1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
|
<pre>Internet Research Task Force (IRTF) D. McGrew
Request for Comments: 8554 M. Curcio
Category: Informational S. Fluhrer
ISSN: 2070-1721 Cisco Systems
April 2019
<span class="h1">Leighton-Micali Hash-Based Signatures</span>
Abstract
This note describes a digital-signature system based on cryptographic
hash functions, following the seminal work in this area of Lamport,
Diffie, Winternitz, and Merkle, as adapted by Leighton and Micali in
1995. It specifies a one-time signature scheme and a general
signature scheme. These systems provide asymmetric authentication
without using large integer mathematics and can achieve a high
security level. They are suitable for compact implementations, are
relatively simple to implement, and are naturally resistant to side-
channel attacks. Unlike many other signature systems, hash-based
signatures would still be secure even if it proves feasible for an
attacker to build a quantum computer.
This document is a product of the Crypto Forum Research Group (CFRG)
in the IRTF. This has been reviewed by many researchers, both in the
research group and outside of it. The Acknowledgements section lists
many of them.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This document is a product of the Internet Research Task Force
(IRTF). The IRTF publishes the results of Internet-related research
and development activities. These results might not be suitable for
deployment. This RFC represents the consensus of the Crypto Forum
Research Group of the Internet Research Task Force (IRTF). Documents
approved for publication by the IRSG are not candidates for any level
of Internet Standard; see <a href="./rfc7841#section-2">Section 2 of RFC 7841</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="https://www.rfc-editor.org/info/rfc8554">https://www.rfc-editor.org/info/rfc8554</a>.
<span class="grey">McGrew, et al. Informational [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
Copyright Notice
Copyright (c) 2019 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="https://trustee.ietf.org/license-info">https://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document.
Table of Contents
<a href="#section-1">1</a>. Introduction . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-3">3</a>
<a href="#section-1.1">1.1</a>. CFRG Note on Post-Quantum Cryptography . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-1.2">1.2</a>. Intellectual Property . . . . . . . . . . . . . . . . . . <a href="#page-6">6</a>
<a href="#section-1.2.1">1.2.1</a>. Disclaimer . . . . . . . . . . . . . . . . . . . . . <a href="#page-6">6</a>
<a href="#section-1.3">1.3</a>. Conventions Used in This Document . . . . . . . . . . . . <a href="#page-6">6</a>
<a href="#section-2">2</a>. Interface . . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-6">6</a>
<a href="#section-3">3</a>. Notation . . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-7">7</a>
<a href="#section-3.1">3.1</a>. Data Types . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-7">7</a>
<a href="#section-3.1.1">3.1.1</a>. Operators . . . . . . . . . . . . . . . . . . . . . . <a href="#page-7">7</a>
<a href="#section-3.1.2">3.1.2</a>. Functions . . . . . . . . . . . . . . . . . . . . . . <a href="#page-8">8</a>
<a href="#section-3.1.3">3.1.3</a>. Strings of w-Bit Elements . . . . . . . . . . . . . . <a href="#page-8">8</a>
<a href="#section-3.2">3.2</a>. Typecodes . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-3.3">3.3</a>. Notation and Formats . . . . . . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-4">4</a>. LM-OTS One-Time Signatures . . . . . . . . . . . . . . . . . <a href="#page-12">12</a>
<a href="#section-4.1">4.1</a>. Parameters . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-13">13</a>
<a href="#section-4.2">4.2</a>. Private Key . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-14">14</a>
<a href="#section-4.3">4.3</a>. Public Key . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-15">15</a>
<a href="#section-4.4">4.4</a>. Checksum . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-15">15</a>
<a href="#section-4.5">4.5</a>. Signature Generation . . . . . . . . . . . . . . . . . . <a href="#page-16">16</a>
<a href="#section-4.6">4.6</a>. Signature Verification . . . . . . . . . . . . . . . . . <a href="#page-17">17</a>
<a href="#section-5">5</a>. Leighton-Micali Signatures . . . . . . . . . . . . . . . . . <a href="#page-19">19</a>
<a href="#section-5.1">5.1</a>. Parameters . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-19">19</a>
<a href="#section-5.2">5.2</a>. LMS Private Key . . . . . . . . . . . . . . . . . . . . . <a href="#page-20">20</a>
<a href="#section-5.3">5.3</a>. LMS Public Key . . . . . . . . . . . . . . . . . . . . . <a href="#page-21">21</a>
<a href="#section-5.4">5.4</a>. LMS Signature . . . . . . . . . . . . . . . . . . . . . . <a href="#page-22">22</a>
<a href="#section-5.4.1">5.4.1</a>. LMS Signature Generation . . . . . . . . . . . . . . <a href="#page-23">23</a>
<a href="#section-5.4.2">5.4.2</a>. LMS Signature Verification . . . . . . . . . . . . . <a href="#page-24">24</a>
<a href="#section-6">6</a>. Hierarchical Signatures . . . . . . . . . . . . . . . . . . . <a href="#page-26">26</a>
<a href="#section-6.1">6.1</a>. Key Generation . . . . . . . . . . . . . . . . . . . . . <a href="#page-29">29</a>
<a href="#section-6.2">6.2</a>. Signature Generation . . . . . . . . . . . . . . . . . . <a href="#page-30">30</a>
<a href="#section-6.3">6.3</a>. Signature Verification . . . . . . . . . . . . . . . . . <a href="#page-32">32</a>
<a href="#section-6.4">6.4</a>. Parameter Set Recommendations . . . . . . . . . . . . . . <a href="#page-32">32</a>
<a href="#section-7">7</a>. Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-34">34</a>
<a href="#section-7.1">7.1</a>. Security String . . . . . . . . . . . . . . . . . . . . . <a href="#page-35">35</a>
<span class="grey">McGrew, et al. Informational [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
<a href="#section-8">8</a>. IANA Considerations . . . . . . . . . . . . . . . . . . . . . <a href="#page-36">36</a>
<a href="#section-9">9</a>. Security Considerations . . . . . . . . . . . . . . . . . . . <a href="#page-38">38</a>
<a href="#section-9.1">9.1</a>. Hash Formats . . . . . . . . . . . . . . . . . . . . . . <a href="#page-39">39</a>
<a href="#section-9.2">9.2</a>. Stateful Signature Algorithm . . . . . . . . . . . . . . <a href="#page-40">40</a>
<a href="#section-9.3">9.3</a>. Security of LM-OTS Checksum . . . . . . . . . . . . . . . <a href="#page-41">41</a>
<a href="#section-10">10</a>. Comparison with Other Work . . . . . . . . . . . . . . . . . <a href="#page-42">42</a>
<a href="#section-11">11</a>. References . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-43">43</a>
<a href="#section-11.1">11.1</a>. Normative References . . . . . . . . . . . . . . . . . . <a href="#page-43">43</a>
<a href="#section-11.2">11.2</a>. Informative References . . . . . . . . . . . . . . . . . <a href="#page-43">43</a>
<a href="#appendix-A">Appendix A</a>. Pseudorandom Key Generation . . . . . . . . . . . . <a href="#page-45">45</a>
<a href="#appendix-B">Appendix B</a>. LM-OTS Parameter Options . . . . . . . . . . . . . . <a href="#page-45">45</a>
<a href="#appendix-C">Appendix C</a>. An Iterative Algorithm for Computing an LMS Public
Key . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-47">47</a>
<a href="#appendix-D">Appendix D</a>. Method for Deriving Authentication Path for a
Signature . . . . . . . . . . . . . . . . . . . . . <a href="#page-48">48</a>
<a href="#appendix-E">Appendix E</a>. Example Implementation . . . . . . . . . . . . . . . <a href="#page-49">49</a>
<a href="#appendix-F">Appendix F</a>. Test Cases . . . . . . . . . . . . . . . . . . . . . <a href="#page-49">49</a>
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-60">60</a>
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-61">61</a>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
One-time signature systems, and general-purpose signature systems
built out of one-time signature systems, have been known since 1979
[<a href="#ref-Merkle79">Merkle79</a>], were well studied in the 1990s [<a href="#ref-USPTO5432852">USPTO5432852</a>], and have
benefited from renewed attention in the last decade. The
characteristics of these signature systems are small private and
public keys and fast signature generation and verification, but large
signatures and moderately slow key generation (in comparison with RSA
and ECDSA (Elliptic Curve Digital Signature Algorithm)). Private
keys can be made very small by appropriate key generation, for
example, as described in <a href="#appendix-A">Appendix A</a>. In recent years, there has been
interest in these systems because of their post-quantum security and
their suitability for compact verifier implementations.
This note describes the Leighton and Micali adaptation [<a href="#ref-USPTO5432852">USPTO5432852</a>]
of the original Lamport-Diffie-Winternitz-Merkle one-time signature
system [<a href="#ref-Merkle79">Merkle79</a>] [C:Merkle87] [C:Merkle89a] [C:Merkle89b] and
general signature system [<a href="#ref-Merkle79">Merkle79</a>] with enough specificity to ensure
interoperability between implementations.
A signature system provides asymmetric message authentication. The
key-generation algorithm produces a public/private key pair. A
message is signed by a private key, producing a signature, and a
message/signature pair can be verified by a public key. A One-Time
Signature (OTS) system can be used to sign one message securely but
will become insecure if more than one is signed with the same public/
<span class="grey">McGrew, et al. Informational [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
private key pair. An N-time signature system can be used to sign N
or fewer messages securely. A Merkle-tree signature scheme is an
N-time signature system that uses an OTS system as a component.
In the Merkle scheme, a binary tree of height h is used to hold 2^h
OTS key pairs. Each interior node of the tree holds a value that is
the hash of the values of its two child nodes. The public key of the
tree is the value of the root node (a recursive hash of the OTS
public keys), while the private key of the tree is the collection of
all the OTS private keys, together with the index of the next OTS
private key to sign the next message with.
In this note, we describe the Leighton-Micali Signature (LMS) system
(a variant of the Merkle scheme) with the Hierarchical Signature
System (HSS) built on top of it that allows it to efficiently scale
to larger numbers of signatures. In order to support signing a large
number of messages on resource-constrained systems, the Merkle tree
can be subdivided into a number of smaller trees. Only the
bottommost tree is used to sign messages, while trees above that are
used to sign the public keys of their children. For example, in the
simplest case with two levels with both levels consisting of height h
trees, the root tree is used to sign 2^h trees with 2^h OTS key
pairs, and each second-level tree has 2^h OTS key pairs, for a total
of 2^(2h) bottom-level key pairs, and so can sign 2^(2h) messages.
The advantage of this scheme is that only the active trees need to be
instantiated, which saves both time (for key generation) and space
(for key storage). On the other hand, using a multilevel signature
scheme increases the size of the signature as well as the signature
verification time.
This note is structured as follows. Notes on post-quantum
cryptography are discussed in <a href="#section-1.1">Section 1.1</a>. Intellectual property
issues are discussed in <a href="#section-1.2">Section 1.2</a>. The notation used within this
note is defined in <a href="#section-3">Section 3</a>, and the public formats are described in
<a href="#section-3.3">Section 3.3</a>. The Leighton-Micali One-Time Signature (LM-OTS) system
is described in <a href="#section-4">Section 4</a>, and the LMS and HSS N-time signature
systems are described in Sections <a href="#section-5">5</a> and <a href="#section-6">6</a>, respectively. Sufficient
detail is provided to ensure interoperability. The rationale for the
design decisions is given in <a href="#section-7">Section 7</a>. The IANA registry for these
signature systems is described in <a href="#section-8">Section 8</a>. Security considerations
are presented in <a href="#section-9">Section 9</a>. Comparison with another hash-based
signature algorithm (eXtended Merkle Signature Scheme (XMSS)) is in
<a href="#section-10">Section 10</a>.
This document represents the rough consensus of the CFRG.
<span class="grey">McGrew, et al. Informational [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. CFRG Note on Post-Quantum Cryptography</span>
All post-quantum algorithms documented by the Crypto Forum Research
Group (CFRG) are today considered ready for experimentation and
further engineering development (e.g., to establish the impact of
performance and sizes on IETF protocols). However, at the time of
writing, we do not have significant deployment experience with such
algorithms.
Many of these algorithms come with specific restrictions, e.g.,
change of classical interface or less cryptanalysis of proposed
parameters than established schemes. The CFRG has consensus that all
documents describing post-quantum technologies include the above
paragraph and a clear additional warning about any specific
restrictions, especially as those might affect use or deployment of
the specific scheme. That guidance may be changed over time via
document updates.
Additionally, for LMS:
CFRG consensus is that we are confident in the cryptographic security
of the signature schemes described in this document against quantum
computers, given the current state of the research community's
knowledge about quantum algorithms. Indeed, we are confident that
the security of a significant part of the Internet could be made
dependent on the signature schemes defined in this document, if
developers take care of the following.
In contrast to traditional signature schemes, the signature schemes
described in this document are stateful, meaning the secret key
changes over time. If a secret key state is used twice, no
cryptographic security guarantees remain. In consequence, it becomes
feasible to forge a signature on a new message. This is a new
property that most developers will not be familiar with and requires
careful handling of secret keys. Developers should not use the
schemes described here except in systems that prevent the reuse of
secret key states.
Note that the fact that the schemes described in this document are
stateful also implies that classical APIs for digital signatures
cannot be used without modification. The API MUST be able to handle
a dynamic secret key state; that is, the API MUST allow the
signature-generation algorithm to update the secret key state.
<span class="grey">McGrew, et al. Informational [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
<span class="h3"><a class="selflink" id="section-1.2" href="#section-1.2">1.2</a>. Intellectual Property</span>
This document is based on U.S. Patent 5,432,852, which was issued
over twenty years ago and is thus expired.
<span class="h4"><a class="selflink" id="section-1.2.1" href="#section-1.2.1">1.2.1</a>. Disclaimer</span>
This document is not intended as legal advice. Readers are advised
to consult with their own legal advisers if they would like a legal
interpretation of their rights.
The IETF policies and processes regarding intellectual property and
patents are outlined in [<a href="./rfc8179" title=""Intellectual Property Rights in IETF Technology"">RFC8179</a>] and at
<<a href="https://datatracker.ietf.org/ipr/about">https://datatracker.ietf.org/ipr/about</a>>.
<span class="h3"><a class="selflink" id="section-1.3" href="#section-1.3">1.3</a>. Conventions Used in This Document</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
<a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a> [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>] [<a href="./rfc8174" title=""Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words"">RFC8174</a>] when, and only when, they appear in all
capitals, as shown here.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Interface</span>
The LMS signing algorithm is stateful; it modifies and updates the
private key as a side effect of generating a signature. Once a
particular value of the private key is used to sign one message, it
MUST NOT be used to sign another.
The key-generation algorithm takes as input an indication of the
parameters for the signature system. If it is successful, it returns
both a private key and a public key. Otherwise, it returns an
indication of failure.
The signing algorithm takes as input the message to be signed and the
current value of the private key. If successful, it returns a
signature and the next value of the private key, if there is such a
value. After the private key of an N-time signature system has
signed N messages, the signing algorithm returns the signature and an
indication that there is no next value of the private key that can be
used for signing. If unsuccessful, it returns an indication of
failure.
The verification algorithm takes as input the public key, a message,
and a signature; it returns an indication of whether or not the
signature-and-message pair is valid.
<span class="grey">McGrew, et al. Informational [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
A message/signature pair is valid if the signature was returned by
the signing algorithm upon input of the message and the private key
corresponding to the public key; otherwise, the signature and message
pair is not valid with probability very close to one.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Notation</span>
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. Data Types</span>
Bytes and byte strings are the fundamental data types. A single byte
is denoted as a pair of hexadecimal digits with a leading "0x". A
byte string is an ordered sequence of zero or more bytes and is
denoted as an ordered sequence of hexadecimal characters with a
leading "0x". For example, 0xe534f0 is a byte string with a length
of three. An array of byte strings is an ordered set, indexed
starting at zero, in which all strings have the same length.
Unsigned integers are converted into byte strings by representing
them in network byte order. To make the number of bytes in the
representation explicit, we define the functions u8str(X), u16str(X),
and u32str(X), which take a nonnegative integer X as input and return
one-, two-, and four-byte strings, respectively. We also make use of
the function strTou32(S), which takes a four-byte string S as input
and returns a nonnegative integer; the identity u32str(strTou32(S)) =
S holds for any four-byte string S.
<span class="h4"><a class="selflink" id="section-3.1.1" href="#section-3.1.1">3.1.1</a>. Operators</span>
When a and b are real numbers, mathematical operators are defined as
follows:
^ : a ^ b denotes the result of a raised to the power of b
* : a * b denotes the product of a multiplied by b
/ : a / b denotes the quotient of a divided by b
% : a % b denotes the remainder of the integer division of a by b
(with a and b being restricted to integers in this case)
+ : a + b denotes the sum of a and b
- : a - b denotes the difference of a and b
AND : a AND b denotes the bitwise AND of the two nonnegative
integers a and b (represented in binary notation)
<span class="grey">McGrew, et al. Informational [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
The standard order of operations is used when evaluating arithmetic
expressions.
When B is a byte and i is an integer, then B >> i denotes the logical
right-shift operation by i bit positions. Similarly, B << i denotes
the logical left-shift operation.
If S and T are byte strings, then S || T denotes the concatenation of
S and T. If S and T are equal-length byte strings, then S AND T
denotes the bitwise logical and operation.
The i-th element in an array A is denoted as A[i].
<span class="h4"><a class="selflink" id="section-3.1.2" href="#section-3.1.2">3.1.2</a>. Functions</span>
If r is a nonnegative real number, then we define the following
functions:
ceil(r) : returns the smallest integer greater than or equal to r
floor(r) : returns the largest integer less than or equal to r
lg(r) : returns the base-2 logarithm of r
<span class="h4"><a class="selflink" id="section-3.1.3" href="#section-3.1.3">3.1.3</a>. Strings of w-Bit Elements</span>
If S is a byte string, then byte(S, i) denotes its i-th byte, where
the index starts at 0 at the left. Hence, byte(S, 0) is the leftmost
byte of S, byte(S, 1) is the second byte from the left, and (assuming
S is n bytes long) byte(S, n-1) is the rightmost byte of S. In
addition, bytes(S, i, j) denotes the range of bytes from the i-th to
the j-th byte, inclusive. For example, if S = 0x02040608, then
byte(S, 0) is 0x02 and bytes(S, 1, 2) is 0x0406.
A byte string can be considered to be a string of w-bit unsigned
integers; the correspondence is defined by the function coef(S, i, w)
as follows:
If S is a string, i is a positive integer, and w is a member of the
set { 1, 2, 4, 8 }, then coef(S, i, w) is the i-th, w-bit value, if S
is interpreted as a sequence of w-bit values. That is,
coef(S, i, w) = (2^w - 1) AND
( byte(S, floor(i * w / 8)) >>
(8 - (w * (i % (8 / w)) + w)) )
<span class="grey">McGrew, et al. Informational [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
For example, if S is the string 0x1234, then coef(S, 7, 1) is 0 and
coef(S, 0, 4) is 1.
S (represented as bits)
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| 0| 0| 0| 1| 0| 0| 1| 0| 0| 0| 1| 1| 0| 1| 0| 0|
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
^
|
coef(S, 7, 1)
S (represented as four-bit values)
+-----------+-----------+-----------+-----------+
| 1 | 2 | 3 | 4 |
+-----------+-----------+-----------+-----------+
^
|
coef(S, 0, 4)
The return value of coef is an unsigned integer. If i is larger than
the number of w-bit values in S, then coef(S, i, w) is undefined, and
an attempt to compute that value MUST raise an error.
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. Typecodes</span>
A typecode is an unsigned integer that is associated with a
particular data format. The format of the LM-OTS, LMS, and HSS
signatures and public keys all begin with a typecode that indicates
the precise details used in that format. These typecodes are
represented as four-byte unsigned integers in network byte order;
equivalently, they are External Data Representation (XDR)
enumerations (see <a href="#section-3.3">Section 3.3</a>).
<span class="h3"><a class="selflink" id="section-3.3" href="#section-3.3">3.3</a>. Notation and Formats</span>
The signature and public key formats are formally defined in XDR to
provide an unambiguous, machine-readable definition [<a href="./rfc4506" title=""XDR: External Data Representation Standard"">RFC4506</a>]. The
private key format is not included as it is not needed for
interoperability and an implementation MAY use any private key
format. However, for clarity, we include an example of private key
data in Test Case 2 of <a href="#appendix-F">Appendix F</a>. Though XDR is used, these formats
<span class="grey">McGrew, et al. Informational [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
are simple and easy to parse without any special tools. An
illustration of the layout of data in these objects is provided
below. The definitions are as follows:
/* one-time signatures */
enum lmots_algorithm_type {
lmots_reserved = 0,
lmots_sha256_n32_w1 = 1,
lmots_sha256_n32_w2 = 2,
lmots_sha256_n32_w4 = 3,
lmots_sha256_n32_w8 = 4
};
typedef opaque bytestring32[32];
struct lmots_signature_n32_p265 {
bytestring32 C;
bytestring32 y[265];
};
struct lmots_signature_n32_p133 {
bytestring32 C;
bytestring32 y[133];
};
struct lmots_signature_n32_p67 {
bytestring32 C;
bytestring32 y[67];
};
struct lmots_signature_n32_p34 {
bytestring32 C;
bytestring32 y[34];
};
union lmots_signature switch (lmots_algorithm_type type) {
case lmots_sha256_n32_w1:
lmots_signature_n32_p265 sig_n32_p265;
case lmots_sha256_n32_w2:
lmots_signature_n32_p133 sig_n32_p133;
case lmots_sha256_n32_w4:
lmots_signature_n32_p67 sig_n32_p67;
case lmots_sha256_n32_w8:
lmots_signature_n32_p34 sig_n32_p34;
default:
void; /* error condition */
};
<span class="grey">McGrew, et al. Informational [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
/* hash-based signatures (hbs) */
enum lms_algorithm_type {
lms_reserved = 0,
lms_sha256_n32_h5 = 5,
lms_sha256_n32_h10 = 6,
lms_sha256_n32_h15 = 7,
lms_sha256_n32_h20 = 8,
lms_sha256_n32_h25 = 9
};
/* leighton-micali signatures (lms) */
union lms_path switch (lms_algorithm_type type) {
case lms_sha256_n32_h5:
bytestring32 path_n32_h5[5];
case lms_sha256_n32_h10:
bytestring32 path_n32_h10[10];
case lms_sha256_n32_h15:
bytestring32 path_n32_h15[15];
case lms_sha256_n32_h20:
bytestring32 path_n32_h20[20];
case lms_sha256_n32_h25:
bytestring32 path_n32_h25[25];
default:
void; /* error condition */
};
struct lms_signature {
unsigned int q;
lmots_signature lmots_sig;
lms_path nodes;
};
struct lms_key_n32 {
lmots_algorithm_type ots_alg_type;
opaque I[16];
opaque K[32];
};
union lms_public_key switch (lms_algorithm_type type) {
case lms_sha256_n32_h5:
case lms_sha256_n32_h10:
case lms_sha256_n32_h15:
case lms_sha256_n32_h20:
case lms_sha256_n32_h25:
lms_key_n32 z_n32;
<span class="grey">McGrew, et al. Informational [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
default:
void; /* error condition */
};
/* hierarchical signature system (hss) */
struct hss_public_key {
unsigned int L;
lms_public_key pub;
};
struct signed_public_key {
lms_signature sig;
lms_public_key pub;
};
struct hss_signature {
signed_public_key signed_keys<7>;
lms_signature sig_of_message;
};
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. LM-OTS One-Time Signatures</span>
This section defines LM-OTS signatures. The signature is used to
validate the authenticity of a message by associating a secret
private key with a shared public key. These are one-time signatures;
each private key MUST be used at most one time to sign any given
message.
As part of the signing process, a digest of the original message is
computed using the cryptographic hash function H (see <a href="#section-4.1">Section 4.1</a>),
and the resulting digest is signed.
In order to facilitate its use in an N-time signature system, the
LM-OTS key generation, signing, and verification algorithms all take
as input parameters I and q. The parameter I is a 16-byte string
that indicates which Merkle tree this LM-OTS is used with. The
parameter q is a 32-bit integer that indicates the leaf of the Merkle
tree where the OTS public key appears. These parameters are used as
part of the security string, as listed in <a href="#section-7.1">Section 7.1</a>. When the
LM-OTS signature system is used outside of an N-time signature
system, the value I MAY be used to differentiate this one-time
signature from others; however, the value q MUST be set to the all-
zero value.
<span class="grey">McGrew, et al. Informational [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. Parameters</span>
The signature system uses the parameters n and w, which are both
positive integers. The algorithm description also makes use of the
internal parameters p and ls, which are dependent on n and w. These
parameters are summarized as follows:
n : the number of bytes of the output of the hash function.
w : the width (in bits) of the Winternitz coefficients; that is,
the number of bits from the hash or checksum that is used with a
single Winternitz chain. It is a member of the set
{ 1, 2, 4, 8 }.
p : the number of n-byte string elements that make up the LM-OTS
signature. This is a function of n and w; the values for the
defined parameter sets are listed in Table 1; it can also be
computed by the algorithm given in <a href="#appendix-B">Appendix B</a>.
ls : the number of left-shift bits used in the checksum function
Cksm (defined in <a href="#section-4.4">Section 4.4</a>).
H : a second-preimage-resistant cryptographic hash function that
accepts byte strings of any length and returns an n-byte string.
For more background on the cryptographic security requirements for H,
see <a href="#section-9">Section 9</a>.
The value of n is determined by the hash function selected for use as
part of the LM-OTS algorithm; the choice of this value has a strong
effect on the security of the system. The parameter w determines the
length of the Winternitz chains computed as a part of the OTS
signature (which involve 2^w - 1 invocations of the hash function);
it has little effect on security. Increasing w will shorten the
signature, but at a cost of a larger computation to generate and
verify a signature. The values of p and ls are dependent on the
choices of the parameters n and w, as described in <a href="#appendix-B">Appendix B</a>.
Table 1 illustrates various combinations of n, w, p and ls, along
with the resulting signature length.
The value of w describes a space/time trade-off; increasing the value
of w will cause the signature to shrink (by decreasing the value of
p) while increasing the amount of time needed to perform operations
with it: generate the public key and generate and verify the
signature. In general, the LM-OTS signature is 4+n*(p+1) bytes long,
and public key generation will take p*(2^w - 1) + 1 hash computations
(and signature generation and verification will take approximately
half that on average).
<span class="grey">McGrew, et al. Informational [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
+---------------------+--------+----+---+-----+----+---------+
| Parameter Set Name | H | n | w | p | ls | sig_len |
+---------------------+--------+----+---+-----+----+---------+
| LMOTS_SHA256_N32_W1 | SHA256 | 32 | 1 | 265 | 7 | 8516 |
| | | | | | | |
| LMOTS_SHA256_N32_W2 | SHA256 | 32 | 2 | 133 | 6 | 4292 |
| | | | | | | |
| LMOTS_SHA256_N32_W4 | SHA256 | 32 | 4 | 67 | 4 | 2180 |
| | | | | | | |
| LMOTS_SHA256_N32_W8 | SHA256 | 32 | 8 | 34 | 0 | 1124 |
+---------------------+--------+----+---+-----+----+---------+
Table 1
Here SHA256 denotes the SHA-256 hash function defined in NIST
standard [<a href="#ref-FIPS180" title=""Secure Hash Standard (SHS)"">FIPS180</a>].
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. Private Key</span>
The format of the LM-OTS private key is an internal matter to the
implementation, and this document does not attempt to define it. One
possibility is that the private key may consist of a typecode
indicating the particular LM-OTS algorithm, an array x[] containing p
n-byte strings, and the 16-byte string I and the 4-byte string q.
This private key MUST be used to sign (at most) one message. The
following algorithm shows pseudocode for generating a private key.
Algorithm 0: Generating a Private Key
1. Retrieve the values of q and I (the 16-byte identifier of the
LMS public/private key pair) from the LMS tree that this LM-OTS
private key will be used with
2. Set type to the typecode of the algorithm
3. Set n and p according to the typecode and Table 1
4. Compute the array x as follows:
for ( i = 0; i < p; i = i + 1 ) {
set x[i] to a uniformly random n-byte string
}
5. Return u32str(type) || I || u32str(q) || x[0] || x[1] || ...
|| x[p-1]
An implementation MAY use a pseudorandom method to compute x[i], as
suggested in [<a href="#ref-Merkle79">Merkle79</a>], page 46. The details of the pseudorandom
method do not affect interoperability, but the cryptographic strength
<span class="grey">McGrew, et al. Informational [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
MUST match that of the LM-OTS algorithm. <a href="#appendix-A">Appendix A</a> provides an
example of a pseudorandom method for computing the LM-OTS private
key.
<span class="h3"><a class="selflink" id="section-4.3" href="#section-4.3">4.3</a>. Public Key</span>
The LM-OTS public key is generated from the private key by
iteratively applying the function H to each individual element of x,
for 2^w - 1 iterations, then hashing all of the resulting values.
The public key is generated from the private key using the following
algorithm, or any equivalent process.
Algorithm 1: Generating a One-Time Signature Public Key From a
Private Key
1. Set type to the typecode of the algorithm
2. Set the integers n, p, and w according to the typecode and
Table 1
3. Determine x, I, and q from the private key
4. Compute the string K as follows:
for ( i = 0; i < p; i = i + 1 ) {
tmp = x[i]
for ( j = 0; j < 2^w - 1; j = j + 1 ) {
tmp = H(I || u32str(q) || u16str(i) || u8str(j) || tmp)
}
y[i] = tmp
}
K = H(I || u32str(q) || u16str(D_PBLC) || y[0] || ... || y[p-1])
5. Return u32str(type) || I || u32str(q) || K
where D_PBLC is the fixed two-byte value 0x8080, which is used to
distinguish the last hash from every other hash in this system.
The public key is the value returned by Algorithm 1.
<span class="h3"><a class="selflink" id="section-4.4" href="#section-4.4">4.4</a>. Checksum</span>
A checksum is used to ensure that any forgery attempt that
manipulates the elements of an existing signature will be detected.
This checksum is needed because an attacker can freely advance any of
the Winternitz chains. That is, if this checksum were not present,
then an attacker who could find a hash that has every digit larger
than the valid hash could replace it (and adjust the Winternitz
<span class="grey">McGrew, et al. Informational [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
chains). The security property that the checksum provides is
detailed in <a href="#section-9">Section 9</a>. The checksum function Cksm is defined as
follows, where S denotes the n-byte string that is input to that
function, and the value sum is a 16-bit unsigned integer:
Algorithm 2: Checksum Calculation
sum = 0
for ( i = 0; i < (n*8/w); i = i + 1 ) {
sum = sum + (2^w - 1) - coef(S, i, w)
}
return (sum << ls)
ls is the parameter that shifts the significant bits of the checksum
into the positions that will actually be used by the coef function
when encoding the digits of the checksum. The actual ls parameter is
a function of the n and w parameters; the values for the currently
defined parameter sets are shown in Table 1. It is calculated by the
algorithm given in <a href="#appendix-B">Appendix B</a>.
Because of the left-shift operation, the rightmost bits of the result
of Cksm will often be zeros. Due to the value of p, these bits will
not be used during signature generation or verification.
<span class="h3"><a class="selflink" id="section-4.5" href="#section-4.5">4.5</a>. Signature Generation</span>
The LM-OTS signature of a message is generated by doing the following
in sequence: prepending the LMS key identifier I, the LMS leaf
identifier q, the value D_MESG (0x8181), and the randomizer C to the
message; computing the hash; concatenating the checksum of the hash
to the hash itself; considering the resulting value as a sequence of
w-bit values; and using each of the w-bit values to determine the
number of times to apply the function H to the corresponding element
of the private key. The outputs of the function H are concatenated
together and returned as the signature. The pseudocode for this
procedure is shown below.
Algorithm 3: Generating a One-Time Signature From a Private Key and a
Message
1. Set type to the typecode of the algorithm
2. Set n, p, and w according to the typecode and Table 1
3. Determine x, I, and q from the private key
4. Set C to a uniformly random n-byte string
<span class="grey">McGrew, et al. Informational [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
5. Compute the array y as follows:
Q = H(I || u32str(q) || u16str(D_MESG) || C || message)
for ( i = 0; i < p; i = i + 1 ) {
a = coef(Q || Cksm(Q), i, w)
tmp = x[i]
for ( j = 0; j < a; j = j + 1 ) {
tmp = H(I || u32str(q) || u16str(i) || u8str(j) || tmp)
}
y[i] = tmp
}
6. Return u32str(type) || C || y[0] || ... || y[p-1]
Note that this algorithm results in a signature whose elements are
intermediate values of the elements computed by the public key
algorithm in <a href="#section-4.3">Section 4.3</a>.
The signature is the string returned by Algorithm 3. <a href="#section-3.3">Section 3.3</a>
formally defines the structure of the string as the lmots_signature
union.
<span class="h3"><a class="selflink" id="section-4.6" href="#section-4.6">4.6</a>. Signature Verification</span>
In order to verify a message with its signature (an array of n-byte
strings, denoted as y), the receiver must "complete" the chain of
iterations of H using the w-bit coefficients of the string resulting
from the concatenation of the message hash and its checksum. This
computation should result in a value that matches the provided public
key.
Algorithm 4a: Verifying a Signature and Message Using a Public Key
1. If the public key is not at least four bytes long,
return INVALID.
2. Parse pubtype, I, q, and K from the public key as follows:
a. pubtype = strTou32(first 4 bytes of public key)
b. Set n according to the pubkey and Table 1; if the public key
is not exactly 24 + n bytes long, return INVALID.
c. I = next 16 bytes of public key
d. q = strTou32(next 4 bytes of public key)
e. K = next n bytes of public key
<span class="grey">McGrew, et al. Informational [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
3. Compute the public key candidate Kc from the signature,
message, pubtype, and the identifiers I and q obtained from the
public key, using Algorithm 4b. If Algorithm 4b returns
INVALID, then return INVALID.
4. If Kc is equal to K, return VALID; otherwise, return INVALID.
Algorithm 4b: Computing a Public Key Candidate Kc from a Signature,
Message, Signature Typecode pubtype, and Identifiers I, q
1. If the signature is not at least four bytes long,
return INVALID.
2. Parse sigtype, C, and y from the signature as follows:
a. sigtype = strTou32(first 4 bytes of signature)
b. If sigtype is not equal to pubtype, return INVALID.
c. Set n and p according to the pubtype and Table 1; if the
signature is not exactly 4 + n * (p+1) bytes long,
return INVALID.
d. C = next n bytes of signature
e. y[0] = next n bytes of signature
y[1] = next n bytes of signature
...
y[p-1] = next n bytes of signature
3. Compute the string Kc as follows:
Q = H(I || u32str(q) || u16str(D_MESG) || C || message)
for ( i = 0; i < p; i = i + 1 ) {
a = coef(Q || Cksm(Q), i, w)
tmp = y[i]
for ( j = a; j < 2^w - 1; j = j + 1 ) {
tmp = H(I || u32str(q) || u16str(i) || u8str(j) || tmp)
}
z[i] = tmp
}
Kc = H(I || u32str(q) || u16str(D_PBLC) ||
z[0] || z[1] || ... || z[p-1])
4. Return Kc.
<span class="grey">McGrew, et al. Informational [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Leighton-Micali Signatures</span>
The Leighton-Micali Signature (LMS) method can sign a potentially
large but fixed number of messages. An LMS system uses two
cryptographic components: a one-time signature method and a hash
function. Each LMS public/private key pair is associated with a
perfect binary tree, each node of which contains an m-byte value,
where m is the output length of the hash function. Each leaf of the
tree contains the value of the public key of an LM-OTS public/private
key pair. The value contained by the root of the tree is the LMS
public key. Each interior node is computed by applying the hash
function to the concatenation of the values of its children nodes.
Each node of the tree is associated with a node number, an unsigned
integer that is denoted as node_num in the algorithms below, which is
computed as follows. The root node has node number 1; for each node
with node number N < 2^h (where h is the height of the tree), its
left child has node number 2*N, while its right child has node number
2*N + 1. The result of this is that each node within the tree will
have a unique node number, and the leaves will have node numbers 2^h,
(2^h)+1, (2^h)+2, ..., (2^h)+(2^h)-1. In general, the j-th node at
level i has node number 2^i + j. The node number can conveniently be
computed when it is needed in the LMS algorithms, as described in
those algorithms.
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. Parameters</span>
An LMS system has the following parameters:
h : the height of the tree
m : the number of bytes associated with each node
H : a second-preimage-resistant cryptographic hash function that
accepts byte strings of any length and returns an m-byte string.
There are 2^h leaves in the tree.
The overall strength of LMS signatures is governed by the weaker of
the hash function used within the LM-OTS and the hash function used
within the LMS system. In order to minimize the risk, these two hash
functions SHOULD be the same (so that an attacker could not take
advantage of the weaker hash function choice).
<span class="grey">McGrew, et al. Informational [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
+--------------------+--------+----+----+
| Name | H | m | h |
+--------------------+--------+----+----+
| LMS_SHA256_M32_H5 | SHA256 | 32 | 5 |
| | | | |
| LMS_SHA256_M32_H10 | SHA256 | 32 | 10 |
| | | | |
| LMS_SHA256_M32_H15 | SHA256 | 32 | 15 |
| | | | |
| LMS_SHA256_M32_H20 | SHA256 | 32 | 20 |
| | | | |
| LMS_SHA256_M32_H25 | SHA256 | 32 | 25 |
+--------------------+--------+----+----+
Table 2
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. LMS Private Key</span>
The format of the LMS private key is an internal matter to the
implementation, and this document does not attempt to define it. One
possibility is that it may consist of an array OTS_PRIV[] of 2^h
LM-OTS private keys and the leaf number q of the next LM-OTS private
key that has not yet been used. The q-th element of OTS_PRIV[] is
generated using Algorithm 0 with the identifiers I, q. The leaf
number q is initialized to zero when the LMS private key is created.
The process is as follows:
Algorithm 5: Computing an LMS Private Key.
1. Determine h and m from the typecode and Table 2.
2. Set I to a uniformly random 16-byte string.
3. Compute the array OTS_PRIV[] as follows:
for ( q = 0; q < 2^h; q = q + 1) {
OTS_PRIV[q] = LM-OTS private key with identifiers I, q
}
4. q = 0
An LMS private key MAY be generated pseudorandomly from a secret
value; in this case, the secret value MUST be at least m bytes long
and uniformly random and MUST NOT be used for any other purpose than
the generation of the LMS private key. The details of how this
process is done do not affect interoperability; that is, the public
key verification operation is independent of these details.
<a href="#appendix-A">Appendix A</a> provides an example of a pseudorandom method for computing
an LMS private key.
<span class="grey">McGrew, et al. Informational [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
The signature-generation logic uses q as the next leaf to use; hence,
step 4 starts it off at the leftmost leaf. Because the signature
process increments q after the signature operation, the first
signature will have q=0.
<span class="h3"><a class="selflink" id="section-5.3" href="#section-5.3">5.3</a>. LMS Public Key</span>
An LMS public key is defined as follows, where we denote the public
key final hash value (namely, the K value computed in Algorithm 1)
associated with the i-th LM-OTS private key as OTS_PUB_HASH[i], with
i ranging from 0 to (2^h)-1. Each instance of an LMS public/private
key pair is associated with a balanced binary tree, and the nodes of
that tree are indexed from 1 to 2^(h+1)-1. Each node is associated
with an m-byte string. The string for the r-th node is denoted as
T[r] and defined as
if r >= 2^h:
H(I||u32str(r)||u16str(D_LEAF)||OTS_PUB_HASH[r-2^h])
else
H(I||u32str(r)||u16str(D_INTR)||T[2*r]||T[2*r+1])
where D_LEAF is the fixed two-byte value 0x8282 and D_INTR is the
fixed two-byte value 0x8383, both of which are used to distinguish
this hash from every other hash in this system.
When we have r >= 2^h, then we are processing a leaf node (and thus
hashing only a single LM-OTS public key). When we have r < 2^h, then
we are processing an internal node -- that is, a node with two child
nodes that we need to combine.
The LMS public key can be represented as the byte string
u32str(type) || u32str(otstype) || I || T[1]
<a href="#section-3.3">Section 3.3</a> specifies the format of the type variable. The value
otstype is the parameter set for the LM-OTS public/private key pairs
used. The value I is the private key identifier and is the value
used for all computations for the same LMS tree. The value T[1] can
be computed via recursive application of the above equation or by any
equivalent method. An iterative procedure is outlined in <a href="#appendix-C">Appendix C</a>.
<span class="grey">McGrew, et al. Informational [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
<span class="h3"><a class="selflink" id="section-5.4" href="#section-5.4">5.4</a>. LMS Signature</span>
An LMS signature consists of
the number q of the leaf associated with the LM-OTS signature, as
a four-byte unsigned integer in network byte order, an LM-OTS
signature,
a typecode indicating the particular LMS algorithm,
an array of h m-byte values that is associated with the path
through the tree from the leaf associated with the LM-OTS
signature to the root.
Symbolically, the signature can be represented as
u32str(q) || lmots_signature || u32str(type) ||
path[0] || path[1] || path[2] || ... || path[h-1]
<a href="#section-3.3">Section 3.3</a> formally defines the format of the signature as the
lms_signature structure. The array for a tree with height h will
have h values and contains the values of the siblings of (that is, is
adjacent to) the nodes on the path from the leaf to the root, where
the sibling to node A is the other node that shares node A's parent.
In the signature, 0 is counted from the bottom level of the tree, and
so path[0] is the value of the node adjacent to leaf node q; path[1]
is the second-level node that is adjacent to leaf node q's parent,
and so on up the tree until we get to path[h-1], which is the value
of the next-to-the-top-level node whose branch the leaf node q does
not reside in.
Below is a simple example of the authentication path for h=3 and q=2.
The leaf marked OTS is the one-time signature that is used to sign
the actual message. The nodes on the path from the OTS public key to
the root are marked with a *, while the nodes that are used within
the path array are marked with **. The values in the path array are
those nodes that are siblings of the nodes on the path; path[0] is
the leaf** node that is adjacent to the OTS public key (which is the
start of the path); path[1] is the T[4]** node that is the sibling of
the second node T[5]* on the path, and path[2] is the T[3]** node
that is the sibling of the third node T[2]* on the path.
<span class="grey">McGrew, et al. Informational [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
Root
|
---------------------------------
| |
T[2]* T[3]**
| |
------------------ -----------------
| | | |
T[4]** T[5]* T[6] T[7]
| | | |
--------- ---------- -------- ---------
| | | | | | | |
leaf leaf OTS leaf** leaf leaf leaf leaf
The idea behind this authentication path is that it allows us to
validate the OTS hash with using h path array values and hash
computations. What the verifier does is recompute the hashes up the
path; first, it hashes the given OTS and path[0] value, giving a
tentative T[5]' value. Then, it hashes its path[1] and tentative
T[5]' value to get a tentative T[2]' value. Then, it hashes that and
the path[2] value to get a tentative Root' value. If that value is
the known public key of the Merkle tree, then we can assume that the
value T[2]' it got was the correct T[2] value in the original tree,
and so the T[5]' value it got was the correct T[5] value in the
original tree, and so the OTS public key is the same as in the
original and, hence, is correct.
<span class="h4"><a class="selflink" id="section-5.4.1" href="#section-5.4.1">5.4.1</a>. LMS Signature Generation</span>
To compute the LMS signature of a message with an LMS private key,
the signer first computes the LM-OTS signature of the message using
the leaf number of the next unused LM-OTS private key. The leaf
number q in the signature is set to the leaf number of the LMS
private key that was used in the signature. Before releasing the
signature, the leaf number q in the LMS private key MUST be
incremented to prevent the LM-OTS private key from being used again.
If the LMS private key is maintained in nonvolatile memory, then the
implementation MUST ensure that the incremented value has been stored
before releasing the signature. The issue this tries to prevent is a
scenario where a) we generate a signature using one LM-OTS private
key and release it to the application, b) before we update the
nonvolatile memory, we crash, and c) we reboot and generate a second
signature using the same LM-OTS private key. With two different
signatures using the same LM-OTS private key, an attacker could
potentially generate a forged signature of a third message.
<span class="grey">McGrew, et al. Informational [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
The array of node values in the signature MAY be computed in any way.
There are many potential time/storage trade-offs that can be applied.
The fastest alternative is to store all of the nodes of the tree and
set the array in the signature by copying them; pseudocode to do so
appears in <a href="#appendix-D">Appendix D</a>. The least storage-intensive alternative is to
recompute all of the nodes for each signature. Note that the details
of this procedure are not important for interoperability; it is not
necessary to know any of these details in order to perform the
signature-verification operation. The internal nodes of the tree
need not be kept secret, and thus a node-caching scheme that stores
only internal nodes can sidestep the need for strong protections.
Several useful time/storage trade-offs are described in the "Small-
Memory LM Schemes" section of [<a href="#ref-USPTO5432852">USPTO5432852</a>].
<span class="h4"><a class="selflink" id="section-5.4.2" href="#section-5.4.2">5.4.2</a>. LMS Signature Verification</span>
An LMS signature is verified by first using the LM-OTS signature
verification algorithm (Algorithm 4b) to compute the LM-OTS public
key from the LM-OTS signature and the message. The value of that
public key is then assigned to the associated leaf of the LMS tree,
and then the root of the tree is computed from the leaf value and the
array path[] as described in Algorithm 6 below. If the root value
matches the public key, then the signature is valid; otherwise, the
signature verification fails.
Algorithm 6: LMS Signature Verification
1. If the public key is not at least eight bytes long, return
INVALID.
2. Parse pubtype, I, and T[1] from the public key as follows:
a. pubtype = strTou32(first 4 bytes of public key)
b. ots_typecode = strTou32(next 4 bytes of public key)
c. Set m according to pubtype, based on Table 2.
d. If the public key is not exactly 24 + m bytes
long, return INVALID.
e. I = next 16 bytes of the public key
f. T[1] = next m bytes of the public key
<span class="grey">McGrew, et al. Informational [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
3. Compute the LMS Public Key Candidate Tc from the signature,
message, identifier, pubtype, and ots_typecode, using
Algorithm 6a.
4. If Tc is equal to T[1], return VALID; otherwise, return INVALID.
Algorithm 6a: Computing an LMS Public Key Candidate from a Signature,
Message, Identifier, and Algorithm Typecodes
1. If the signature is not at least eight bytes long,
return INVALID.
2. Parse sigtype, q, lmots_signature, and path from the signature
as follows:
a. q = strTou32(first 4 bytes of signature)
b. otssigtype = strTou32(next 4 bytes of signature)
c. If otssigtype is not the OTS typecode from the public key,
return INVALID.
d. Set n, p according to otssigtype and Table 1; if the
signature is not at least 12 + n * (p + 1) bytes long,
return INVALID.
e. lmots_signature = bytes 4 through 7 + n * (p + 1)
of signature
f. sigtype = strTou32(bytes 8 + n * (p + 1)) through
11 + n * (p + 1) of signature)
g. If sigtype is not the LM typecode from the public key,
return INVALID.
h. Set m, h according to sigtype and Table 2.
i. If q >= 2^h or the signature is not exactly
12 + n * (p + 1) + m * h bytes long,
return INVALID.
j. Set path as follows:
path[0] = next m bytes of signature
path[1] = next m bytes of signature
...
path[h-1] = next m bytes of signature
<span class="grey">McGrew, et al. Informational [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
3. Kc = candidate public key computed by applying Algorithm 4b
to the signature lmots_signature, the message, and the
identifiers I, q
4. Compute the candidate LMS root value Tc as follows:
node_num = 2^h + q
tmp = H(I || u32str(node_num) || u16str(D_LEAF) || Kc)
i = 0
while (node_num > 1) {
if (node_num is odd):
tmp = H(I||u32str(node_num/2)||u16str(D_INTR)||path[i]||tmp)
else:
tmp = H(I||u32str(node_num/2)||u16str(D_INTR)||tmp||path[i])
node_num = node_num/2
i = i + 1
}
Tc = tmp
5. Return Tc.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Hierarchical Signatures</span>
In scenarios where it is necessary to minimize the time taken by the
public key generation process, the Hierarchical Signature System
(HSS) can be used. This hierarchical scheme, which we describe in
this section, uses the LMS scheme as a component. In HSS, we have a
sequence of L LMS trees, where the public key for the first LMS tree
is included in the public key of the HSS system, each LMS private key
signs the next LMS public key, and the last LMS private key signs the
actual message. For example, if we have a three-level hierarchy
(L=3), then to sign a message, we would have:
The first LMS private key (level 0) signs a level 1 LMS public
key.
The second LMS private key (level 1) signs a level 2 LMS public
key.
The third LMS private key (level 2) signs the message.
The root of the level 0 LMS tree is contained in the HSS public key.
To verify the LMS signature, we would verify all the signatures:
We would verify that the level 1 LMS public key is correctly
signed by the level 0 signature.
<span class="grey">McGrew, et al. Informational [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
We would verify that the level 2 LMS public key is correctly
signed by the level 1 signature.
We would verify that the message is correctly signed by the level
2 signature.
We would accept the HSS signature only if all the signatures
validated.
During the signature-generation process, we sign messages with the
lowest (level L-1) LMS tree. Once we have used all the leafs in that
tree to sign messages, we would discard it, generate a fresh LMS
tree, and sign it with the next (level L-2) LMS tree (and when that
is used up, recursively generate and sign a fresh level L-2 LMS
tree).
HSS, in essence, utilizes a tree of LMS trees. There is a single LMS
tree at level 0 (the root). Each LMS tree (actually, the private key
corresponding to the LMS tree) at level i is used to sign 2^h objects
(where h is the height of trees at level i). If i < L-1, then each
object will be another LMS tree (actually, the public key) at level
i+1; if i = L-1, we've reached the bottom of the HSS tree, and so
each object will be a message from the application. The HSS public
key contains the public key of the LMS tree at the root, and an HSS
signature is associated with a path from the root of the HSS tree to
the leaf.
Compared to LMS, HSS has a much reduced public key generation time,
as only the root tree needs to be generated prior to the distribution
of the HSS public key. For example, an L=3 tree (with h=10 at each
level) would have one level 0 LMS tree, 2^10 level 1 LMS trees (with
each such level 1 public key signed by one of the 1024 level 0 OTS
public keys), and 2^20 level 2 LMS trees. Only 1024 OTS public keys
need to be computed to generate the HSS public key (as you need to
compute only the level 0 LMS tree to compute that value; you can, of
course, decide to compute the initial level 1 and level 2 LMS trees).
In addition, the 2^20 level 2 LMS trees can jointly sign a total of
over a billion messages. In contrast, a single LMS tree that could
sign a billion messages would require a billion OTS public keys to be
computed first (if h=30 were allowed in a supported parameter set).
Each LMS tree within the hierarchy is associated with a distinct LMS
public key, private key, signature, and identifier. The number of
levels is denoted as L and is between one and eight, inclusive. The
following notation is used, where i is an integer between 0 and L-1
inclusive, and the root of the hierarchy is level 0:
prv[i] is the current LMS private key of the i-th level.
<span class="grey">McGrew, et al. Informational [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
pub[i] is the current LMS public key of the i-th level, as
described in <a href="#section-5.3">Section 5.3</a>.
sig[i] is the LMS signature of public key pub[i+1] generated using
the private key prv[i].
It is expected that the above arrays are maintained for the course of
the HSS key. The contents of the prv[] array MUST be kept private;
the pub[] and sig[] array may be revealed should the implementation
find that convenient.
In this section, we say that an N-time private key is exhausted when
it has generated N signatures; thus, it can no longer be used for
signing.
For i > 0, the values prv[i], pub[i], and (for all values of i)
sig[i] will be updated over time as private keys are exhausted and
replaced by newer keys.
When these key pairs are updated (or initially generated before the
first message is signed), then the LMS key generation processes
outlined in Sections <a href="#section-5.2">5.2</a> and <a href="#section-5.3">5.3</a> are performed. If the generated key
pairs are for level i of the HSS hierarchy, then we store the public
key in pub[i] and the private key in prv[i]. In addition, if i > 0,
then we sign the generated public key with the LMS private key at
level i-1, placing the signature into sig[i-1]. When the LMS key
pair is generated, the key pair and the corresponding identifier MUST
be generated independently of all other key pairs.
HSS allows L=1, in which case the HSS public key and signature
formats are essentially the LMS public key and signature formats,
prepended by a fixed field. Since HSS with L=1 has very little
overhead compared to LMS, all implementations MUST support HSS in
order to maximize interoperability.
We specifically allow different LMS levels to use different parameter
sets. For example, the 0-th LMS public key (the root) may use the
LMS_SHA256_M32_H15 parameter set, while the 1-th public key may use
LMS_SHA256_M32_H10. There are practical reasons to allow this; for
one, the signer may decide to store parts of the 0-th LMS tree (that
it needs to construct while computing the public key) to accelerate
later operations. As the 0-th tree is never updated, these internal
nodes will never need to be recomputed. In addition, during the
signature-generation operation, almost all the operations involved
with updating the authentication path occur with the bottom (L-1th)
LMS public key; hence, it may be useful to select the parameter set
for that public key to have a shorter LMS tree.
<span class="grey">McGrew, et al. Informational [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
A close reading of the HSS verification pseudocode shows that it
would allow the parameters of the nontop LMS public keys to change
over time; for example, the signer might initially have the 1-th LMS
public key use the LMS_SHA256_M32_H10 parameter set, but when that
tree is exhausted, the signer might replace it with an LMS public key
that uses the LMS_SHA256_M32_H15 parameter set. While this would
work with the example verification pseudocode, the signer MUST NOT
change the parameter sets for a specific level. This prohibition is
to support verifiers that may keep state over the course of several
signature verifications.
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. Key Generation</span>
The public key of the HSS scheme consists of the number of levels L,
followed by pub[0], the public key of the top level.
The HSS private key consists of prv[0], ... , prv[L-1], along with
the associated pub[0], ... pub[L-1] and sig[0], ..., sig[L-2] values.
As stated earlier, the values of the pub[] and sig[] arrays need not
be kept secret and may be revealed. The value of pub[0] does not
change (and, except for the index q, the value of prv[0] need not
change); however, the values of pub[i] and prv[i] are dynamic for i >
0 and are changed by the signature-generation algorithm.
During the key generation, the public and private keys are
initialized. Here is some pseudocode that explains the key-
generation logic:
Algorithm 7: Generating an HSS Key Pair
1. Generate an LMS key pair, as specified in Sections <a href="#section-5.2">5.2</a> and <a href="#section-5.3">5.3</a>,
placing the private key into priv[0], and the public key into
pub[0]
2. For i = 1 to L-1 do {
generate an LMS key pair, placing the private key into priv[i]
and the public key into pub[i]
sig[i-1] = lms_signature( pub[i], priv[i-1] )
}
3. Return u32str(L) || pub[0] as the public key and the priv[],
pub[], and sig[] arrays as the private key
In the above algorithm, each LMS public/private key pair generated
MUST be generated independently.
<span class="grey">McGrew, et al. Informational [Page 29]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-30" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
Note that the value of the public key does not depend on the
execution of step 2. As a result, an implementation may decide to
delay step 2 until later -- for example, during the initial
signature-generation operation.
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>. Signature Generation</span>
To sign a message using an HSS key pair, the following steps are
performed:
If prv[L-1] is exhausted, then determine the smallest integer d
such that all of the private keys prv[d], prv[d+1], ... , prv[L-1]
are exhausted. If d is equal to zero, then the HSS key pair is
exhausted, and it MUST NOT generate any more signatures.
Otherwise, the key pairs for levels d through L-1 must be
regenerated during the signature-generation process, as follows.
For i from d to L-1, a new LMS public and private key pair with a
new identifier is generated, pub[i] and prv[i] are set to those
values, then the public key pub[i] is signed with prv[i-1], and
sig[i-1] is set to the resulting value.
The message is signed with prv[L-1], and the value sig[L-1] is set
to that result.
The value of the HSS signature is set as follows. We let
signed_pub_key denote an array of octet strings, where
signed_pub_key[i] = sig[i] || pub[i+1], for i between 0 and
Nspk-1, inclusive, where Nspk = L-1 denotes the number of signed
public keys. Then the HSS signature is u32str(Nspk) ||
signed_pub_key[0] || ... || signed_pub_key[Nspk-1] || sig[Nspk].
Note that the number of signed_pub_key elements in the signature
is indicated by the value Nspk that appears in the initial four
bytes of the signature.
Here is some pseudocode of the above logic:
Algorithm 8: Generating an HSS signature
1. If the message-signing key prv[L-1] is exhausted, regenerate
that key pair, together with any parent key pairs that might
be necessary.
If the root key pair is exhausted, then the HSS key pair is
exhausted and MUST NOT generate any more signatures.
<span class="grey">McGrew, et al. Informational [Page 30]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-31" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
d = L
while (prv[d-1].q == 2^(prv[d-1].h)) {
d = d - 1
if (d == 0)
return FAILURE
}
while (d < L) {
create lms key pair pub[d], prv[d]
sig[d-1] = lms_signature( pub[d], prv[d-1] )
d = d + 1
}
2. Sign the message.
sig[L-1] = lms_signature( msg, prv[L-1] )
3. Create the list of signed public keys.
i = 0;
while (i < L-1) {
signed_pub_key[i] = sig[i] || pub[i+1]
i = i + 1
}
4. Return u32str(L-1) || signed_pub_key[0] || ...
|| signed_pub_key[L-2] || sig[L-1]
In the specific case of L=1, the format of an HSS signature is
u32str(0) || sig[0]
In the general case, the format of an HSS signature is
u32str(Nspk) || signed_pub_key[0] || ...
|| signed_pub_key[Nspk-1] || sig[Nspk]
which is equivalent to
u32str(Nspk) || sig[0] || pub[1] || ...
|| sig[Nspk-1] || pub[Nspk] || sig[Nspk]
<span class="grey">McGrew, et al. Informational [Page 31]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-32" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
<span class="h3"><a class="selflink" id="section-6.3" href="#section-6.3">6.3</a>. Signature Verification</span>
To verify a signature S and message using the public key pub, perform
the following steps:
The signature S is parsed into its components as follows:
Nspk = strTou32(first four bytes of S)
if Nspk+1 is not equal to the number of levels L in pub:
return INVALID
for (i = 0; i < Nspk; i = i + 1) {
siglist[i] = next LMS signature parsed from S
publist[i] = next LMS public key parsed from S
}
siglist[Nspk] = next LMS signature parsed from S
key = pub
for (i = 0; i < Nspk; i = i + 1) {
sig = siglist[i]
msg = publist[i]
if (lms_verify(msg, key, sig) != VALID):
return INVALID
key = msg
}
return lms_verify(message, key, siglist[Nspk])
Since the length of an LMS signature cannot be known without parsing
it, the HSS signature verification algorithm makes use of an LMS
signature parsing routine that takes as input a string consisting of
an LMS signature with an arbitrary string appended to it and returns
both the LMS signature and the appended string. The latter is passed
on for further processing.
<span class="h3"><a class="selflink" id="section-6.4" href="#section-6.4">6.4</a>. Parameter Set Recommendations</span>
As for guidance as to the number of LMS levels and the size of each,
any discussion of performance is implementation specific. In
general, the sole drawback for a single LMS tree is the time it takes
to generate the public key; as every LM-OTS public key needs to be
generated, the time this takes can be substantial. For a two-level
tree, only the top-level LMS tree and the initial bottom-level LMS
tree need to be generated initially (before the first signature is
generated); this will in general be significantly quicker.
To give a general idea of the trade-offs available, we include some
measurements taken with the LMS implementation available at
<<a href="https://github.com/cisco/hash-sigs">https://github.com/cisco/hash-sigs</a>>, taken on a 3.3 GHz Xeon
processor with threading enabled. We tried various parameter sets,
<span class="grey">McGrew, et al. Informational [Page 32]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-33" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
all with W=8 (which minimizes signature size, while increasing time).
These are here to give a guideline as to what's possible; for the
computational time, your mileage may vary, depending on the computing
resources you have. The machine these tests were performed on does
not have the SHA-256 extensions; you could possibly do significantly
better.
+---------+------------+---------+-------------+
| ParmSet | KeyGenTime | SigSize | KeyLifetime |
+---------+------------+---------+-------------+
| 15 | 6 sec | 1616 | 30 seconds |
| | | | |
| 20 | 3 min | 1776 | 16 minutes |
| | | | |
| 25 | 1.5 hour | 1936 | 9 hours |
| | | | |
| 15/10 | 6 sec | 3172 | 9 hours |
| | | | |
| 15/15 | 6 sec | 3332 | 12 days |
| | | | |
| 20/10 | 3 min | 3332 | 12 days |
| | | | |
| 20/15 | 3 min | 3492 | 1 year |
| | | | |
| 25/10 | 1.5 hour | 3492 | 1 year |
| | | | |
| 25/15 | 1.5 hour | 3652 | 34 years |
+---------+------------+---------+-------------+
Table 3
ParmSet: this is the height of the Merkle tree(s); parameter sets
listed as a single integer have L=1 and consist of a single Merkle
tree of that height; parameter sets with L=2 are listed as x/y,
with x being the height of the top-level Merkle tree and y being
the bottom level.
KeyGenTime: the measured key-generation time; that is, the time
needed to generate the public/private key pair.
SigSize: the size of a signature (in bytes)
KeyLifetime: the lifetime of a key, assuming we generated 1000
signatures per second. In practice, we're not likely to get
anywhere close to 1000 signatures per second sustained; if you
have a more appropriate figure for your scenario, this column is
easy to recompute.
<span class="grey">McGrew, et al. Informational [Page 33]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-34" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
As for signature generation or verification times, those are
moderately insensitive to the above parameter settings (except for
the Winternitz setting and the number of Merkle trees for
verification). Tests on the same machine (without multithreading)
gave approximately 4 msec to sign a short message, 2.6 msec to
verify; these tests used a two-level ParmSet; a single level would
approximately halve the verification time. All times can be
significantly improved (by perhaps a factor of 8) by using a
parameter set with W=4; however, that also about doubles the
signature size.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Rationale</span>
The goal of this note is to describe the LM-OTS, LMS, and HSS
algorithms following the original references and present the modern
security analysis of those algorithms. Other signature methods are
out of scope and may be interesting follow-on work.
We adopt the techniques described by Leighton and Micali to mitigate
attacks that amortize their work over multiple invocations of the
hash function.
The values taken by the identifier I across different LMS public/
private key pairs are chosen randomly in order to improve security.
The analysis of this method in [<a href="#ref-Fluhrer17">Fluhrer17</a>] shows that we do not need
uniqueness to ensure security; we do need to ensure that we don't
have a large number of private keys that use the same I value. By
randomly selecting 16-byte I values, the chance that, out of 2^64
private keys, 4 or more of them will use the same I value is
negligible (that is, has probability less than 2^-128).
The reason 16-byte I values were selected was to optimize the
Winternitz hash-chain operation. With the current settings, the
value being hashed is exactly 55 bytes long (for a 32-byte hash
function), which SHA-256 can hash in a single hash-compression
operation. Other hash functions may be used in future
specifications; all the ones that we will be likely to support
(SHA-512/256 and the various SHA-3 hashes) would work well with a
16-byte I value.
The signature and public key formats are designed so that they are
relatively easy to parse. Each format starts with a 32-bit
enumeration value that indicates the details of the signature
algorithm and provides all of the information that is needed in order
to parse the format.
<span class="grey">McGrew, et al. Informational [Page 34]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-35" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
The Checksum (<a href="#section-4.4">Section 4.4</a>) is calculated using a nonnegative integer
"sum" whose width was chosen to be an integer number of w-bit fields
such that it is capable of holding the difference of the total
possible number of applications of the function H (as defined in the
signing algorithm of <a href="#section-4.5">Section 4.5</a>) and the total actual number. In
the case that the number of times H is applied is 0, the sum is (2^w
- 1) * (8*n/w). Thus, for the purposes of this document, which
describes signature methods based on H = SHA256 (n = 32 bytes) and w
= { 1, 2, 4, 8 }, the sum variable is a 16-bit nonnegative integer
for all combinations of n and w. The calculation uses the parameter
ls defined in <a href="#section-4.1">Section 4.1</a> and calculated in <a href="#appendix-B">Appendix B</a>, which
indicates the number of bits used in the left-shift operation.
<span class="h3"><a class="selflink" id="section-7.1" href="#section-7.1">7.1</a>. Security String</span>
To improve security against attacks that amortize their effort
against multiple invocations of the hash function, Leighton and
Micali introduced a "security string" that is distinct for each
invocation of that function. Whenever this process computes a hash,
the string being hashed will start with a string formed from the
fields below. These fields will appear in fixed locations in the
value we compute the hash of, and so we list where in the hash these
fields would be present. The fields that make up this string are as
follows:
I A 16-byte identifier for the LMS public/private key pair. It
MUST be chosen uniformly at random, or via a pseudorandom
process, at the time that a key pair is generated, in order to
minimize the probability that any specific value of I be used
for a large number of different LMS private keys. This is
always bytes 0-15 of the value being hashed.
r In the LMS N-time signature scheme, the node number r
associated with a particular node of a hash tree is used as an
input to the hash used to compute that node. This value is
represented as a 32-bit (four byte) unsigned integer in network
byte order. Either r or q (depending on the domain-separation
parameter) will be bytes 16-19 of the value being hashed.
q In the LMS N-time signature scheme, each LM-OTS signature is
associated with the leaf of a hash tree, and q is set to the
leaf number. This ensures that a distinct value of q is used
for each distinct LM-OTS public/private key pair. This value
is represented as a 32-bit (four byte) unsigned integer in
network byte order. Either r or q (depending on the domain-
separation parameter) will be bytes 16-19 of the value being
hashed.
<span class="grey">McGrew, et al. Informational [Page 35]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-36" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
D A domain-separation parameter, which is a two-byte identifier
that takes on different values in the different contexts in
which the hash function is invoked. D occurs in bytes 20 and
21 of the value being hashed and takes on the following values:
D_PBLC = 0x8080 when computing the hash of all of the
iterates in the LM-OTS algorithm
D_MESG = 0x8181 when computing the hash of the message in
the LM-OTS algorithms
D_LEAF = 0x8282 when computing the hash of the leaf of an
LMS tree
D_INTR = 0x8383 when computing the hash of an interior node
of an LMS tree
i A value between 0 and 264; this is used in the LM-OTS scheme
when either computing the iterations of the Winternitz chain or
using the suggested LM-OTS private key generation process. It
is represented as a 16-bit (two-byte) unsigned integer in
network byte order. If present, it occurs at bytes 20 and 21
of the value being hashed.
j In the LM-OTS scheme, j is the iteration number used when the
private key element is being iteratively hashed. It is
represented as an 8-bit (one byte) unsigned integer and is
present if i is a value between 0 and 264. If present, it
occurs at bytes 22 to 21+n of the value being hashed.
C An n-byte randomizer that is included with the message whenever
it is being hashed to improve security. C MUST be chosen
uniformly at random or via another unpredictable process. It
is present if D=D_MESG, and it occurs at bytes 22 to 21+n of
the value being hashed.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. IANA Considerations</span>
IANA has created two registries: "LM-OTS Signatures", which includes
all of the LM-OTS signatures as defined in <a href="#section-4">Section 4</a>, and "Leighton-
Micali Signatures (LMS)" for LMS as defined in <a href="#section-5">Section 5</a>.
Additions to these registries require that a specification be
documented in an RFC or another permanent and readily available
reference in sufficient detail that interoperability between
independent implementations is possible [<a href="./rfc8126" title="">RFC8126</a>]. IANA MUST verify
that all applications for additions to these registries have first
been reviewed by the IRTF Crypto Forum Research Group (CFRG).
<span class="grey">McGrew, et al. Informational [Page 36]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-37" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
Each entry in either of the registries contains the following
elements:
a short name (Name), such as "LMS_SHA256_M32_H10",
a positive number (Numeric Identifier), and
a Reference to a specification that completely defines the
signature-method test cases that can be used to verify the
correctness of an implementation.
The numbers between 0xDDDDDDDD (decimal 3,722,304,989) and 0xFFFFFFFF
(decimal 4,294,967,295), inclusive, will not be assigned by IANA and
are reserved for private use; no attempt will be made to prevent
multiple sites from using the same value in different (and
incompatible) ways [<a href="./rfc8126" title="">RFC8126</a>].
The initial contents of the "LM-OTS Signatures" registry are as
follows.
+--------------------------+-----------+--------------------------+
| Name | Reference | Numeric Identifier |
+--------------------------+-----------+--------------------------+
| Reserved | | 0x00000000 |
| | | |
| LMOTS_SHA256_N32_W1 | <a href="#section-4">Section 4</a> | 0x00000001 |
| | | |
| LMOTS_SHA256_N32_W2 | <a href="#section-4">Section 4</a> | 0x00000002 |
| | | |
| LMOTS_SHA256_N32_W4 | <a href="#section-4">Section 4</a> | 0x00000003 |
| | | |
| LMOTS_SHA256_N32_W8 | <a href="#section-4">Section 4</a> | 0x00000004 |
| | | |
| Unassigned | | 0x00000005 - 0xDDDDDDDC |
| | | |
| Reserved for Private Use | | 0xDDDDDDDD - 0xFFFFFFFF |
+--------------------------+-----------+--------------------------+
Table 4
<span class="grey">McGrew, et al. Informational [Page 37]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-38" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
The initial contents of the "Leighton Micali Signatures (LMS)"
registry are as follows.
+--------------------------+-----------+--------------------------+
| Name | Reference | Numeric Identifier |
+--------------------------+-----------+--------------------------+
| Reserved | | 0x0 - 0x4 |
| | | |
| LMS_SHA256_M32_H5 | <a href="#section-5">Section 5</a> | 0x00000005 |
| | | |
| LMS_SHA256_M32_H10 | <a href="#section-5">Section 5</a> | 0x00000006 |
| | | |
| LMS_SHA256_M32_H15 | <a href="#section-5">Section 5</a> | 0x00000007 |
| | | |
| LMS_SHA256_M32_H20 | <a href="#section-5">Section 5</a> | 0x00000008 |
| | | |
| LMS_SHA256_M32_H25 | <a href="#section-5">Section 5</a> | 0x00000009 |
| | | |
| Unassigned | | 0x0000000A - 0xDDDDDDDC |
| | | |
| Reserved for Private Use | | 0xDDDDDDDD - 0xFFFFFFFF |
+--------------------------+-----------+--------------------------+
Table 5
An IANA registration of a signature system does not constitute an
endorsement of that system or its security.
Currently, the two registries assign a disjoint set of values to the
defined parameter sets. This coincidence is a historical accident;
the correctness of the system does not depend on this. IANA is not
required to maintain this situation.
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. Security Considerations</span>
The hash function H MUST have second preimage resistance: it must be
computationally infeasible for an attacker that is given one message
M to be able to find a second message M' such that H(M) = H(M').
The security goal of a signature system is to prevent forgeries. A
successful forgery occurs when an attacker who does not know the
private key associated with a public key can find a message (distinct
from all previously signed ones) and signature that is valid with
that public key (that is, the Signature Verification algorithm
applied to that signature and message and public key will return
VALID). Such an attacker, in the strongest case, may have the
ability to forge valid signatures for an arbitrary number of other
messages.
<span class="grey">McGrew, et al. Informational [Page 38]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-39" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
LMS is provably secure in the random oracle model, as shown by
[<a href="#ref-Katz16" title=""Analysis of a Proposed Hash-Based Signature Standard"">Katz16</a>]. In addition, further analysis is done by [<a href="#ref-Fluhrer17">Fluhrer17</a>],
where the hash compression function (rather than the entire hash
function) is considered to be a random oracle. Corollary 1 of the
latter paper states:
If we have no more than 2^64 randomly chosen LMS private keys,
allow the attacker access to a signing oracle and a SHA-256 hash
compression oracle, and allow a maximum of 2^120 hash compression
computations, then the probability of an attacker being able to
generate a single forgery against any of those LMS keys is less
than 2^-129.
Many of the objects within the public key and the signature start
with a typecode. A verifier MUST check each of these typecodes, and
a verification operation on a signature with an unknown type, or a
type that does not correspond to the type within the public key, MUST
return INVALID. The expected length of a variable-length object can
be determined from its typecode; if an object has a different length,
then any signature computed from the object is INVALID.
<span class="h3"><a class="selflink" id="section-9.1" href="#section-9.1">9.1</a>. Hash Formats</span>
The format of the inputs to the hash function H has the property that
each invocation of that function has an input that is repeated by a
small bounded number of other inputs (due to potential repeats of the
I value). In particular, it will vary somewhere in the first 23
bytes of the value being hashed. This property is important for a
proof of security in the random oracle model.
The formats used during key generation and signing (including the
recommended pseudorandom key-generation procedure in <a href="#appendix-A">Appendix A</a>) are
as follows:
I || u32str(q) || u16str(i) || u8str(j) || tmp
I || u32str(q) || u16str(D_PBLC) || y[0] || ... || y[p-1]
I || u32str(q) || u16str(D_MESG) || C || message
I || u32str(r) || u16str(D_LEAF) || OTS_PUB_HASH[r-2^h]
I || u32str(r) || u16str(D_INTR) || T[2*r] || T[2*r+1]
I || u32str(q) || u16str(i) || u8str(0xff) || SEED
Each hash type listed is distinct; at locations 20 and 21 of the
value being hashed, there exists either a fixed value D_PBLC, D_MESG,
D_LEAF, D_INTR, or a 16-bit value i. These fixed values are distinct
from each other and are large (over 32768), while the 16-bit values
of i are small (currently no more than 265; possibly being slightly
larger if larger hash functions are supported); hence, the range of
possible values of i will not collide any of the D_PBLC, D_MESG,
<span class="grey">McGrew, et al. Informational [Page 39]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-40" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
D_LEAF, D_INTR identifiers. The only other collision possibility is
the Winternitz chain hash colliding with the recommended pseudorandom
key-generation process; here, at location 22 of the value being
hashed, the Winternitz chain function has the value u8str(j), where j
is a value between 0 and 254, while location 22 of the recommended
pseudorandom key-generation process has value 255.
For the Winternitz chaining function, D_PBLC, and D_MESG, the value
of I || u32str(q) is distinct for each LMS leaf (or equivalently, for
each q value). For the Winternitz chaining function, the value of
u16str(i) || u8str(j) is distinct for each invocation of H for a
given leaf. For D_PBLC and D_MESG, the input format is used only
once for each value of q and, thus, distinctness is assured. The
formats for D_INTR and D_LEAF are used exactly once for each value of
r, which ensures their distinctness. For the recommended
pseudorandom key-generation process, for a given value of I, q and j
are distinct for each invocation of H.
The value of I is chosen uniformly at random from the set of all
128-bit strings. If 2^64 public keys are generated (and, hence, 2^64
random I values), there is a nontrivial probability of a duplicate
(which would imply duplicate prefixes). However, there will be an
extremely high probability there will not be a four-way collision
(that is, any I value used for four distinct LMS keys; probability <
2^-132), and, hence, the number of repeats for any specific prefix
will be limited to at most three. This is shown (in [<a href="#ref-Fluhrer17">Fluhrer17</a>]) to
have only a limited effect on the security of the system.
<span class="h3"><a class="selflink" id="section-9.2" href="#section-9.2">9.2</a>. Stateful Signature Algorithm</span>
The LMS signature system, like all N-time signature systems, requires
that the signer maintain state across different invocations of the
signing algorithm to ensure that none of the component one-time
signature systems are used more than once. This section calls out
some important practical considerations around this statefulness.
These issues are discussed in greater detail in [<a href="#ref-STMGMT" title=""State Management for Hash- Based Signatures."">STMGMT</a>].
In a typical computing environment, a private key will be stored in
nonvolatile media such as on a hard drive. Before it is used to sign
a message, it will be read into an application's Random-Access Memory
(RAM). After a signature is generated, the value of the private key
will need to be updated by writing the new value of the private key
into nonvolatile storage. It is essential for security that the
application ensures that this value is actually written into that
storage, yet there may be one or more memory caches between it and
the application. Memory caching is commonly done in the file system
and in a physical memory unit on the hard disk that is dedicated to
that purpose. To ensure that the updated value is written to
<span class="grey">McGrew, et al. Informational [Page 40]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-41" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
physical media, the application may need to take several special
steps. In a POSIX environment, for instance, the O_SYNC flag (for
the open() system call) will cause invocations of the write() system
call to block the calling process until the data has been written to
the underlying hardware. However, if that hardware has its own
memory cache, it must be separately dealt with using an operating
system or device-specific tool such as hdparm to flush the on-drive
cache or turn off write caching for that drive. Because these
details vary across different operating systems and devices, this
note does not attempt to provide complete guidance; instead, we call
the implementer's attention to these issues.
When hierarchical signatures are used, an easy way to minimize the
private key synchronization issues is to have the private key for the
second-level resident in RAM only and never write that value into
nonvolatile memory. A new second-level public/private key pair will
be generated whenever the application (re)starts; thus, failures such
as a power outage or application crash are automatically
accommodated. Implementations SHOULD use this approach wherever
possible.
<span class="h3"><a class="selflink" id="section-9.3" href="#section-9.3">9.3</a>. Security of LM-OTS Checksum</span>
To show the security of LM-OTS checksum, we consider the signature y
of a message with a private key x and let h = H(message) and
c = Cksm(H(message)) (see <a href="#section-4.5">Section 4.5</a>). To attempt a forgery, an
attacker may try to change the values of h and c. Let h' and c'
denote the values used in the forgery attempt. If for some integer j
in the range 0 to u, where u = ceil(8*n/w) is the size of the range
that the checksum value can cover, inclusive,
a' = coef(h', j, w),
a = coef(h, j, w), and
a' > a
<span class="grey">McGrew, et al. Informational [Page 41]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-42" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
then the attacker can compute F^a'(x[j]) from F^a(x[j]) = y[j] by
iteratively applying function F to the j-th term of the signature an
additional (a' - a) times. However, as a result of the increased
number of hashing iterations, the checksum value c' will decrease
from its original value of c. Thus, a valid signature's checksum
will have, for some number k in the range u to (p-1), inclusive,
b' = coef(c', k, w),
b = coef(c, k, w), and
b' < b
Due to the one-way property of F, the attacker cannot easily compute
F^b'(x[k]) from F^b(x[k]) = y[k].
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. Comparison with Other Work</span>
The eXtended Merkle Signature Scheme (XMSS) is similar to HSS in
several ways [<a href="#ref-XMSS" title=""XMSS -- A Practical Forward Secure Signature Scheme Based on Minimal Security Assumptions."">XMSS</a>][RFC8391]. Both are stateful hash-based signature
schemes, and both use a hierarchical approach, with a Merkle tree at
each level of the hierarchy. XMSS signatures are slightly shorter
than HSS signatures, for equivalent security and an equal number of
signatures.
HSS has several advantages over XMSS. HSS operations are roughly
four times faster than the comparable XMSS ones, when SHA256 is used
as the underlying hash. This occurs because the hash operation done
as a part of the Winternitz iterations dominates performance, and
XMSS performs four compression-function invocations (two for the PRF,
two for the F function) where HSS only needs to perform one.
Additionally, HSS is somewhat simpler (as each hash invocation is
just a prefix followed by the data being hashed).
<span class="grey">McGrew, et al. Informational [Page 42]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-43" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
<span class="h2"><a class="selflink" id="section-11" href="#section-11">11</a>. References</span>
<span class="h3"><a class="selflink" id="section-11.1" href="#section-11.1">11.1</a>. Normative References</span>
[<a id="ref-FIPS180">FIPS180</a>] National Institute of Standards and Technology, "Secure
Hash Standard (SHS)", FIPS PUB 180-4,
DOI 10.6028/NIST.FIPS.180-4, March 2012.
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>,
DOI 10.17487/RFC2119, March 1997,
<<a href="https://www.rfc-editor.org/info/rfc2119">https://www.rfc-editor.org/info/rfc2119</a>>.
[<a id="ref-RFC4506">RFC4506</a>] Eisler, M., Ed., "XDR: External Data Representation
Standard", STD 67, <a href="./rfc4506">RFC 4506</a>, DOI 10.17487/RFC4506, May
2006, <<a href="https://www.rfc-editor.org/info/rfc4506">https://www.rfc-editor.org/info/rfc4506</a>>.
[<a id="ref-RFC8126">RFC8126</a>] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
Writing an IANA Considerations Section in RFCs", <a href="https://www.rfc-editor.org/bcp/bcp26">BCP 26</a>,
<a href="./rfc8126">RFC 8126</a>, DOI 10.17487/RFC8126, June 2017,
<<a href="https://www.rfc-editor.org/info/rfc8126">https://www.rfc-editor.org/info/rfc8126</a>>.
[<a id="ref-RFC8174">RFC8174</a>] Leiba, B., "Ambiguity of Uppercase vs Lowercase in <a href="./rfc2119">RFC</a>
<a href="./rfc2119">2119</a> Key Words", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc8174">RFC 8174</a>, DOI 10.17487/RFC8174,
May 2017, <<a href="https://www.rfc-editor.org/info/rfc8174">https://www.rfc-editor.org/info/rfc8174</a>>.
[<a id="ref-RFC8179">RFC8179</a>] Bradner, S. and J. Contreras, "Intellectual Property
Rights in IETF Technology", <a href="https://www.rfc-editor.org/bcp/bcp79">BCP 79</a>, <a href="./rfc8179">RFC 8179</a>,
DOI 10.17487/RFC8179, May 2017,
<<a href="https://www.rfc-editor.org/info/rfc8179">https://www.rfc-editor.org/info/rfc8179</a>>.
[<a id="ref-USPTO5432852">USPTO5432852</a>]
Leighton, T. and S. Micali, "Large provably fast and
secure digital signature schemes based on secure hash
functions", U.S. Patent 5,432,852, July 1995.
<span class="h3"><a class="selflink" id="section-11.2" href="#section-11.2">11.2</a>. Informative References</span>
[C:Merkle87]
Merkle, R., "A Digital Signature Based on a Conventional
Encryption Function", in Advances in Cryptology -- CRYPTO
'87 Proceedings, Lecture Notes in Computer Science Vol.
293, DOI 10.1007/3-540-48184-2_32, 1988.
<span class="grey">McGrew, et al. Informational [Page 43]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-44" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
[C:Merkle89a]
Merkle, R., "A Certified Digital Signature", in Advances
in Cryptology -- CRYPTO '89 Proceedings, Lecture Notes in
Computer Science Vol. 435, DOI 10.1007/0-387-34805-0_21,
1990.
[C:Merkle89b]
Merkle, R., "One Way Hash Functions and DES", in Advances
in Cryptology -- CRYPTO '89 Proceedings, Lecture Notes in
Computer Science Vol. 435, DOI 10.1007/0-387-34805-0_40,
1990.
[<a id="ref-Fluhrer17">Fluhrer17</a>]
Fluhrer, S., "Further Analysis of a Proposed Hash-Based
Signature Standard", Cryptology ePrint Archive Report
2017/553, 2017, <<a href="https://eprint.iacr.org/2017/553">https://eprint.iacr.org/2017/553</a>>.
[<a id="ref-Katz16">Katz16</a>] Katz, J., "Analysis of a Proposed Hash-Based Signature
Standard", in SSR 2016: Security Standardisation Research
(SSR) pp. 261-273, Lecture Notes in Computer Science Vol.
10074, DOI 10.1007/978-3-319-49100-4_12, 2016.
[<a id="ref-Merkle79">Merkle79</a>]
Merkle, R., "Secrecy, Authentication, and Public Key
Systems", Technical Report No. 1979-1, Information Systems
Laboratory, Stanford University, 1979,
<<a href="http://www.merkle.com/papers/Thesis1979.pdf">http://www.merkle.com/papers/Thesis1979.pdf</a>>.
[<a id="ref-RFC8391">RFC8391</a>] Huelsing, A., Butin, D., Gazdag, S., Rijneveld, J., and A.
Mohaisen, "XMSS: eXtended Merkle Signature Scheme",
<a href="./rfc8391">RFC 8391</a>, DOI 10.17487/RFC8391, May 2018,
<<a href="https://www.rfc-editor.org/info/rfc8391">https://www.rfc-editor.org/info/rfc8391</a>>.
[<a id="ref-STMGMT">STMGMT</a>] McGrew, D., Kampanakis, P., Fluhrer, S., Gazdag, S.,
Butin, D., and J. Buchmann, "State Management for Hash-
Based Signatures.", in SSR 2016: Security Standardisation
Research (SSR) pp. 244-260, Lecture Notes in Computer
Science Vol. 10074, DOI 10.1007/978-3-319-49100-4_11,
2016.
[<a id="ref-XMSS">XMSS</a>] Buchmann, J., Dahmen, E., and , "XMSS -- A Practical
Forward Secure Signature Scheme Based on Minimal Security
Assumptions.", in PQCrypto 2011: Post-Quantum Cryptography
pp. 117-129, Lecture Notes in Computer Science Vol. 7071,
DOI 10.1007/978-3-642-25405-5_8, 2011.
<span class="grey">McGrew, et al. Informational [Page 44]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-45" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
<span class="h2"><a class="selflink" id="appendix-A" href="#appendix-A">Appendix A</a>. Pseudorandom Key Generation</span>
An implementation MAY use the following pseudorandom process for
generating an LMS private key.
SEED is an m-byte value that is generated uniformly at random at
the start of the process,
I is the LMS key pair identifier,
q denotes the LMS leaf number of an LM-OTS private key,
x_q denotes the x array of private elements in the LM-OTS private
key with leaf number q,
i is the index of the private key element, and
H is the hash function used in LM-OTS.
The elements of the LM-OTS private keys are computed as:
x_q[i] = H(I || u32str(q) || u16str(i) || u8str(0xff) || SEED).
This process stretches the m-byte random value SEED into a (much
larger) set of pseudorandom values, using a unique counter in each
invocation of H. The format of the inputs to H are chosen so that
they are distinct from all other uses of H in LMS and LM-OTS. A
careful reader will note that this is similar to the hash we perform
when iterating through the Winternitz chain; however, in that chain,
the iteration index will vary between 0 and 254 maximum (for W=8),
while the corresponding value in this formula is 255. This algorithm
is included in the proof of security in [<a href="#ref-Fluhrer17">Fluhrer17</a>] and hence this
method is safe when used within the LMS system; however, any other
cryptographically secure method of generating private keys would also
be safe.
<span class="h2"><a class="selflink" id="appendix-B" href="#appendix-B">Appendix B</a>. LM-OTS Parameter Options</span>
The LM-OTS one-time signature method uses several internal
parameters, which are a function of the selected parameter set.
These internal parameters include the following:
p This is the number of independent Winternitz chains used in the
signature; it will be the number of w-bit digits needed to hold
the n-bit hash (u in the below equations), along with the
number of digits needed to hold the checksum (v in the below
equations)
<span class="grey">McGrew, et al. Informational [Page 45]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-46" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
ls This is the size of the shift needed to move the checksum so
that it appears in the checksum digits
ls is needed because, while we express the checksum internally as a
16-bit value, we don't always express all 16 bits in the signature;
for example, if w=4, we might use only the top 12 bits. Because we
read the checksum in network order, this means that, without the
shift, we'll use the higher-order bits (which may be always 0) and
omit the lower-order bits (where the checksum value actually
resides). This shift is here to ensure that the parts of the
checksum we need to express (for security) actually contribute to the
signature; when multiple such shifts are possible, we take the
minimal value.
The parameters ls and p are computed as follows:
u = ceil(8*n/w)
v = ceil((floor(lg((2^w - 1) * u)) + 1) / w)
ls = 16 - (v * w)
p = u + v
Here, u and v represent the number of w-bit fields required to
contain the hash of the message and the checksum byte strings,
respectively. And as the value of p is the number of w-bit elements
of ( H(message) || Cksm(H(message)) ), it is also equivalently the
number of byte strings that form the private key and the number of
byte strings in the signature. The value 16 in the ls computation of
ls corresponds to the 16-bit value used for the sum variable in
Algorithm 2 in <a href="#section-4.4">Section 4.4</a>
A table illustrating various combinations of n and w with the
associated values of u, v, ls, and p is provided in Table 6.
<span class="grey">McGrew, et al. Informational [Page 46]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-47" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
+---------+------------+-----------+-----------+-------+------------+
| Hash | Winternitz | w-bit | w-bit | Left | Total |
| Length | Parameter | Elements | Elements | Shift | Number of |
| in | (w) | in Hash | in | (ls) | w-bit |
| Bytes | | (u) | Checksum | | Elements |
| (n) | | | (v) | | (p) |
+---------+------------+-----------+-----------+-------+------------+
| 32 | 1 | 256 | 9 | 7 | 265 |
| | | | | | |
| 32 | 2 | 128 | 5 | 6 | 133 |
| | | | | | |
| 32 | 4 | 64 | 3 | 4 | 67 |
| | | | | | |
| 32 | 8 | 32 | 2 | 0 | 34 |
+---------+------------+-----------+-----------+-------+------------+
Table 6
<span class="h2"><a class="selflink" id="appendix-C" href="#appendix-C">Appendix C</a>. An Iterative Algorithm for Computing an LMS Public Key</span>
The LMS public key can be computed using the following algorithm or
any equivalent method. The algorithm uses a stack of hashes for
data. It also makes use of a hash function with the typical
init/update/final interface to hash functions; the result of the
invocations hash_init(), hash_update(N[1]), hash_update(N[2]), ... ,
hash_update(N[n]), v = hash_final(), in that order, is identical to
that of the invocation of H(N[1] || N[2] || ... || N[n]).
Generating an LMS Public Key from an LMS Private Key
for ( i = 0; i < 2^h; i = i + 1 ) {
r = i + num_lmots_keys;
temp = H(I || u32str(r) || u16str(D_LEAF) || OTS_PUB_HASH[i])
j = i;
while (j % 2 == 1) {
r = (r - 1)/2;
j = (j-1) / 2;
left_side = pop(data stack);
temp = H(I || u32str(r) || u16str(D_INTR) || left_side || temp)
}
push temp onto the data stack
}
public_key = pop(data stack)
<span class="grey">McGrew, et al. Informational [Page 47]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-48" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
Note that this pseudocode expects that all 2^h leaves of the tree
have equal depth -- that is, it expects num_lmots_keys to be a power
of 2. The maximum depth of the stack will be h-1 elements -- that
is, a total of (h-1)*n bytes; for the currently defined parameter
sets, this will never be more than 768 bytes of data.
<span class="h2"><a class="selflink" id="appendix-D" href="#appendix-D">Appendix D</a>. Method for Deriving Authentication Path for a Signature</span>
The LMS signature consists of u32str(q) || lmots_signature ||
u32str(type) || path[0] || path[1] || ... || path[h-1]. This
appendix shows one method of constructing this signature, assuming
that the implementation has stored the T[] array that was used to
construct the public key. Note that this is not the only possible
method; other methods exist that don't assume that you have the
entire T[] array in memory. To construct a signature, you perform
the following algorithm:
Generating an LMS Signature
1. Set type to the typecode of the LMS algorithm.
2. Extract h from the typecode, according to Table 2.
3. Create the LM-OTS signature for the message:
ots_signature = lmots_sign(message, LMS_PRIV[q])
4. Compute the array path as follows:
i = 0
r = 2^h + q
while (i < h) {
temp = (r / 2^i) xor 1
path[i] = T[temp]
i = i + 1
}
5. S = u32str(q) || ots_signature || u32str(type) ||
path[0] || path[1] || ... || path[h-1]
6. q = q + 1
7. Return S.
Here "xor" is the bitwise exclusive-or operation, and / is integer
division (that is, rounded down to an integer value).
<span class="grey">McGrew, et al. Informational [Page 48]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-49" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
<span class="h2"><a class="selflink" id="appendix-E" href="#appendix-E">Appendix E</a>. Example Implementation</span>
An example implementation can be found online at
<<a href="https://github.com/cisco/hash-sigs">https://github.com/cisco/hash-sigs</a>>.
<span class="h2"><a class="selflink" id="appendix-F" href="#appendix-F">Appendix F</a>. Test Cases</span>
This section provides test cases that can be used to verify or debug
an implementation. This data is formatted with the name of the
elements on the left and the hexadecimal value of the elements on the
right. The concatenation of all of the values within a public key or
signature produces that public key or signature, and values that do
not fit within a single line are listed across successive lines.
Test Case 1 Public Key
--------------------------------------------
HSS public key
levels 00000002
--------------------------------------------
LMS type 00000005 # LM_SHA256_M32_H5
LMOTS type 00000004 # LMOTS_SHA256_N32_W8
I 61a5d57d37f5e46bfb7520806b07a1b8
K 50650e3b31fe4a773ea29a07f09cf2ea
30e579f0df58ef8e298da0434cb2b878
--------------------------------------------
--------------------------------------------
Test Case 1 Message
--------------------------------------------
Message 54686520706f77657273206e6f742064 |The powers not d|
656c65676174656420746f2074686520 |elegated to the |
556e6974656420537461746573206279 |United States by|
2074686520436f6e737469747574696f | the Constitutio|
6e2c206e6f722070726f686962697465 |n, nor prohibite|
6420627920697420746f207468652053 |d by it to the S|
74617465732c20617265207265736572 |tates, are reser|
76656420746f20746865205374617465 |ved to the State|
7320726573706563746976656c792c20 |s respectively, |
6f7220746f207468652070656f706c65 |or to the people|
2e0a |..|
--------------------------------------------
<span class="grey">McGrew, et al. Informational [Page 49]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-50" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
Test Case 1 Signature
--------------------------------------------
HSS signature
Nspk 00000001
sig[0]:
--------------------------------------------
LMS signature
q 00000005
--------------------------------------------
LMOTS signature
LMOTS type 00000004 # LMOTS_SHA256_N32_W8
C d32b56671d7eb98833c49b433c272586
bc4a1c8a8970528ffa04b966f9426eb9
y[0] 965a25bfd37f196b9073f3d4a232feb6
9128ec45146f86292f9dff9610a7bf95
y[1] a64c7f60f6261a62043f86c70324b770
7f5b4a8a6e19c114c7be866d488778a0
y[2] e05fd5c6509a6e61d559cf1a77a970de
927d60c70d3de31a7fa0100994e162a2
y[3] 582e8ff1b10cd99d4e8e413ef469559f
7d7ed12c838342f9b9c96b83a4943d16
y[4] 81d84b15357ff48ca579f19f5e71f184
66f2bbef4bf660c2518eb20de2f66e3b
y[5] 14784269d7d876f5d35d3fbfc7039a46
2c716bb9f6891a7f41ad133e9e1f6d95
y[6] 60b960e7777c52f060492f2d7c660e14
71e07e72655562035abc9a701b473ecb
y[7] c3943c6b9c4f2405a3cb8bf8a691ca51
d3f6ad2f428bab6f3a30f55dd9625563
y[8] f0a75ee390e385e3ae0b906961ecf41a
e073a0590c2eb6204f44831c26dd768c
y[9] 35b167b28ce8dc988a3748255230cef9
9ebf14e730632f27414489808afab1d1
y[10] e783ed04516de012498682212b078105
79b250365941bcc98142da13609e9768
y[11] aaf65de7620dabec29eb82a17fde35af
15ad238c73f81bdb8dec2fc0e7f93270
y[12] 1099762b37f43c4a3c20010a3d72e2f6
06be108d310e639f09ce7286800d9ef8
y[13] a1a40281cc5a7ea98d2adc7c7400c2fe
5a101552df4e3cccfd0cbf2ddf5dc677
y[14] 9cbbc68fee0c3efe4ec22b83a2caa3e4
8e0809a0a750b73ccdcf3c79e6580c15
y[15] 4f8a58f7f24335eec5c5eb5e0cf01dcf
4439424095fceb077f66ded5bec73b27
y[16] c5b9f64a2a9af2f07c05e99e5cf80f00
252e39db32f6c19674f190c9fbc506d8
<span class="grey">McGrew, et al. Informational [Page 50]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-51" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
y[17] 26857713afd2ca6bb85cd8c107347552
f30575a5417816ab4db3f603f2df56fb
y[18] c413e7d0acd8bdd81352b2471fc1bc4f
1ef296fea1220403466b1afe78b94f7e
y[19] cf7cc62fb92be14f18c2192384ebceaf
8801afdf947f698ce9c6ceb696ed70e9
y[20] e87b0144417e8d7baf25eb5f70f09f01
6fc925b4db048ab8d8cb2a661ce3b57a
y[21] da67571f5dd546fc22cb1f97e0ebd1a6
5926b1234fd04f171cf469c76b884cf3
y[22] 115cce6f792cc84e36da58960c5f1d76
0f32c12faef477e94c92eb75625b6a37
y[23] 1efc72d60ca5e908b3a7dd69fef02491
50e3eebdfed39cbdc3ce9704882a2072
y[24] c75e13527b7a581a556168783dc1e975
45e31865ddc46b3c957835da252bb732
y[25] 8d3ee2062445dfb85ef8c35f8e1f3371
af34023cef626e0af1e0bc017351aae2
y[26] ab8f5c612ead0b729a1d059d02bfe18e
fa971b7300e882360a93b025ff97e9e0
y[27] eec0f3f3f13039a17f88b0cf808f4884
31606cb13f9241f40f44e537d302c64a
y[28] 4f1f4ab949b9feefadcb71ab50ef27d6
d6ca8510f150c85fb525bf25703df720
y[29] 9b6066f09c37280d59128d2f0f637c7d
7d7fad4ed1c1ea04e628d221e3d8db77
y[30] b7c878c9411cafc5071a34a00f4cf077
38912753dfce48f07576f0d4f94f42c6
y[31] d76f7ce973e9367095ba7e9a3649b7f4
61d9f9ac1332a4d1044c96aefee67676
y[32] 401b64457c54d65fef6500c59cdfb69a
f7b6dddfcb0f086278dd8ad0686078df
y[33] b0f3f79cd893d314168648499898fbc0
ced5f95b74e8ff14d735cdea968bee74
--------------------------------------------
LMS type 00000005 # LM_SHA256_M32_H5
path[0] d8b8112f9200a5e50c4a262165bd342c
d800b8496810bc716277435ac376728d
path[1] 129ac6eda839a6f357b5a04387c5ce97
382a78f2a4372917eefcbf93f63bb591
path[2] 12f5dbe400bd49e4501e859f885bf073
6e90a509b30a26bfac8c17b5991c157e
path[3] b5971115aa39efd8d564a6b90282c316
8af2d30ef89d51bf14654510a12b8a14
path[4] 4cca1848cf7da59cc2b3d9d0692dd2a2
0ba3863480e25b1b85ee860c62bf5136
--------------------------------------------
<span class="grey">McGrew, et al. Informational [Page 51]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-52" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
LMS public key
LMS type 00000005 # LM_SHA256_M32_H5
LMOTS type 00000004 # LMOTS_SHA256_N32_W8
I d2f14ff6346af964569f7d6cb880a1b6
K 6c5004917da6eafe4d9ef6c6407b3db0
e5485b122d9ebe15cda93cfec582d7ab
--------------------------------------------
final_signature:
--------------------------------------------
LMS signature
q 0000000a
--------------------------------------------
LMOTS signature
LMOTS type 00000004 # LMOTS_SHA256_N32_W8
C 0703c491e7558b35011ece3592eaa5da
4d918786771233e8353bc4f62323185c
y[0] 95cae05b899e35dffd71705470620998
8ebfdf6e37960bb5c38d7657e8bffeef
y[1] 9bc042da4b4525650485c66d0ce19b31
7587c6ba4bffcc428e25d08931e72dfb
y[2] 6a120c5612344258b85efdb7db1db9e1
865a73caf96557eb39ed3e3f426933ac
y[3] 9eeddb03a1d2374af7bf771855774562
37f9de2d60113c23f846df26fa942008
y[4] a698994c0827d90e86d43e0df7f4bfcd
b09b86a373b98288b7094ad81a0185ac
y[5] 100e4f2c5fc38c003c1ab6fea479eb2f
5ebe48f584d7159b8ada03586e65ad9c
y[6] 969f6aecbfe44cf356888a7b15a3ff07
4f771760b26f9c04884ee1faa329fbf4
y[7] e61af23aee7fa5d4d9a5dfcf43c4c26c
e8aea2ce8a2990d7ba7b57108b47dabf
y[8] beadb2b25b3cacc1ac0cef346cbb90fb
044beee4fac2603a442bdf7e507243b7
y[9] 319c9944b1586e899d431c7f91bcccc8
690dbf59b28386b2315f3d36ef2eaa3c
y[10] f30b2b51f48b71b003dfb08249484201
043f65f5a3ef6bbd61ddfee81aca9ce6
y[11] 0081262a00000480dcbc9a3da6fbef5c
1c0a55e48a0e729f9184fcb1407c3152
y[12] 9db268f6fe50032a363c9801306837fa
fabdf957fd97eafc80dbd165e435d0e2
y[13] dfd836a28b354023924b6fb7e48bc0b3
ed95eea64c2d402f4d734c8dc26f3ac5
y[14] 91825daef01eae3c38e3328d00a77dc6
57034f287ccb0f0e1c9a7cbdc828f627
y[15] 205e4737b84b58376551d44c12c3c215
c812a0970789c83de51d6ad787271963
<span class="grey">McGrew, et al. Informational [Page 52]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-53" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
y[16] 327f0a5fbb6b5907dec02c9a90934af5
a1c63b72c82653605d1dcce51596b3c2
y[17] b45696689f2eb382007497557692caac
4d57b5de9f5569bc2ad0137fd47fb47e
y[18] 664fcb6db4971f5b3e07aceda9ac130e
9f38182de994cff192ec0e82fd6d4cb7
y[19] f3fe00812589b7a7ce51544045643301
6b84a59bec6619a1c6c0b37dd1450ed4
y[20] f2d8b584410ceda8025f5d2d8dd0d217
6fc1cf2cc06fa8c82bed4d944e71339e
y[21] ce780fd025bd41ec34ebff9d4270a322
4e019fcb444474d482fd2dbe75efb203
y[22] 89cc10cd600abb54c47ede93e08c114e
db04117d714dc1d525e11bed8756192f
y[23] 929d15462b939ff3f52f2252da2ed64d
8fae88818b1efa2c7b08c8794fb1b214
y[24] aa233db3162833141ea4383f1a6f120b
e1db82ce3630b3429114463157a64e91
y[25] 234d475e2f79cbf05e4db6a9407d72c6
bff7d1198b5c4d6aad2831db61274993
y[26] 715a0182c7dc8089e32c8531deed4f74
31c07c02195eba2ef91efb5613c37af7
y[27] ae0c066babc69369700e1dd26eddc0d2
16c781d56e4ce47e3303fa73007ff7b9
y[28] 49ef23be2aa4dbf25206fe45c20dd888
395b2526391a724996a44156beac8082
y[29] 12858792bf8e74cba49dee5e8812e019
da87454bff9e847ed83db07af3137430
y[30] 82f880a278f682c2bd0ad6887cb59f65
2e155987d61bbf6a88d36ee93b6072e6
y[31] 656d9ccbaae3d655852e38deb3a2dcf8
058dc9fb6f2ab3d3b3539eb77b248a66
y[32] 1091d05eb6e2f297774fe6053598457c
c61908318de4b826f0fc86d4bb117d33
y[33] e865aa805009cc2918d9c2f840c4da43
a703ad9f5b5806163d7161696b5a0adc
--------------------------------------------
LMS type 00000005 # LM_SHA256_M32_H5
path[0] d5c0d1bebb06048ed6fe2ef2c6cef305
b3ed633941ebc8b3bec9738754cddd60
path[1] e1920ada52f43d055b5031cee6192520
d6a5115514851ce7fd448d4a39fae2ab
path[2] 2335b525f484e9b40d6a4a969394843b
dcf6d14c48e8015e08ab92662c05c6e9
path[3] f90b65a7a6201689999f32bfd368e5e3
ec9cb70ac7b8399003f175c40885081a
path[4] 09ab3034911fe125631051df0408b394
6b0bde790911e8978ba07dd56c73e7ee
<span class="grey">McGrew, et al. Informational [Page 53]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-54" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
Test Case 2 Private Key
--------------------------------------------
(note: procedure in <a href="#appendix-A">Appendix A</a> is used)
Top level LMS tree
SEED 558b8966c48ae9cb898b423c83443aae
014a72f1b1ab5cc85cf1d892903b5439
I d08fabd4a2091ff0a8cb4ed834e74534
Second level LMS tree
SEED a1c4696e2608035a886100d05cd99945
eb3370731884a8235e2fb3d4d71f2547
I 215f83b7ccb9acbcd08db97b0d04dc2b
--------------------------------------------
--------------------------------------------
Test Case 2 Public Key
--------------------------------------------
HSS public key
levels 00000002
--------------------------------------------
LMS type 00000006 # LM_SHA256_M32_H10
LMOTS type 00000003 # LMOTS_SHA256_N32_W4
I d08fabd4a2091ff0a8cb4ed834e74534
K 32a58885cd9ba0431235466bff9651c6
c92124404d45fa53cf161c28f1ad5a8e
--------------------------------------------
--------------------------------------------
Test Case 2 Message
--------------------------------------------
Message 54686520656e756d65726174696f6e20 |The enumeration |
696e2074686520436f6e737469747574 |in the Constitut|
696f6e2c206f66206365727461696e20 |ion, of certain |
7269676874732c207368616c6c206e6f |rights, shall no|
7420626520636f6e7374727565642074 |t be construed t|
6f2064656e79206f7220646973706172 |o deny or dispar|
616765206f7468657273207265746169 |age others retai|
6e6564206279207468652070656f706c |ned by the peopl|
652e0a |e..|
--------------------------------------------
<span class="grey">McGrew, et al. Informational [Page 54]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-55" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
Test Case 2 Signature
--------------------------------------------
HSS signature
Nspk 00000001
sig[0]:
--------------------------------------------
LMS signature
q 00000003
--------------------------------------------
LMOTS signature
LMOTS type 00000003 # LMOTS_SHA256_N32_W4
C 3d46bee8660f8f215d3f96408a7a64cf
1c4da02b63a55f62c666ef5707a914ce
y[0] 0674e8cb7a55f0c48d484f31f3aa4af9
719a74f22cf823b94431d01c926e2a76
y[1] bb71226d279700ec81c9e95fb11a0d10
d065279a5796e265ae17737c44eb8c59
y[2] 4508e126a9a7870bf4360820bdeb9a01
d9693779e416828e75bddd7d8c70d50a
y[3] 0ac8ba39810909d445f44cb5bb58de73
7e60cb4345302786ef2c6b14af212ca1
y[4] 9edeaa3bfcfe8baa6621ce88480df237
1dd37add732c9de4ea2ce0dffa53c926
y[5] 49a18d39a50788f4652987f226a1d481
68205df6ae7c58e049a25d4907edc1aa
y[6] 90da8aa5e5f7671773e941d805536021
5c6b60dd35463cf2240a9c06d694e9cb
y[7] 54e7b1e1bf494d0d1a28c0d31acc7516
1f4f485dfd3cb9578e836ec2dc722f37
y[8] ed30872e07f2b8bd0374eb57d22c614e
09150f6c0d8774a39a6e168211035dc5
y[9] 2988ab46eaca9ec597fb18b4936e66ef
2f0df26e8d1e34da28cbb3af75231372
y[10] 0c7b345434f72d65314328bbb030d0f0
f6d5e47b28ea91008fb11b05017705a8
y[11] be3b2adb83c60a54f9d1d1b2f476f9e3
93eb5695203d2ba6ad815e6a111ea293
y[12] dcc21033f9453d49c8e5a6387f588b1e
a4f706217c151e05f55a6eb7997be09d
y[13] 56a326a32f9cba1fbe1c07bb49fa04ce
cf9df1a1b815483c75d7a27cc88ad1b1
y[14] 238e5ea986b53e087045723ce16187ed
a22e33b2c70709e53251025abde89396
y[15] 45fc8c0693e97763928f00b2e3c75af3
942d8ddaee81b59a6f1f67efda0ef81d
y[16] 11873b59137f67800b35e81b01563d18
7c4a1575a1acb92d087b517a8833383f
<span class="grey">McGrew, et al. Informational [Page 55]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-56" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
y[17] 05d357ef4678de0c57ff9f1b2da61dfd
e5d88318bcdde4d9061cc75c2de3cd47
y[18] 40dd7739ca3ef66f1930026f47d9ebaa
713b07176f76f953e1c2e7f8f271a6ca
y[19] 375dbfb83d719b1635a7d8a138919579
44b1c29bb101913e166e11bd5f34186f
y[20] a6c0a555c9026b256a6860f4866bd6d0
b5bf90627086c6149133f8282ce6c9b3
y[21] 622442443d5eca959d6c14ca8389d12c
4068b503e4e3c39b635bea245d9d05a2
y[22] 558f249c9661c0427d2e489ca5b5dde2
20a90333f4862aec793223c781997da9
y[23] 8266c12c50ea28b2c438e7a379eb106e
ca0c7fd6006e9bf612f3ea0a454ba3bd
y[24] b76e8027992e60de01e9094fddeb3349
883914fb17a9621ab929d970d101e45f
y[25] 8278c14b032bcab02bd15692d21b6c5c
204abbf077d465553bd6eda645e6c306
y[26] 5d33b10d518a61e15ed0f092c3222628
1a29c8a0f50cde0a8c66236e29c2f310
y[27] a375cebda1dc6bb9a1a01dae6c7aba8e
bedc6371a7d52aacb955f83bd6e4f84d
y[28] 2949dcc198fb77c7e5cdf6040b0f84fa
f82808bf985577f0a2acf2ec7ed7c0b0
y[29] ae8a270e951743ff23e0b2dd12e9c3c8
28fb5598a22461af94d568f29240ba28
y[30] 20c4591f71c088f96e095dd98beae456
579ebbba36f6d9ca2613d1c26eee4d8c
y[31] 73217ac5962b5f3147b492e8831597fd
89b64aa7fde82e1974d2f6779504dc21
y[32] 435eb3109350756b9fdabe1c6f368081
bd40b27ebcb9819a75d7df8bb07bb05d
y[33] b1bab705a4b7e37125186339464ad8fa
aa4f052cc1272919fde3e025bb64aa8e
y[34] 0eb1fcbfcc25acb5f718ce4f7c2182fb
393a1814b0e942490e52d3bca817b2b2
y[35] 6e90d4c9b0cc38608a6cef5eb153af08
58acc867c9922aed43bb67d7b33acc51
y[36] 9313d28d41a5c6fe6cf3595dd5ee63f0
a4c4065a083590b275788bee7ad875a7
y[37] f88dd73720708c6c6c0ecf1f43bbaada
e6f208557fdc07bd4ed91f88ce4c0de8
y[38] 42761c70c186bfdafafc444834bd3418
be4253a71eaf41d718753ad07754ca3e
y[39] ffd5960b0336981795721426803599ed
5b2b7516920efcbe32ada4bcf6c73bd2
y[40] 9e3fa152d9adeca36020fdeeee1b7395
21d3ea8c0da497003df1513897b0f547
<span class="grey">McGrew, et al. Informational [Page 56]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-57" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
y[41] 94a873670b8d93bcca2ae47e64424b74
23e1f078d9554bb5232cc6de8aae9b83
y[42] fa5b9510beb39ccf4b4e1d9c0f19d5e1
7f58e5b8705d9a6837a7d9bf99cd1338
y[43] 7af256a8491671f1f2f22af253bcff54
b673199bdb7d05d81064ef05f80f0153
y[44] d0be7919684b23da8d42ff3effdb7ca0
985033f389181f47659138003d712b5e
y[45] c0a614d31cc7487f52de8664916af79c
98456b2c94a8038083db55391e347586
y[46] 2250274a1de2584fec975fb09536792c
fbfcf6192856cc76eb5b13dc4709e2f7
y[47] 301ddff26ec1b23de2d188c999166c74
e1e14bbc15f457cf4e471ae13dcbdd9c
y[48] 50f4d646fc6278e8fe7eb6cb5c94100f
a870187380b777ed19d7868fd8ca7ceb
y[49] 7fa7d5cc861c5bdac98e7495eb0a2cee
c1924ae979f44c5390ebedddc65d6ec1
y[50] 1287d978b8df064219bc5679f7d7b264
a76ff272b2ac9f2f7cfc9fdcfb6a5142
y[51] 8240027afd9d52a79b647c90c2709e06
0ed70f87299dd798d68f4fadd3da6c51
y[52] d839f851f98f67840b964ebe73f8cec4
1572538ec6bc131034ca2894eb736b3b
y[53] da93d9f5f6fa6f6c0f03ce43362b8414
940355fb54d3dfdd03633ae108f3de3e
y[54] bc85a3ff51efeea3bc2cf27e1658f178
9ee612c83d0f5fd56f7cd071930e2946
y[55] beeecaa04dccea9f97786001475e0294
bc2852f62eb5d39bb9fbeef75916efe4
y[56] 4a662ecae37ede27e9d6eadfdeb8f8b2
b2dbccbf96fa6dbaf7321fb0e701f4d4
y[57] 29c2f4dcd153a2742574126e5eaccc77
686acf6e3ee48f423766e0fc466810a9
y[58] 05ff5453ec99897b56bc55dd49b99114
2f65043f2d744eeb935ba7f4ef23cf80
y[59] cc5a8a335d3619d781e7454826df720e
ec82e06034c44699b5f0c44a8787752e
y[60] 057fa3419b5bb0e25d30981e41cb1361
322dba8f69931cf42fad3f3bce6ded5b
y[61] 8bfc3d20a2148861b2afc14562ddd27f
12897abf0685288dcc5c4982f8260268
y[62] 46a24bf77e383c7aacab1ab692b29ed8
c018a65f3dc2b87ff619a633c41b4fad
y[63] b1c78725c1f8f922f6009787b1964247
df0136b1bc614ab575c59a16d089917b
y[64] d4a8b6f04d95c581279a139be09fcf6e
98a470a0bceca191fce476f9370021cb
<span class="grey">McGrew, et al. Informational [Page 57]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-58" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
y[65] c05518a7efd35d89d8577c990a5e1996
1ba16203c959c91829ba7497cffcbb4b
y[66] 294546454fa5388a23a22e805a5ca35f
956598848bda678615fec28afd5da61a
--------------------------------------------
LMS type 00000006 # LM_SHA256_M32_H10
path[0] b326493313053ced3876db9d23714818
1b7173bc7d042cefb4dbe94d2e58cd21
path[1] a769db4657a103279ba8ef3a629ca84e
e836172a9c50e51f45581741cf808315
path[2] 0b491cb4ecbbabec128e7c81a46e62a6
7b57640a0a78be1cbf7dd9d419a10cd8
path[3] 686d16621a80816bfdb5bdc56211d72c
a70b81f1117d129529a7570cf79cf52a
path[4] 7028a48538ecdd3b38d3d5d62d262465
95c4fb73a525a5ed2c30524ebb1d8cc8
path[5] 2e0c19bc4977c6898ff95fd3d310b0ba
e71696cef93c6a552456bf96e9d075e3
path[6] 83bb7543c675842bafbfc7cdb88483b3
276c29d4f0a341c2d406e40d4653b7e4
path[7] d045851acf6a0a0ea9c710b805cced46
35ee8c107362f0fc8d80c14d0ac49c51
path[8] 6703d26d14752f34c1c0d2c4247581c1
8c2cf4de48e9ce949be7c888e9caebe4
path[9] a415e291fd107d21dc1f084b11582082
49f28f4f7c7e931ba7b3bd0d824a4570
--------------------------------------------
LMS public key
LMS type 00000005 # LM_SHA256_M32_H5
LMOTS type 00000004 # LMOTS_SHA256_N32_W8
I 215f83b7ccb9acbcd08db97b0d04dc2b
K a1cd035833e0e90059603f26e07ad2aa
d152338e7a5e5984bcd5f7bb4eba40b7
--------------------------------------------
final_signature:
--------------------------------------------
LMS signature
q 00000004
--------------------------------------------
LMOTS signature
LMOTS type 00000004 # LMOTS_SHA256_N32_W8
C 0eb1ed54a2460d512388cad533138d24
0534e97b1e82d33bd927d201dfc24ebb
y[0] 11b3649023696f85150b189e50c00e98
850ac343a77b3638319c347d7310269d
y[1] 3b7714fa406b8c35b021d54d4fdada7b
9ce5d4ba5b06719e72aaf58c5aae7aca
<span class="grey">McGrew, et al. Informational [Page 58]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-59" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
y[2] 057aa0e2e74e7dcfd17a0823429db629
65b7d563c57b4cec942cc865e29c1dad
y[3] 83cac8b4d61aacc457f336e6a10b6632
3f5887bf3523dfcadee158503bfaa89d
y[4] c6bf59daa82afd2b5ebb2a9ca6572a60
67cee7c327e9039b3b6ea6a1edc7fdc3
y[5] df927aade10c1c9f2d5ff446450d2a39
98d0f9f6202b5e07c3f97d2458c69d3c
y[6] 8190643978d7a7f4d64e97e3f1c4a08a
7c5bc03fd55682c017e2907eab07e5bb
y[7] 2f190143475a6043d5e6d5263471f4ee
cf6e2575fbc6ff37edfa249d6cda1a09
y[8] f797fd5a3cd53a066700f45863f04b6c
8a58cfd341241e002d0d2c0217472bf1
y[9] 8b636ae547c1771368d9f317835c9b0e
f430b3df4034f6af00d0da44f4af7800
y[10] bc7a5cf8a5abdb12dc718b559b74cab9
090e33cc58a955300981c420c4da8ffd
y[11] 67df540890a062fe40dba8b2c1c548ce
d22473219c534911d48ccaabfb71bc71
y[12] 862f4a24ebd376d288fd4e6fb06ed870
5787c5fedc813cd2697e5b1aac1ced45
y[13] 767b14ce88409eaebb601a93559aae89
3e143d1c395bc326da821d79a9ed41dc
y[14] fbe549147f71c092f4f3ac522b5cc572
90706650487bae9bb5671ecc9ccc2ce5
y[15] 1ead87ac01985268521222fb9057df7e
d41810b5ef0d4f7cc67368c90f573b1a
y[16] c2ce956c365ed38e893ce7b2fae15d36
85a3df2fa3d4cc098fa57dd60d2c9754
y[17] a8ade980ad0f93f6787075c3f680a2ba
1936a8c61d1af52ab7e21f416be09d2a
y[18] 8d64c3d3d8582968c2839902229f85ae
e297e717c094c8df4a23bb5db658dd37
y[19] 7bf0f4ff3ffd8fba5e383a48574802ed
545bbe7a6b4753533353d73706067640
y[20] 135a7ce517279cd683039747d218647c
86e097b0daa2872d54b8f3e508598762
y[21] 9547b830d8118161b65079fe7bc59a99
e9c3c7380e3e70b7138fe5d9be255150
y[22] 2b698d09ae193972f27d40f38dea264a
0126e637d74ae4c92a6249fa103436d3
y[23] eb0d4029ac712bfc7a5eacbdd7518d6d
4fe903a5ae65527cd65bb0d4e9925ca2
y[24] 4fd7214dc617c150544e423f450c99ce
51ac8005d33acd74f1bed3b17b7266a4
y[25] a3bb86da7eba80b101e15cb79de9a207
852cf91249ef480619ff2af8cabca831
<span class="grey">McGrew, et al. Informational [Page 59]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-60" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
y[26] 25d1faa94cbb0a03a906f683b3f47a97
c871fd513e510a7a25f283b196075778
y[27] 496152a91c2bf9da76ebe089f4654877
f2d586ae7149c406e663eadeb2b5c7e8
y[28] 2429b9e8cb4834c83464f079995332e4
b3c8f5a72bb4b8c6f74b0d45dc6c1f79
y[29] 952c0b7420df525e37c15377b5f09843
19c3993921e5ccd97e097592064530d3
y[30] 3de3afad5733cbe7703c5296263f7734
2efbf5a04755b0b3c997c4328463e84c
y[31] aa2de3ffdcd297baaaacd7ae646e44b5
c0f16044df38fabd296a47b3a838a913
y[32] 982fb2e370c078edb042c84db34ce36b
46ccb76460a690cc86c302457dd1cde1
y[33] 97ec8075e82b393d542075134e2a17ee
70a5e187075d03ae3c853cff60729ba4
--------------------------------------------
LMS type 00000005 # LM_SHA256_M32_H5
path[0] 4de1f6965bdabc676c5a4dc7c35f97f8
2cb0e31c68d04f1dad96314ff09e6b3d
path[1] e96aeee300d1f68bf1bca9fc58e40323
36cd819aaf578744e50d1357a0e42867
path[2] 04d341aa0a337b19fe4bc43c2e79964d
4f351089f2e0e41c7c43ae0d49e7f404
path[3] b0f75be80ea3af098c9752420a8ac0ea
2bbb1f4eeba05238aef0d8ce63f0c6e5
path[4] e4041d95398a6f7f3e0ee97cc1591849
d4ed236338b147abde9f51ef9fd4e1c1
Acknowledgements
Thanks are due to Chirag Shroff, Andreas Huelsing, Burt Kaliski, Eric
Osterweil, Ahmed Kosba, Russ Housley, Philip Lafrance, Alexander
Truskovsky, Mark Peruzel, and Jim Schaad for constructive suggestions
and valuable detailed review. We especially acknowledge Jerry
Solinas, Laurie Law, and Kevin Igoe, who pointed out the security
benefits of the approach of Leighton and Micali [<a href="#ref-USPTO5432852">USPTO5432852</a>],
Jonathan Katz, who gave us security guidance, and Bruno Couillard and
Jim Goodman for an especially thorough review.
<span class="grey">McGrew, et al. Informational [Page 60]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-61" ></span>
<span class="grey"><a href="./rfc8554">RFC 8554</a> LMS Hash-Based Signatures April 2019</span>
Authors' Addresses
David McGrew
Cisco Systems
13600 Dulles Technology Drive
Herndon, VA 20171
United States of America
Email: mcgrew@cisco.com
Michael Curcio
Cisco Systems
7025-2 Kit Creek Road
Research Triangle Park, NC 27709-4987
United States of America
Email: micurcio@cisco.com
Scott Fluhrer
Cisco Systems
170 West Tasman Drive
San Jose, CA
United States of America
Email: sfluhrer@cisco.com
McGrew, et al. Informational [Page 61]
</pre>
|