1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
|
<?xml version='1.0' encoding='utf-8'?>
<rfc xmlns:xi="http://www.w3.org/2001/XInclude" version="3" category="exp" consensus="true" docName="draft-ietf-rmcat-coupled-cc-09" indexInclude="true" ipr="trust200902" number="8699" prepTime="2020-01-31T09:26:50" scripts="Common,Latin" sortRefs="true" submissionType="IETF" symRefs="true" tocDepth="3" tocInclude="true" xml:lang="en">
<link href="https://datatracker.ietf.org/doc/draft-ietf-rmcat-coupled-cc-09" rel="prev"/>
<link href="https://dx.doi.org/10.17487/rfc8699" rel="alternate"/>
<link href="urn:issn:2070-1721" rel="alternate"/>
<front>
<title>Coupled Congestion Control for RTP Media</title>
<seriesInfo name="RFC" value="8699" stream="IETF"/>
<author fullname="Safiqul Islam" initials="S." surname="Islam">
<organization showOnFrontPage="true">University of Oslo</organization>
<address>
<postal>
<street>PO Box 1080 Blindern</street>
<code>N-0316</code>
<city>Oslo</city>
<region/>
<country>Norway</country>
</postal>
<phone>+47 22 84 08 37</phone>
<email>safiquli@ifi.uio.no</email>
</address>
</author>
<author fullname="Michael Welzl" initials="M." surname="Welzl">
<organization showOnFrontPage="true">University of Oslo</organization>
<address>
<postal>
<street>PO Box 1080 Blindern</street>
<code>N-0316</code>
<city>Oslo</city>
<region/>
<country>Norway</country>
</postal>
<phone>+47 22 85 24 20</phone>
<email>michawe@ifi.uio.no</email>
</address>
</author>
<author fullname="Stein Gjessing" initials="S." surname="Gjessing">
<organization showOnFrontPage="true">University of Oslo</organization>
<address>
<postal>
<street>PO Box 1080 Blindern</street>
<code>N-0316</code>
<city>Oslo</city>
<region/>
<country>Norway</country>
</postal>
<phone>+47 22 85 24 44</phone>
<email>steing@ifi.uio.no</email>
</address>
</author>
<date month="01" year="2020"/>
<area>Transport</area>
<workgroup>RTP Media Congestion Avoidance Techniques (rmcat)</workgroup>
<keyword>tcp</keyword>
<abstract pn="section-abstract">
<t pn="section-abstract-1">When multiple congestion-controlled Real-time Transport Protocol
(RTP) sessions traverse the same network bottleneck, combining their
controls can improve the total on-the-wire behavior in terms of delay,
loss, and fairness. This document describes such a method for flows that
have the same sender, in a way that is as flexible and simple as
possible while minimizing the number of changes needed to existing RTP
applications. This document also specifies how to apply the method for the
Network-Assisted Dynamic Adaptation (NADA) congestion control algorithm
and provides suggestions on how to apply it to other congestion control
algorithms.</t>
</abstract>
<boilerplate>
<section anchor="status-of-memo" numbered="false" removeInRFC="false" toc="exclude" pn="section-boilerplate.1">
<name slugifiedName="name-status-of-this-memo">Status of This Memo</name>
<t pn="section-boilerplate.1-1">
This document is not an Internet Standards Track specification; it is
published for examination, experimental implementation, and
evaluation.
</t>
<t pn="section-boilerplate.1-2">
This document defines an Experimental Protocol for the Internet
community. This document is a product of the Internet Engineering
Task Force (IETF). It represents the consensus of the IETF community.
It has received public review and has been approved for publication
by the Internet Engineering Steering Group (IESG). Not all documents
approved by the IESG are candidates for any level of Internet
Standard; see Section 2 of RFC 7841.
</t>
<t pn="section-boilerplate.1-3">
Information about the current status of this document, any
errata, and how to provide feedback on it may be obtained at
<eref target="https://www.rfc-editor.org/info/rfc8699" brackets="none"/>.
</t>
</section>
<section anchor="copyright" numbered="false" removeInRFC="false" toc="exclude" pn="section-boilerplate.2">
<name slugifiedName="name-copyright-notice">Copyright Notice</name>
<t pn="section-boilerplate.2-1">
Copyright (c) 2020 IETF Trust and the persons identified as the
document authors. All rights reserved.
</t>
<t pn="section-boilerplate.2-2">
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<eref target="https://trustee.ietf.org/license-info" brackets="none"/>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with
respect to this document. Code Components extracted from this
document must include Simplified BSD License text as described in
Section 4.e of the Trust Legal Provisions and are provided without
warranty as described in the Simplified BSD License.
</t>
</section>
</boilerplate>
<toc>
<section anchor="toc" numbered="false" removeInRFC="false" toc="exclude" pn="section-toc.1">
<name slugifiedName="name-table-of-contents">Table of Contents</name>
<ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1">
<li pn="section-toc.1-1.1">
<t keepWithNext="true" pn="section-toc.1-1.1.1"><xref derivedContent="1" format="counter" sectionFormat="of" target="section-1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-introduction">Introduction</xref></t>
</li>
<li pn="section-toc.1-1.2">
<t keepWithNext="true" pn="section-toc.1-1.2.1"><xref derivedContent="2" format="counter" sectionFormat="of" target="section-2"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-definitions">Definitions</xref></t>
</li>
<li pn="section-toc.1-1.3">
<t keepWithNext="true" pn="section-toc.1-1.3.1"><xref derivedContent="3" format="counter" sectionFormat="of" target="section-3"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-limitations">Limitations</xref></t>
</li>
<li pn="section-toc.1-1.4">
<t keepWithNext="true" pn="section-toc.1-1.4.1"><xref derivedContent="4" format="counter" sectionFormat="of" target="section-4"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-architectural-overview">Architectural Overview</xref></t>
</li>
<li pn="section-toc.1-1.5">
<t keepWithNext="true" pn="section-toc.1-1.5.1"><xref derivedContent="5" format="counter" sectionFormat="of" target="section-5"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-roles">Roles</xref></t>
<ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.5.2">
<li pn="section-toc.1-1.5.2.1">
<t keepWithNext="true" pn="section-toc.1-1.5.2.1.1"><xref derivedContent="5.1" format="counter" sectionFormat="of" target="section-5.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-sbd">SBD</xref></t>
</li>
<li pn="section-toc.1-1.5.2.2">
<t keepWithNext="true" pn="section-toc.1-1.5.2.2.1"><xref derivedContent="5.2" format="counter" sectionFormat="of" target="section-5.2"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-fse">FSE</xref></t>
</li>
<li pn="section-toc.1-1.5.2.3">
<t keepWithNext="true" pn="section-toc.1-1.5.2.3.1"><xref derivedContent="5.3" format="counter" sectionFormat="of" target="section-5.3"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-flows">Flows</xref></t>
<ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.5.2.3.2">
<li pn="section-toc.1-1.5.2.3.2.1">
<t keepWithNext="true" pn="section-toc.1-1.5.2.3.2.1.1"><xref derivedContent="5.3.1" format="counter" sectionFormat="of" target="section-5.3.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-example-algorithm-1-active-">Example Algorithm 1 - Active FSE</xref></t>
</li>
<li pn="section-toc.1-1.5.2.3.2.2">
<t keepWithNext="true" pn="section-toc.1-1.5.2.3.2.2.1"><xref derivedContent="5.3.2" format="counter" sectionFormat="of" target="section-5.3.2"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-example-algorithm-2-conserv">Example Algorithm 2 - Conservative Active FSE</xref></t>
</li>
</ul>
</li>
</ul>
</li>
<li pn="section-toc.1-1.6">
<t keepWithNext="true" pn="section-toc.1-1.6.1"><xref derivedContent="6" format="counter" sectionFormat="of" target="section-6"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-application">Application</xref></t>
<ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.6.2">
<li pn="section-toc.1-1.6.2.1">
<t keepWithNext="true" pn="section-toc.1-1.6.2.1.1"><xref derivedContent="6.1" format="counter" sectionFormat="of" target="section-6.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-nada">NADA</xref></t>
</li>
<li pn="section-toc.1-1.6.2.2">
<t keepWithNext="true" pn="section-toc.1-1.6.2.2.1"><xref derivedContent="6.2" format="counter" sectionFormat="of" target="section-6.2"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-general-recommendations">General Recommendations</xref></t>
</li>
</ul>
</li>
<li pn="section-toc.1-1.7">
<t keepWithNext="true" pn="section-toc.1-1.7.1"><xref derivedContent="7" format="counter" sectionFormat="of" target="section-7"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-expected-feedback-from-expe">Expected Feedback from Experiments</xref></t>
</li>
<li pn="section-toc.1-1.8">
<t keepWithNext="true" pn="section-toc.1-1.8.1"><xref derivedContent="8" format="counter" sectionFormat="of" target="section-8"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-iana-considerations">IANA Considerations</xref></t>
</li>
<li pn="section-toc.1-1.9">
<t keepWithNext="true" pn="section-toc.1-1.9.1"><xref derivedContent="9" format="counter" sectionFormat="of" target="section-9"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-security-considerations">Security Considerations</xref></t>
</li>
<li pn="section-toc.1-1.10">
<t keepWithNext="true" pn="section-toc.1-1.10.1"><xref derivedContent="10" format="counter" sectionFormat="of" target="section-10"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-references">References</xref></t>
<ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.10.2">
<li pn="section-toc.1-1.10.2.1">
<t keepWithNext="true" pn="section-toc.1-1.10.2.1.1"><xref derivedContent="10.1" format="counter" sectionFormat="of" target="section-10.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-normative-references">Normative References</xref></t>
</li>
<li pn="section-toc.1-1.10.2.2">
<t keepWithNext="true" pn="section-toc.1-1.10.2.2.1"><xref derivedContent="10.2" format="counter" sectionFormat="of" target="section-10.2"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-informative-references">Informative References</xref></t>
</li>
</ul>
</li>
<li pn="section-toc.1-1.11">
<t keepWithNext="true" pn="section-toc.1-1.11.1"><xref derivedContent="Appendix A" format="default" sectionFormat="of" target="section-appendix.a"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-application-to-gcc">Application to GCC</xref></t>
</li>
<li pn="section-toc.1-1.12">
<t keepWithNext="true" pn="section-toc.1-1.12.1"><xref derivedContent="Appendix B" format="default" sectionFormat="of" target="section-appendix.b"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-scheduling">Scheduling</xref></t>
</li>
<li pn="section-toc.1-1.13">
<t keepWithNext="true" pn="section-toc.1-1.13.1"><xref derivedContent="Appendix C" format="default" sectionFormat="of" target="section-appendix.c"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-example-algorithm-passive-f">Example Algorithm - Passive FSE</xref></t>
<ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.13.2">
<li pn="section-toc.1-1.13.2.1">
<t keepWithNext="true" pn="section-toc.1-1.13.2.1.1"><xref derivedContent="C.1" format="counter" sectionFormat="of" target="section-c.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-example-operation-passive">Example Operation (Passive)</xref></t>
</li>
</ul>
</li>
<li pn="section-toc.1-1.14">
<t keepWithNext="true" pn="section-toc.1-1.14.1"><xref derivedContent="" format="none" sectionFormat="of" target="section-appendix.d"/><xref derivedContent="" format="title" sectionFormat="of" target="name-acknowledgements">Acknowledgements</xref></t>
</li>
<li pn="section-toc.1-1.15">
<t keepWithNext="true" pn="section-toc.1-1.15.1"><xref derivedContent="" format="none" sectionFormat="of" target="section-appendix.e"/><xref derivedContent="" format="title" sectionFormat="of" target="name-authors-addresses">Authors' Addresses</xref></t>
</li>
</ul>
</section>
</toc>
</front>
<middle>
<section anchor="sec-intro" numbered="true" toc="include" removeInRFC="false" pn="section-1">
<name slugifiedName="name-introduction">Introduction</name>
<t pn="section-1-1">When there is enough data to send, a congestion controller attempts
to increase its sending rate until the path's capacity has been reached.
Some controllers detect path capacity by increasing the sending rate
further, until packets are
ECN-marked <xref target="RFC8087" format="default" sectionFormat="of" derivedContent="RFC8087"/> or dropped, and
then decreasing the sending rate until that stops happening. This
process inevitably creates undesirable queuing delay when multiple
congestion-controlled connections traverse the same network bottleneck,
and each connection overshoots the path capacity as it determines its
sending rate. </t>
<t pn="section-1-2">The Congestion Manager (CM) <xref target="RFC3124" format="default" sectionFormat="of" derivedContent="RFC3124"/>
couples flows by providing a single congestion controller. It is hard to
implement because it requires an additional congestion controller and
removes all per-connection congestion control functionality, which is
quite a significant change to existing RTP-based applications. This
document presents a method to combine the behavior of congestion control
mechanisms that is easier to implement than the Congestion Manager <xref target="RFC3124" format="default" sectionFormat="of" derivedContent="RFC3124"/> and also requires fewer significant
changes to existing RTP-based applications. It attempts to roughly
approximate the CM behavior by sharing information between existing
congestion controllers. It is able to honor user-specified priorities,
which is required by WebRTC <xref target="I-D.ietf-rtcweb-overview" format="default" sectionFormat="of" derivedContent="RTCWEB-OVERVIEW"/> <xref target="RFC7478" format="default" sectionFormat="of" derivedContent="RFC7478"/>.</t>
<t pn="section-1-3">The described mechanisms are believed safe to use, but they are
experimental and are presented for wider review and operational
evaluation.</t>
</section>
<section anchor="sec-def" numbered="true" toc="include" removeInRFC="false" pn="section-2">
<name slugifiedName="name-definitions">Definitions</name>
<t pn="section-2-1">The key words "<bcp14>MUST</bcp14>", "<bcp14>MUST NOT</bcp14>",
"<bcp14>REQUIRED</bcp14>", "<bcp14>SHALL</bcp14>", "<bcp14>SHALL NOT</bcp14>", "<bcp14>SHOULD</bcp14>", "<bcp14>SHOULD NOT</bcp14>",
"<bcp14>RECOMMENDED</bcp14>", "<bcp14>NOT RECOMMENDED</bcp14>",
"<bcp14>MAY</bcp14>", and "<bcp14>OPTIONAL</bcp14>" in this document are
to be interpreted as described in BCP 14 <xref target="RFC2119" format="default" sectionFormat="of" derivedContent="RFC2119"/>
<xref target="RFC8174" format="default" sectionFormat="of" derivedContent="RFC8174"/> when, and only when, they appear in all
capitals, as shown here.</t>
<dl newline="true" spacing="normal" indent="6" pn="section-2-2">
<dt pn="section-2-2.1">Available Bandwidth:</dt>
<dd pn="section-2-2.2">
The available bandwidth is the nominal link capacity minus the
amount of traffic that traversed the link during a certain time
interval, divided by that time interval.</dd>
<dt pn="section-2-2.3">Bottleneck:</dt>
<dd pn="section-2-2.4">
The first link with the smallest available bandwidth along the path between a sender and receiver.</dd>
<dt pn="section-2-2.5">Flow:</dt>
<dd pn="section-2-2.6">
A flow is the entity that congestion control is operating on. It
could, for example, be a transport-layer connection or an RTP
stream <xref target="RFC7656" format="default" sectionFormat="of" derivedContent="RFC7656"/>, regardless of
whether or not this RTP stream is multiplexed onto an RTP session
with other RTP streams.</dd>
<dt pn="section-2-2.7">Flow Group Identifier (FGI):</dt>
<dd pn="section-2-2.8">
A unique identifier for each subset of flows that is limited by a common bottleneck.</dd>
<dt pn="section-2-2.9">Flow State Exchange (FSE):</dt>
<dd pn="section-2-2.10">
The entity that maintains information that is exchanged between flows.</dd>
<dt pn="section-2-2.11">Flow Group (FG):</dt>
<dd pn="section-2-2.12">
A group of flows having the same FGI.</dd>
<dt pn="section-2-2.13">Shared Bottleneck Detection (SBD):</dt>
<dd pn="section-2-2.14">
The entity that determines which flows traverse the same
bottleneck in the network or the process of doing so.</dd>
</dl>
</section>
<section anchor="sec-limits" numbered="true" toc="include" removeInRFC="false" pn="section-3">
<name slugifiedName="name-limitations">Limitations</name>
<dl newline="true" spacing="normal" indent="6" pn="section-3-1">
<dt pn="section-3-1.1">Sender-side only:</dt>
<dd pn="section-3-1.2">
Shared bottlenecks can exist when multiple flows originate from the same
sender or when flows from different senders reach the same receiver (see
<xref target="RFC8382" sectionFormat="of" section="3" format="default" derivedLink="https://rfc-editor.org/rfc/rfc8382#section-3" derivedContent="RFC8382"/>). Coupled
congestion control, as described here, only supports the former case, not
the latter, as it operates inside a single host on the sender side.
</dd>
<dt pn="section-3-1.3">Shared bottlenecks do not change quickly:</dt>
<dd pn="section-3-1.4">
As per the definition above, a bottleneck depends on cross traffic, and
since such traffic can heavily fluctuate, bottlenecks can change at a
high frequency (e.g., there can be oscillation between two or more
links). This means that, when flows are partially routed along different
paths, they may quickly change between sharing and not sharing a
bottleneck. For simplicity, here it is assumed that a shared bottleneck
is valid for a time interval that is significantly longer than the
interval at which congestion controllers operate. Note that, for the only
SBD mechanism defined in this document (multiplexing on the same
five-tuple), the notion of a shared bottleneck stays correct even in the
presence of fast traffic fluctuations; since all flows that are assumed
to share a bottleneck are routed in the same way, if the bottleneck
changes, it will still be shared.</dd>
</dl>
</section>
<section anchor="sec-arch" numbered="true" toc="include" removeInRFC="false" pn="section-4">
<name slugifiedName="name-architectural-overview">Architectural Overview</name>
<t pn="section-4-1"><xref target="fig_1" format="default" sectionFormat="of" derivedContent="Figure 1"/> shows the elements of the architecture for coupled
congestion control: the Flow State Exchange (FSE), Shared Bottleneck
Detection (SBD), and Flows. The FSE is a storage element that can be
implemented in two ways: active and passive. In the active version, it
initiates communication with flows and SBD. However, in the passive
version, it does not actively initiate communication with flows and SBD;
its only active role is internal state maintenance (e.g., an
implementation could use soft state to remove a flow's data after long
periods of inactivity). Every time a flow's congestion control mechanism
would normally update its sending rate, the flow instead updates
information in the FSE and performs a query on the FSE, leading to a
sending rate that can be different from what the congestion controller
originally determined. Using information about/from the currently active
flows, SBD updates the FSE with the correct Flow Group Identifiers
(FGIs).
</t>
<t pn="section-4-2"> This document describes both active and passive versions. While the
passive algorithm works better for congestion controls with
RTT-independent convergence, it can still produce oscillations on short
time scales. The passive algorithm, described in <xref target="example-alg-pas" format="default" sectionFormat="of" derivedContent="Appendix C"/>, is therefore considered
highly experimental and not safe to deploy outside of testbed
environments. <xref target="fig_2" format="default" sectionFormat="of" derivedContent="Figure 2"/> shows the interaction between flows
and the FSE using the variable names defined in <xref target="fse-variables" format="default" sectionFormat="of" derivedContent="Section 5.2"/>.</t>
<figure anchor="fig_1" align="left" suppress-title="false" pn="figure-1">
<name slugifiedName="name-coupled-congestion-control-">Coupled congestion control architecture</name>
<artwork align="center" name="" type="" alt="" pn="section-4-3.1">------- <--- Flow 1
| FSE | <--- Flow 2 ..
------- <--- .. Flow N
^
| |
------- |
| SBD | <-------|
------- </artwork>
</figure>
<figure anchor="fig_2" align="left" suppress-title="false" pn="figure-2">
<name slugifiedName="name-flow-fse-interactions">Flow-FSE interactions</name>
<artwork align="center" name="" type="" alt="" pn="section-4-4.1">Flow#1(cc) FSE Flow#2(cc)
---------- --- ----------
#1 JOIN ----register--> REGISTER
REGISTER <--register-- JOIN #1
#2 CC_R(1) ----UPDATE----> UPDATE (in)
#3 NEW RATE <---FSE_R(1)-- UPDATE (out) --FSE_R(2)-> #3 NEW RATE
</artwork>
</figure>
<t pn="section-4-5">Since everything shown in <xref target="fig_1" format="default" sectionFormat="of" derivedContent="Figure 1"/> is assumed to operate on a single
host (the sender) only, this document only describes aspects that have
an influence on the resulting on-the-wire behavior. It does not, for
instance, define how many bits must be used to represent FGIs or in
which way the entities communicate.</t>
<t pn="section-4-6">Implementations can take various forms; for instance, all the
elements in the figure could be implemented within a single application,
thereby operating on flows generated by that application only. Another
alternative could be to implement both the FSE and SBD together in a
separate process that different applications communicate with via some
form of Inter-Process Communication (IPC). Such an implementation would
extend the scope to flows generated by multiple applications. The FSE
and SBD could also be included in the Operating System kernel. However,
only one type of coupling algorithm should be used for all
flows. Combinations of multiple algorithms at different aggregation
levels (e.g., the Operating System coupling application aggregates with
one algorithm, and applications coupling their flows with another) have
not been tested and are therefore not recommended. </t>
</section>
<section anchor="roles" numbered="true" toc="include" removeInRFC="false" pn="section-5">
<name slugifiedName="name-roles">Roles</name>
<t pn="section-5-1">This section gives an overview of the roles of the elements of
coupled congestion control and provides an example of how coupled
congestion control can operate.</t>
<section numbered="true" toc="include" removeInRFC="false" pn="section-5.1">
<name slugifiedName="name-sbd">SBD</name>
<t pn="section-5.1-1">SBD uses knowledge about the flows to determine which flows belong
in the same Flow Group (FG) and assigns FGIs accordingly. This
knowledge can be derived in three basic ways:
</t>
<ol spacing="normal" type="1" start="1" pn="section-5.1-2">
<li pn="section-5.1-2.1" derivedCounter="1.">From multiplexing: It can be based on the simple assumption that
packets sharing the same five-tuple (IP source and destination
address, protocol, and transport-layer port number pair) and having
the same values for the Differentiated Services Code Point (DSCP)
and the ECN field in the IP header are typically treated in the same
way along the path. This method is the only one specified in this
document; SBD <bcp14>MAY</bcp14> consider all flows that use the
same five-tuple, DSCP, and ECN field value to belong to the same
FG. This classification applies to certain tunnels or RTP flows
that are multiplexed over one transport (cf. <xref target="TRANSPORT-MULTIPLEX" format="default" sectionFormat="of" derivedContent="TRANSPORT-MULTIPLEX"/>). Such multiplexing
is also a recommended usage of RTP in WebRTC <xref target="I-D.ietf-rtcweb-rtp-usage" format="default" sectionFormat="of" derivedContent="RTCWEB-RTP-USAGE"/>.</li>
<li pn="section-5.1-2.2" derivedCounter="2.">Via configuration: e.g., by assuming that a common wireless uplink is also a shared bottleneck.</li>
<li pn="section-5.1-2.3" derivedCounter="3.">From measurements: e.g., by considering correlations among
measured delay and loss as an indication of a shared
bottleneck.</li>
</ol>
<t pn="section-5.1-3">The methods above have some essential trade-offs. For example,
multiplexing is a completely reliable measure, but it is limited
in scope to two endpoints (i.e., it cannot be applied to couple
congestion controllers of one sender talking to multiple receivers). A
measurement-based SBD mechanism is described in <xref target="RFC8382" format="default" sectionFormat="of" derivedContent="RFC8382"/>. Measurements can never be 100% reliable, in
particular because they are based on the past, but applying coupled
congestion control involves making an assumption about the future; it is
therefore recommended to implement cautionary measures, e.g., by
disabling coupled congestion control if enabling it causes a
significant increase in delay and/or packet loss. Measurements also
take time, which entails a certain delay for turning on coupling
(refer to <xref target="RFC8382" format="default" sectionFormat="of" derivedContent="RFC8382"/> for details).
When this is possible, it can be more efficient to statically configure shared
bottlenecks (e.g., via a system configuration or user input) based on
assumptions about the network environment.</t>
</section>
<section anchor="fse-variables" numbered="true" toc="include" removeInRFC="false" pn="section-5.2">
<name slugifiedName="name-fse">FSE</name>
<t pn="section-5.2-1">The FSE contains a list of all flows that have registered with
it. For each flow, the FSE stores the following:
</t>
<ul spacing="normal" bare="false" empty="false" pn="section-5.2-2">
<li pn="section-5.2-2.1">a unique flow number f to identify the flow.</li>
<li pn="section-5.2-2.2">the FGI of the FG that it belongs to (based on the definitions
in this document, a flow has only one bottleneck and can therefore
be in only one FG).</li>
<li pn="section-5.2-2.3">a priority P(f), which is a number greater than zero.</li>
<li pn="section-5.2-2.4">The rate used by the flow in bits per second, FSE_R(f). </li>
<li pn="section-5.2-2.5">The desired rate DR(f) of flow f. This can be smaller than
FSE_R(f) if the application feeding into the flow has less data to
send than FSE_R(f) would allow or if a maximum value is imposed on
the rate. In the absence of such limits, DR(f) must be set to the
sending rate provided by the congestion control module of flow
f.</li>
</ul>
<t pn="section-5.2-3">
Note that the absolute range of priorities does not matter; the algorithm
works with a flow's priority portion of the sum of all priority
values. For example, if there are two flows, flow 1 with priority 1 and
flow 2 with priority 2, the sum of the priorities is 3. Then, flow 1 will
be assigned 1/3 of the aggregate sending rate, and flow 2 will be assigned
2/3 of the aggregate sending rate. Priorities can be mapped to the
"very-low", "low", "medium", or "high" priority levels described in <xref target="I-D.ietf-rtcweb-transports" format="default" sectionFormat="of" derivedContent="WEBRTC-TRANS"/> by simply using the
values 1, 2, 4, and 8, respectively.
</t>
<t pn="section-5.2-4">In the FSE, each FG contains one static variable, S_CR, which is the
sum of the calculated rates of all flows in the same FG. This value is
used to calculate the sending rate. </t>
<t pn="section-5.2-5">The information listed here is enough to implement the sample flow
algorithm given below. FSE implementations could easily be extended to
store, e.g., a flow's current sending rate for statistics gathering or
future potential optimizations.</t>
</section>
<section anchor="flows" numbered="true" toc="include" removeInRFC="false" pn="section-5.3">
<name slugifiedName="name-flows">Flows</name>
<t pn="section-5.3-1">Flows register themselves with SBD and FSE when they start,
deregister from the FSE when they stop, and carry out an UPDATE
function call every time their congestion controller calculates a new
sending rate. Via UPDATE, they provide the newly calculated rate and,
optionally (if the algorithm supports it), the desired rate. The
desired rate is less than the calculated rate in case of
application-limited flows; otherwise, it is the same as the calculated
rate.</t>
<t pn="section-5.3-2">Below, two example algorithms are described. While other algorithms
could be used instead, the same algorithm must be applied to all
flows. Names of variables used in the algorithms are explained below.
</t>
<dl newline="false" indent="10" spacing="normal" pn="section-5.3-3">
<dt pn="section-5.3-3.1">CC_R(f)</dt>
<dd pn="section-5.3-3.2">The rate received from the congestion controller of
flow f when it calls UPDATE.</dd>
<dt pn="section-5.3-3.3">FSE_R(f)</dt>
<dd pn="section-5.3-3.4">The rate calculated by the FSE for flow f.</dd>
<dt pn="section-5.3-3.5">DR(f)</dt>
<dd pn="section-5.3-3.6">The desired rate of flow f.</dd>
<dt pn="section-5.3-3.7">S_CR</dt>
<dd pn="section-5.3-3.8">The sum of the calculated rates of all flows in the same
FG; this value is used to calculate the sending rate.</dd>
<dt pn="section-5.3-3.9">FG</dt>
<dd pn="section-5.3-3.10">A group of flows having the same FGI and hence, sharing the same bottleneck.</dd>
<dt pn="section-5.3-3.11">P(f)</dt>
<dd pn="section-5.3-3.12">The priority of flow f, which is received from the flow's congestion controller; the FSE uses this variable for calculating FSE_R(f).</dd>
<dt pn="section-5.3-3.13">S_P</dt>
<dd pn="section-5.3-3.14">The sum of all the priorities.</dd>
<dt pn="section-5.3-3.15">TLO</dt>
<dd pn="section-5.3-3.16">The total leftover rate; the sum of rates that could not be assigned to
flows that were limited by their desired rate.</dd>
<dt pn="section-5.3-3.17">AR</dt>
<dd pn="section-5.3-3.18">The aggregate rate that is assigned to flows that are not limited by their desired rate.</dd>
</dl>
<section anchor="example-alg-act" numbered="true" toc="include" removeInRFC="false" pn="section-5.3.1">
<name slugifiedName="name-example-algorithm-1-active-">Example Algorithm 1 - Active FSE</name>
<t pn="section-5.3.1-1">This algorithm was designed to be the simplest possible method to
assign rates according to the priorities of flows. Simulation
results in <xref target="FSE" format="default" sectionFormat="of" derivedContent="FSE"/> indicate that it
does not, however, significantly reduce queuing delay and packet
loss.</t>
<ol spacing="normal" type="(%d)" start="1" pn="section-5.3.1-2">
<li pn="section-5.3.1-2.1" derivedCounter="(1)">When a flow f starts, it registers itself with SBD and the
FSE. FSE_R(f) is initialized with the congestion controller's
initial rate. SBD will assign the correct FGI. When a flow is
assigned an FGI, it adds its FSE_R(f) to S_CR.</li>
<li pn="section-5.3.1-2.2" derivedCounter="(2)">When a flow f stops or pauses, its entry is removed from the list.</li>
<li pn="section-5.3.1-2.3" derivedCounter="(3)">
<t pn="section-5.3.1-2.3.1">Every time the congestion controller of the flow f determines
a new sending rate CC_R(f), the flow calls UPDATE, which carries
out the tasks listed below to derive the new sending rates for
all the flows in the FG. A flow's UPDATE function uses three
local (i.e., per-flow) temporary variables: S_P, TLO, and AR.
</t>
<ol spacing="normal" type="(%c)" start="1" pn="section-5.3.1-2.3.2">
<li pn="section-5.3.1-2.3.2.1" derivedCounter="(a)">
<t pn="section-5.3.1-2.3.2.1.1"> It updates S_CR.
</t>
<sourcecode type="pseudocode" markers="false" pn="section-5.3.1-2.3.2.1.2">
S_CR = S_CR + CC_R(f) - FSE_R(f) </sourcecode>
</li>
<li pn="section-5.3.1-2.3.2.2" derivedCounter="(b)">
<t pn="section-5.3.1-2.3.2.2.1"> It calculates the sum of all the priorities, S_P, and initializes FSE_R.
</t>
<sourcecode type="pseudocode" markers="false" pn="section-5.3.1-2.3.2.2.2">
S_P = 0
for all flows i in FG do
S_P = S_P + P(i)
FSE_R(i) = 0
end for </sourcecode>
</li>
<li pn="section-5.3.1-2.3.2.3" derivedCounter="(c)">
<t pn="section-5.3.1-2.3.2.3.1"> It distributes S_CR among all flows, ensuring that each flow's desired rate
is not exceeded.
</t>
<sourcecode type="pseudocode" markers="false" pn="section-5.3.1-2.3.2.3.2">
TLO = S_CR
while(TLO-AR>0 and S_P>0)
AR = 0
for all flows i in FG do
if FSE_R[i] < DR[i] then
if TLO * P[i] / S_P >= DR[i] then
TLO = TLO - DR[i]
FSE_R[i] = DR[i]
S_P = S_P - P[i]
else
FSE_R[i] = TLO * P[i] / S_P
AR = AR + TLO * P[i] / S_P
end if
end if
end for
end while </sourcecode>
</li>
<li pn="section-5.3.1-2.3.2.4" derivedCounter="(d)">
<t pn="section-5.3.1-2.3.2.4.1"> It distributes FSE_R to all the flows.
</t>
<sourcecode type="pseudocode" markers="false" pn="section-5.3.1-2.3.2.4.2">
for all flows i in FG do
send FSE_R(i) to the flow i
end for </sourcecode>
</li>
</ol>
</li>
</ol>
</section>
<section anchor="example-alg-act-cons" numbered="true" toc="include" removeInRFC="false" pn="section-5.3.2">
<name slugifiedName="name-example-algorithm-2-conserv">Example Algorithm 2 - Conservative Active FSE</name>
<t pn="section-5.3.2-1">This algorithm changes algorithm 1 to conservatively emulate the
behavior of a single flow by proportionally reducing the aggregate
rate on congestion. Simulation results in <xref target="FSE" format="default" sectionFormat="of" derivedContent="FSE"/> indicate that it can significantly reduce queuing
delay and packet loss.
</t>
<t pn="section-5.3.2-2">Step (a) of the UPDATE function is changed as described
below. This also introduces a local variable DELTA, which is used to
calculate the difference between CC_R(f) and the previously stored
FSE_R(f). To prevent flows from either ignoring congestion or
overreacting, a timer keeps them from changing their rates
immediately after the common rate reduction that follows a
congestion event. This timer is set to two RTTs of the flow that
experienced congestion because it is assumed that a congestion event
can persist for up to one RTT of that flow, with another RTT added
to compensate for fluctuations in the measured RTT value.
</t>
<ol type="(%c)" spacing="normal" start="1" pn="section-5.3.2-3">
<li pn="section-5.3.2-3.1" derivedCounter="(a)">
<t pn="section-5.3.2-3.1.1"> It updates S_CR based on DELTA.
</t>
<sourcecode type="pseudocode" markers="false" pn="section-5.3.2-3.1.2">
if Timer has expired or was not set then
DELTA = CC_R(f) - FSE_R(f)
if DELTA < 0 then // Reduce S_CR proportionally
S_CR = S_CR * CC_R(f) / FSE_R(f)
Set Timer for 2 RTTs
else
S_CR = S_CR + DELTA
end if
end if </sourcecode>
</li>
</ol>
</section>
</section>
</section>
<section anchor="Application" numbered="true" toc="include" removeInRFC="false" pn="section-6">
<name slugifiedName="name-application">Application</name>
<t pn="section-6-1">This section specifies how the FSE can be applied to specific
congestion control mechanisms and makes general recommendations that
facilitate applying the FSE to future congestion controls.</t>
<section anchor="app-NADA" numbered="true" toc="include" removeInRFC="false" pn="section-6.1">
<name slugifiedName="name-nada">NADA</name>
<t pn="section-6.1-1">Network-Assisted Dynamic Adaptation (NADA) <xref target="RFC8698" format="default" sectionFormat="of" derivedContent="RFC8698"/> is a congestion
control scheme for WebRTC. It calculates a reference rate r_ref upon
receiving an acknowledgment and then, based on the reference rate,
calculates a video target rate r_vin and a sending rate for the flows,
r_send.</t>
<t pn="section-6.1-2">When applying the FSE to NADA, the UPDATE function call described in <xref target="flows" format="default" sectionFormat="of" derivedContent="Section 5.3"/> gives the FSE NADA's reference rate
r_ref. The recommended algorithm for NADA is the Active FSE in <xref target="example-alg-act" format="default" sectionFormat="of" derivedContent="Section 5.3.1"/>. In step 3 (d), when the FSE_R(i) is "sent" to
the flow i, r_ref (r_vin and r_send) of flow i is updated with the value of FSE_R(i).</t>
</section>
<section anchor="app-general" numbered="true" toc="include" removeInRFC="false" pn="section-6.2">
<name slugifiedName="name-general-recommendations">General Recommendations</name>
<t pn="section-6.2-1">This section provides general advice for applying the FSE to congestion control mechanisms.</t>
<dl newline="true" spacing="normal" indent="6" pn="section-6.2-2">
<dt pn="section-6.2-2.1">Receiver-side calculations:</dt>
<dd pn="section-6.2-2.2">
When receiver-side calculations make assumptions about the rate of the
sender, the calculations need to be synchronized, or the receiver needs
to be updated accordingly. This applies to TCP Friendly Rate Control
(TFRC) <xref target="RFC5348" format="default" sectionFormat="of" derivedContent="RFC5348"/>, for example, where
simulations showed somewhat less favorable results when using the FSE
without a receiver-side change <xref target="FSE" format="default" sectionFormat="of" derivedContent="FSE"/>.</dd>
<dt pn="section-6.2-2.3">Stateful algorithms:</dt>
<dd pn="section-6.2-2.4">
When a congestion control algorithm is stateful (e.g., during the TCP slow
start, congestion avoidance, or fast recovery phase), these states should
be carefully considered such that the overall state of the aggregate
flow is correct. This may require sharing more information in the
UPDATE call.
</dd>
<dt pn="section-6.2-2.5">Rate jumps:</dt>
<dd pn="section-6.2-2.6">
The FSE-based coupling algorithms can let a flow quickly increase its
rate to its fair share, e.g., when a new flow joins or after a
quiescent period. In case of window-based congestion controls, this
may produce a burst that should be mitigated in some way. An example
of how this could be done without using a timer is presented in <xref target="ANRW2016" format="default" sectionFormat="of" derivedContent="ANRW2016"/>, using TCP as an example.
</dd>
</dl>
</section>
</section>
<section anchor="expected-feedback" numbered="true" toc="include" removeInRFC="false" pn="section-7">
<name slugifiedName="name-expected-feedback-from-expe">Expected Feedback from Experiments</name>
<t pn="section-7-1">The algorithm described in this memo has so far been evaluated using
simulations covering all the tests for more than one flow from <xref target="I-D.ietf-rmcat-eval-test" format="default" sectionFormat="of" derivedContent="RMCAT-PROPOSALS"/> (see <xref target="IETF-93" format="default" sectionFormat="of" derivedContent="IETF-93"/> and <xref target="IETF-94" format="default" sectionFormat="of" derivedContent="IETF-94"/>). Experiments should confirm these results using at
least the NADA congestion control algorithm with real-life code (e.g.,
browsers communicating over an emulated network covering the conditions
in <xref target="I-D.ietf-rmcat-eval-test" format="default" sectionFormat="of" derivedContent="RMCAT-PROPOSALS"/>). The
tests with real-life code should be repeated afterwards in real network
environments and monitored. Experiments should investigate cases where
the media coder's output rate is below the rate that is calculated by
the coupling algorithm (FSE_R(i) in algorithms 1 (<xref target="example-alg-act" format="default" sectionFormat="of" derivedContent="Section 5.3.1"/>) and 2 (<xref target="example-alg-act-cons" format="default" sectionFormat="of" derivedContent="Section 5.3.2"/>)). Implementers and testers are invited
to document their findings in an Internet-Draft.</t>
</section>
<section anchor="IANA" numbered="true" toc="include" removeInRFC="false" pn="section-8">
<name slugifiedName="name-iana-considerations">IANA Considerations</name>
<t pn="section-8-1">This document has no IANA actions.</t>
</section>
<section anchor="Security" numbered="true" toc="include" removeInRFC="false" pn="section-9">
<name slugifiedName="name-security-considerations">Security Considerations</name>
<t pn="section-9-1">In scenarios where the architecture described in this document is
applied across applications, various cheating possibilities arise, e.g.,
supporting wrong values for the calculated rate, desired rate, or
priority of a flow. In the worst case, such cheating could either
prevent other flows from sending or make them send at a rate that is
unreasonably large. The end result would be unfair behavior at the
network bottleneck, akin to what could be achieved with any UDP-based
application. Hence, since this is no worse than UDP in general, there
seems to be no significant harm in using this in the absence of UDP rate
limiters.</t>
<t pn="section-9-2">In the case of a single-user system, it should also be in the
interest of any application programmer to give the user the best
possible experience by using reasonable flow priorities or even letting
the user choose them. In a multi-user system, this interest may not be
given, and one could imagine the worst case of an "arms race" situation
where applications end up setting their priorities to the maximum
value. If all applications do this, the end result is a fair allocation
in which the priority mechanism is implicitly eliminated and no major
harm is done.</t>
<t pn="section-9-3"> Implementers should also be aware of the Security Considerations
sections of <xref target="RFC3124" format="default" sectionFormat="of" derivedContent="RFC3124"/>, <xref target="RFC5348" format="default" sectionFormat="of" derivedContent="RFC5348"/>, and <xref target="RFC7478" format="default" sectionFormat="of" derivedContent="RFC7478"/>.</t>
</section>
</middle>
<back>
<displayreference target="I-D.ietf-rmcat-eval-test" to="RMCAT-PROPOSALS"/>
<displayreference target="I-D.ietf-rmcat-gcc" to="GCC-RTCWEB"/>
<displayreference target="I-D.ietf-rtcweb-transports" to="WEBRTC-TRANS"/>
<displayreference target="I-D.ietf-rtcweb-rtp-usage" to="RTCWEB-RTP-USAGE"/>
<displayreference target="I-D.ietf-rtcweb-overview" to="RTCWEB-OVERVIEW"/>
<references pn="section-10">
<name slugifiedName="name-references">References</name>
<references pn="section-10.1">
<name slugifiedName="name-normative-references">Normative References</name>
<reference anchor="RFC2119" target="https://www.rfc-editor.org/info/rfc2119" quoteTitle="true" derivedAnchor="RFC2119">
<front>
<title>Key words for use in RFCs to Indicate Requirement Levels</title>
<author initials="S." surname="Bradner" fullname="S. Bradner">
<organization showOnFrontPage="true"/>
</author>
<date year="1997" month="March"/>
<abstract>
<t>In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.</t>
</abstract>
</front>
<seriesInfo name="BCP" value="14"/>
<seriesInfo name="RFC" value="2119"/>
<seriesInfo name="DOI" value="10.17487/RFC2119"/>
</reference>
<reference anchor="RFC3124" target="https://www.rfc-editor.org/info/rfc3124" quoteTitle="true" derivedAnchor="RFC3124">
<front>
<title>The Congestion Manager</title>
<author initials="H." surname="Balakrishnan" fullname="H. Balakrishnan">
<organization showOnFrontPage="true"/>
</author>
<author initials="S." surname="Seshan" fullname="S. Seshan">
<organization showOnFrontPage="true"/>
</author>
<date year="2001" month="June"/>
<abstract>
<t>This document describes the Congestion Manager (CM), an end-system module that enables an ensemble of multiple concurrent streams from a sender destined to the same receiver and sharing the same congestion properties to perform proper congestion avoidance and control, and allows applications to easily adapt to network congestion. [STANDARDS-TRACK]</t>
</abstract>
</front>
<seriesInfo name="RFC" value="3124"/>
<seriesInfo name="DOI" value="10.17487/RFC3124"/>
</reference>
<reference anchor="RFC5348" target="https://www.rfc-editor.org/info/rfc5348" quoteTitle="true" derivedAnchor="RFC5348">
<front>
<title>TCP Friendly Rate Control (TFRC): Protocol Specification</title>
<author initials="S." surname="Floyd" fullname="S. Floyd">
<organization showOnFrontPage="true"/>
</author>
<author initials="M." surname="Handley" fullname="M. Handley">
<organization showOnFrontPage="true"/>
</author>
<author initials="J." surname="Padhye" fullname="J. Padhye">
<organization showOnFrontPage="true"/>
</author>
<author initials="J." surname="Widmer" fullname="J. Widmer">
<organization showOnFrontPage="true"/>
</author>
<date year="2008" month="September"/>
<abstract>
<t>This document specifies TCP Friendly Rate Control (TFRC). TFRC is a congestion control mechanism for unicast flows operating in a best-effort Internet environment. It is reasonably fair when competing for bandwidth with TCP flows, but has a much lower variation of throughput over time compared with TCP, making it more suitable for applications such as streaming media where a relatively smooth sending rate is of importance.</t>
<t>This document obsoletes RFC 3448 and updates RFC 4342. [STANDARDS-TRACK]</t>
</abstract>
</front>
<seriesInfo name="RFC" value="5348"/>
<seriesInfo name="DOI" value="10.17487/RFC5348"/>
</reference>
<reference anchor="RFC8174" target="https://www.rfc-editor.org/info/rfc8174" quoteTitle="true" derivedAnchor="RFC8174">
<front>
<title>Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words</title>
<author initials="B." surname="Leiba" fullname="B. Leiba">
<organization showOnFrontPage="true"/>
</author>
<date year="2017" month="May"/>
<abstract>
<t>RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.</t>
</abstract>
</front>
<seriesInfo name="BCP" value="14"/>
<seriesInfo name="RFC" value="8174"/>
<seriesInfo name="DOI" value="10.17487/RFC8174"/>
</reference>
<reference anchor="RFC8698" target="https://www.rfc-editor.org/info/rfc8698" quoteTitle="true" derivedAnchor="RFC8698">
<front>
<title>Network-Assisted Dynamic Adaptation (NADA): A Unified Congestion Control Scheme for Real-Time Media</title>
<author initials="X" surname="Zhu" fullname="Xiaoqing Zhu">
<organization showOnFrontPage="true"/>
</author>
<author initials="R" surname="Pan" fullname="Rong Pan">
<organization showOnFrontPage="true"/>
</author>
<author initials="M" surname="Ramalho" fullname="Michael A. Ramalho">
<organization showOnFrontPage="true"/>
</author>
<author initials="S" surname="Mena" fullname="Sergio Mena de la Cruz">
<organization showOnFrontPage="true"/>
</author>
<date month="January" year="2020"/>
</front>
<seriesInfo name="RFC" value="8698"/>
<seriesInfo name="DOI" value="10.17487/RFC8698"/>
</reference>
</references>
<references pn="section-10.2">
<name slugifiedName="name-informative-references">Informative References</name>
<reference anchor="ANRW2016" quoteTitle="true" target="https://doi.org/10.1145/2959424.2959440" derivedAnchor="ANRW2016">
<front>
<title>Start Me Up: Determining and Sharing TCP's Initial Congestion Window</title>
<seriesInfo name="DOI" value="10.1145/2959424.2959440"/>
<seriesInfo name="Proceedings of the 2016 Applied Networking Research Workshop" value="Pages 52-54"/>
<author initials="S." surname="Islam" fullname="Safiqul Islam"/>
<author initials="M." surname="Welzl" fullname="Michael Welzl"/>
<date month="July" year="2016"/>
</front>
<refcontent>ACM, IRTF, ISOC Applied Networking Research Workshop 2016 (ANRW 2016)
</refcontent>
</reference>
<reference anchor="FSE" target="http://safiquli.at.ifi.uio.no/paper/fse-tech-report.pdf" quoteTitle="true" derivedAnchor="FSE">
<front>
<title>Coupled Congestion Control for RTP Media</title>
<author initials="S." surname="Islam" fullname="S. Islam"/>
<author initials="M." surname="Welzl" fullname="M. Welzl"/>
<author initials="S." surname="Gjessing" fullname="S Gjessing"/>
<author initials="N." surname="Khademi" fullname="N Khademi"/>
<date month="March" year="2014"/>
</front>
<refcontent>ACM SIGCOMM Capacity Sharing Workshop (CSWS 2014) and ACM SIGCOMM
CCR 44(4) 2014
</refcontent>
</reference>
<reference anchor="FSE-NOMS" quoteTitle="true" target="https://doi.org/10.1109/NOMS.2016.7502803" derivedAnchor="FSE-NOMS">
<front>
<title>Managing real-time media flows through a flow state exchange</title>
<seriesInfo name="DOI" value="10.1109/NOMS.2016.7502803"/>
<author initials="S." surname="Islam" fullname="Safiqul Islam"/>
<author initials="M." surname="Welzl" fullname="Michael Welzl"/>
<author initials="D." surname="Hayes" fullname="David Hayes"/>
<author initials="S." surname="Gjessing" fullname="Stein Gjessing"/>
</front>
<refcontent>IEEE NOMS 2016
</refcontent>
</reference>
<reference anchor="I-D.ietf-rmcat-gcc" quoteTitle="true" target="https://tools.ietf.org/html/draft-ietf-rmcat-gcc-02" derivedAnchor="GCC-RTCWEB">
<front>
<title>A Google Congestion Control Algorithm for Real-Time Communication</title>
<author initials="S" surname="Holmer" fullname="Stefan Holmer">
<organization showOnFrontPage="true"/>
</author>
<author initials="H" surname="Lundin" fullname="Henrik Lundin">
<organization showOnFrontPage="true"/>
</author>
<author initials="G" surname="Carlucci" fullname="Gaetano Carlucci">
<organization showOnFrontPage="true"/>
</author>
<author initials="L" surname="Cicco" fullname="Luca De Cicco">
<organization showOnFrontPage="true"/>
</author>
<author initials="S" surname="Mascolo" fullname="Saverio Mascolo">
<organization showOnFrontPage="true"/>
</author>
<date month="July" day="8" year="2016"/>
<abstract>
<t>This document describes two methods of congestion control when using real-time communications on the World Wide Web (RTCWEB); one delay- based and one loss-based. It is published as an input document to the RMCAT working group on congestion control for media streams. The mailing list of that working group is rmcat@ietf.org.</t>
</abstract>
</front>
<seriesInfo name="Internet-Draft" value="draft-ietf-rmcat-gcc-02"/>
<format type="TXT" target="http://www.ietf.org/internet-drafts/draft-ietf-rmcat-gcc-02.txt"/>
<format type="PDF" target="http://www.ietf.org/internet-drafts/draft-ietf-rmcat-gcc-02.pdf"/>
<refcontent>Work in Progress</refcontent>
</reference>
<reference anchor="IETF-93" target="https://www.ietf.org/proceedings/93/rmcat.html" quoteTitle="true" derivedAnchor="IETF-93">
<front>
<title>Updates on 'Coupled Congestion Control for RTP Media'</title>
<author initials="S." surname="Islam" fullname="Safiqul Islam"/>
<author initials="M." surname="Welzl" fullname="Michael Welzl"/>
<author initials="S." surname="Gjessing" fullname="S Gjessing"/>
<date month="July" year="2015"/>
</front>
<seriesInfo name="IETF" value="93"/>
<refcontent>RTP Media Congestion Avoidance Techniques (rmcat) Working Group</refcontent>
</reference>
<reference anchor="IETF-94" target="https://www.ietf.org/proceedings/94/rmcat.html" quoteTitle="true" derivedAnchor="IETF-94">
<front>
<title>Updates on 'Coupled Congestion Control for RTP Media'</title>
<author initials="S." surname="Islam" fullname="Safiqul Islam"/>
<author initials="M." surname="Welzl" fullname="M. Welzl"/>
<author initials="S." surname="Gjessing" fullname="S Gjessing"/>
<date month="November" year="2015"/>
</front>
<seriesInfo name="IETF" value="94"/>
<refcontent>RTP Media Congestion Avoidance Techniques (rmcat) Working Group</refcontent>
</reference>
<reference anchor="RFC7478" target="https://www.rfc-editor.org/info/rfc7478" quoteTitle="true" derivedAnchor="RFC7478">
<front>
<title>Web Real-Time Communication Use Cases and Requirements</title>
<author initials="C." surname="Holmberg" fullname="C. Holmberg">
<organization showOnFrontPage="true"/>
</author>
<author initials="S." surname="Hakansson" fullname="S. Hakansson">
<organization showOnFrontPage="true"/>
</author>
<author initials="G." surname="Eriksson" fullname="G. Eriksson">
<organization showOnFrontPage="true"/>
</author>
<date year="2015" month="March"/>
<abstract>
<t>This document describes web-based real-time communication use cases. Requirements on the browser functionality are derived from the use cases.</t>
<t>This document was developed in an initial phase of the work with rather minor updates at later stages. It has not really served as a tool in deciding features or scope for the WG's efforts so far. It is being published to record the early conclusions of the WG. It will not be used as a set of rigid guidelines that specifications and implementations will be held to in the future.</t>
</abstract>
</front>
<seriesInfo name="RFC" value="7478"/>
<seriesInfo name="DOI" value="10.17487/RFC7478"/>
</reference>
<reference anchor="RFC7656" target="https://www.rfc-editor.org/info/rfc7656" quoteTitle="true" derivedAnchor="RFC7656">
<front>
<title>A Taxonomy of Semantics and Mechanisms for Real-Time Transport Protocol (RTP) Sources</title>
<author initials="J." surname="Lennox" fullname="J. Lennox">
<organization showOnFrontPage="true"/>
</author>
<author initials="K." surname="Gross" fullname="K. Gross">
<organization showOnFrontPage="true"/>
</author>
<author initials="S." surname="Nandakumar" fullname="S. Nandakumar">
<organization showOnFrontPage="true"/>
</author>
<author initials="G." surname="Salgueiro" fullname="G. Salgueiro">
<organization showOnFrontPage="true"/>
</author>
<author initials="B." surname="Burman" fullname="B. Burman" role="editor">
<organization showOnFrontPage="true"/>
</author>
<date year="2015" month="November"/>
<abstract>
<t>The terminology about, and associations among, Real-time Transport Protocol (RTP) sources can be complex and somewhat opaque. This document describes a number of existing and proposed properties and relationships among RTP sources and defines common terminology for discussing protocol entities and their relationships.</t>
</abstract>
</front>
<seriesInfo name="RFC" value="7656"/>
<seriesInfo name="DOI" value="10.17487/RFC7656"/>
</reference>
<reference anchor="RFC8087" target="https://www.rfc-editor.org/info/rfc8087" quoteTitle="true" derivedAnchor="RFC8087">
<front>
<title>The Benefits of Using Explicit Congestion Notification (ECN)</title>
<author initials="G." surname="Fairhurst" fullname="G. Fairhurst">
<organization showOnFrontPage="true"/>
</author>
<author initials="M." surname="Welzl" fullname="M. Welzl">
<organization showOnFrontPage="true"/>
</author>
<date year="2017" month="March"/>
<abstract>
<t>The goal of this document is to describe the potential benefits of applications using a transport that enables Explicit Congestion Notification (ECN). The document outlines the principal gains in terms of increased throughput, reduced delay, and other benefits when ECN is used over a network path that includes equipment that supports Congestion Experienced (CE) marking. It also discusses challenges for successful deployment of ECN. It does not propose new algorithms to use ECN nor does it describe the details of implementation of ECN in endpoint devices (Internet hosts), routers, or other network devices.</t>
</abstract>
</front>
<seriesInfo name="RFC" value="8087"/>
<seriesInfo name="DOI" value="10.17487/RFC8087"/>
</reference>
<reference anchor="RFC8382" target="https://www.rfc-editor.org/info/rfc8382" quoteTitle="true" derivedAnchor="RFC8382">
<front>
<title>Shared Bottleneck Detection for Coupled Congestion Control for RTP Media</title>
<author initials="D." surname="Hayes" fullname="D. Hayes" role="editor">
<organization showOnFrontPage="true"/>
</author>
<author initials="S." surname="Ferlin" fullname="S. Ferlin">
<organization showOnFrontPage="true"/>
</author>
<author initials="M." surname="Welzl" fullname="M. Welzl">
<organization showOnFrontPage="true"/>
</author>
<author initials="K." surname="Hiorth" fullname="K. Hiorth">
<organization showOnFrontPage="true"/>
</author>
<date year="2018" month="June"/>
<abstract>
<t>This document describes a mechanism to detect whether end-to-end data flows share a common bottleneck. This mechanism relies on summary statistics that are calculated based on continuous measurements and used as input to a grouping algorithm that runs wherever the knowledge is needed.</t>
</abstract>
</front>
<seriesInfo name="RFC" value="8382"/>
<seriesInfo name="DOI" value="10.17487/RFC8382"/>
</reference>
<reference anchor="I-D.ietf-rmcat-eval-test" quoteTitle="true" target="https://tools.ietf.org/html/draft-ietf-rmcat-eval-test-10" derivedAnchor="RMCAT-PROPOSALS">
<front>
<title>Test Cases for Evaluating RMCAT Proposals</title>
<author initials="Z" surname="Sarker" fullname="Zaheduzzaman Sarker">
<organization showOnFrontPage="true"/>
</author>
<author initials="V" surname="Singh" fullname="Varun Singh">
<organization showOnFrontPage="true"/>
</author>
<author initials="X" surname="Zhu" fullname="Xiaoqing Zhu">
<organization showOnFrontPage="true"/>
</author>
<author initials="M" surname="Ramalho" fullname="Michael Ramalho">
<organization showOnFrontPage="true"/>
</author>
<date month="May" day="23" year="2019"/>
<abstract>
<t>The Real-time Transport Protocol (RTP) is used to transmit media in multimedia telephony applications. These applications are typically required to implement congestion control. This document describes the test cases to be used in the performance evaluation of such congestion control algorithms in a controlled environment.</t>
</abstract>
</front>
<seriesInfo name="Internet-Draft" value="draft-ietf-rmcat-eval-test-10"/>
<format type="TXT" target="http://www.ietf.org/internet-drafts/draft-ietf-rmcat-eval-test-10.txt"/>
<refcontent>Work in Progress</refcontent>
</reference>
<reference anchor="I-D.ietf-rtcweb-overview" quoteTitle="true" target="https://tools.ietf.org/html/draft-ietf-rtcweb-overview-19" derivedAnchor="RTCWEB-OVERVIEW">
<front>
<title>Overview: Real Time Protocols for Browser-based Applications</title>
<author initials="H" surname="Alvestrand" fullname="Harald Alvestrand">
<organization showOnFrontPage="true"/>
</author>
<date month="November" day="11" year="2017"/>
<abstract>
<t>This document gives an overview and context of a protocol suite intended for use with real-time applications that can be deployed in browsers - "real time communication on the Web". It intends to serve as a starting and coordination point to make sure all the parts that are needed to achieve this goal are findable, and that the parts that belong in the Internet protocol suite are fully specified and on the right publication track. This document is an Applicability Statement - it does not itself specify any protocol, but specifies which other specifications WebRTC compliant implementations are supposed to follow. This document is a work item of the RTCWEB working group.</t>
</abstract>
</front>
<seriesInfo name="Internet-Draft" value="draft-ietf-rtcweb-overview-19"/>
<format type="TXT" target="http://www.ietf.org/internet-drafts/draft-ietf-rtcweb-overview-19.txt"/>
<refcontent>Work in Progress</refcontent>
</reference>
<reference anchor="I-D.ietf-rtcweb-rtp-usage" quoteTitle="true" target="https://tools.ietf.org/html/draft-ietf-rtcweb-rtp-usage-26" derivedAnchor="RTCWEB-RTP-USAGE">
<front>
<title>Web Real-Time Communication (WebRTC): Media Transport and Use of RTP</title>
<author initials="C" surname="Perkins" fullname="Colin Perkins">
<organization showOnFrontPage="true"/>
</author>
<author initials="M" surname="Westerlund" fullname="Magnus Westerlund">
<organization showOnFrontPage="true"/>
</author>
<author initials="J" surname="Ott" fullname="Joerg Ott">
<organization showOnFrontPage="true"/>
</author>
<date month="March" day="17" year="2016"/>
<abstract>
<t>The Web Real-Time Communication (WebRTC) framework provides support for direct interactive rich communication using audio, video, text, collaboration, games, etc. between two peers' web-browsers. This memo describes the media transport aspects of the WebRTC framework. It specifies how the Real-time Transport Protocol (RTP) is used in the WebRTC context, and gives requirements for which RTP features, profiles, and extensions need to be supported.</t>
</abstract>
</front>
<seriesInfo name="Internet-Draft" value="draft-ietf-rtcweb-rtp-usage-26"/>
<format type="TXT" target="http://www.ietf.org/internet-drafts/draft-ietf-rtcweb-rtp-usage-26.txt"/>
<refcontent>Work in Progress</refcontent>
</reference>
<reference anchor="TRANSPORT-MULTIPLEX" target="https://tools.ietf.org/html/draft-westerlund-avtcore-transport-multiplexing-07" quoteTitle="true" derivedAnchor="TRANSPORT-MULTIPLEX">
<front>
<title>Multiple RTP Sessions on a Single Lower-Layer Transport</title>
<author initials="M." surname="Westerlund" fullname="Magnus Westerlund">
<organization showOnFrontPage="true"/>
</author>
<author initials="C." surname="Perkins" fullname="Colin Perkins">
<organization showOnFrontPage="true"/>
</author>
<date month="October" year="2013"/>
</front>
<seriesInfo name="Internet-Draft" value="draft-westerlund-avtcore-transport-multiplexing-07"/>
<refcontent>Work in Progress</refcontent>
</reference>
<reference anchor="I-D.ietf-rtcweb-transports" quoteTitle="true" target="https://tools.ietf.org/html/draft-ietf-rtcweb-transports-17" derivedAnchor="WEBRTC-TRANS">
<front>
<title>Transports for WebRTC</title>
<author initials="H" surname="Alvestrand" fullname="Harald Alvestrand">
<organization showOnFrontPage="true"/>
</author>
<date month="October" day="26" year="2016"/>
<abstract>
<t>This document describes the data transport protocols used by WebRTC, including the protocols used for interaction with intermediate boxes such as firewalls, relays and NAT boxes.</t>
</abstract>
</front>
<seriesInfo name="Internet-Draft" value="draft-ietf-rtcweb-transports-17"/>
<format type="TXT" target="http://www.ietf.org/internet-drafts/draft-ietf-rtcweb-transports-17.txt"/>
<refcontent>Work in Progress</refcontent>
</reference>
</references>
</references>
<section anchor="app-GCC" numbered="true" toc="include" removeInRFC="false" pn="section-appendix.a">
<name slugifiedName="name-application-to-gcc">Application to GCC</name>
<t pn="section-appendix.a-1">Google Congestion Control (GCC) <xref target="I-D.ietf-rmcat-gcc" format="default" sectionFormat="of" derivedContent="GCC-RTCWEB"/> is another congestion control scheme for RTP flows
that is under development. GCC is not yet finalized, but at the time of
this writing, the rate control of GCC employs two parts: controlling the
bandwidth estimate based on delay and controlling the bandwidth
estimate based on loss. Both are designed to estimate the available
bandwidth, A_hat. </t>
<t pn="section-appendix.a-2">When applying the FSE to GCC, the UPDATE function call described in
<xref target="flows" format="default" sectionFormat="of" derivedContent="Section 5.3"/> gives the FSE GCC's estimate of
available bandwidth A_hat. The recommended algorithm for GCC is the
Active FSE in <xref target="example-alg-act" format="default" sectionFormat="of" derivedContent="Section 5.3.1"/>. In
step 3 (d) of this algorithm, when the FSE_R(i) is "sent" to the flow i,
A_hat of flow i is updated with the value of FSE_R(i).</t>
</section>
<section anchor="scheduling" numbered="true" toc="include" removeInRFC="false" pn="section-appendix.b">
<name slugifiedName="name-scheduling">Scheduling</name>
<t pn="section-appendix.b-1"> When flows originate from the same host, it would be possible to use
only one sender-side congestion controller that determines the
overall allowed sending rate and then use a local scheduler to assign a
proportion of this rate to each RTP session. This way, priorities could
also be implemented as a function of the scheduler. The Congestion
Manager (CM) <xref target="RFC3124" format="default" sectionFormat="of" derivedContent="RFC3124"/> also uses such a
scheduling function.</t>
</section>
<section anchor="example-alg-pas" numbered="true" toc="include" removeInRFC="false" pn="section-appendix.c">
<name slugifiedName="name-example-algorithm-passive-f">Example Algorithm - Passive FSE</name>
<t pn="section-appendix.c-1">Active algorithms calculate the rates for all the flows in the FG and
actively distribute them. In a passive algorithm, UPDATE returns a rate
that should be used instead of the rate that the congestion controller
has determined. This can make a passive algorithm easier to implement;
however, when round-trip times of flows are unequal, flows with shorter RTTs
may (depending on the congestion control algorithm) update and react to
the overall FSE state more often than flows with longer RTTs, which can
produce unwanted side effects. This problem is more significant when the
congestion control convergence depends on the RTT. While the passive
algorithm works better for congestion controls with RTT-independent
convergence, it can still produce oscillations on short time scales. The
algorithm described below is therefore considered highly experimental
and not safe to deploy outside of testbed environments. Results of a
simplified passive FSE algorithm with both NADA and GCC can be found in
<xref target="FSE-NOMS" format="default" sectionFormat="of" derivedContent="FSE-NOMS"/>.</t>
<t pn="section-appendix.c-2">In the passive version of the FSE, TLO (Total Leftover Rate) is a
static variable per FG that is initialized to 0. Additionally, S_CR is
limited to increase or decrease as conservatively as a flow's congestion
controller decides in order to prohibit sudden rate jumps.
</t>
<ol spacing="normal" type="(%d)" start="1" pn="section-appendix.c-3">
<li pn="section-appendix.c-3.1" derivedCounter="(1)">When a flow f starts, it registers itself with SBD and the
FSE. FSE_R(f) and DR(f) are initialized with the congestion
controller's initial rate. SBD will assign the correct FGI. When a
flow is assigned an FGI, it adds its FSE_R(f) to S_CR.</li>
<li pn="section-appendix.c-3.2" derivedCounter="(2)">When a flow f stops or pauses, it sets its DR(f) to 0 and sets P(f) to -1.</li>
<li pn="section-appendix.c-3.3" derivedCounter="(3)">
<t pn="section-appendix.c-3.3.1">Every time the congestion controller of the flow f determines a
new sending rate CC_R(f), assuming the flow's new desired rate
new_DR(f) to be "infinity" in case of a bulk data transfer with an
unknown maximum rate, the flow calls UPDATE, which carries out the
tasks listed below to derive the flow's new sending rate, Rate(f). A
flow's UPDATE function uses a few local (i.e., per-flow) temporary
variables, which are all initialized to 0: DELTA, new_S_CR, and S_P.
</t>
<ol spacing="normal" type="(%c)" start="1" pn="section-appendix.c-3.3.2">
<li pn="section-appendix.c-3.3.2.1" derivedCounter="(a)">
<t pn="section-appendix.c-3.3.2.1.1">For all the flows in its FG (including itself), it calculates
the sum of all the calculated rates, new_S_CR. Then, it
calculates DELTA: the difference between FSE_R(f) and CC_R(f).
</t>
<sourcecode type="pseudocode" markers="false" pn="section-appendix.c-3.3.2.1.2">
for all flows i in FG do
new_S_CR = new_S_CR + FSE_R(i)
end for
DELTA = CC_R(f) - FSE_R(f) </sourcecode>
</li>
<li pn="section-appendix.c-3.3.2.2" derivedCounter="(b)">
<t pn="section-appendix.c-3.3.2.2.1">It updates S_CR, FSE_R(f), and DR(f).
</t>
<sourcecode type="pseudocode" markers="false" pn="section-appendix.c-3.3.2.2.2">
FSE_R(f) = CC_R(f)
if DELTA > 0 then // the flow's rate has increased
S_CR = S_CR + DELTA
else if DELTA < 0 then
S_CR = new_S_CR + DELTA
end if
DR(f) = min(new_DR(f),FSE_R(f)) </sourcecode>
</li>
<li pn="section-appendix.c-3.3.2.3" derivedCounter="(c)">
<t pn="section-appendix.c-3.3.2.3.1">It calculates the leftover rate TLO, removes the terminated
flows from the FSE, and calculates the sum of all the priorities,
S_P.
</t>
<sourcecode type="pseudocode" markers="false" pn="section-appendix.c-3.3.2.3.2">
for all flows i in FG do
if P(i)<0 then
delete flow
else
S_P = S_P + P(i)
end if
end for
if DR(f) < FSE_R(f) then
TLO = TLO + (P(f)/S_P) * S_CR - DR(f))
end if </sourcecode>
</li>
<li pn="section-appendix.c-3.3.2.4" derivedCounter="(d)">
<t pn="section-appendix.c-3.3.2.4.1">It calculates the sending rate, Rate(f).
</t>
<sourcecode type="pseudocode" markers="false" pn="section-appendix.c-3.3.2.4.2">
Rate(f) = min(new_DR(f), (P(f)*S_CR)/S_P + TLO)
if Rate(f) != new_DR(f) and TLO > 0 then
TLO = 0 // f has 'taken' TLO
end if </sourcecode>
</li>
<li pn="section-appendix.c-3.3.2.5" derivedCounter="(e)">
<t pn="section-appendix.c-3.3.2.5.1">It updates DR(f) and FSE_R(f) with Rate(f).
</t>
<sourcecode type="pseudocode" markers="false" pn="section-appendix.c-3.3.2.5.2">
if Rate(f) > DR(f) then
DR(f) = Rate(f)
end if
FSE_R(f) = Rate(f) </sourcecode>
</li>
</ol>
</li>
</ol>
<t pn="section-appendix.c-4">The goals of the flow algorithm are to achieve prioritization,
improve network utilization in the face of application-limited flows,
and impose limits on the increase behavior such that the negative impact
of multiple flows trying to increase their rate together is
minimized. It does that by assigning a flow a sending rate that may not
be what the flow's congestion controller expected. It therefore builds
on the assumption that no significant inefficiencies arise from
temporary application-limited behavior or from quickly jumping to a rate
that is higher than the congestion controller intended. How problematic
these issues really are depends on the controllers in use and requires
careful per-controller experimentation. The coupled congestion control
mechanism described here also does not require all controllers to be
equal; effects of heterogeneous controllers, or homogeneous controllers
being in different states, are also subject to experimentation.</t>
<t pn="section-appendix.c-5">This algorithm gives the leftover rate of application-limited
flows to the first flow that updates its sending rate, provided that
this flow needs it all (otherwise, its own leftover rate can be taken by
the next flow that updates its rate). Other policies could be applied,
e.g., to divide the leftover rate of a flow equally among all other flows
in the FGI.</t>
<section anchor="example-op" numbered="true" toc="include" removeInRFC="false" pn="section-c.1">
<name slugifiedName="name-example-operation-passive">Example Operation (Passive)</name>
<t pn="section-c.1-1">In order to illustrate the operation of the passive coupled
congestion control algorithm, this section presents a toy example of
two flows that use it. Let us assume that both flows traverse a common
10 Mbit/s bottleneck and use a simplistic congestion controller that
starts out with 1 Mbit/s, increases its rate by 1 Mbit/s in the
absence of congestion, and decreases it by 2 Mbit/s in the presence of
congestion. For simplicity, flows are assumed to always operate in a
round-robin fashion. Rate numbers below without units are assumed to
be in Mbit/s. For illustration purposes, the actual sending rate is
also shown for every flow in FSE diagrams even though it is not really
stored in the FSE.</t>
<t pn="section-c.1-2">Flow #1 begins. It is a bulk data transfer and considers itself to
have top priority. This is the FSE after the flow algorithm's step
1:</t>
<artwork align="left" name="" type="" alt="" pn="section-c.1-3">----------------------------------------
| # | FGI | P | FSE_R | DR | Rate |
| | | | | | |
| 1 | 1 | 1 | 1 | 1 | 1 |
----------------------------------------
S_CR = 1, TLO = 0 </artwork>
<t pn="section-c.1-4">Its congestion controller gradually increases its rate. Eventually,
at some point, the FSE should look like this:</t>
<artwork align="left" name="" type="" alt="" pn="section-c.1-5">-----------------------------------------
| # | FGI | P | FSE_R | DR | Rate |
| | | | | | |
| 1 | 1 | 1 | 10 | 10 | 10 |
-----------------------------------------
S_CR = 10, TLO = 0 </artwork>
<t pn="section-c.1-6">Now, another flow joins. It is also a bulk data transfer and has a
lower priority (0.5):</t>
<artwork align="left" name="" type="" alt="" pn="section-c.1-7">------------------------------------------
| # | FGI | P | FSE_R | DR | Rate |
| | | | | | |
| 1 | 1 | 1 | 10 | 10 | 10 |
| 2 | 1 | 0.5 | 1 | 1 | 1 |
------------------------------------------
S_CR = 11, TLO = 0 </artwork>
<t pn="section-c.1-8">Now, assume that the first flow updates its rate to 8, because the
total sending rate of 11 exceeds the total capacity. Let us take a
closer look at what happens in step 3 of the flow algorithm.</t>
<t pn="section-c.1-9">CC_R(1) = 8. new_DR(1) = infinity.</t>
<ol spacing="normal" type="(3%c)" start="1" pn="section-c.1-10">
<li pn="section-c.1-10.1" derivedCounter="(3a)">new_S_CR = 11; DELTA = 8 - 10 = -2.</li>
<li pn="section-c.1-10.2" derivedCounter="(3b)">FSE_R(1) = 8. DELTA is negative, hence S_CR = 9; DR(1) = 8</li>
<li pn="section-c.1-10.3" derivedCounter="(3c)">S_P = 1.5.</li>
<li pn="section-c.1-10.4" derivedCounter="(3d)">new sending rate Rate(1) = min(infinity, 1/1.5 * 9 + 0) = 6.</li>
<li pn="section-c.1-10.5" derivedCounter="(3e)">FSE_R(1) = 6.</li>
</ol>
<t pn="section-c.1-11">The resulting FSE looks as follows:</t>
<artwork align="left" name="" type="" alt="" pn="section-c.1-12">
-------------------------------------------
| # | FGI | P | FSE_R | DR | Rate |
| | | | | | |
| 1 | 1 | 1 | 6 | 8 | 6 |
| 2 | 1 | 0.5 | 1 | 1 | 1 |
-------------------------------------------
S_CR = 9, TLO = 0 </artwork>
<t pn="section-c.1-13">The effect is that flow #1 is sending with 6 Mbit/s instead of the
8 Mbit/s that the congestion controller derived. Let us now assume
that flow #2 updates its rate. Its congestion controller detects that
the network is not fully saturated (the actual total sending rate is
6+1=7) and increases its rate.</t>
<t pn="section-c.1-14">CC_R(2) = 2. new_DR(2) = infinity.</t>
<ol spacing="normal" type="(3%c)" start="1" pn="section-c.1-15">
<li pn="section-c.1-15.1" derivedCounter="(3a)">new_S_CR = 7; DELTA = 2 - 1 = 1.</li>
<li pn="section-c.1-15.2" derivedCounter="(3b)">FSE_R(2) = 2. DELTA is positive, hence S_CR = 9 + 1 = 10; DR(2) = 2.</li>
<li pn="section-c.1-15.3" derivedCounter="(3c)">S_P = 1.5.</li>
<li pn="section-c.1-15.4" derivedCounter="(3d)">Rate(2) = min(infinity, 0.5/1.5 * 10 + 0) = 3.33.</li>
<li pn="section-c.1-15.5" derivedCounter="(3e)">DR(2) = FSE_R(2) = 3.33.</li>
</ol>
<t pn="section-c.1-16">The resulting FSE looks as follows:</t>
<artwork align="left" name="" type="" alt="" pn="section-c.1-17">
-------------------------------------------
| # | FGI | P | FSE_R | DR | Rate |
| | | | | | |
| 1 | 1 | 1 | 6 | 8 | 6 |
| 2 | 1 | 0.5 | 3.33 | 3.33 | 3.33 |
-------------------------------------------
S_CR = 10, TLO = 0 </artwork>
<t pn="section-c.1-18">The effect is that flow #2 is now sending with 3.33 Mbit/s, which
is close to half of the rate of flow #1 and leads to a total
utilization of 6(#1) + 3.33(#2) = 9.33 Mbit/s. Flow #2's congestion
controller has increased its rate faster than the controller actually
expected. Now, flow #1 updates its rate. Its congestion controller
detects that the network is not fully saturated and increases its
rate. Additionally, the application feeding into flow #1 limits the
flow's sending rate to at most 2 Mbit/s.</t>
<t pn="section-c.1-19">CC_R(1) = 7. new_DR(1) = 2.</t>
<ol spacing="normal" type="(3%c)" start="1" pn="section-c.1-20">
<li pn="section-c.1-20.1" derivedCounter="(3a)">new_S_CR = 9.33; DELTA = 1.</li>
<li pn="section-c.1-20.2" derivedCounter="(3b)">FSE_R(1) = 7, DELTA is positive, hence S_CR = 10 + 1 = 11; DR(1) = min(2, 7) = 2. </li>
<li pn="section-c.1-20.3" derivedCounter="(3c)">S_P = 1.5; DR(1) < FSE_R(1), hence TLO = 1/1.5 * 11 - 2 = 5.33.</li>
<li pn="section-c.1-20.4" derivedCounter="(3d)">Rate(1) = min(2, 1/1.5 * 11 + 5.33) = 2.</li>
<li pn="section-c.1-20.5" derivedCounter="(3e)">FSE_R(1) = 2.</li>
</ol>
<t pn="section-c.1-21">The resulting FSE looks as follows:</t>
<artwork align="left" name="" type="" alt="" pn="section-c.1-22">
-------------------------------------------
| # | FGI | P | FSE_R | DR | Rate |
| | | | | | |
| 1 | 1 | 1 | 2 | 2 | 2 |
| 2 | 1 | 0.5 | 3.33 | 3.33 | 3.33 |
-------------------------------------------
S_CR = 11, TLO = 5.33 </artwork>
<t pn="section-c.1-23">Now, the total rate of the two flows is 2 + 3.33 = 5.33 Mbit/s,
i.e., the network is significantly underutilized due to the limitation
of flow #1. Flow #2 updates its rate. Its congestion controller
detects that the network is not fully saturated and increases its
rate.</t>
<t pn="section-c.1-24">CC_R(2) = 4.33. new_DR(2) = infinity.</t>
<ol spacing="normal" type="(3%c)" start="1" pn="section-c.1-25">
<li pn="section-c.1-25.1" derivedCounter="(3a)">new_S_CR = 5.33; DELTA = 1.</li>
<li pn="section-c.1-25.2" derivedCounter="(3b)">FSE_R(2) = 4.33. DELTA is positive, hence S_CR = 12; DR(2) = 4.33.</li>
<li pn="section-c.1-25.3" derivedCounter="(3c)">S_P = 1.5.</li>
<li pn="section-c.1-25.4" derivedCounter="(3d)">Rate(2) = min(infinity, 0.5/1.5 * 12 + 5.33 ) = 9.33.</li>
<li pn="section-c.1-25.5" derivedCounter="(3e)">FSE_R(2) = 9.33, DR(2) = 9.33.</li>
</ol>
<t pn="section-c.1-26">The resulting FSE looks as follows:</t>
<artwork align="left" name="" type="" alt="" pn="section-c.1-27">
-------------------------------------------
| # | FGI | P | FSE_R | DR | Rate |
| | | | | | |
| 1 | 1 | 1 | 2 | 2 | 2 |
| 2 | 1 | 0.5 | 9.33 | 9.33 | 9.33 |
-------------------------------------------
S_CR = 12, TLO = 0 </artwork>
<t pn="section-c.1-28">Now, the total rate of the two flows is 2 + 9.33 = 11.33
Mbit/s. Finally, flow #1 terminates. It sets P(1) to -1 and DR(1) to
0. Let us assume that it terminated late enough for flow #2 to still
experience the network in a congested state, i.e., flow #2 decreases
its rate in the next iteration.</t>
<t pn="section-c.1-29">CC_R(2) = 7.33. new_DR(2) = infinity.</t>
<ol spacing="normal" type="(3%c)" start="1" pn="section-c.1-30">
<li pn="section-c.1-30.1" derivedCounter="(3a)">new_S_CR = 11.33; DELTA = -2.</li>
<li pn="section-c.1-30.2" derivedCounter="(3b)">FSE_R(2) = 7.33. DELTA is negative, hence S_CR = 9.33; DR(2) = 7.33.</li>
<li pn="section-c.1-30.3" derivedCounter="(3c)">Flow 1 has P(1) = -1, hence it is deleted from the FSE. S_P = 0.5.</li>
<li pn="section-c.1-30.4" derivedCounter="(3d)">Rate(2) = min(infinity, 0.5/0.5*9.33 + 0) = 9.33.</li>
<li pn="section-c.1-30.5" derivedCounter="(3e)">FSE_R(2) = DR(2) = 9.33.</li>
</ol>
<t pn="section-c.1-31">The resulting FSE looks as follows:</t>
<artwork align="left" name="" type="" alt="" pn="section-c.1-32">
-------------------------------------------
| # | FGI | P | FSE_R | DR | Rate |
| | | | | | |
| 2 | 1 | 0.5 | 9.33 | 9.33 | 9.33 |
-------------------------------------------
S_CR = 9.33, TLO = 0 </artwork>
</section>
</section>
<section anchor="Acknowledgements" numbered="false" toc="include" removeInRFC="false" pn="section-appendix.d">
<name slugifiedName="name-acknowledgements">Acknowledgements</name>
<t pn="section-appendix.d-1">This document benefited from discussions with and feedback from
<contact fullname="Andreas Petlund"/>,
<contact fullname="Anna Brunstrom"/>,
<contact fullname="Colin Perkins"/>,
<contact fullname="David Hayes"/>,
<contact fullname="David Ros"/>
(who also gave the FSE its name),
<contact fullname="Ingemar Johansson"/>,
<contact fullname="Karen Nielsen"/>,
<contact fullname="Kristian Hiorth"/>,
<contact fullname="Martin Stiemerling"/>,
<contact fullname="Mirja Kühlewind"/>,
<contact fullname="Spencer Dawkins"/>,
<contact fullname="Varun Singh"/>,
<contact fullname="Xiaoqing Zhu"/>, and
<contact fullname="Zaheduzzaman Sarker"/>. The authors would
like to especially thank <contact fullname="Xiaoqing Zhu"/> and <contact fullname="Stefan Holmer"/> for helping with
NADA and GCC, and <contact fullname="Anna Brunstrom"/> as well as <contact fullname="Julius Flohr"/> for helping us
correct the active algorithm for the case of application-limited
flows.</t>
<t pn="section-appendix.d-2">This work was partially funded by the European Community under its
Seventh Framework Program through the Reducing Internet Transport
Latency (RITE) project (ICT-317700).</t>
</section>
<section anchor="authors-addresses" numbered="false" removeInRFC="false" toc="include" pn="section-appendix.e">
<name slugifiedName="name-authors-addresses">Authors' Addresses</name>
<author fullname="Safiqul Islam" initials="S." surname="Islam">
<organization showOnFrontPage="true">University of Oslo</organization>
<address>
<postal>
<street>PO Box 1080 Blindern</street>
<code>N-0316</code>
<city>Oslo</city>
<region/>
<country>Norway</country>
</postal>
<phone>+47 22 84 08 37</phone>
<email>safiquli@ifi.uio.no</email>
</address>
</author>
<author fullname="Michael Welzl" initials="M." surname="Welzl">
<organization showOnFrontPage="true">University of Oslo</organization>
<address>
<postal>
<street>PO Box 1080 Blindern</street>
<code>N-0316</code>
<city>Oslo</city>
<region/>
<country>Norway</country>
</postal>
<phone>+47 22 85 24 20</phone>
<email>michawe@ifi.uio.no</email>
</address>
</author>
<author fullname="Stein Gjessing" initials="S." surname="Gjessing">
<organization showOnFrontPage="true">University of Oslo</organization>
<address>
<postal>
<street>PO Box 1080 Blindern</street>
<code>N-0316</code>
<city>Oslo</city>
<region/>
<country>Norway</country>
</postal>
<phone>+47 22 85 24 44</phone>
<email>steing@ifi.uio.no</email>
</address>
</author>
</section>
</back>
</rfc>
|