-OK: N/A
Reference: <a href="./rfc5764">RFC 5764</a>, <a href="./rfc7983">RFC 7983</a>
<span class="grey">Petit-Huguenin & Salgueiro Standards Track [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc7983">RFC 7983</a> Multiplexing Scheme Updates for <a href="./rfc5764">RFC 5764</a> September 2016</span>
<span class="h3"><a class="selflink" id="section-9.3" href="#section-9.3">9.3</a>. Traversal Using Relays around NAT (TURN) Channel Numbers</span>
This specification contains the registration information for reserved
codepoints in the "Traversal Using Relays around NAT (TURN) Channel
Numbers" registry, as explained in <a href="#section-6">Section 6</a> and in accordance with
the procedures defined in <a href="./rfc5766#section-18">Section 18 of [RFC5766]</a>.
Value: 0x5000-0xFFFF
Name: Reserved (For DTLS-SRTP multiplexing collision avoidance, see
<a href="./rfc7983">RFC 7983</a>.)
Reference: <a href="./rfc7983">RFC 7983</a>
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. References</span>
<span class="h3"><a class="selflink" id="section-10.1" href="#section-10.1">10.1</a>. Normative References</span>
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>,
DOI 10.17487/RFC2119, March 1997,
<<a href="http://www.rfc-editor.org/info/rfc2119">http://www.rfc-editor.org/info/rfc2119</a>>.
[<a id="ref-RFC3550">RFC3550</a>] Schulzrinne, H., Casner, S., Frederick, R., and V.
Jacobson, "RTP: A Transport Protocol for Real-Time
Applications", STD 64, <a href="./rfc3550">RFC 3550</a>, DOI 10.17487/RFC3550,
July 2003, <<a href="http://www.rfc-editor.org/info/rfc3550">http://www.rfc-editor.org/info/rfc3550</a>>.
[<a id="ref-RFC3711">RFC3711</a>] Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
Norrman, "The Secure Real-time Transport Protocol (SRTP)",
<a href="./rfc3711">RFC 3711</a>, DOI 10.17487/RFC3711, March 2004,
<<a href="http://www.rfc-editor.org/info/rfc3711">http://www.rfc-editor.org/info/rfc3711</a>>.
[<a id="ref-RFC5245">RFC5245</a>] Rosenberg, J., "Interactive Connectivity Establishment
(ICE): A Protocol for Network Address Translator (NAT)
Traversal for Offer/Answer Protocols", <a href="./rfc5245">RFC 5245</a>,
DOI 10.17487/RFC5245, April 2010,
<<a href="http://www.rfc-editor.org/info/rfc5245">http://www.rfc-editor.org/info/rfc5245</a>>.
[<a id="ref-RFC5246">RFC5246</a>] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", <a href="./rfc5246">RFC 5246</a>,
DOI 10.17487/RFC5246, August 2008,
<<a href="http://www.rfc-editor.org/info/rfc5246">http://www.rfc-editor.org/info/rfc5246</a>>.
[<a id="ref-RFC5389">RFC5389</a>] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
"Session Traversal Utilities for NAT (STUN)", <a href="./rfc5389">RFC 5389</a>,
DOI 10.17487/RFC5389, October 2008,
<<a href="http://www.rfc-editor.org/info/rfc5389">http://www.rfc-editor.org/info/rfc5389</a>>.
<span class="grey">Petit-Huguenin & Salgueiro Standards Track [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc7983">RFC 7983</a> Multiplexing Scheme Updates for <a href="./rfc5764">RFC 5764</a> September 2016</span>
[<a id="ref-RFC5764">RFC5764</a>] McGrew, D. and E. Rescorla, "Datagram Transport Layer
Security (DTLS) Extension to Establish Keys for the Secure
Real-time Transport Protocol (SRTP)", <a href="./rfc5764">RFC 5764</a>,
DOI 10.17487/RFC5764, May 2010,
<<a href="http://www.rfc-editor.org/info/rfc5764">http://www.rfc-editor.org/info/rfc5764</a>>.
[<a id="ref-RFC5766">RFC5766</a>] Mahy, R., Matthews, P., and J. Rosenberg, "Traversal Using
Relays around NAT (TURN): Relay Extensions to Session
Traversal Utilities for NAT (STUN)", <a href="./rfc5766">RFC 5766</a>,
DOI 10.17487/RFC5766, April 2010,
<<a href="http://www.rfc-editor.org/info/rfc5766">http://www.rfc-editor.org/info/rfc5766</a>>.
[<a id="ref-RFC6347">RFC6347</a>] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
Security Version 1.2", <a href="./rfc6347">RFC 6347</a>, DOI 10.17487/RFC6347,
January 2012, <<a href="http://www.rfc-editor.org/info/rfc6347">http://www.rfc-editor.org/info/rfc6347</a>>.
<span class="h3"><a class="selflink" id="section-10.2" href="#section-10.2">10.2</a>. Informative References</span>
[<a id="ref-RFC4347">RFC4347</a>] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
Security", <a href="./rfc4347">RFC 4347</a>, DOI 10.17487/RFC4347, April 2006,
<<a href="http://www.rfc-editor.org/info/rfc4347">http://www.rfc-editor.org/info/rfc4347</a>>.
[<a id="ref-RFC6189">RFC6189</a>] Zimmermann, P., Johnston, A., Ed., and J. Callas, "ZRTP:
Media Path Key Agreement for Unicast Secure RTP",
<a href="./rfc6189">RFC 6189</a>, DOI 10.17487/RFC6189, April 2011,
<<a href="http://www.rfc-editor.org/info/rfc6189">http://www.rfc-editor.org/info/rfc6189</a>>.
[<a id="ref-RFC7345">RFC7345</a>] Holmberg, C., Sedlacek, I., and G. Salgueiro, "UDP
Transport Layer (UDPTL) over Datagram Transport Layer
Security (DTLS)", <a href="./rfc7345">RFC 7345</a>, DOI 10.17487/RFC7345, August
2014, <<a href="http://www.rfc-editor.org/info/rfc7345">http://www.rfc-editor.org/info/rfc7345</a>>.
[<a id="ref-SDP-BUNDLE">SDP-BUNDLE</a>]
Holmberg, C., Alvestrand, H., and C. Jennings,
"Negotiating Media Multiplexing Using the Session
Description Protocol (SDP)", Work in Progress,
<a href="./draft-ietf-mmusic-sdp-bundle-negotiation-32">draft-ietf-mmusic-sdp-bundle-negotiation-32</a>, August 2016.
<span class="grey">Petit-Huguenin & Salgueiro Standards Track [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc7983">RFC 7983</a> Multiplexing Scheme Updates for <a href="./rfc5764">RFC 5764</a> September 2016</span>
Acknowledgements
The implicit STUN Method codepoint allocations problem was first
reported by Martin Thomson in the RTCWEB mailing list and discussed
further with Magnus Westerlund.
Thanks to Simon Perreault, Colton Shields, Cullen Jennings, Colin
Perkins, Magnus Westerlund, Paul Jones, Jonathan Lennox, Varun Singh,
Justin Uberti, Joseph Salowey, Martin Thomson, Ben Campbell, Stephen
Farrell, Alan Johnston, Mehmet Ersue, Matt Miller, Spencer Dawkins,
Joel Halpern, and Paul Kyzivat for the comments, suggestions, and
questions that helped improve this document.
Authors' Addresses
Marc Petit-Huguenin
Impedance Mismatch
Email: marc@petit-huguenin.org
Gonzalo Salgueiro
Cisco Systems
7200-12 Kit Creek Road
Research Triangle Park, NC 27709
United States of America
Email: gsalguei@cisco.com
Petit-Huguenin & Salgueiro Standards Track [Page 13]
</pre>
|