1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
|
<?xml version='1.0' encoding='utf-8'?>
<rfc xmlns:xi="http://www.w3.org/2001/XInclude" version="3" category="info" consensus="true" docName="draft-irtf-icnrg-deployment-guidelines-07" indexInclude="true" ipr="trust200902" number="8763" prepTime="2020-04-16T18:19:13" scripts="Common,Latin" sortRefs="true" submissionType="IRTF" symRefs="true" tocDepth="3" tocInclude="true" xml:lang="en">
<link href="https://datatracker.ietf.org/doc/draft-irtf-icnrg-deployment-guidelines-07" rel="prev"/>
<link href="https://dx.doi.org/10.17487/rfc8763" rel="alternate"/>
<link href="urn:issn:2070-1721" rel="alternate"/>
<front>
<title abbrev="Deployment Considerations for ICN">Deployment Considerations for Information-Centric Networking (ICN)</title>
<seriesInfo name="RFC" value="8763" stream="IRTF"/>
<author fullname="Akbar Rahman" initials="A." surname="Rahman">
<organization abbrev="InterDigital Communications, LLC" showOnFrontPage="true">InterDigital Communications, LLC</organization>
<address>
<postal>
<street>1000 Sherbrooke Street West, 10th floor</street>
<city>Montreal</city>
<code>H3A 3G4</code>
<country>Canada</country>
</postal>
<email>Akbar.Rahman@InterDigital.com</email>
<uri>http://www.InterDigital.com/</uri>
</address>
</author>
<author fullname="Dirk Trossen" initials="D." surname="Trossen">
<organization abbrev="Huawei" showOnFrontPage="true">Huawei Technologies Duesseldorf GmbH</organization>
<address>
<postal>
<street>Riesstrasse 25</street>
<city>Munich</city>
<code>80992</code>
<country>Germany</country>
</postal>
<email>dirk.trossen@huawei.com</email>
<uri>http://www.huawei.com/</uri>
</address>
</author>
<author fullname="Dirk Kutscher" initials="D." surname="Kutscher">
<organization abbrev="Emden University" showOnFrontPage="true">University of Applied Sciences Emden/Leer</organization>
<address>
<postal>
<street>Constantiapl. 4</street>
<city>Emden</city>
<code>26723</code>
<country>Germany</country>
</postal>
<email>ietf@dkutscher.net</email>
<uri>https://www.hs-emden-leer.de/en/</uri>
</address>
</author>
<author fullname="Ravi Ravindran" initials="R." surname="Ravindran">
<organization showOnFrontPage="true">Sterlite Technologies</organization>
<address>
<postal>
<street>5201 Greatamerica Pkwy</street>
<city>Santa Clara</city>
<code>95054</code>
<country>United States of America</country>
</postal>
<email>ravi.ravindran@gmail.com</email>
</address>
</author>
<date month="04" year="2020"/>
<area>Internet Research Task Force (IRTF)</area>
<workgroup>Information-Centric Networking</workgroup>
<abstract pn="section-abstract">
<t pn="section-abstract-1">Information-Centric Networking (ICN) is now reaching technological
maturity after many years of fundamental research and experimentation.
This document provides a number of deployment considerations in the
interest of helping the ICN community move forward to the next step
of live deployments. First, the major deployment configurations for
ICN are described, including the key overlay and underlay approaches.
Then, proposed deployment migration paths are outlined to address
major practical issues, such as network and application migration.
Next, selected ICN trial experiences are summarized. Finally,
protocol areas that require further standardization are identified
to facilitate future interoperable ICN deployments. This document is
a product of the Information-Centric Networking Research Group
(ICNRG).
</t>
</abstract>
<boilerplate>
<section anchor="status-of-memo" numbered="false" removeInRFC="false" toc="exclude" pn="section-boilerplate.1">
<name slugifiedName="name-status-of-this-memo">Status of This Memo</name>
<t pn="section-boilerplate.1-1">
This document is not an Internet Standards Track specification; it is
published for informational purposes.
</t>
<t pn="section-boilerplate.1-2">
This document is a product of the Internet Research Task Force
(IRTF). The IRTF publishes the results of Internet-related
research and development activities. These results might not be
suitable for deployment. This RFC represents the consensus of the Information-Centric Networking
Research Group of the Internet Research Task Force (IRTF).
Documents approved for publication by the IRSG are not a
candidate for any level of Internet Standard; see Section 2 of RFC
7841.
</t>
<t pn="section-boilerplate.1-3">
Information about the current status of this document, any
errata, and how to provide feedback on it may be obtained at
<eref target="https://www.rfc-editor.org/info/rfc8763" brackets="none"/>.
</t>
</section>
<section anchor="copyright" numbered="false" removeInRFC="false" toc="exclude" pn="section-boilerplate.2">
<name slugifiedName="name-copyright-notice">Copyright Notice</name>
<t pn="section-boilerplate.2-1">
Copyright (c) 2020 IETF Trust and the persons identified as the
document authors. All rights reserved.
</t>
<t pn="section-boilerplate.2-2">
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<eref target="https://trustee.ietf.org/license-info" brackets="none"/>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with
respect to this document.
</t>
</section>
</boilerplate>
<toc>
<section anchor="toc" numbered="false" removeInRFC="false" toc="exclude" pn="section-toc.1">
<name slugifiedName="name-table-of-contents">Table of Contents</name>
<ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1">
<li pn="section-toc.1-1.1">
<t keepWithNext="true" pn="section-toc.1-1.1.1"><xref derivedContent="1" format="counter" sectionFormat="of" target="section-1"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-introduction">Introduction</xref></t>
</li>
<li pn="section-toc.1-1.2">
<t keepWithNext="true" pn="section-toc.1-1.2.1"><xref derivedContent="2" format="counter" sectionFormat="of" target="section-2"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-terminology">Terminology</xref></t>
</li>
<li pn="section-toc.1-1.3">
<t keepWithNext="true" pn="section-toc.1-1.3.1"><xref derivedContent="3" format="counter" sectionFormat="of" target="section-3"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-abbreviations-list">Abbreviations List</xref></t>
</li>
<li pn="section-toc.1-1.4">
<t pn="section-toc.1-1.4.1"><xref derivedContent="4" format="counter" sectionFormat="of" target="section-4"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-deployment-configurations">Deployment Configurations</xref></t>
<ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.4.2">
<li pn="section-toc.1-1.4.2.1">
<t pn="section-toc.1-1.4.2.1.1"><xref derivedContent="4.1" format="counter" sectionFormat="of" target="section-4.1"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-clean-slate-icn">Clean-Slate ICN</xref></t>
</li>
<li pn="section-toc.1-1.4.2.2">
<t pn="section-toc.1-1.4.2.2.1"><xref derivedContent="4.2" format="counter" sectionFormat="of" target="section-4.2"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-icn-as-an-overlay">ICN-as-an-Overlay</xref></t>
</li>
<li pn="section-toc.1-1.4.2.3">
<t pn="section-toc.1-1.4.2.3.1"><xref derivedContent="4.3" format="counter" sectionFormat="of" target="section-4.3"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-icn-as-an-underlay">ICN-as-an-Underlay</xref></t>
<ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.4.2.3.2">
<li pn="section-toc.1-1.4.2.3.2.1">
<t pn="section-toc.1-1.4.2.3.2.1.1"><xref derivedContent="4.3.1" format="counter" sectionFormat="of" target="section-4.3.1"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-edge-network">Edge Network</xref></t>
</li>
<li pn="section-toc.1-1.4.2.3.2.2">
<t pn="section-toc.1-1.4.2.3.2.2.1"><xref derivedContent="4.3.2" format="counter" sectionFormat="of" target="section-4.3.2"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-core-network">Core Network</xref></t>
</li>
</ul>
</li>
<li pn="section-toc.1-1.4.2.4">
<t pn="section-toc.1-1.4.2.4.1"><xref derivedContent="4.4" format="counter" sectionFormat="of" target="section-4.4"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-icn-as-a-slice">ICN-as-a-Slice</xref></t>
</li>
<li pn="section-toc.1-1.4.2.5">
<t pn="section-toc.1-1.4.2.5.1"><xref derivedContent="4.5" format="counter" sectionFormat="of" target="section-4.5"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-composite-icn-approach">Composite-ICN Approach</xref></t>
</li>
</ul>
</li>
<li pn="section-toc.1-1.5">
<t pn="section-toc.1-1.5.1"><xref derivedContent="5" format="counter" sectionFormat="of" target="section-5"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-deployment-migration-paths">Deployment Migration Paths</xref></t>
<ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.5.2">
<li pn="section-toc.1-1.5.2.1">
<t pn="section-toc.1-1.5.2.1.1"><xref derivedContent="5.1" format="counter" sectionFormat="of" target="section-5.1"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-application-and-service-mig">Application and Service Migration</xref></t>
</li>
<li pn="section-toc.1-1.5.2.2">
<t pn="section-toc.1-1.5.2.2.1"><xref derivedContent="5.2" format="counter" sectionFormat="of" target="section-5.2"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-content-delivery-network-mi">Content Delivery Network Migration</xref></t>
</li>
<li pn="section-toc.1-1.5.2.3">
<t pn="section-toc.1-1.5.2.3.1"><xref derivedContent="5.3" format="counter" sectionFormat="of" target="section-5.3"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-edge-network-migration">Edge Network Migration</xref></t>
</li>
<li pn="section-toc.1-1.5.2.4">
<t pn="section-toc.1-1.5.2.4.1"><xref derivedContent="5.4" format="counter" sectionFormat="of" target="section-5.4"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-core-network-migration">Core Network Migration</xref></t>
</li>
</ul>
</li>
<li pn="section-toc.1-1.6">
<t pn="section-toc.1-1.6.1"><xref derivedContent="6" format="counter" sectionFormat="of" target="section-6"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-deployment-trial-experience">Deployment Trial Experiences</xref></t>
<ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.6.2">
<li pn="section-toc.1-1.6.2.1">
<t pn="section-toc.1-1.6.2.1.1"><xref derivedContent="6.1" format="counter" sectionFormat="of" target="section-6.1"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-icn-as-an-overlay-2">ICN-as-an-Overlay</xref></t>
<ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.6.2.1.2">
<li pn="section-toc.1-1.6.2.1.2.1">
<t pn="section-toc.1-1.6.2.1.2.1.1"><xref derivedContent="6.1.1" format="counter" sectionFormat="of" target="section-6.1.1"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-fp7-pursuit-efforts">FP7 PURSUIT Efforts</xref></t>
</li>
<li pn="section-toc.1-1.6.2.1.2.2">
<t pn="section-toc.1-1.6.2.1.2.2.1"><xref derivedContent="6.1.2" format="counter" sectionFormat="of" target="section-6.1.2"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-fp7-sail-trial">FP7 SAIL Trial</xref></t>
</li>
<li pn="section-toc.1-1.6.2.1.2.3">
<t pn="section-toc.1-1.6.2.1.2.3.1"><xref derivedContent="6.1.3" format="counter" sectionFormat="of" target="section-6.1.3"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-ndn-testbed">NDN Testbed</xref></t>
</li>
<li pn="section-toc.1-1.6.2.1.2.4">
<t pn="section-toc.1-1.6.2.1.2.4.1"><xref derivedContent="6.1.4" format="counter" sectionFormat="of" target="section-6.1.4"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-icn2020-efforts">ICN2020 Efforts</xref></t>
</li>
<li pn="section-toc.1-1.6.2.1.2.5">
<t pn="section-toc.1-1.6.2.1.2.5.1"><xref derivedContent="6.1.5" format="counter" sectionFormat="of" target="section-6.1.5"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-umobile-efforts">UMOBILE Efforts</xref></t>
</li>
</ul>
</li>
<li pn="section-toc.1-1.6.2.2">
<t pn="section-toc.1-1.6.2.2.1"><xref derivedContent="6.2" format="counter" sectionFormat="of" target="section-6.2"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-icn-as-an-underlay-2">ICN-as-an-Underlay</xref></t>
<ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.6.2.2.2">
<li pn="section-toc.1-1.6.2.2.2.1">
<t pn="section-toc.1-1.6.2.2.2.1.1"><xref derivedContent="6.2.1" format="counter" sectionFormat="of" target="section-6.2.1"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-h2020-point-and-rife-effort">H2020 POINT and RIFE Efforts</xref></t>
</li>
<li pn="section-toc.1-1.6.2.2.2.2">
<t pn="section-toc.1-1.6.2.2.2.2.1"><xref derivedContent="6.2.2" format="counter" sectionFormat="of" target="section-6.2.2"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-h2020-flame-efforts">H2020 FLAME Efforts</xref></t>
</li>
<li pn="section-toc.1-1.6.2.2.2.3">
<t pn="section-toc.1-1.6.2.2.2.3.1"><xref derivedContent="6.2.3" format="counter" sectionFormat="of" target="section-6.2.3"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-cablelabs-content-delivery-">CableLabs Content Delivery System</xref></t>
</li>
<li pn="section-toc.1-1.6.2.2.2.4">
<t pn="section-toc.1-1.6.2.2.2.4.1"><xref derivedContent="6.2.4" format="counter" sectionFormat="of" target="section-6.2.4"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-ndn-iot-trials">NDN IoT Trials</xref></t>
</li>
<li pn="section-toc.1-1.6.2.2.2.5">
<t pn="section-toc.1-1.6.2.2.2.5.1"><xref derivedContent="6.2.5" format="counter" sectionFormat="of" target="section-6.2.5"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-nren-icn-testbed">NREN ICN Testbed</xref></t>
</li>
<li pn="section-toc.1-1.6.2.2.2.6">
<t pn="section-toc.1-1.6.2.2.2.6.1"><xref derivedContent="6.2.6" format="counter" sectionFormat="of" target="section-6.2.6"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-doctor-testbed">DOCTOR Testbed</xref></t>
</li>
</ul>
</li>
<li pn="section-toc.1-1.6.2.3">
<t pn="section-toc.1-1.6.2.3.1"><xref derivedContent="6.3" format="counter" sectionFormat="of" target="section-6.3"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-composite-icn-approach-2">Composite-ICN Approach</xref></t>
</li>
<li pn="section-toc.1-1.6.2.4">
<t pn="section-toc.1-1.6.2.4.1"><xref derivedContent="6.4" format="counter" sectionFormat="of" target="section-6.4"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-summary-of-deployment-trial">Summary of Deployment Trials</xref></t>
</li>
</ul>
</li>
<li pn="section-toc.1-1.7">
<t pn="section-toc.1-1.7.1"><xref derivedContent="7" format="counter" sectionFormat="of" target="section-7"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-deployment-issues-requiring">Deployment Issues Requiring Further Standardization</xref></t>
<ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.7.2">
<li pn="section-toc.1-1.7.2.1">
<t pn="section-toc.1-1.7.2.1.1"><xref derivedContent="7.1" format="counter" sectionFormat="of" target="section-7.1"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-protocols-for-application-a">Protocols for Application and Service Migration</xref></t>
</li>
<li pn="section-toc.1-1.7.2.2">
<t pn="section-toc.1-1.7.2.2.1"><xref derivedContent="7.2" format="counter" sectionFormat="of" target="section-7.2"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-protocols-for-content-deliv">Protocols for Content Delivery Network Migration</xref></t>
</li>
<li pn="section-toc.1-1.7.2.3">
<t pn="section-toc.1-1.7.2.3.1"><xref derivedContent="7.3" format="counter" sectionFormat="of" target="section-7.3"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-protocols-for-edge-and-core">Protocols for Edge and Core Network Migration</xref></t>
</li>
<li pn="section-toc.1-1.7.2.4">
<t pn="section-toc.1-1.7.2.4.1"><xref derivedContent="7.4" format="counter" sectionFormat="of" target="section-7.4"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-summary-of-icn-protocol-gap">Summary of ICN Protocol Gaps and Potential Protocol Efforts</xref></t>
</li>
</ul>
</li>
<li pn="section-toc.1-1.8">
<t pn="section-toc.1-1.8.1"><xref derivedContent="8" format="counter" sectionFormat="of" target="section-8"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-conclusion">Conclusion</xref></t>
</li>
<li pn="section-toc.1-1.9">
<t pn="section-toc.1-1.9.1"><xref derivedContent="9" format="counter" sectionFormat="of" target="section-9"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-iana-considerations">IANA Considerations</xref></t>
</li>
<li pn="section-toc.1-1.10">
<t pn="section-toc.1-1.10.1"><xref derivedContent="10" format="counter" sectionFormat="of" target="section-10"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-security-considerations">Security Considerations</xref></t>
</li>
<li pn="section-toc.1-1.11">
<t pn="section-toc.1-1.11.1"><xref derivedContent="11" format="counter" sectionFormat="of" target="section-11"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-informative-references">Informative References</xref></t>
</li>
<li pn="section-toc.1-1.12">
<t pn="section-toc.1-1.12.1"><xref derivedContent="" format="none" sectionFormat="of" target="section-appendix.a"/><xref derivedContent="" format="title" sectionFormat="of" target="name-acknowledgments">Acknowledgments</xref></t>
</li>
<li pn="section-toc.1-1.13">
<t pn="section-toc.1-1.13.1"><xref derivedContent="" format="none" sectionFormat="of" target="section-appendix.b"/><xref derivedContent="" format="title" sectionFormat="of" target="name-authors-addresses">Authors' Addresses</xref></t>
</li>
</ul>
</section>
</toc>
</front>
<middle>
<section anchor="sec_introduction" numbered="true" toc="include" removeInRFC="false" pn="section-1">
<name slugifiedName="name-introduction">Introduction</name>
<t pn="section-1-1">The ICNRG charter identifies deployment guidelines as an important
topic area for the ICN community. Specifically, the charter states
that defining concrete migration paths for ICN deployments that
avoid forklift upgrades and defining practical ICN interworking
configurations
with the existing Internet paradigm are key topic areas that
require further investigation <xref target="ICNRGCharter" format="default" sectionFormat="of" derivedContent="ICNRGCharter"/>. Also, it is well
understood that results and conclusions from any mid- to large-scale
ICN experiments in the live Internet will also provide useful
guidance for deployments.
</t>
<t pn="section-1-2">So far, outside of some preliminary investigations, such as <xref target="I-D.paik-icn-deployment-considerations" format="default" sectionFormat="of" derivedContent="ICN-DEP-CON"/>,
there has not been much
progress on this topic. This document attempts to fill some of
these gaps by defining clear deployment configurations for ICN and
associated
migration pathways for these configurations. Also, selected
deployment trial experiences of ICN technology are summarized.
Recommendations
are also made for potential future IETF standardization of key
protocol functionality that will facilitate interoperable ICN
deployments going forward.
</t>
<t pn="section-1-3">The major configurations of possible ICN deployments are identified
in this document as (1) Clean-slate ICN replacement of existing Internet
infrastructure,
(2) ICN-as-an-Overlay, (3) ICN-as-an-Underlay, (4) ICN-as-a-Slice,
and (5) Composite-ICN. Existing ICN trial systems primarily fall
under the ICN-as-an-Overlay, ICN-as-an-Underlay, and Composite-ICN
configurations. Each of these deployment configurations have their
respective strengths and weaknesses.
This document will aim to provide guidance for current and future
members of the ICN community when they consider deployment of ICN
technologies.
</t>
<t pn="section-1-4">This document represents the consensus of the Information-Centric
Networking Research Group (ICNRG). It has been reviewed extensively by
the Research Group
(RG) members active in the specific areas of work covered by the document.</t>
</section>
<section anchor="sec_terminology" numbered="true" toc="include" removeInRFC="false" pn="section-2">
<name slugifiedName="name-terminology">Terminology</name>
<t pn="section-2-1">
This document assumes readers are, in general, familiar with the terms and
concepts that are defined in <xref target="RFC7927" format="default" sectionFormat="of" derivedContent="RFC7927"/> and
<xref target="I-D.irtf-icnrg-terminology" format="default" sectionFormat="of" derivedContent="ICN-TERM"/>. In addition,
this document defines the following terminology:
</t>
<dl newline="true" spacing="normal" pn="section-2-2">
<dt pn="section-2-2.1">Deployment:</dt>
<dd pn="section-2-2.2">The final stage of the process of setting up an ICN network that is
(1) ready for useful work (e.g., transmission of end-user
video and text) in a live environment and (2) integrated
and interoperable
with the Internet. We consider the Internet in its widest
sense where it encompasses various access networks (e.g.,
Wi-Fi or mobile radio network),
service edge networks (e.g., for edge computing), transport
networks, Content Distribution Networks (CDNs), core networks (e.g., mobile core network),
and back-end processing networks
(e.g., data centers). However, throughout this document,
the discussion is typically limited to edge networks, core
networks, and CDNs, for simplicity.</dd>
<dt pn="section-2-2.3">Information-Centric Networking (ICN):</dt>
<dd pn="section-2-2.4">A data-centric network
architecture where accessing data by name is the essential network
primitive.
See <xref target="I-D.irtf-icnrg-terminology" format="default" sectionFormat="of" derivedContent="ICN-TERM"/> for further information.</dd>
<dt pn="section-2-2.5">Network Functions Virtualization (NFV):</dt>
<dd pn="section-2-2.6">A networking approach
where network functions (e.g., firewalls or load balancers) are
modularized
as software logic that can run on general purpose hardware
and, thus, are specifically decoupled from the previous
generation of proprietary
and dedicated hardware. See <xref target="RFC8568" format="default" sectionFormat="of" derivedContent="RFC8568"/> for further information.</dd>
<dt pn="section-2-2.7">Software-Defined Networking (SDN):</dt>
<dd pn="section-2-2.8">A networking approach where the control and data planes for
switches are separated, allowing for
realizing capabilities, such as traffic isolation and programmable
forwarding actions. See <xref target="RFC7426" format="default" sectionFormat="of" derivedContent="RFC7426"/> for
further information.</dd>
</dl>
</section>
<section anchor="sec_acronyms" numbered="true" toc="include" removeInRFC="false" pn="section-3">
<name slugifiedName="name-abbreviations-list">Abbreviations List</name>
<dl newline="false" spacing="normal" indent="13" pn="section-3-1">
<dt pn="section-3-1.1">API:</dt>
<dd pn="section-3-1.2">Application Programming Interface</dd>
<dt pn="section-3-1.3">BIER:</dt>
<dd pn="section-3-1.4">Bit Index Explicit Replication</dd>
<dt pn="section-3-1.5">BoF:</dt>
<dd pn="section-3-1.6">Birds of a Feather (session)</dd>
<dt pn="section-3-1.7">CCNx:</dt>
<dd pn="section-3-1.8">Content-Centric Networking</dd>
<dt pn="section-3-1.9">CDN:</dt>
<dd pn="section-3-1.10">Content Distribution Network</dd>
<dt pn="section-3-1.11">CoAP:</dt>
<dd pn="section-3-1.12">Constrained Application Protocol</dd>
<dt pn="section-3-1.13">DASH:</dt>
<dd pn="section-3-1.14">Dynamic Adaptive Streaming over HTTP</dd>
<dt pn="section-3-1.15">Diffserv:</dt>
<dd pn="section-3-1.16">Differentiated Services</dd>
<dt pn="section-3-1.17">DoS:</dt>
<dd pn="section-3-1.18">Denial of Service</dd>
<dt pn="section-3-1.19">DTN:</dt>
<dd pn="section-3-1.20">Delay-Tolerant Networking</dd>
<dt pn="section-3-1.21">ETSI:</dt>
<dd pn="section-3-1.22">European Telecommunications Standards Institute</dd>
<dt pn="section-3-1.23">EU:</dt>
<dd pn="section-3-1.24">European Union</dd>
<dt pn="section-3-1.25">FP7:</dt>
<dd pn="section-3-1.26">7th Framework Programme for Research and Technological Development</dd>
<dt pn="section-3-1.27">HLS:</dt>
<dd pn="section-3-1.28">HTTP Live Streaming</dd>
<dt pn="section-3-1.29">HTTP:</dt>
<dd pn="section-3-1.30">HyperText Transfer Protocol</dd>
<dt pn="section-3-1.31">HTTPS:</dt>
<dd pn="section-3-1.32">HyperText Transfer Protocol Secure</dd>
<dt pn="section-3-1.33">H2020:</dt>
<dd pn="section-3-1.34">Horizon 2020 (research program)</dd>
<dt pn="section-3-1.35">ICN:</dt>
<dd pn="section-3-1.36">Information-Centric Networking</dd>
<dt pn="section-3-1.37">ICNRG:</dt>
<dd pn="section-3-1.38">Information-Centric Networking Research Group</dd>
<dt pn="section-3-1.39">IETF:</dt>
<dd pn="section-3-1.40">Internet Engineering Task Force</dd>
<dt pn="section-3-1.41">IntServ:</dt>
<dd pn="section-3-1.42">Integrated Services</dd>
<dt pn="section-3-1.43">IoT:</dt>
<dd pn="section-3-1.44">Internet of Things</dd>
<dt pn="section-3-1.45">IP:</dt>
<dd pn="section-3-1.46">Internet Protocol</dd>
<dt pn="section-3-1.47">IPv4:</dt>
<dd pn="section-3-1.48">Internet Protocol Version 4</dd>
<dt pn="section-3-1.49">IPv6:</dt>
<dd pn="section-3-1.50">Internet Protocol Version 6</dd>
<dt pn="section-3-1.51">IPTV:</dt>
<dd pn="section-3-1.52">Internet Protocol Television</dd>
<dt pn="section-3-1.53">IS-IS:</dt>
<dd pn="section-3-1.54">Intermediate System to Intermediate System</dd>
<dt pn="section-3-1.55">ISP:</dt>
<dd pn="section-3-1.56">Internet Service Provider</dd>
<dt pn="section-3-1.57">k:</dt>
<dd pn="section-3-1.58">kilo (1000)</dd>
<dt pn="section-3-1.59">L2:</dt>
<dd pn="section-3-1.60">Layer 2</dd>
<dt pn="section-3-1.61">LTE:</dt>
<dd pn="section-3-1.62">Long Term Evolution (or 4th generation cellular system)</dd>
<dt pn="section-3-1.63">MANO:</dt>
<dd pn="section-3-1.64">Management and Orchestration</dd>
<dt pn="section-3-1.65">MEC:</dt>
<dd pn="section-3-1.66">Multi-access Edge Computing</dd>
<dt pn="section-3-1.67">Mbps:</dt>
<dd pn="section-3-1.68">Megabits per second</dd>
<dt pn="section-3-1.69">M2M:</dt>
<dd pn="section-3-1.70">Machine-to-Machine</dd>
<dt pn="section-3-1.71">NAP:</dt>
<dd pn="section-3-1.72">Network Attachment Point</dd>
<dt pn="section-3-1.73">NDN:</dt>
<dd pn="section-3-1.74">Named Data Networking</dd>
<dt pn="section-3-1.75">NETCONF:</dt>
<dd pn="section-3-1.76">Network Configuration Protocol</dd>
<dt pn="section-3-1.77">NetInf:</dt>
<dd pn="section-3-1.78">Network of Information </dd>
<dt pn="section-3-1.79">NFD:</dt>
<dd pn="section-3-1.80">Named Data Networking Forwarding Daemon</dd>
<dt pn="section-3-1.81">NFV:</dt>
<dd pn="section-3-1.82">Network Functions Virtualization</dd>
<dt pn="section-3-1.83">NICT:</dt>
<dd pn="section-3-1.84">Japan's National Institute of Information and Communications Technology</dd>
<dt pn="section-3-1.85">NR:</dt>
<dd pn="section-3-1.86">New Radio (access network for 5G)</dd>
<dt pn="section-3-1.87">OAM:</dt>
<dd pn="section-3-1.88">Operations, Administration, and Maintenance</dd>
<dt pn="section-3-1.89">ONAP:</dt>
<dd pn="section-3-1.90">Open Network Automation Platform</dd>
<dt pn="section-3-1.91">OSPF:</dt>
<dd pn="section-3-1.92">Open Shortest Path First</dd>
<dt pn="section-3-1.93">PoC:</dt>
<dd pn="section-3-1.94">Proof of Concept (demo)</dd>
<dt pn="section-3-1.95">POINT:</dt>
<dd pn="section-3-1.96"> IP Over ICN - the better IP (project)</dd>
<dt pn="section-3-1.97">qMp:</dt>
<dd pn="section-3-1.98">Quick Mesh Project</dd>
<dt pn="section-3-1.99">QoS:</dt>
<dd pn="section-3-1.100">Quality of Service</dd>
<dt pn="section-3-1.101">RAM:</dt>
<dd pn="section-3-1.102">Random Access Memory</dd>
<dt pn="section-3-1.103">RAN:</dt>
<dd pn="section-3-1.104">Radio Access Network</dd>
<dt pn="section-3-1.105">REST:</dt>
<dd pn="section-3-1.106">Representational State Transfer (architecture)</dd>
<dt pn="section-3-1.107">RESTCONF:</dt>
<dd pn="section-3-1.108">Representational State Transfer Configuration (protocol)</dd>
<dt pn="section-3-1.109">RIFE:</dt>
<dd pn="section-3-1.110">Architecture for an Internet For Everybody (project)</dd>
<dt pn="section-3-1.111">RIP:</dt>
<dd pn="section-3-1.112">Routing Information Protocol </dd>
<dt pn="section-3-1.113">ROM:</dt>
<dd pn="section-3-1.114">Read-Only Memory</dd>
<dt pn="section-3-1.115">RSVP:</dt>
<dd pn="section-3-1.116">Resource Reservation Protocol</dd>
<dt pn="section-3-1.117">RTP:</dt>
<dd pn="section-3-1.118">Real-time Transport Protocol</dd>
<dt pn="section-3-1.119">SDN:</dt>
<dd pn="section-3-1.120">Software-Defined Networking</dd>
<dt pn="section-3-1.121">SFC:</dt>
<dd pn="section-3-1.122">Service Function Chaining</dd>
<dt pn="section-3-1.123">SLA:</dt>
<dd pn="section-3-1.124">Service Level Agreement</dd>
<dt pn="section-3-1.125">TCL:</dt>
<dd pn="section-3-1.126">Transport Convergence Layer</dd>
<dt pn="section-3-1.127">TCP:</dt>
<dd pn="section-3-1.128">Transmission Control Protocol</dd>
<dt pn="section-3-1.129">UDP:</dt>
<dd pn="section-3-1.130">User Datagram Protocol</dd>
<dt pn="section-3-1.131">UMOBILE:</dt>
<dd pn="section-3-1.132">Universal Mobile-centric and Opportunistic Communications Architecture</dd>
<dt pn="section-3-1.133">US:</dt>
<dd pn="section-3-1.134">United States</dd>
<dt pn="section-3-1.135">USA:</dt>
<dd pn="section-3-1.136">United States of America</dd>
<dt pn="section-3-1.137">VoD:</dt>
<dd pn="section-3-1.138">Video on Demand</dd>
<dt pn="section-3-1.139">VPN:</dt>
<dd pn="section-3-1.140">Virtual Private Network</dd>
<dt pn="section-3-1.141">WG:</dt>
<dd pn="section-3-1.142">Working Group</dd>
<dt pn="section-3-1.143">YANG:</dt>
<dd pn="section-3-1.144">Yet Another Next Generation (data modeling language)</dd>
<dt pn="section-3-1.145">5G:</dt>
<dd pn="section-3-1.146">Fifth Generation (cellular network)</dd>
<dt pn="section-3-1.147">6LoWPAN:</dt>
<dd pn="section-3-1.148">IPv6 over Low-Power Wireless Personal Area Networks</dd>
</dl>
</section>
<section anchor="sec_configurations" numbered="true" toc="include" removeInRFC="false" pn="section-4">
<name slugifiedName="name-deployment-configurations">Deployment Configurations</name>
<t pn="section-4-1">In this section, we present various deployment options for ICN.
These are presented as "configurations" that allow for studying these
options
further. While this document will outline experiences with a number of
these configurations (in <xref target="sec_trial_experiences" format="default" sectionFormat="of" derivedContent="Section 6"/>), we will
not provide an in-depth technical or commercial evaluation for any of
them -- for this, we refer to existing literature in this space, such as
<xref target="Tateson" format="default" sectionFormat="of" derivedContent="Tateson"/>.
</t>
<section anchor="sec_replacements" numbered="true" toc="include" removeInRFC="false" pn="section-4.1">
<name slugifiedName="name-clean-slate-icn">Clean-Slate ICN</name>
<t pn="section-4.1-1">ICN has often been described as a "clean-slate" approach with the
goal to renew or replace the complete IP infrastructure of the
Internet.
As such, existing routing hardware and
ancillary services, such as existing applications that are
typically tied directly to the TCP/IP stack, are not
taken for granted. For instance, a Clean-slate ICN deployment
would see existing IP routers being replaced by ICN-specific
forwarding and routing elements, such as NFD <xref target="NFD" format="default" sectionFormat="of" derivedContent="NFD"/>, CCNx routers <xref target="Jacobson" format="default" sectionFormat="of" derivedContent="Jacobson"/>, or Publish-Subscribe
Internet Technology (PURSUIT) forwarding nodes <xref target="IEEE_Communications" format="default" sectionFormat="of" derivedContent="IEEE_Communications"/>.
</t>
<t pn="section-4.1-2">While such clean-slate replacement could be seen as exclusive for
ICN deployments, some ICN approaches (e.g., <xref target="POINT" format="default" sectionFormat="of" derivedContent="POINT"/>)
also rely on the deployment of general infrastructure
upgrades, in this case, SDN switches. Different proposals have
been made for various
ICN approaches to enable the operation over an SDN transport
<xref target="Reed" format="default" sectionFormat="of" derivedContent="Reed"/> <xref target="CONET" format="default" sectionFormat="of" derivedContent="CONET"/> <xref target="C_FLOW" format="default" sectionFormat="of" derivedContent="C_FLOW"/>.
</t>
</section>
<section anchor="sec_overlay" numbered="true" toc="include" removeInRFC="false" pn="section-4.2">
<name slugifiedName="name-icn-as-an-overlay">ICN-as-an-Overlay</name>
<t pn="section-4.2-1">Similar to other significant changes to the Internet routing
fabric, particularly the transition from IPv4 to IPv6 or
the introduction of IP multicast, this deployment
configuration foresees the creation of an ICN overlay. Note
that this overlay
approach is sometimes, informally, also referred to as a
tunneling approach.
The overlay approach can be implemented directly
(e.g., ICN-over-UDP), as described in <xref target="CCNx_UDP" format="default" sectionFormat="of" derivedContent="CCNx_UDP"/>. Alternatively, the overlay can be
accomplished via ICN-in-L2-in-IP as in <xref target="IEEE_Communications" format="default" sectionFormat="of" derivedContent="IEEE_Communications"/>, which
describes a recursive layering process. Another approach used
in the Network of Information (NetInf) is to define a
convergence layer to map NetInf semantics to HTTP <xref target="I-D.kutscher-icnrg-netinf-proto" format="default" sectionFormat="of" derivedContent="NetInf"/>.
Finally, <xref target="Overlay_ICN" format="default" sectionFormat="of" derivedContent="Overlay_ICN"/>
describes an incremental approach to deploying an ICN
architecture particularly well suited to
SDN-based networks by also segregating ICN user- and
control-plane traffic.
</t>
<t pn="section-4.2-2">However, regardless of the flavor, the overlay approach results in
islands of ICN deployments over existing IP-based infrastructure.
Furthermore, these ICN islands are typically connected to each
other via ICN/IP tunnels. In certain scenarios, this requires
interoperability between existing IP routing protocols (e.g.,
OSPF, RIP, or IS-IS) and ICN-based ones. ICN-as-an-Overlay can be
deployed
over the IP infrastructure in either edge or core networks.
This overlay approach is thus very attractive for ICN
experimentation
and testing, as it allows rapid and easy deployment of ICN over
existing IP networks.
</t>
</section>
<section anchor="sec_underlay" numbered="true" toc="include" removeInRFC="false" pn="section-4.3">
<name slugifiedName="name-icn-as-an-underlay">ICN-as-an-Underlay</name>
<t pn="section-4.3-1">Proposals, such as <xref target="POINT" format="default" sectionFormat="of" derivedContent="POINT"/> and <xref target="White" format="default" sectionFormat="of" derivedContent="White"/>, outline the deployment option of
using an ICN underlay that would
integrate with existing (external) IP-based networks by
deploying application-layer gateways at appropriate locations.
The main reasons for
such a configuration option is the introduction of ICN
technology in given islands (e.g., inside a CDN or edge IoT
network) to reap the benefits
of native ICN, in terms of underlying multicast delivery,
mobility support, fast indirection due to location
independence, in-network computing,
and possibly more. The underlay approach thus results in
islands of native ICN deployments that are connected to the
rest of the Internet
through protocol conversion gateways or proxies. Routing
domains are strictly separated. Outside of the ICN island,
normal IP routing protocols
apply. Within the ICN island, ICN-based routing schemes
apply. The gateways transfer the semantic content of the
messages (i.e., IP packet payload) between the two routing
domains.
</t>
<section anchor="sec_application_gateways" numbered="true" toc="include" removeInRFC="false" pn="section-4.3.1">
<name slugifiedName="name-edge-network">Edge Network</name>
<t pn="section-4.3.1-1">Native ICN networks may be located at the edge of the network
where the introduction of new network
architectures and protocols is easier in so-called greenfield
deployments. In this context, ICN is an attractive option
for scenarios, such as IoT <xref target="I-D.irtf-icnrg-icniot" format="default" sectionFormat="of" derivedContent="ICN-IoT"/>. The integration with the current IP
protocol suite takes place at an
application gateway/proxy at the edge network boundary, e.g.,
translating incoming CoAP request/response transactions
<xref target="RFC7252" format="default" sectionFormat="of" derivedContent="RFC7252"/> into ICN message
exchanges or vice versa.
</t>
<t pn="section-4.3.1-2">The work in <xref target="VSER" format="default" sectionFormat="of" derivedContent="VSER"/> positions ICN
as an edge service gateway driven by a generalized ICN-based service
orchestration
system with its own compute and network virtualization
controllers to manage an ICN infrastructure. The platform also
offers service discovery
capabilities to enable user applications to discover
appropriate ICN service gateways. To exemplify a
scenario in a use case, the <xref target="VSER" format="default" sectionFormat="of" derivedContent="VSER"/> platform
shows the realization of a multi-party audio/video
conferencing service over such an edge cloud deployment of ICN
routers realized over commodity hardware platforms. This platform has also been extended to
offer seamless mobility as a service that <xref target="VSER-Mob" format="default" sectionFormat="of" derivedContent="VSER-Mob"/> features.
</t>
</section>
<section anchor="sec_http_ip" numbered="true" toc="include" removeInRFC="false" pn="section-4.3.2">
<name slugifiedName="name-core-network">Core Network</name>
<t pn="section-4.3.2-1">In this suboption, a core network would utilize edge-based
protocol mapping onto the native ICN underlay. For instance, <xref target="POINT" format="default" sectionFormat="of" derivedContent="POINT"/> proposes
to map HTTP transactions or some other IP-based transactions,
such as CoAP, directly onto an ICN-based message
exchange. This mapping is realized at the
NAP, for example, in access points or customer premise
equipment, which, in turn, provides a standard IP interface to
existing user devices. Thus, the NAP provides the apparent
perception of an IP-based core network toward any external
peering network.
</t>
<t pn="section-4.3.2-2">The work in <xref target="White" format="default" sectionFormat="of" derivedContent="White"/> proposes a
similar deployment configuration. There, the goal is to use ICN for
content distribution within CDN
server farms. Specifically, the protocol mapping is realized
at the ingress of the server farm where the HTTP-based
retrieval request is served, while the
response is delivered through a suitable egress node
translation.
</t>
</section>
</section>
<section anchor="sec_icn_slice" numbered="true" toc="include" removeInRFC="false" pn="section-4.4">
<name slugifiedName="name-icn-as-a-slice">ICN-as-a-Slice</name>
<t pn="section-4.4-1"> The objective of network slicing <xref target="NGMN-5G" format="default" sectionFormat="of" derivedContent="NGMN-5G"/> is to multiplex a general pool of compute, storage,
and bandwidth resources among multiple service networks with exclusive SLA
requirements on transport and compute-level QoS and security. This is
enabled through NFV and SDN technology functions that enable
functional decomposition (hence, modularity, independent scalability
of control, and/or the user-plane functions), agility, and service-driven
programmability. Network slicing is often associated with 5G but is
clearly not limited to such systems. However, from a 5G perspective,
the definition of slicing includes access networks enabling dynamic
slicing of the spectrum resources among various services, hence naturally
extending itself to end points and cloud resources across
multiple domains, to offer end-to-end guarantees.
Once instantiated, these slices
could include a mix of connectivity services (e.g.,
LTE-as-a-service), Over-the-Top (OTT) services (e.g., VoD), or
other IoT services through composition of a group of virtual
and/or physical network functions at the control-, user-, and
service-plane levels. Such a framework
can also be used to realize ICN slices with its own control
and forwarding plane, over which one or more end-user
services can be delivered <xref target="NGMN-Network-Slicing" format="default" sectionFormat="of" derivedContent="NGMN-Network-Slicing"/>.</t>
<t pn="section-4.4-2">The 5G next generation architecture <xref target="fiveG-23501" format="default" sectionFormat="of" derivedContent="fiveG-23501"/> provides the flexibility to deploy the
ICN-as-a-Slice over either the edge (RAN) or mobile core network; otherwise,
the ICN-as-a-Slice may be deployed end to end. Further discussions on
extending the architecture presented in <xref target="fiveG-23501" format="default" sectionFormat="of" derivedContent="fiveG-23501"/> and the corresponding procedures in <xref target="fiveG-23502" format="default" sectionFormat="of" derivedContent="fiveG-23502"/> to support ICN has been
provided in <xref target="I-D.ravi-icnrg-5gc-icn" format="default" sectionFormat="of" derivedContent="ICN-5GC"/>.
The document elaborates on two possible approaches to
enable ICN: (1) as an edge service using the local data network (LDN)
feature in 5G using User Plane Function (UPF) classification
functions to fast
handover to the ICN forwarder and (2) as a native deployment
using the non-IP Protocol Data Unit (PDU) support that would allow new network
layer PDU to be handed over to ICN UPFs collocated with the
Generation NodeB (gNB) functions without invoking any IP
functions. While the
former deployment would still rely on 3GPP-based mobility
functions, the later would
allow mobility to be handled natively by ICN. However, both
these deployment modes should benefit from other ICN features,
such as in-network caching and computing. Associated with this
ICN user-plane enablement, control-plane extensions are also
proposed leveraging 5th Generation Core Network (5GC)'s
interface to other application functions (AFs)
to allow new network service-level programmability. Such a
generalized network slicing framework should be able to offer
service slices over both IP and ICN. Coupled
with the view of ICN functions as being "service
function chaining" <xref target="RFC7665" format="default" sectionFormat="of" derivedContent="RFC7665"/>, an ICN
deployment within such
a slice could also be realized within the emerging control
plane that is targeted for adoption in future
(e.g., 5G mobile) network deployments. Finally, it should be
noted that ICN is not creating the network slice but
instead that the slice is created to run a 5G-ICN instance
<xref target="Ravindran" format="default" sectionFormat="of" derivedContent="Ravindran"/>.</t>
<t pn="section-4.4-3">At the level of the specific technologies involved, such as ONAP
<xref target="ONAP" format="default" sectionFormat="of" derivedContent="ONAP"/> (which can be used to orchestrate
slices),
the 5G-ICN slice requires compatibility, for instance, at the
level of the forwarding/data plane depending on if it is
realized as
an overlay or using programmable data planes. With SDN
emerging for new network deployments, some ICN approaches will
need to
integrate as a data-plane forwarding function with SDN, as
briefly discussed in <xref target="sec_replacements" format="default" sectionFormat="of" derivedContent="Section 4.1"/>. Further
cross-domain ICN slices can also be realized using frameworks,
such as <xref target="ONAP" format="default" sectionFormat="of" derivedContent="ONAP"/>.</t>
</section>
<section anchor="sec_hybrid" numbered="true" toc="include" removeInRFC="false" pn="section-4.5">
<name slugifiedName="name-composite-icn-approach">Composite-ICN Approach</name>
<t pn="section-4.5-1">Some deployments do not clearly correspond to any of the previously
defined basic configurations of
(1) Clean-slate ICN, (2) ICN-as-an-Overlay, (3) ICN-as-an-Underlay,
and (4) ICN-as-a-Slice. Or, a deployment
may contain a composite mixture of the properties of these basic
configurations. For example, the Hybrid ICN
<xref target="H-ICN_1" format="default" sectionFormat="of" derivedContent="H-ICN_1"/> approach carries ICN names
in existing IPv6 headers and does not have distinct gateways
or tunnels connecting ICN islands or any other distinct feature
identified in the previous basic configurations.
So we categorize Hybrid ICN and other approaches that do not
clearly correspond to one of the other basic
configurations as a Composite-ICN approach.</t>
</section>
</section>
<section anchor="sec_migration" numbered="true" toc="include" removeInRFC="false" pn="section-5">
<name slugifiedName="name-deployment-migration-paths">Deployment Migration Paths</name>
<t pn="section-5-1">We now focus on the various migration paths that will have importance
to the various stakeholders that are usually involved
in the deployment of ICN networks. We can identify these stakeholders
as:
</t>
<ul spacing="normal" bare="false" empty="false" pn="section-5-2">
<li pn="section-5-2.1">application providers</li>
<li pn="section-5-2.2">ISPs and service providers, both as core and access network
providers, as well as ICN network providers</li>
<li pn="section-5-2.3">CDN providers (due to the strong relation of the ICN proposition
to content delivery)</li>
<li pn="section-5-2.4">end-device manufacturers and users</li>
</ul>
<t pn="section-5-3">
Our focus is on technological aspects of such migration. Economic or
regulatory aspects, such as those studied in <xref target="Tateson" format="default" sectionFormat="of" derivedContent="Tateson"/>,
<xref target="Techno_Economic" format="default" sectionFormat="of" derivedContent="Techno_Economic"/>, and <xref target="Internet_Pricing" format="default" sectionFormat="of" derivedContent="Internet_Pricing"/>, are left out of our
discussion.
</t>
<section anchor="sec_apps_service" numbered="true" toc="include" removeInRFC="false" pn="section-5.1">
<name slugifiedName="name-application-and-service-mig">Application and Service Migration</name>
<t pn="section-5.1-1">The Internet supports a multitude of applications and services
using the many protocols defined over the packet-level IP
service. HTTP provides
one convergence point for these services with many web
development frameworks based on the semantics provided by it.
In recent years, even services such as video delivery have
been migrating from the traditional RTP-over-UDP delivery to
the various HTTP-level
streaming solutions, such as DASH <xref target="DASH" format="default" sectionFormat="of" derivedContent="DASH"/> and others. Nonetheless, many non-HTTP
services exist, all of which need consideration
when migrating from the IP-based Internet to an ICN-based one.
</t>
<t pn="section-5.1-2">The underlay deployment configuration option presented in <xref target="sec_underlay" format="default" sectionFormat="of" derivedContent="Section 4.3"/> aims at providing some level
of compatibility
to the existing ecosystem through a proxy-based message flow
mapping mechanism (e.g., mapping of existing HTTP/TCP/IP
message flows to
HTTP/ICN message flows). A related approach of mapping TCP/IP
to TCP/ICN message flows is described in <xref target="Moiseenko" format="default" sectionFormat="of" derivedContent="Moiseenko"/>.
Another approach described in <xref target="Marchal" format="default" sectionFormat="of" derivedContent="Marchal"/> uses HTTP/NDN gateways and focuses, in
particular, on the right strategy to map
HTTP to NDN to guarantee a high level of compatibility with
HTTP while enabling an efficient caching of data in the ICN
island. The choice
of approach is a design decision based on how to configure the
protocol stack. For example, the approach
described in <xref target="Moiseenko" format="default" sectionFormat="of" derivedContent="Moiseenko"/>
carries the TCP layer into the ICN underlay, while the <xref target="Marchal" format="default" sectionFormat="of" derivedContent="Marchal"/> approach
terminates both HTTP and TCP at the edge of the ICN underlay
and maps these functionalities onto existing ICN
functionalities.
</t>
<t pn="section-5.1-3">Alternatively, ICN-as-an-Overlay (<xref target="sec_overlay" format="default" sectionFormat="of" derivedContent="Section 4.2"/>) and ICN-as-a-Slice (<xref target="sec_icn_slice" format="default" sectionFormat="of" derivedContent="Section 4.4"/>) allow for the
introduction of the full capabilities of ICN through new
application/service interfaces, as well as operations in the
network. With that, these
approaches of deployment are likely to aim at introducing new
application/services capitalizing on those ICN capabilities,
such as in-network
multicast and/or caching.
</t>
<t pn="section-5.1-4">Finally, <xref target="I-D.irtf-icnrg-icn-lte-4g" format="default" sectionFormat="of" derivedContent="ICN-LTE-4G"/> outlines a dual-stack end-user device approach that
is applicable for all deployment
configurations. Specifically, it introduces middleware layers
(called the TCL) in the device that will dynamically adapt
existing applications
to either an underlying ICN protocol stack or standard IP
protocol stack. This involves end device
signaling with the network to determine which protocol stack
instance and associated middleware adaptation layers to
utilize for a given application transaction.
</t>
</section>
<section anchor="sec_cdn_migration" numbered="true" toc="include" removeInRFC="false" pn="section-5.2">
<name slugifiedName="name-content-delivery-network-mi">Content Delivery Network Migration</name>
<t pn="section-5.2-1">A significant number of services and applications are devoted to
content delivery in some form, e.g., as video delivery, social media
platforms,
and many others. CDNs are deployed to assist these services
through localizing the content requests and therefore reducing
latency and possibly
increasing utilization of available bandwidth, as well as
reducing the load on origin servers. Similar to the previous
subsection, the underlay deployment
configuration presented in <xref target="sec_underlay" format="default" sectionFormat="of" derivedContent="Section 4.3"/> aims at providing a migration path for
existing
CDNs. This is also highlighted in a BIER use-case document
<xref target="I-D.ietf-bier-multicast-http-response" format="default" sectionFormat="of" derivedContent="BIER"/>, specifically with potential benefits
in
terms of utilizing multicast in the delivery of content but
also reducing load on origin and delegation servers. We
return to this benefit in
the trial experiences in <xref target="sec_trial_experiences" format="default" sectionFormat="of" derivedContent="Section 6"/>.
</t>
</section>
<section anchor="sec_edge_migration" numbered="true" toc="include" removeInRFC="false" pn="section-5.3">
<name slugifiedName="name-edge-network-migration">Edge Network Migration</name>
<t pn="section-5.3-1">Edge networks often see the deployment of novel network-level
technology, e.g., in the space of IoT. For many years, such
IoT deployments have relied,
and often still do, on proprietary protocols for reasons, such
as increased efficiency, lack of standardization incentives,
and others.
Utilizing the
underlay deployment configuration in <xref target="sec_application_gateways" format="default" sectionFormat="of" derivedContent="Section 4.3.1"/>,
application gateways/proxies can integrate such edge
deployments
into IP-based services, e.g., utilizing CoAP-based <xref target="RFC7252" format="default" sectionFormat="of" derivedContent="RFC7252"/> M2M platforms, such
as oneM2M <xref target="oneM2M" format="default" sectionFormat="of" derivedContent="oneM2M"/> or others.
</t>
<t pn="section-5.3-2">Another area of increased edge network innovation is that of mobile
(access) networks, particularly in the context of the 5G mobile
networks.
Network softwarization (using technologies like service
orchestration frameworks leveraging NFV and SDN concepts) are
now common in access networks and other network segments.
Therefore, the ICN-as-a-Slice deployment configuration in
<xref target="sec_icn_slice" format="default" sectionFormat="of" derivedContent="Section 4.4"/> provides a
suitable migration path for the integration of non-IP-based
edge networks into the overall system by virtue of
realizing the relevant (ICN) protocols in an access network
slice.
</t>
<t pn="section-5.3-3">With the advent of SDN and NFV capabilities, so-called campus or
site-specific deployments could see the introduction of ICN islands at
the edge for scenarios such as gaming or deployments based on Augmented Reality
(AR) / Virtual Reality (VR), e.g., smart cities or
theme parks.</t>
</section>
<section anchor="sec_core_migration" numbered="true" toc="include" removeInRFC="false" pn="section-5.4">
<name slugifiedName="name-core-network-migration">Core Network Migration</name>
<t pn="section-5.4-1">Migrating core networks of the Internet or mobile networks requires
not only significant infrastructure renewal but also the fulfillment
of the key performance requirements, particularly in terms of
throughput. For those parts of the core network that would
migrate to an
SDN-based optical transport, the ICN-as-a-Slice deployment
configuration in <xref target="sec_icn_slice" format="default" sectionFormat="of" derivedContent="Section 4.4"/> would allow the introduction
of native ICN solutions within slices. This would allow for
isolating the ICN traffic while addressing the specific ICN
performance benefits
(such as in-network multicast or caching) and constraints (such
as the need for specific network elements within such isolated
slices).
For ICN solutions that natively work on top of SDN, the
underlay deployment configuration in <xref target="sec_http_ip" format="default" sectionFormat="of" derivedContent="Section 4.3.2"/> provides an
additional migration path, preserving the IP-based services
and applications at the edge of the network while realizing
the core network
routing through an ICN solution (possibly itself realized in a
slice of the SDN transport network).
</t>
</section>
</section>
<section anchor="sec_trial_experiences" numbered="true" toc="include" removeInRFC="false" pn="section-6">
<name slugifiedName="name-deployment-trial-experience">Deployment Trial Experiences</name>
<t pn="section-6-1">In this section, we will outline trial experiences, often conducted
within collaborative project efforts. Our focus here is on the
realization
of the various deployment configurations identified in <xref target="sec_configurations" format="default" sectionFormat="of" derivedContent="Section 4"/>; therefore, we
categorize the trial experiences according
to these deployment configurations. While a large body of
work exists at the simulation or emulation level, we
specifically exclude these studies
from our analysis to retain the focus on real-life
experiences.
</t>
<section anchor="sec_overlay_deployment" numbered="true" toc="include" removeInRFC="false" pn="section-6.1">
<name slugifiedName="name-icn-as-an-overlay-2">ICN-as-an-Overlay</name>
<section anchor="sec_pursuit" numbered="true" toc="include" removeInRFC="false" pn="section-6.1.1">
<name slugifiedName="name-fp7-pursuit-efforts">FP7 PURSUIT Efforts</name>
<t pn="section-6.1.1-1">Although the FP7 PURSUIT <xref target="IEEE_Communications" format="default" sectionFormat="of" derivedContent="IEEE_Communications"/> efforts were generally positioned as a
Clean-slate ICN replacement of IP
(<xref target="sec_replacements" format="default" sectionFormat="of" derivedContent="Section 4.1"/>), the
project realized its experimental testbed as an L2 VPN-based
overlay between several European, US,
and Asian sites, following the overlay deployment
configuration presented in <xref target="sec_overlay" format="default" sectionFormat="of" derivedContent="Section 4.2"/>. Software-based forwarders were
utilized for the ICN message exchange, while native ICN
applications (e.g., for video transmissions) were
showcased. At the height of the project
efforts, about 70+ nodes were active in the (overlay) network
with presentations given at several conferences, as well as to
the ICNRG.
</t>
</section>
<section anchor="sec_sail" numbered="true" toc="include" removeInRFC="false" pn="section-6.1.2">
<name slugifiedName="name-fp7-sail-trial">FP7 SAIL Trial</name>
<t pn="section-6.1.2-1"> The Network of Information (NetInf) is the approach to ICN
developed by the EU FP7 Scalable and Adaptive Internet Solutions
(SAIL) project <xref target="SAIL" format="default" sectionFormat="of" derivedContent="SAIL"/>.
NetInf provides both name-based forwarding with CCNx-like
semantics and name resolution (for indirection and
late binding).
The NetInf architecture supports different deployment options
through its convergence layer, such as using UDP, HTTP, and
even DTN underlays.
In its first prototypes and trials, NetInf was deployed mostly
in an HTTP embedding and in a UDP overlay following the
overlay deployment configuration in
<xref target="sec_overlay" format="default" sectionFormat="of" derivedContent="Section 4.2"/>. <xref target="SAIL_Prototyping" format="default" sectionFormat="of" derivedContent="SAIL_Prototyping"/> describes several
trials, including a stadium environment and
a multi-site testbed, leveraging NetInf's routing hint
approach for routing scalability <xref target="SAIL_Content_Delivery" format="default" sectionFormat="of" derivedContent="SAIL_Content_Delivery"/>.
</t>
</section>
<section anchor="sec_ndn" numbered="true" toc="include" removeInRFC="false" pn="section-6.1.3">
<name slugifiedName="name-ndn-testbed">NDN Testbed</name>
<t pn="section-6.1.3-1">The Named Data Networking (NDN) is one of the research projects
of the National Science Foundation (NSF) of the USA as part of the
Future
Internet Architecture (FIA) Program. The original NDN
proposal was positioned as a Clean-slate ICN replacement of IP
(<xref target="sec_replacements" format="default" sectionFormat="of" derivedContent="Section 4.1"/>).
However, in several trials, NDN generally follows the overlay
deployment configuration of <xref target="sec_overlay" format="default" sectionFormat="of" derivedContent="Section 4.2"/> to connect institutions over
the public Internet across several continents. The use cases
covered in the trials include real-time videoconferencing,
geolocating, and interfacing
to consumer applications. Typical trials involve up to 100
NDN-enabled nodes <xref target="NDN-testbed" format="default" sectionFormat="of" derivedContent="NDN-testbed"/> <xref target="Jangam" format="default" sectionFormat="of" derivedContent="Jangam"/>.
</t>
</section>
<section anchor="sec_ccn" numbered="true" toc="include" removeInRFC="false" pn="section-6.1.4">
<name slugifiedName="name-icn2020-efforts">ICN2020 Efforts</name>
<t pn="section-6.1.4-1">ICN2020 is an ICN-related project of the EU H2020 research
program and NICT <xref target="ICN2020-overview" format="default" sectionFormat="of" derivedContent="ICN2020-overview"/>.
ICN2020 has a specific focus to advance ICN towards real-world
deployments through applications, such as video delivery,
interactive videos, and social
networks. The federated testbed spans the USA, Europe, and
Japan. Both NDN and CCNx approaches are within the scope of the
project.
</t>
<t pn="section-6.1.4-2">ICN2020 has released a set of interim public technical reports.
The report <xref target="ICN2020-Experiments" format="default" sectionFormat="of" derivedContent="ICN2020-Experiments"/> contains a detailed description of the
progress made in both local
testbeds and federated testbeds. The plan for the
federated testbed includes integrating the NDN testbed,
the CUTEi testbed <xref target="RFC7945" format="default" sectionFormat="of" derivedContent="RFC7945"/>
<xref target="CUTEi" format="default" sectionFormat="of" derivedContent="CUTEi"/>, and the GEANT testbed
<xref target="GEANT" format="default" sectionFormat="of" derivedContent="GEANT"/>
to create an overlay deployment configuration of <xref target="sec_overlay" format="default" sectionFormat="of" derivedContent="Section 4.2"/> over the public
Internet. The total
network contains 37 nodes. Since video was an important
application, typical throughput was measured in certain
scenarios and found to be in the order of 70 Mbps per node.
</t>
</section>
<section anchor="sec_umobile" numbered="true" toc="include" removeInRFC="false" pn="section-6.1.5">
<name slugifiedName="name-umobile-efforts">UMOBILE Efforts</name>
<t pn="section-6.1.5-1">UMOBILE is another of the ICN research projects under the H2020
research program <xref target="UMOBILE-overview" format="default" sectionFormat="of" derivedContent="UMOBILE-overview"/>.
The UMOBILE architecture integrates the principles of DTN and
ICN in a common framework to support edge computing and
mobile opportunistic wireless environments (e.g.,
post-disaster scenarios and remote areas). The UMOBILE
architecture
<xref target="UMOBILE-2" format="default" sectionFormat="of" derivedContent="UMOBILE-2"/> was developed on
top of the NDN framework by following the overlay deployment
configuration of
<xref target="sec_overlay" format="default" sectionFormat="of" derivedContent="Section 4.2"/>. UMOBILE aims to
extend Internet functionally by combining ICN and DTN
technologies.
</t>
<t pn="section-6.1.5-2">One of the key aspects of UMOBILE was the extension of the NDN
framework to locate network services (e.g., mobility management and
intermittent connectivity support) and user services (e.g.,
pervasive content management) as close as possible to the
end users to optimize bandwidth
utilization and resource management. Another aspect was the
evolution of the NDN framework to operate in challenging
wireless networks, namely in emergency
scenarios <xref target="UMOBILE-3" format="default" sectionFormat="of" derivedContent="UMOBILE-3"/> and
environments with intermittent connectivity. To achieve this,
the NDN framework was leveraged with a
new messaging application called Oi! <xref target="UMOBILE-4" format="default" sectionFormat="of" derivedContent="UMOBILE-4"/> <xref target="UMOBILE-5" format="default" sectionFormat="of" derivedContent="UMOBILE-5"/>,
which supports intermittent wireless networking.
UMOBILE also implements a new data-centric wireless routing
protocol, DABBER <xref target="UMOBILE-6" format="default" sectionFormat="of" derivedContent="UMOBILE-6"/>
<xref target="I-D.mendes-icnrg-dabber" format="default" sectionFormat="of" derivedContent="DABBER"/>,
which was
designed based on data reachability metrics that take
availability of adjacent wireless nodes and different data
sources into consideration. The contextual awareness of the
wireless network operation is obtained via a machine-learning
agent running within the wireless nodes <xref target="UMOBILE-7" format="default" sectionFormat="of" derivedContent="UMOBILE-7"/>.
</t>
<t pn="section-6.1.5-3">The consortium has completed several ICN deployment trials. In a
post-disaster scenario trial <xref target="UMOBILE-8" format="default" sectionFormat="of" derivedContent="UMOBILE-8"/>,
a special DTN face was created to provide reachability to
remote areas where there is no typical Internet
connection. Another trial was the ICN deployment over the
"Guifi.net" community network in the Barcelona region. This
trial
focused on the evaluation of an ICN edge computing platform,
called PiCasso <xref target="UMOBILE-9" format="default" sectionFormat="of" derivedContent="UMOBILE-9"/>. In
this
trial, ten (10) Raspberry Pis were deployed across Barcelona
to create an ICN overlay network on top of the existing IP
routing protocol
(e.g., qMp routing). This trial showed that ICN can play a key
role in improving data delivery QoS and
reducing the traffic in intermittent connectivity environments
(e.g., wireless community network). A third trial in Italy was
focused
on displaying the capability of the UMOBILE architecture to
reach disconnected areas and assist responsible authorities in
emergencies,
corresponding to an infrastructure scenario. The demonstration
encompassed seven (7) end-user devices, one (1) access point,
and one (1) gateway.
</t>
</section>
</section>
<section anchor="sec_underlay_deployment" numbered="true" toc="include" removeInRFC="false" pn="section-6.2">
<name slugifiedName="name-icn-as-an-underlay-2">ICN-as-an-Underlay</name>
<section anchor="sec_point_rife" numbered="true" toc="include" removeInRFC="false" pn="section-6.2.1">
<name slugifiedName="name-h2020-point-and-rife-effort">H2020 POINT and RIFE Efforts</name>
<t pn="section-6.2.1-1">POINT and RIFE are two more ICN-related research projects of the
H2020 research program.
The efforts in the H2020 POINT and RIFE projects follow the
underlay deployment configuration in
<xref target="sec_http_ip" format="default" sectionFormat="of" derivedContent="Section 4.3.2"/>; edge-based NAPs
provide the IP/HTTP-level protocol mapping onto
ICN protocol exchanges, while the SDN underlay (or the
VPN-based L2 underlay) is used as a transport network.
</t>
<t pn="section-6.2.1-2">The multicast and service endpoint surrogate benefit in
HTTP-based scenarios, such as for
HTTP-level streaming video delivery, and have been demonstrated in
the deployed POINT testbed with
80+ nodes being utilized. Demonstrations of this capability
have been given to the ICNRG,
and public demonstrations were also provided at events <xref target="MWC_Demo" format="default" sectionFormat="of" derivedContent="MWC_Demo"/>. The trial has also been
accepted by the ETSI MEC
group as a public proof-of-concept demonstration.
</t>
<t pn="section-6.2.1-3">While the aforementioned demonstrations all use the overlay
deployment, H2020 also has performed ICN underlay trials. One such
trial involved commercial end users located in the PrimeTel
network in Cyprus with the use case centered on IPTV and HLS
video
dissemination. Another trial was performed over the
"Guifi.net" community network in the Barcelona region, where
the solution
was deployed in 40 households, providing general Internet
connectivity to the residents. Standard IPTV Set-Top
Boxes(STBs), as well as HLS video
players, were utilized in accordance with the aim of this
deployment configuration, namely to provide application and
service migration.
</t>
</section>
<section anchor="sec_flame" numbered="true" toc="include" removeInRFC="false" pn="section-6.2.2">
<name slugifiedName="name-h2020-flame-efforts">H2020 FLAME Efforts</name>
<t pn="section-6.2.2-1">The H2020 Facility for Large-Scale Adaptive Media Experimentation
(FLAME) efforts concentrate on providing an experimental
ground for the aforementioned POINT/RIFE
solution in initially two city-scale locations, namely in
Bristol and Barcelona. This trial followed the
underlay deployment configuration in <xref target="sec_http_ip" format="default" sectionFormat="of" derivedContent="Section 4.3.2"/>, as per the POINT/RIFE
approach. Experiments
were conducted with the city/university joint venture
Bristol-is-Open (BIO) to ensure the readiness of the
city-scale SDN transport network for such experiments. Another
trial was for the ETSI MEC PoC. This trial
showcased operational benefits provided by the ICN underlay
for the scenario of a location-based game. These
benefits aim at reduced network utilization through improved
video delivery performance
(multicast of all captured videos to the service surrogates
deployed in the city at six locations),
as well as reduced latency through the play out of the video
originating from the local NAP, collocated with the
Wi-Fi Access Point (AP) instead of a remote server, i.e., the playout latency
was bounded by the maximum single-hop latency.
</t>
<t pn="section-6.2.2-2"> Twenty three (23) large-scale media service experiments are
planned as part of the H2020 FLAME efforts
in the area of Future Media Internet (FMI). The platform,
which includes the ICN capabilities, integrated with NFV
and SDN capabilities of the infrastructure. The ultimate goal
of these platform efforts is the full
integration of ICN into the overall media function platform
for the provisioning of advanced
(media-centric) Internet services.
</t>
</section>
<section anchor="sec_cablelabs" numbered="true" toc="include" removeInRFC="false" pn="section-6.2.3">
<name slugifiedName="name-cablelabs-content-delivery-">CableLabs Content Delivery System</name>
<t pn="section-6.2.3-1">The CableLabs ICN work reported in <xref target="White" format="default" sectionFormat="of" derivedContent="White"/> proposes an underlay deployment configuration
based on <xref target="sec_http_ip" format="default" sectionFormat="of" derivedContent="Section 4.3.2"/>.
The use case is ICN for content distribution within complex
CDN server farms to leverage ICN's superior in-network caching
properties.
This CDN based on "island of ICN" is then used to service
standard HTTP/IP-based content retrieval requests coming from
the general Internet.
This approach acknowledges that whole scale replacement (see
<xref target="sec_replacements" format="default" sectionFormat="of" derivedContent="Section 4.1"/>) of
existing HTTP/IP end-user applications
and related web infrastructure is a difficult proposition.
<xref target="White" format="default" sectionFormat="of" derivedContent="White"/> is clear that the
architecture proposed has not yet
been tested experimentally but that implementations are in
process and expected in the 3-5 year time frame.
</t>
</section>
<section anchor="sec_NDN_IoT" numbered="true" toc="include" removeInRFC="false" pn="section-6.2.4">
<name slugifiedName="name-ndn-iot-trials">NDN IoT Trials</name>
<t pn="section-6.2.4-1"><xref target="Baccelli" format="default" sectionFormat="of" derivedContent="Baccelli"/> summarizes the trial
of an NDN system adapted specifically for a wireless IoT scenario.
The trial was run with
60 nodes distributed over several multistory buildings in a
university campus environment. The NDN protocols were
optimized to run directly
over 6LoWPAN wireless link layers. The performance of the
NDN-based IoT system was then compared to an equivalent system
running standard IP-based IoT protocols. It was found that
the NDN-based IoT
system was superior in several respects, including in terms of
energy consumption and
for RAM and ROM footprints <xref target="Baccelli" format="default" sectionFormat="of" derivedContent="Baccelli"/> <xref target="Anastasiades" format="default" sectionFormat="of" derivedContent="Anastasiades"/>. For example, the binary file size
reductions for
NDN protocol stack versus standard IP-based IoT protocol stack
on given devices were up to 60% less for ROM size and up to
80% less for RAM size.
</t>
</section>
<section anchor="sec_NREN" numbered="true" toc="include" removeInRFC="false" pn="section-6.2.5">
<name slugifiedName="name-nren-icn-testbed">NREN ICN Testbed</name>
<t pn="section-6.2.5-1">The National Research and Education Network (NREN) ICN Testbed is
a project sponsored by Cisco, Internet2, and the US Research and
Education
community. Participants include universities and US federal
government entities that connect via a nationwide VPN-based
L2 underlay. The testbed
uses the CCNx approach and is based on the <xref target="CICN" format="default" sectionFormat="of" derivedContent="CICN"/> open-source software. There are
approximately 15 nodes spread across the USA that
connect to the testbed. The project's current focus is to
advance data-intensive science and network research by
improving data movement, searchability,
and accessibility.
</t>
</section>
<section anchor="sec_Doctor" numbered="true" toc="include" removeInRFC="false" pn="section-6.2.6">
<name slugifiedName="name-doctor-testbed">DOCTOR Testbed</name>
<t pn="section-6.2.6-1">The DOCTOR project is a French research project meaning
"Deployment and Securisation of new Functionalities in Virtualized
Networking Environments".
The project aims to run NDN over virtualized NFV
infrastructure <xref target="Doctor" format="default" sectionFormat="of" derivedContent="Doctor"/> (based
on Docker technology) and focuses on the NFV MANO aspects
to build an operational NDN network focusing on important
performance criteria, such as security, performance, and
interoperability.
</t>
<t pn="section-6.2.6-2">The data plane relies on an HTTP/NDN gateway <xref target="Marchal" format="default" sectionFormat="of" derivedContent="Marchal"/> that processes HTTP traffic and
transports it in an optimized way over NDN to
benefit from the properties of the NDN island (i.e., by
mapping HTTP semantics to NDN semantics within the
NDN island). The testbed carries
real Web traffic of users and has been currently evaluated
with the top 1000 most popular websites. The users only
need to set the gateway
as the web proxy. The control plane relies on a central
manager that uses machine-learning-based detection methods
<xref target="Mai-1" format="default" sectionFormat="of" derivedContent="Mai-1"/>
from the date gathered by distributed probes and applies
orchestrated countermeasures against NDN attacks <xref target="Nguyen-1" format="default" sectionFormat="of" derivedContent="Nguyen-1"/>
<xref target="Nguyen-2" format="default" sectionFormat="of" derivedContent="Nguyen-2"/> <xref target="Mai-2" format="default" sectionFormat="of" derivedContent="Mai-2"/> or performance issues. A remediation can be,
for example, the scale up of a bottleneck
component or the deployment of a security function, like a
firewall or a signature verification module. Test results
thus far have indicated
that key attacks can be detected accurately. For example,
content poisoning attacks can be detected at up to over 95%
accuracy (with less than 0.01% false positives) <xref target="Nguyen-3" format="default" sectionFormat="of" derivedContent="Nguyen-3"/>.
</t>
</section>
</section>
<section anchor="sec_Other_configs" numbered="true" toc="include" removeInRFC="false" pn="section-6.3">
<name slugifiedName="name-composite-icn-approach-2">Composite-ICN Approach</name>
<t pn="section-6.3-1">Hybrid ICN <xref target="H-ICN_1" format="default" sectionFormat="of" derivedContent="H-ICN_1"/> <xref target="H-ICN_2" format="default" sectionFormat="of" derivedContent="H-ICN_2"/> is an approach where the ICN names
are mapped to IPv6 addresses and other ICN information
is carried as payload inside the IP packet. This allows
standard (ICN-unaware) IP routers to forward packets based on
IPv6 info but enables ICN-aware
routers to apply ICN semantics. The intent is to enable rapid
hybrid deployments and seamless interconnection of IP and
Hybrid ICN domains. Hybrid ICN
uses <xref target="CICN" format="default" sectionFormat="of" derivedContent="CICN"/> open-source
software.
Initial tests have been done with 150 clients consuming DASH videos,
which showed good scalability properties at the server side using the
Hybrid ICN transport <xref target="H-ICN_3" format="default" sectionFormat="of" derivedContent="H-ICN_3"/> <xref target="H-ICN_2" format="default" sectionFormat="of" derivedContent="H-ICN_2"/>.</t>
</section>
<section anchor="sec_trial_summary" numbered="true" toc="include" removeInRFC="false" pn="section-6.4">
<name slugifiedName="name-summary-of-deployment-trial">Summary of Deployment Trials</name>
<t pn="section-6.4-1">In summary, there have been significant trials over the years with
all the major ICN protocol flavors (e.g., CCNx, NDN, and POINT) using both
the ICN-as-an-Overlay and ICN-as-an-Underlay deployment
configurations. The major limitations of the trials include
the fact that only a limited
number of applications have been tested. However, the tested
applications include both native ICN and existing IP-based
applications
(e.g., videoconferencing and IPTV). Another limitation of
the trials is that all of them involve less than 1k users.</t>
<t pn="section-6.4-2">Huawei and China Unicom have just started trials of the ICN-as-a-Slice configuration to demonstrate
ICN features of security, mobility, and bandwidth efficiency
over a wired infrastructure using videoconferencing
as the application scenario <xref target="Chakraborti" format="default" sectionFormat="of" derivedContent="Chakraborti"/>; also, this prototype has been extended to
demonstrate this over a 5G-NR access.</t>
<t pn="section-6.4-3">The Clean-slate ICN approach has obviously never been in trials, as
complete replacement of Internet
infrastructure (e.g., existing applications, TCP/IP protocol
stack, IP routers, etc.) is no longer considered a viable
alternative.</t>
<t pn="section-6.4-4">Finally, Hybrid ICN is a Composite-ICN approach that offers an
interesting alternative, as it allows ICN semantics to be embedded in
standard
IPv6 packets so the packets can be routed through either IP
routers or Hybrid ICN routers. Note that some other trials,
such as the
DOCTOR testbed (<xref target="sec_Doctor" format="default" sectionFormat="of" derivedContent="Section 6.2.6"/>),
could also be characterized as a Composite-ICN approach,
because it contains both ICN gateways
(as in ICN-as-an-Underlay) and virtualized infrastructure (as
in ICN-as-a-Slice). However, for the DOCTOR testbed, we have
chosen to characterize
it as an ICN-as-an-Underlay configuration because that is a
dominant characteristic.
</t>
</section>
</section>
<section anchor="sec_standards" numbered="true" toc="include" removeInRFC="false" pn="section-7">
<name slugifiedName="name-deployment-issues-requiring">Deployment Issues Requiring Further Standardization</name>
<t pn="section-7-1"><xref target="RFC7927" format="default" sectionFormat="of" derivedContent="RFC7927">"Information-Centric Networking (ICN) Research Challenges"</xref>
describes key ICN principles and technical research topics. As the
title suggests,
<xref target="RFC7927" format="default" sectionFormat="of" derivedContent="RFC7927"/> is research oriented
without a specific focus on deployment or standardization
issues. This section addresses this
open area by identifying key protocol functionality that
may be relevant for further standardization effort in
the IETF.
The focus is specifically
on identifying protocols that will facilitate future
interoperable ICN deployments correlating to the scenarios
identified in the deployment
migration paths in <xref target="sec_migration" format="default" sectionFormat="of" derivedContent="Section 5"/>. The identified list of potential protocol
functionality is not exhaustive.
</t>
<section anchor="sec_standards_apps" numbered="true" toc="include" removeInRFC="false" pn="section-7.1">
<name slugifiedName="name-protocols-for-application-a">Protocols for Application and Service Migration</name>
<t pn="section-7.1-1">End-user applications and services need a standardized approach to
trigger ICN transactions. For example, in Internet and web
applications
today, there are established socket APIs, communication
paradigms (such as REST), common libraries, and best
practices. We see a need to study
application requirements in an ICN environment further and, at
the same time, develop new APIs and best practices that can
take advantage of ICN
communication characteristics.
</t>
</section>
<section anchor="sec_standards_cdn" numbered="true" toc="include" removeInRFC="false" pn="section-7.2">
<name slugifiedName="name-protocols-for-content-deliv">Protocols for Content Delivery Network Migration</name>
<t pn="section-7.2-1">A key issue in CDNs is to quickly find a location of a copy of the
object requested by an end user. In ICN, a Named Data Object (NDO) is
typically defined by its name. <xref target="RFC6920" format="default" sectionFormat="of" derivedContent="RFC6920"/> defines a mechanism that is suitable for
static naming of ICN data objects. Other
ways of encoding and representing ICN names have been
described in <xref target="RFC8609" format="default" sectionFormat="of" derivedContent="RFC8609"/> and
<xref target="RFC8569" format="default" sectionFormat="of" derivedContent="RFC8569"/>. Naming dynamically
generated data requires different approaches(e.g.,
hash-digest-based names would normally not work), and there is
a lack of established conventions and standards.
</t>
<t pn="section-7.2-2">Another CDN issue for ICN is related to multicast distribution of
content.
Existing CDNs have started using multicast mechanisms for
certain cases, such as for broadcasting streaming TV. However, as
discussed in <xref target="sec_point_rife" format="default" sectionFormat="of" derivedContent="Section 6.2.1"/>,
certain ICN approaches provide
substantial improvements over IP multicast, such as the
implicit support for multicast retrieval of content in all ICN
flavors.
</t>
<t pn="section-7.2-3">Caching is an implicit feature in many ICN architectures that can
improve performance and availability in several scenarios. The ICN
in-network caching can augment managed CDN and improve its
performance. The details of the interplay between ICN caching
and managed CDN need further consideration.
</t>
</section>
<section anchor="sec_standards_edge_core" numbered="true" toc="include" removeInRFC="false" pn="section-7.3">
<name slugifiedName="name-protocols-for-edge-and-core">Protocols for Edge and Core Network Migration</name>
<t pn="section-7.3-1">ICN provides the potential to redesign current edge and core
network computing approaches. Leveraging ICN's inherent security and
its ability
to make name data and dynamic computation results available
independent of location can enable a lightweight insertion
of traffic
into the network without relying on redirection of DNS
requests. For this, proxies that translate from commonly used
protocols in the general
Internet to ICN message exchanges in the ICN domain could be
used for the migration of application and services within
deployments at the network
edge but also in core networks. This is similar to existing
approaches for IoT scenarios where a proxy translates CoAP
request/responses to other
message formats. For example, <xref target="RFC8075" format="default" sectionFormat="of" derivedContent="RFC8075"/> specifies proxy mapping between CoAP and
HTTP protocols. Also, <xref target="RFC8613" format="default" sectionFormat="of" derivedContent="RFC8613"/>
is an example of how to pass end-to-end encrypted content
between HTTP and CoAP by an application-layer security
mechanism. Further work is required
to identify if an approach like <xref target="RFC8613" format="default" sectionFormat="of" derivedContent="RFC8613"/>, or some other approach, is
suitable to preserve ICN message security through future
protocol
translation functions of gateways/proxies.
</t>
<t pn="section-7.3-2">Interaction and interoperability between existing IP routing
protocols (e.g., OSPF, RIP, or IS-IS) and ICN routing
approaches (e.g.,
NFD and CCNx routers)
are expected, especially in the overlay approach. Another
important topic is the integration of ICN into networks that
support virtualized infrastructure
in the form of NFV/SDN and most likely utilize SFC as a key
protocol. Further work is required to validate this idea and
document best practices.
</t>
<t pn="section-7.3-3">There are several existing approaches to supporting QoS in IP
networks, including Diffserv, IntServ, and RSVP. Some initial ideas
for QoS support in ICN
networks are outlined in <xref target="I-D.moiseenko-icnrg-flowclass" format="default" sectionFormat="of" derivedContent="FLOW-CLASS"/>,
which proposes an approach based on flow
classification to enable
functions, such ICN
rate control and cache control. Also, <xref target="I-D.anilj-icnrg-icn-qos" format="default" sectionFormat="of" derivedContent="ICN-QoS"/> proposes
how to use Diffserv Differentiated Services Code Point (DSCP)
codes to support QoS for ICN-based data
path delivery. Further work is required to identify the best
approaches for support of QoS in ICN networks.
</t>
<t pn="section-7.3-4">OAM is a crucial area that has not yet been fully addressed by the
ICN research community but which is obviously critical for future
deployments of ICN.
Potential areas that need investigation include whether the YANG
data modeling approach and associated NETCONF/RESTCONF protocols
need any specific updates
for ICN support. Another open area is how to measure and benchmark
performance of ICN networks comparable to the sophisticated
techniques that exist for standard
IP networks, virtualized networks, and data centers. It should be
noted that some initial progress has been made in the area of ICN
network path traceroute
facility with approaches, such as CCNxinfo <xref target="I-D.irtf-icnrg-ccninfo" format="default" sectionFormat="of" derivedContent="CNNinfo"/> <xref target="Contrace" format="default" sectionFormat="of" derivedContent="Contrace"/>.
</t>
</section>
<section anchor="sec_ICN_Challenges_Summary_Gaps" numbered="true" toc="include" removeInRFC="false" pn="section-7.4">
<name slugifiedName="name-summary-of-icn-protocol-gap">Summary of ICN Protocol Gaps and Potential Protocol Efforts</name>
<t pn="section-7.4-1">Without claiming completeness, <xref target="tab_mapping_protocol_effort" format="default" sectionFormat="of" derivedContent="Table 1"/> maps the open
ICN issues identified in this document to potential protocol efforts
that could address some aspects of the gap.
</t>
<table anchor="tab_mapping_protocol_effort" align="center" pn="table-1">
<name slugifiedName="name-mapping-of-icn-gaps-to-pote">Mapping of ICN Gaps to Potential Protocol Efforts</name>
<thead>
<tr>
<th align="left" colspan="1" rowspan="1">ICN Gap</th>
<th align="left" colspan="1" rowspan="1">Potential Protocol Effort</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" colspan="1" rowspan="1">1-Support of REST APIs</td>
<td align="left" colspan="1" rowspan="1">HTTP/CoAP support of ICN semantics</td>
</tr>
<tr>
<td align="left" colspan="1" rowspan="1">2-Naming</td>
<td align="left" colspan="1" rowspan="1">Dynamic naming of ICN data objects</td>
</tr>
<tr>
<td align="left" colspan="1" rowspan="1">3-Routing</td>
<td align="left" colspan="1" rowspan="1">Interactions between IP and ICN routing protocols</td>
</tr>
<tr>
<td align="left" colspan="1" rowspan="1">4-Multicast distribution</td>
<td align="left" colspan="1" rowspan="1">Multicast enhancements for ICN</td>
</tr>
<tr>
<td align="left" colspan="1" rowspan="1">5-In-network caching</td>
<td align="left" colspan="1" rowspan="1">ICN cache placement and sharing</td>
</tr>
<tr>
<td align="left" colspan="1" rowspan="1">6-NFV/SDN support</td>
<td align="left" colspan="1" rowspan="1">Integration of ICN with NFV/SDN and including
possible impacts to SFC</td>
</tr>
<tr>
<td align="left" colspan="1" rowspan="1">7-ICN mapping</td>
<td align="left" colspan="1" rowspan="1">Mapping of HTTP and other protocols onto ICN
message exchanges (and vice versa) while preserving ICN message
security</td>
</tr>
<tr>
<td align="left" colspan="1" rowspan="1">8-QoS support</td>
<td align="left" colspan="1" rowspan="1">Support of ICN QoS via mechanisms, such as
Diffserv and flow classification</td>
</tr>
<tr>
<td align="left" colspan="1" rowspan="1">9-OAM support</td>
<td align="left" colspan="1" rowspan="1">YANG data models, NETCONF/RESTCONF protocols, and
network-performance measurements</td>
</tr>
</tbody>
</table>
</section>
</section>
<section anchor="sec_conclusion" numbered="true" toc="include" removeInRFC="false" pn="section-8">
<name slugifiedName="name-conclusion">Conclusion</name>
<t pn="section-8-1">This document provides high-level deployment considerations for
current and future members of the ICN community. Specifically, the
major configurations of possible ICN deployments are identified as
(1) Clean-slate ICN replacement of existing Internet infrastructure,
(2) ICN-as-an-Overlay, (3) ICN-as-an-Underlay, (4) ICN-as-a-Slice,
and (5) Composite-ICN. Existing ICN trial systems primarily fall
under the ICN-as-an-Overlay, ICN-as-an-Underlay, and Composite-ICN
configurations.
</t>
<t pn="section-8-2">In terms of deployment migration paths, ICN-as-an-Underlay offers a
clear migration path for CDN, edge, or core networks to go to an
ICN paradigm (e.g., for an IoT deployment) while leaving the
critical mass of existing end-user applications untouched.
ICN-as-an-Overlay is
the easiest configuration to deploy rapidly, as it leaves the
underlying IP infrastructure essentially untouched. However, its
applicability for general deployment must be considered on a
case-by-case basis. (That is, can it support all required user
applications?).
ICN-as-a-Slice is an attractive deployment option for upcoming 5G
systems (i.e., for 5G radio and core networks) that will naturally
support network slicing, but this still has to be validated through
more trial experiences. Composite-ICN, by its nature, can combine
some of the best characteristics of the other configurations, but
its applicability for general deployment must again be considered
on a case-by-case basis (i.e., can enough IP routers be upgraded to
support Composite-ICN functionality to provide sufficient
performance benefits?).
</t>
<t pn="section-8-3">There has been significant trial experience with all the major ICN
protocol flavors (e.g., CCNx, NDN, and POINT). However, only a limited
number of applications have been tested so far, and the maximum
number of users in any given trial has been less than 1k users. It
is
recommended that future ICN deployments scale their users gradually
and closely monitor network performance as they go above 1k users.
A logical approach would be to increase the number of users in a
slowly increasing linear manner and monitor network performance and
stability, especially at every multiple of 1k users.
</t>
<t pn="section-8-4">Finally, this document describes a set of technical features in ICN
that warrant potential future IETF specification work. This will
aid initial and incremental deployments to proceed in an
interoperable manner. The fundamental details of the potential
protocol specification
effort, however, are best left for future study by the appropriate
IETF WGs and/or BoFs. The ICNRG can aid this process in the
near and mid-term by continuing to examine key system issues like
QoS mechanisms, flexible naming schemes, and OAM support for ICN.
</t>
</section>
<section anchor="IANA" numbered="true" toc="include" removeInRFC="false" pn="section-9">
<name slugifiedName="name-iana-considerations">IANA Considerations</name>
<t pn="section-9-1">This document has no IANA actions.
</t>
</section>
<section anchor="Security" numbered="true" toc="include" removeInRFC="false" pn="section-10">
<name slugifiedName="name-security-considerations">Security Considerations</name>
<t pn="section-10-1">ICN was purposefully designed from the start to have certain
intrinsic security properties. The most well known of which are
authentication
of delivered content and (optional) encryption of the content. <xref target="RFC7945" format="default" sectionFormat="of" derivedContent="RFC7945"/> has an extensive discussion of
various aspects of ICN security,
including many that are relevant to deployments. Specifically,
<xref target="RFC7945" format="default" sectionFormat="of" derivedContent="RFC7945"/> points out that ICN access
control, privacy, security
of in-network caches, and protection against various network attacks
(e.g., DoS) have not yet been fully developed due to the lack of a
sufficient
mass of deployments. <xref target="RFC7945" format="default" sectionFormat="of" derivedContent="RFC7945"/> also
points out relevant advances occurring in the ICN research community
that hold promise to address
each of the identified security gaps. Lastly, <xref target="RFC7945" format="default" sectionFormat="of" derivedContent="RFC7945"/> points out that as secure
communications in the existing Internet (e.g., HTTPS)
become the norm, major gaps in ICN security will inevitably
slow down the adoption of ICN.
</t>
<t pn="section-10-2">In addition to the security findings of <xref target="RFC7945" format="default" sectionFormat="of" derivedContent="RFC7945"/>, this document has highlighted that all anticipated
ICN deployment configurations
will involve coexistence with existing Internet infrastructure and
applications. Thus, even the basic authentication and encryption
properties of ICN
content will need to account for interworking with non-ICN content
to preserve end-to-end security. For example, in the edge network
underlay deployment
configuration described in <xref target="sec_application_gateways" format="default" sectionFormat="of" derivedContent="Section 4.3.1"/>, the gateway/proxy that translates HTTP or CoAP
request/responses into ICN message
exchanges will need to support a security model to preserve
end-to-end security. One alternative would be to consider an
approach similar to
<xref target="RFC8613" format="default" sectionFormat="of" derivedContent="RFC8613"/>, which is used to pass
end-to-end encrypted content between HTTP and CoAP by an
application-layer security mechanism. Further
investigation is required to see if this approach is suitable to
preserve ICN message security through future protocol translation
functions (e.g., ICN to HTTP or CoAP to ICN) of gateways/proxies.
</t>
<t pn="section-10-3">Finally, the DOCTOR project discussed in <xref target="sec_Doctor" format="default" sectionFormat="of" derivedContent="Section 6.2.6"/> is an example of an early deployment that is looking
at specific attacks against
ICN infrastructure, in this case, looking at Interest Flooding
Attacks <xref target="Nguyen-2" format="default" sectionFormat="of" derivedContent="Nguyen-2"/> and Content
Poisoning Attacks <xref target="Nguyen-1" format="default" sectionFormat="of" derivedContent="Nguyen-1"/>
<xref target="Mai-2" format="default" sectionFormat="of" derivedContent="Mai-2"/> <xref target="Nguyen-3" format="default" sectionFormat="of" derivedContent="Nguyen-3"/> and evaluating potential countermeasures based
on MANO-orchestrated actions on the virtualized infrastructure <xref target="Mai-1" format="default" sectionFormat="of" derivedContent="Mai-1"/>.
</t>
</section>
</middle>
<back>
<displayreference target="I-D.ietf-bier-multicast-http-response" to="BIER"/>
<displayreference target="I-D.irtf-icnrg-icniot" to="ICN-IoT"/>
<displayreference target="I-D.irtf-icnrg-terminology" to="ICN-TERM"/>
<displayreference target="I-D.irtf-icnrg-icn-lte-4g" to="ICN-LTE-4G"/>
<displayreference target="I-D.irtf-icnrg-ccninfo" to="CNNinfo"/>
<displayreference target="I-D.paik-icn-deployment-considerations" to="ICN-DEP-CON"/>
<displayreference target="I-D.kutscher-icnrg-netinf-proto" to="NetInf"/>
<displayreference target="I-D.ravi-icnrg-5gc-icn" to="ICN-5GC"/>
<displayreference target="I-D.moiseenko-icnrg-flowclass" to="FLOW-CLASS"/>
<displayreference target="I-D.anilj-icnrg-icn-qos" to="ICN-QoS"/>
<displayreference target="I-D.mendes-icnrg-dabber" to="DABBER"/>
<references pn="section-11">
<name slugifiedName="name-informative-references">Informative References</name>
<reference anchor="Anastasiades" target="http://boris.unibe.ch/83683/1/16anastasiades_c.pdf" quoteTitle="true" derivedAnchor="Anastasiades">
<front>
<title>Information-centric communication in mobile and wireless networks</title>
<author initials="C" surname="Anastasiades" fullname="Carlos Anastasiades">
<organization showOnFrontPage="true"/>
</author>
<date month="June" year="2016"/>
</front>
<seriesInfo name="DOI" value="10.7892/boris.83683"/>
<refcontent>PhD Dissertation</refcontent>
</reference>
<reference anchor="Baccelli" target="http://conferences2.sigcomm.org/acm-icn/2014/papers/p77.pdf" quoteTitle="true" derivedAnchor="Baccelli">
<front>
<title>Information Centric Networking in the IoT: Experiments with NDN in the Wild</title>
<author>
<organization showOnFrontPage="true">Baccelli, E., et al.</organization>
</author>
<date month="September" year="2014"/>
</front>
<seriesInfo name="DOI" value="10.1145/2660129.2660144"/>
<refcontent>ACM-ICN '14: Proceedings of the 1st ACM Conference on
Information-Centric Networking</refcontent>
</reference>
<reference anchor="I-D.ietf-bier-multicast-http-response" quoteTitle="true" target="https://tools.ietf.org/html/draft-ietf-bier-multicast-http-response-03" derivedAnchor="BIER">
<front>
<title>Applicability of BIER Multicast Overlay for Adaptive Streaming Services</title>
<author initials="D" surname="Trossen" fullname="Dirk Trossen">
<organization showOnFrontPage="true"/>
</author>
<author initials="A" surname="Rahman" fullname="Akbar Rahman">
<organization showOnFrontPage="true"/>
</author>
<author initials="C" surname="Wang" fullname="Chonggang Wang">
<organization showOnFrontPage="true"/>
</author>
<author initials="T" surname="Eckert" fullname="Toerless Eckert">
<organization showOnFrontPage="true"/>
</author>
<date month="February" day="4" year="2020"/>
<abstract>
<t>HTTP Level multicast, using BIER, is described as a use case in the BIER Use Cases document. HTTP Level Multicast is used in today's video streaming and delivery services such as HLS, AR/VR etc., generally realized over IP Multicast as well as other use cases such as software update delivery. A realization of "HTTP Multicast" over "IP Multicast" is described for the video delivery use case. IP multicast is commonly used for IPTV services. DVB and BBF is also developing a reference architecture for IP Multicast service. A few problems with IP Multicast, such as waste of transmission bandwidth, increase in signaling when there are few users are described. Realization over BIER, through a BIER Multicast Overlay Layer, is described as an alternative. How BIER Multicast Overlay operation improves over IP Multicast, such as reduction in signaling, dynamic creation of multicast groups to reduce signaling and bandwidth wastage is described. We conclude with few next steps.</t>
</abstract>
</front>
<seriesInfo name="Internet-Draft" value="draft-ietf-bier-multicast-http-response-03"/>
<format type="TXT" target="http://www.ietf.org/internet-drafts/draft-ietf-bier-multicast-http-response-03.txt"/>
<refcontent>Work in Progress</refcontent>
</reference>
<reference anchor="CCNx_UDP" target="https://www.ietf.org/proceedings/interim-2015-icnrg-04/slides/slides-interim-2015-icnrg-4-5.pdf" quoteTitle="true" derivedAnchor="CCNx_UDP">
<front>
<title>CCNx Over UDP</title>
<author>
<organization showOnFrontPage="true">PARC</organization>
</author>
</front>
</reference>
<reference anchor="Chakraborti" quoteTitle="true" target="https://doi.org/10.1109/HOTICN.2018.8605980" derivedAnchor="Chakraborti">
<front>
<title>Design and Evaluation of a Multi-source Multi-destination Real-time Application on Content Centric Network</title>
<author>
<organization showOnFrontPage="true">Chakraborti, A., et al.</organization>
</author>
<date month="August" year="2018"/>
</front>
<seriesInfo name="DOI" value="10.1109/HOTICN.2018.8605980"/>
<refcontent>2018 1st IEEE International Conference on Hot
Information-Centric Networking (HotICN)</refcontent>
</reference>
<reference anchor="CICN" target="https://wiki.fd.io/view/Cicn" quoteTitle="true" derivedAnchor="CICN">
<front>
<title>Cicn</title>
<author>
<organization showOnFrontPage="true">fd.io</organization>
</author>
</front>
</reference>
<reference anchor="I-D.irtf-icnrg-ccninfo" quoteTitle="true" target="https://tools.ietf.org/html/draft-irtf-icnrg-ccninfo-04" derivedAnchor="CNNinfo">
<front>
<title>CCNinfo: Discovering Content and Network Information in Content-Centric Networks</title>
<author initials="H" surname="Asaeda" fullname="Hitoshi Asaeda">
<organization showOnFrontPage="true"/>
</author>
<author initials="A" surname="Ooka" fullname="Atsushi Ooka">
<organization showOnFrontPage="true"/>
</author>
<author initials="X" surname="Shao" fullname="Xun Shao">
<organization showOnFrontPage="true"/>
</author>
<date month="March" day="22" year="2020"/>
<abstract>
<t>This document describes a mechanism named "CCNinfo" that discovers information about the network topology and in-network cache in Content-Centric Networks (CCN). CCNinfo investigates: 1) the CCN routing path information per name prefix, 2) the Round-Trip Time (RTT) between the content forwarder and consumer, and 3) the states of in-network cache per name prefix.</t>
</abstract>
</front>
<seriesInfo name="Internet-Draft" value="draft-irtf-icnrg-ccninfo-04"/>
<format type="TXT" target="http://www.ietf.org/internet-drafts/draft-irtf-icnrg-ccninfo-04.txt"/>
<refcontent>Work in Progress</refcontent>
</reference>
<reference anchor="CONET" target="http://netgroup.uniroma2.it/Stefano_Salsano/papers/salsano-icc12-wshop-sdn.pdf" quoteTitle="true" derivedAnchor="CONET">
<front>
<title>Supporting Information-Centric Functionality in Software Defined Networks</title>
<author>
<organization showOnFrontPage="true">Veltri, L., et al.</organization>
</author>
<date month="November" year="2012"/>
</front>
<seriesInfo name="DOI" value="10.1109/ICC.2012.6364916"/>
<refcontent>2012 IEEE International Conference on Communications (ICC)</refcontent>
</reference>
<reference anchor="Contrace" quoteTitle="true" target="https://doi.org/10.1109/MCOM.2015.7060502" derivedAnchor="Contrace">
<front>
<title>Contrace: a tool for measuring and tracing content-centric networks</title>
<author>
<organization showOnFrontPage="true">Asaeda, H., et al.</organization>
</author>
<date month="March" year="2015"/>
</front>
<seriesInfo name="DOI" value="10.1109/MCOM.2015.7060502"/>
<refcontent> IEEE Communications Magazine, Volume 53, Issue 3</refcontent>
</reference>
<reference anchor="CUTEi" quoteTitle="true" target="https://doi.org/10.1109/MNET.2014.6963806" derivedAnchor="CUTEi">
<front>
<title>Container-Based Unified Testbed for Information Centric Networking</title>
<author initials="H." surname="Asaeda" fullname="Hitoshi Asaeda">
<organization showOnFrontPage="true"/>
</author>
<author initials="R." surname="Li" fullname="Ruidong Li">
<organization showOnFrontPage="true"/>
</author>
<author initials="N." surname="Choi" fullname="Nakjung Choi">
<organization showOnFrontPage="true"/>
</author>
<date month="November" year="2014"/>
</front>
<seriesInfo name="DOI" value="10.1109/MNET.2014.6963806"/>
<refcontent>IEEE Network Volume 28, Issue:6</refcontent>
</reference>
<reference anchor="C_FLOW" target="https://ieeexplore.ieee.org/document/6799480" quoteTitle="true" derivedAnchor="C_FLOW">
<front>
<title>C_flow: An efficient content delivery framework with OpenFlow</title>
<author>
<organization showOnFrontPage="true">D. Chang, et al.</organization>
</author>
<date month="February" year="2014"/>
</front>
<refcontent>The International Conference on Information
Networking 2014 (ICOIN2014)</refcontent>
<refcontent>pp. 270-275</refcontent>
<seriesInfo name="DOI" value="10.1109/ICOIN.2014.6799480"/>
</reference>
<reference anchor="I-D.mendes-icnrg-dabber" quoteTitle="true" target="https://tools.ietf.org/html/draft-mendes-icnrg-dabber-04" derivedAnchor="DABBER">
<front>
<title>Information-centric Routing for Opportunistic Wireless Networks</title>
<author initials="P" surname="Mendes" fullname="Paulo Mendes">
<organization showOnFrontPage="true"/>
</author>
<author initials="R" surname="Sofia" fullname="Rute Sofia">
<organization showOnFrontPage="true"/>
</author>
<author initials="V" surname="Tsaoussidis" fullname="Vassilis Tsaoussidis">
<organization showOnFrontPage="true"/>
</author>
<author initials="C" surname="Borrego" fullname="Carlos Borrego">
<organization showOnFrontPage="true"/>
</author>
<date month="March" day="14" year="2020"/>
<abstract>
<t>This draft describes the Data reAchaBility BasEd Routing (DABBER) protocol, which aims to extend the operation of distributed Information Centric Networking frameworks to opportunistic wireless networks such as Delay Tolerant Networks. By "opportunistic wireless networks" it is meant multi-hop wireless networks where finding an end-to-end path between any pair of nodes at any moment in time may be a challenge. The goal is to assist in better defining opportunities for the transmission of Interest and Data packets in a store-carry-and-forward manner, based on a combination of proactive and reactive approaches. The document presents an architectural overview of DABBER followed by the specification of the proactive approach based on the dissemination of name-prefix information, and the reactive approach based on the encounters probability.</t>
</abstract>
</front>
<seriesInfo name="Internet-Draft" value="draft-mendes-icnrg-dabber-04"/>
<format type="TXT" target="http://www.ietf.org/internet-drafts/draft-mendes-icnrg-dabber-04.txt"/>
<format type="PDF" target="http://www.ietf.org/internet-drafts/draft-mendes-icnrg-dabber-04.pdf"/>
<refcontent>Work in Progress</refcontent>
</reference>
<reference anchor="DASH" target="http://dashif.org/" quoteTitle="true" derivedAnchor="DASH">
<front>
<title>DASH Industry Forum</title>
<author>
<organization showOnFrontPage="true">DASH</organization>
</author>
</front>
</reference>
<reference anchor="Doctor" target="http://www.doctor-project.org/index.htm" quoteTitle="true" derivedAnchor="Doctor">
<front>
<title>Deployment and securisation of new functionalities in virtualized networking environments</title>
<author>
<organization showOnFrontPage="true">DOCTOR</organization>
</author>
</front>
</reference>
<reference anchor="fiveG-23501" quoteTitle="true" derivedAnchor="fiveG-23501">
<front>
<title>System Architecture for the 5G System</title>
<author>
<organization showOnFrontPage="true">3GPP</organization>
</author>
<date month="December" year="2017"/>
</front>
<seriesInfo name="3GPP" value="TS 23.501"/>
<refcontent>Release 15</refcontent>
</reference>
<reference anchor="fiveG-23502" quoteTitle="true" derivedAnchor="fiveG-23502">
<front>
<title>Procedures for the 5G System (5GS)</title>
<author>
<organization showOnFrontPage="true">3GPP</organization>
</author>
</front>
<seriesInfo name="3GPP" value="TS 23.502"/>
<refcontent>Release 15</refcontent>
</reference>
<reference anchor="I-D.moiseenko-icnrg-flowclass" quoteTitle="true" target="https://tools.ietf.org/html/draft-moiseenko-icnrg-flowclass-05" derivedAnchor="FLOW-CLASS">
<front>
<title>Flow Classification in Information Centric Networking</title>
<author initials="I" surname="Moiseenko" fullname="Ilya Moiseenko">
<organization showOnFrontPage="true"/>
</author>
<author initials="D" surname="Oran" fullname="David Oran">
<organization showOnFrontPage="true"/>
</author>
<date month="January" day="20" year="2020"/>
<abstract>
<t>For the ubiquitous and highly important Internet protocols (TCP, UDP, IP), flows are conventionally identified by the "5-tuple" of source and destination IP addresses, source and destination port, and protocol type in an IP packet. Information Centric Networking (ICN) is a new paradigm where network communications are accomplished by requesting named content, instead of sending packets to destination addresses. This document describes mechanisms allowing ICN forwarders, consumers, producers and other ICN nodes to encode, decode, and process equivalence class identifiers (flows) at any desired granularity of a routable name prefix and beyond the routable name prefix. This document is a product of the IRTF Information- Centric Networking Research Group (ICNRG).</t>
</abstract>
</front>
<seriesInfo name="Internet-Draft" value="draft-moiseenko-icnrg-flowclass-05"/>
<format type="TXT" target="http://www.ietf.org/internet-drafts/draft-moiseenko-icnrg-flowclass-05.txt"/>
<refcontent>Work in Progress</refcontent>
</reference>
<reference anchor="GEANT" target="https://www.geant.org/" quoteTitle="true" derivedAnchor="GEANT">
<front>
<title>GEANT</title>
<author>
<organization showOnFrontPage="true">GEANT</organization>
</author>
</front>
</reference>
<reference anchor="H-ICN_1" target="http://blogs.cisco.com/sp/cisco-announces-important-steps-toward-adoption-of-information-centric-networking" quoteTitle="true" derivedAnchor="H-ICN_1">
<front>
<title>Cisco Announces Important Steps toward Adoption of Information-Centric Networking</title>
<author>
<organization showOnFrontPage="true">Cisco</organization>
</author>
<date month="February" year="2017"/>
</front>
</reference>
<reference anchor="H-ICN_2" target="https://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/ultra-services-platform/mwc17-hicn-video-wp.pdf" quoteTitle="true" derivedAnchor="H-ICN_2">
<front>
<title>Mobile Video Delivery with Hybrid ICN: IP-integrated ICN Solution for 5G</title>
<author>
<organization showOnFrontPage="true">Cisco</organization>
</author>
</front>
</reference>
<reference anchor="H-ICN_3" target="https://datatracker.ietf.org/meeting/interim-2018-icnrg-01/materials/slides-interim-2018-icnrg-01-sessa-hybrid-icn-hicn-luca-muscariello" quoteTitle="true" derivedAnchor="H-ICN_3">
<front>
<title>Hybrid Information-Centric Networking: ICN inside the Internet Protocol</title>
<author>
<organization showOnFrontPage="true">Muscariello, L., et al</organization>
</author>
<date month="March" year="2018"/>
</front>
<refcontent>ICNRG Interim Meeting</refcontent>
</reference>
<reference anchor="I-D.ravi-icnrg-5gc-icn" quoteTitle="true" target="https://tools.ietf.org/html/draft-ravi-icnrg-5gc-icn-04" derivedAnchor="ICN-5GC">
<front>
<title>Enabling ICN in 3GPP's 5G NextGen Core Architecture</title>
<author initials="R" surname="Ravindran" fullname="Ravi Ravindran">
<organization showOnFrontPage="true"/>
</author>
<author initials="P" surname="Suthar" fullname="Prakash Suthar">
<organization showOnFrontPage="true"/>
</author>
<author initials="D" surname="Trossen" fullname="Dirk Trossen">
<organization showOnFrontPage="true"/>
</author>
<author initials="C" surname="Wang" fullname="Chonggang Wang">
<organization showOnFrontPage="true"/>
</author>
<author initials="G" surname="White" fullname="Greg White">
<organization showOnFrontPage="true"/>
</author>
<date month="May" day="31" year="2019"/>
</front>
<seriesInfo name="Internet-Draft" value="draft-ravi-icnrg-5gc-icn-04"/>
<refcontent>Work in Progress</refcontent>
</reference>
<reference anchor="I-D.paik-icn-deployment-considerations" quoteTitle="true" target="https://tools.ietf.org/html/draft-paik-icn-deployment-considerations-00" derivedAnchor="ICN-DEP-CON">
<front>
<title>Deployment Considerations for Information-Centric Networking</title>
<author initials="E" surname="Paik" fullname="EunKyoung Paik">
<organization showOnFrontPage="true"/>
</author>
<author initials="W" surname="Yun" fullname="Won-Dong Yun">
<organization showOnFrontPage="true"/>
</author>
<author initials="T" surname="Kwon" fullname="Taekyoung Kwon">
<organization showOnFrontPage="true"/>
</author>
<author initials="H" surname="Choi" fullname="Hoon-gyu Choi">
<organization showOnFrontPage="true"/>
</author>
<date month="July" day="15" year="2013"/>
</front>
<seriesInfo name="Internet-Draft" value="draft-paik-icn-deployment-considerations-00"/>
<refcontent>Work in Progress</refcontent>
</reference>
<reference anchor="I-D.irtf-icnrg-icniot" quoteTitle="true" target="https://tools.ietf.org/html/draft-irtf-icnrg-icniot-03" derivedAnchor="ICN-IoT">
<front>
<title>Design Considerations for Applying ICN to IoT</title>
<author initials="R" surname="Ravindran" fullname="Ravi Ravindran">
<organization showOnFrontPage="true"/>
</author>
<author initials="Y" surname="Zhang" fullname="Yanyong Zhang">
<organization showOnFrontPage="true"/>
</author>
<author initials="L" surname="Grieco" fullname="Luigi Grieco">
<organization showOnFrontPage="true"/>
</author>
<author initials="A" surname="Lindgren" fullname="Anders Lindgren">
<organization showOnFrontPage="true"/>
</author>
<author initials="J" surname="Burke" fullname="Jeff Burke">
<organization showOnFrontPage="true"/>
</author>
<author initials="B" surname="Ahlgren" fullname="Bengt Ahlgren">
<organization showOnFrontPage="true"/>
</author>
<author initials="A" surname="Azgin" fullname="Aytac Azgin">
<organization showOnFrontPage="true"/>
</author>
<date month="May" day="2" year="2019"/>
<abstract>
<t>The Internet of Things (IoT) promises to connect billions of objects to the Internet. After deploying many stand-alone IoT systems in different domains, the current trend is to develop a common, "thin waist" of protocols to enable a horizontally unified IoT architecture. The objective of such an architecture is to make resource objects securely accessible to applications across organizations and domains. Towards this goal, quite a few proposals have been made to build an application-layer based unified IoT platform on top of today's host-centric Internet. However, there is a fundamental mismatch between the host-centric nature of today's Internet and the mostly information-centric nature of the IoT domain. To address this mismatch, the common set of protocols and network services offered by an information-centric networking (ICN) architecture can be leveraged to realize an ICN-based IoT (or ICN- IoT) architecture that can take advantage of the salient features of ICN such as naming, security, mobility, compute and efficient content and service delivery support offered by it. In this draft, we summarize the general IoT demands, and ICN features that support these requirements, and then discuss the challenges to realize an ICN-based IoT framework. Beyond this, the goal of this draft is not to offer any specific ICN-IoT architectural proposal.</t>
</abstract>
</front>
<seriesInfo name="Internet-Draft" value="draft-irtf-icnrg-icniot-03"/>
<format type="TXT" target="http://www.ietf.org/internet-drafts/draft-irtf-icnrg-icniot-03.txt"/>
<refcontent>Work in Progress</refcontent>
</reference>
<reference anchor="I-D.irtf-icnrg-icn-lte-4g" quoteTitle="true" target="https://tools.ietf.org/html/draft-irtf-icnrg-icn-lte-4g-05" derivedAnchor="ICN-LTE-4G">
<front>
<title>Native Deployment of ICN in LTE, 4G Mobile Networks</title>
<author initials="P" surname="Suthar" fullname="Prakash Suthar">
<organization showOnFrontPage="true"/>
</author>
<author initials="M" surname="Stolic" fullname="Milan Stolic">
<organization showOnFrontPage="true"/>
</author>
<author initials="A" surname="Jangam" fullname="Anil Jangam" role="editor">
<organization showOnFrontPage="true"/>
</author>
<author initials="D" surname="Trossen" fullname="Dirk Trossen">
<organization showOnFrontPage="true"/>
</author>
<author initials="R" surname="Ravindran" fullname="Ravi Ravindran">
<organization showOnFrontPage="true"/>
</author>
<date month="November" day="4" year="2019"/>
</front>
<seriesInfo name="Internet-Draft" value="draft-irtf-icnrg-icn-lte-4g-05"/>
<format type="TXT" target="http://www.ietf.org/internet-drafts/draft-irtf-icnrg-icn-lte-4g-05.txt"/>
<refcontent>Work in Progress</refcontent>
</reference>
<reference anchor="I-D.anilj-icnrg-icn-qos" quoteTitle="true" target="https://tools.ietf.org/html/draft-anilj-icnrg-icn-qos-00" derivedAnchor="ICN-QoS">
<front>
<title>Supporting QoS aware Data Delivery in Information Centric Networks</title>
<author initials="A" surname="Jangam" fullname="Anil Jangam">
<organization showOnFrontPage="true"/>
</author>
<author initials="P" surname="Suthar" fullname="Prakash Suthar">
<organization showOnFrontPage="true"/>
</author>
<author initials="M" surname="Stolic" fullname="Milan Stolic">
<organization showOnFrontPage="true"/>
</author>
<date month="July" day="14" year="2018"/>
</front>
<seriesInfo name="Internet-Draft" value="draft-anilj-icnrg-icn-qos-00"/>
<refcontent>Work in Progress</refcontent>
</reference>
<reference anchor="I-D.irtf-icnrg-terminology" quoteTitle="true" target="https://tools.ietf.org/html/draft-irtf-icnrg-terminology-08" derivedAnchor="ICN-TERM">
<front>
<title>Information-Centric Networking (ICN): CCNx and NDN Terminology</title>
<author initials="B" surname="Wissingh" fullname="Bastiaan Wissingh">
<organization showOnFrontPage="true"/>
</author>
<author initials="C" surname="Wood" fullname="Christopher Wood">
<organization showOnFrontPage="true"/>
</author>
<author initials="A" surname="Afanasyev" fullname="Alex Afanasyev">
<organization showOnFrontPage="true"/>
</author>
<author initials="L" surname="Zhang" fullname="Lixia Zhang">
<organization showOnFrontPage="true"/>
</author>
<author initials="D" surname="Oran" fullname="David Oran">
<organization showOnFrontPage="true"/>
</author>
<author initials="C" surname="Tschudin" fullname="Christian Tschudin">
<organization showOnFrontPage="true"/>
</author>
<date month="January" day="17" year="2020"/>
<abstract>
<t>Information Centric Networking (ICN) is a novel paradigm where network communications are accomplished by requesting named content, instead of sending packets to destination addresses. Named Data Networking (NDN) and Content-Centric Networking (CCNx) are two prominent ICN architectures. This document provides an overview of the terminology and definitions that have been used in describing concepts in these two implementations of ICN. While there are other ICN architectures, they are not part of the NDN and CCNx concepts and as such are out of scope for this document. This document is a product of the Information-Centric Networking Research Group (ICNRG).</t>
</abstract>
</front>
<seriesInfo name="Internet-Draft" value="draft-irtf-icnrg-terminology-08"/>
<format type="TXT" target="http://www.ietf.org/internet-drafts/draft-irtf-icnrg-terminology-08.txt"/>
<refcontent>Work in Progress</refcontent>
</reference>
<reference anchor="ICN2020-Experiments" target="https://projects.gwdg.de/attachments/6840/D4.1-PU.pdf" quoteTitle="true" derivedAnchor="ICN2020-Experiments">
<front>
<title>D4.1: 1st Yearly WP4 Report & Demonstration</title>
<author>
<organization showOnFrontPage="true">ICN2020</organization>
</author>
<date month="August" year="2017"/>
</front>
</reference>
<reference anchor="ICN2020-overview" target="http://www.icn2020.org/" quoteTitle="true" derivedAnchor="ICN2020-overview">
<front>
<title>ICN2020 Project Overview</title>
<author>
<organization showOnFrontPage="true">ICN2020</organization>
</author>
</front>
</reference>
<reference anchor="ICNRGCharter" target="https://datatracker.ietf.org/doc/charter-irtf-icnrg/" quoteTitle="true" derivedAnchor="ICNRGCharter">
<front>
<title>Information-Centric Networking Research Group Charter</title>
<author>
<organization showOnFrontPage="true">IRTF</organization>
</author>
</front>
</reference>
<reference anchor="IEEE_Communications" quoteTitle="true" target="https://doi.org/10.1109/MCOM.2012.6231280" derivedAnchor="IEEE_Communications">
<front>
<title>Designing and realizing an information-centric internet</title>
<author initials="D." surname="Trossen" fullname="Dirk Trossen">
<organization showOnFrontPage="true"/>
</author>
<author initials="G." surname="Parisis" fullname="George Parisis">
<organization showOnFrontPage="true"/>
</author>
<date/>
</front>
<seriesInfo name="DOI" value="10.1109/MCOM.2012.6231280"/>
<refcontent>IEEE Communications Magazine, Volume 50, Issue 7</refcontent>
</reference>
<reference anchor="Internet_Pricing" quoteTitle="true" target="https://doi.org/10.1145/1921233.1921235" derivedAnchor="Internet_Pricing">
<front>
<title>Not paying the truck driver: differentiated pricing for the future internet</title>
<author initials="D." surname="Trossen" fullname="Dirk Trossen">
<organization showOnFrontPage="true"/>
</author>
<author initials="G." surname="Biczok" fullname="Gergely Biczok">
<organization showOnFrontPage="true"/>
</author>
<date month="November" year="2010"/>
</front>
<seriesInfo name="ReArch '10:" value="Proceedings of the Re-Architecting the Internet Workshop"/>
<seriesInfo name="DOI" value="10.1145/1921233.1921235"/>
<refcontent>ReARCH '10: Proceedings of the Re-Architecting the
Internet Workshop</refcontent>
</reference>
<reference anchor="Jacobson" quoteTitle="true" target="https://doi.org/10.1145/1658939.1658941" derivedAnchor="Jacobson">
<front>
<title>Networking Named Content</title>
<author>
<organization showOnFrontPage="true">Jacobson, V., et al.</organization>
</author>
<date month="December" year="2009"/>
</front>
<seriesInfo name="DOI" value="10.1145/1658939.1658941"/>
<refcontent>CoNEXT '09: Proceedings of the 5th international
conference on Emerging networking experiments and technologies</refcontent>
</reference>
<reference anchor="Jangam" target="https://dl.acm.org/citation.cfm?id=3132351" quoteTitle="true" derivedAnchor="Jangam">
<front>
<title>nlsrSIM: Porting and Simulation of Named-data Link State Routing Protocol into ndnSIM</title>
<author>
<organization showOnFrontPage="true">Jangam, A., et al.</organization>
</author>
<date month="November" year="2017"/>
</front>
<seriesInfo name="DOI" value="10.1145/3132340.3132351"/>
<refcontent>DIVANet '17: Proceedings of the 6th ACM Symposium on
Development and Analysis of Intelligent Vehicular Networks and Applications</refcontent>
</reference>
<reference anchor="Mai-1" target="https://ieeexplore.ieee.org/document/8401591" quoteTitle="true" derivedAnchor="Mai-1">
<front>
<title>Implementation of content poisoning attack detection and reaction in virtualized NDN networks</title>
<author>
<organization showOnFrontPage="true">Mai, H., et al.</organization>
</author>
<date month="July" year="2018"/>
</front>
<seriesInfo name="DOI" value="10.1109/ICIN.2018.8401591"/>
<refcontent>2018 21st Conference on Innovation in Clouds, Internet and
Networks and Workshops (ICIN)</refcontent>
</reference>
<reference anchor="Mai-2" quoteTitle="true" target="https://doi.org/10.1109/NOMS.2018.8406246" derivedAnchor="Mai-2">
<front>
<title>Towards a Security Monitoring Plane for Named Data Networking: Application to Content Poisoning Attack</title>
<author>
<organization showOnFrontPage="true">Mai, H., et al.</organization>
</author>
<date month="July" year="2018"/>
</front>
<seriesInfo name="DOI" value="10.1109/NOMS.2018.8406246"/>
<refcontent>NOMS 2018 - 2018 IEEE/IFIP Network Operations Management
Symposium</refcontent>
</reference>
<reference anchor="Marchal" target="http://www.mallouli.com/recherche/publications/noms2018-1.pdf" quoteTitle="true" derivedAnchor="Marchal">
<front>
<title>Leveraging NFV for the Deployment of NDN: Application to HTTP Traffic Transport</title>
<author>
<organization showOnFrontPage="true">Marchal, X., et al.</organization>
</author>
<date month="July" year="2018"/>
</front>
<seriesInfo name="DOI" value="10.1109/NOMS.2018.8406206"/>
<refcontent>NOMS 2018 - 2018 IEEE/IFIP Network Operations and
Management Symposium</refcontent>
</reference>
<reference anchor="Moiseenko" target="http://conferences2.sigcomm.org/acm-icn/2016/proceedings/p112-moiseenko.pdf" quoteTitle="true" derivedAnchor="Moiseenko">
<front>
<title>TCP/ICN: Carrying TCP over Content Centric and Named Data Networks</title>
<author initials="I." surname="Moiseenko" fullname="Ilya Moiseenko">
<organization showOnFrontPage="true"/>
</author>
<author initials="D." surname="Oran" fullname="Dave Oran">
<organization showOnFrontPage="true"/>
</author>
<date month="September" year="2016"/>
</front>
<seriesInfo name="DOI" value="10.1145/2984356.2984357"/>
<refcontent>ACM-ICN '16: Proceedings of the 3rd ACM Conference on
Information-Centric Networking</refcontent>
</reference>
<reference anchor="MWC_Demo" target="http://www.interdigital.com/download/56d5c71bd616f892ba001861" quoteTitle="true" derivedAnchor="MWC_Demo">
<front>
<title>InterDigital Demo at Mobile World Congress (MWC)</title>
<author>
<organization showOnFrontPage="true">InterDigital</organization>
</author>
<date year="2016"/>
</front>
</reference>
<reference anchor="NDN-testbed" target="https://named-data.net/ndn-testbed/" quoteTitle="true" derivedAnchor="NDN-testbed">
<front>
<title>NDN Testbed</title>
<author>
<organization showOnFrontPage="true">NDN</organization>
</author>
</front>
</reference>
<reference anchor="I-D.kutscher-icnrg-netinf-proto" quoteTitle="true" target="https://tools.ietf.org/html/draft-kutscher-icnrg-netinf-proto-01" derivedAnchor="NetInf">
<front>
<title>The NetInf Protocol</title>
<author initials="D" surname="Kutscher" fullname="Dirk Kutscher">
<organization showOnFrontPage="true"/>
</author>
<author initials="S" surname="Farrell" fullname="Stephen Farrell">
<organization showOnFrontPage="true"/>
</author>
<author initials="E" surname="Davies" fullname="Elwyn Davies">
<organization showOnFrontPage="true"/>
</author>
<date month="February" day="10" year="2013"/>
<abstract>
<t>This document defines a conceptual protocol and corresponding node requirements for NetInf nodes in a NetInf network. A NetInf network offers an information-centric paradigm that supports the creation, location, exchange and storage of Named Data Objects (NDOs). NetInf nodes can provide different services to other NetInf nodes, e.g., forwarding requests for information objects, delivering corresponding response messages, name resolution services etc. This (abstract) protocol is intended to be run over some "convergence layer" that handles transport issues. Two "wire" formats are defined, one that uses HTTP for message transfer and one layered on UDP.</t>
</abstract>
</front>
<seriesInfo name="Internet-Draft" value="draft-kutscher-icnrg-netinf-proto-01"/>
<format type="TXT" target="http://www.ietf.org/internet-drafts/draft-kutscher-icnrg-netinf-proto-01.txt"/>
<refcontent>Work in Progress</refcontent>
</reference>
<reference anchor="NFD" target="https://named-data.net/doc/NFD/current/" quoteTitle="true" derivedAnchor="NFD">
<front>
<title>NFD - Named Data Networking Forwarding Daemon</title>
<author>
<organization showOnFrontPage="true">NDN</organization>
</author>
</front>
</reference>
<reference anchor="NGMN-5G" target="https://www.ngmn.org/wp-content/uploads/NGMN_5G_White_Paper_V1_0.pdf" quoteTitle="true" derivedAnchor="NGMN-5G">
<front>
<title>5G White Paper</title>
<author>
<organization showOnFrontPage="true">NGMN Alliance</organization>
</author>
<date month="February" year="2015"/>
</front>
</reference>
<reference anchor="NGMN-Network-Slicing" target="https://www.ngmn.org/wp-content/uploads/160113_NGMN_Network_Slicing_v1_0.pdf" quoteTitle="true" derivedAnchor="NGMN-Network-Slicing">
<front>
<title>Description of Network Slicing Concept</title>
<author>
<organization showOnFrontPage="true">NGMN Alliance</organization>
</author>
<date month="January" year="2016"/>
</front>
<refcontent>NGMN 5G P1</refcontent>
<refcontent>Requirements & Architecture</refcontent>
<refcontent>Work Stream End-to-End Architecture</refcontent>
<refcontent>Version 1.0</refcontent>
</reference>
<reference anchor="Nguyen-1" quoteTitle="true" target="https://doi.org/10.23919/INM.2017.7987266" derivedAnchor="Nguyen-1">
<front>
<title>Content Poisoning in Named Data Networking: Comprehensive characterization of real deployment</title>
<author>
<organization showOnFrontPage="true">Nguyen, T., et al.</organization>
</author>
<date month="July" year="2017"/>
</front>
<seriesInfo name="DOI" value="10.23919/INM.2017.7987266"/>
<refcontent>2017 IFIP/IEEE Symposium on Integrated Network and Service
Management (IM)</refcontent>
</reference>
<reference anchor="Nguyen-2" quoteTitle="true" target="https://doi.org/10.1109/INM.2015.7140299" derivedAnchor="Nguyen-2">
<front>
<title>An optimal statistical test for robust detection against interest flooding attacks in CCN</title>
<author initials="T." surname="Nguyen" fullname="Tan Nguyen">
<organization showOnFrontPage="true"/>
</author>
<author initials="R." surname="Cogranne" fullname="Remi Cogranne">
<organization showOnFrontPage="true"/>
</author>
<author initials="G." surname="Doyen" fullname="Guillaume Doyen">
<organization showOnFrontPage="true"/>
</author>
<date month="July" year="2015"/>
</front>
<seriesInfo name="DOI" value="10.1109/INM.2015.7140299"/>
<refcontent>2015 IFIP/IEEE International Symposium on Integrated
Network Management (IM)</refcontent>
</reference>
<reference anchor="Nguyen-3" quoteTitle="true" target="https://doi.org/10.1109/MCOM.2018.1701135" derivedAnchor="Nguyen-3">
<front>
<title>A Security Monitoring Plane for Named Data Networking Deployment</title>
<author>
<organization showOnFrontPage="true">Nguyen, T., et al.</organization>
</author>
<date month="November" year="2018"/>
</front>
<seriesInfo name="DOI" value="10.1109/MCOM.2018.1701135"/>
<refcontent>IEEE Communications Magazine, Volume: 56, Issue 11</refcontent>
</reference>
<reference anchor="ONAP" target="https://www.onap.org/" quoteTitle="true" derivedAnchor="ONAP">
<front>
<title>Open Network Automation Platform</title>
<author>
<organization showOnFrontPage="true">ONAP</organization>
</author>
</front>
</reference>
<reference anchor="oneM2M" target="http://www.onem2m.org/" quoteTitle="true" derivedAnchor="oneM2M">
<front>
<title>oneM2M Service Layer Standards for M2M and IoT</title>
<author>
<organization showOnFrontPage="true">OneM2M</organization>
</author>
<date year="2017"/>
</front>
</reference>
<reference anchor="Overlay_ICN" target="https://www.researchgate.net/publication/282779666_A_novel_overlay_architecture_for_Information_Centric_Networking" quoteTitle="true" derivedAnchor="Overlay_ICN">
<front>
<title>A novel overlay architecture for Information Centric Networking</title>
<author>
<organization showOnFrontPage="true">Shailendra, S.,et al.</organization>
</author>
<date month="April" year="2016"/>
</front>
<seriesInfo name="DOI" value="10.1109/NCC.2015.7084921"/>
<refcontent>2015 21st National Conference on Communications, NCC 2015</refcontent>
</reference>
<reference anchor="POINT" quoteTitle="true" target="https://doi.org/10.1109/EuCNC.2015.7194109" derivedAnchor="POINT">
<front>
<title>IP over ICN - The better IP?</title>
<author>
<organization showOnFrontPage="true">Trossen, D., et al.</organization>
</author>
<date month="June" year="2015"/>
</front>
<seriesInfo name="DOI" value="10.1109/EuCNC.2015.7194109"/>
<refcontent>2015 European Conference on Networks and Communications (EuCNC)</refcontent>
</reference>
<reference anchor="Ravindran" target="https://arxiv.org/abs/1610.01182" quoteTitle="true" derivedAnchor="Ravindran">
<front>
<title>5G-ICN : Delivering ICN Services over 5G using Network Slicing</title>
<author>
<organization showOnFrontPage="true">Ravindran, R., et al.</organization>
</author>
<date month="October" year="2016"/>
</front>
<seriesInfo name="DOI" value="10.1109/MCOM.2017.1600938"/>
<refcontent>IEEE Communications Magazine, Volume 55, Issue 5</refcontent>
</reference>
<reference anchor="Reed" quoteTitle="true" target="https://doi.org/10.1109/ICC.2016.7511036" derivedAnchor="Reed">
<front>
<title>Stateless multicast switching in software defined networks</title>
<author>
<organization showOnFrontPage="true">Reed, M., et al.</organization>
</author>
<date month="May" year="2016"/>
</front>
<seriesInfo name="DOI" value="10.1109/ICC.2016.7511036"/>
<refcontent>2016 IEEE International Conference on Communications (ICC)</refcontent>
</reference>
<reference anchor="RFC6920" target="https://www.rfc-editor.org/info/rfc6920" quoteTitle="true" derivedAnchor="RFC6920">
<front>
<title>Naming Things with Hashes</title>
<author initials="S." surname="Farrell" fullname="S. Farrell">
<organization showOnFrontPage="true"/>
</author>
<author initials="D." surname="Kutscher" fullname="D. Kutscher">
<organization showOnFrontPage="true"/>
</author>
<author initials="C." surname="Dannewitz" fullname="C. Dannewitz">
<organization showOnFrontPage="true"/>
</author>
<author initials="B." surname="Ohlman" fullname="B. Ohlman">
<organization showOnFrontPage="true"/>
</author>
<author initials="A." surname="Keranen" fullname="A. Keranen">
<organization showOnFrontPage="true"/>
</author>
<author initials="P." surname="Hallam-Baker" fullname="P. Hallam-Baker">
<organization showOnFrontPage="true"/>
</author>
<date year="2013" month="April"/>
<abstract>
<t>This document defines a set of ways to identify a thing (a digital object in this case) using the output from a hash function. It specifies a new URI scheme for this purpose, a way to map these to HTTP URLs, and binary and human-speakable formats for these names. The various formats are designed to support, but not require, a strong link to the referenced object, such that the referenced object may be authenticated to the same degree as the reference to it. The reason for this work is to standardise current uses of hash outputs in URLs and to support new information-centric applications and other uses of hash outputs in protocols.</t>
</abstract>
</front>
<seriesInfo name="RFC" value="6920"/>
<seriesInfo name="DOI" value="10.17487/RFC6920"/>
</reference>
<reference anchor="RFC7252" target="https://www.rfc-editor.org/info/rfc7252" quoteTitle="true" derivedAnchor="RFC7252">
<front>
<title>The Constrained Application Protocol (CoAP)</title>
<author initials="Z." surname="Shelby" fullname="Z. Shelby">
<organization showOnFrontPage="true"/>
</author>
<author initials="K." surname="Hartke" fullname="K. Hartke">
<organization showOnFrontPage="true"/>
</author>
<author initials="C." surname="Bormann" fullname="C. Bormann">
<organization showOnFrontPage="true"/>
</author>
<date year="2014" month="June"/>
<abstract>
<t>The Constrained Application Protocol (CoAP) is a specialized web transfer protocol for use with constrained nodes and constrained (e.g., low-power, lossy) networks. The nodes often have 8-bit microcontrollers with small amounts of ROM and RAM, while constrained networks such as IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs) often have high packet error rates and a typical throughput of 10s of kbit/s. The protocol is designed for machine- to-machine (M2M) applications such as smart energy and building automation.</t>
<t>CoAP provides a request/response interaction model between application endpoints, supports built-in discovery of services and resources, and includes key concepts of the Web such as URIs and Internet media types. CoAP is designed to easily interface with HTTP for integration with the Web while meeting specialized requirements such as multicast support, very low overhead, and simplicity for constrained environments.</t>
</abstract>
</front>
<seriesInfo name="RFC" value="7252"/>
<seriesInfo name="DOI" value="10.17487/RFC7252"/>
</reference>
<reference anchor="RFC7426" target="https://www.rfc-editor.org/info/rfc7426" quoteTitle="true" derivedAnchor="RFC7426">
<front>
<title>Software-Defined Networking (SDN): Layers and Architecture Terminology</title>
<author initials="E." surname="Haleplidis" fullname="E. Haleplidis" role="editor">
<organization showOnFrontPage="true"/>
</author>
<author initials="K." surname="Pentikousis" fullname="K. Pentikousis" role="editor">
<organization showOnFrontPage="true"/>
</author>
<author initials="S." surname="Denazis" fullname="S. Denazis">
<organization showOnFrontPage="true"/>
</author>
<author initials="J." surname="Hadi Salim" fullname="J. Hadi Salim">
<organization showOnFrontPage="true"/>
</author>
<author initials="D." surname="Meyer" fullname="D. Meyer">
<organization showOnFrontPage="true"/>
</author>
<author initials="O." surname="Koufopavlou" fullname="O. Koufopavlou">
<organization showOnFrontPage="true"/>
</author>
<date year="2015" month="January"/>
<abstract>
<t>Software-Defined Networking (SDN) refers to a new approach for network programmability, that is, the capacity to initialize, control, change, and manage network behavior dynamically via open interfaces. SDN emphasizes the role of software in running networks through the introduction of an abstraction for the data forwarding plane and, by doing so, separates it from the control plane. This separation allows faster innovation cycles at both planes as experience has already shown. However, there is increasing confusion as to what exactly SDN is, what the layer structure is in an SDN architecture, and how layers interface with each other. This document, a product of the IRTF Software-Defined Networking Research Group (SDNRG), addresses these questions and provides a concise reference for the SDN research community based on relevant peer-reviewed literature, the RFC series, and relevant documents by other standards organizations.</t>
</abstract>
</front>
<seriesInfo name="RFC" value="7426"/>
<seriesInfo name="DOI" value="10.17487/RFC7426"/>
</reference>
<reference anchor="RFC7665" target="https://www.rfc-editor.org/info/rfc7665" quoteTitle="true" derivedAnchor="RFC7665">
<front>
<title>Service Function Chaining (SFC) Architecture</title>
<author initials="J." surname="Halpern" fullname="J. Halpern" role="editor">
<organization showOnFrontPage="true"/>
</author>
<author initials="C." surname="Pignataro" fullname="C. Pignataro" role="editor">
<organization showOnFrontPage="true"/>
</author>
<date year="2015" month="October"/>
<abstract>
<t>This document describes an architecture for the specification, creation, and ongoing maintenance of Service Function Chains (SFCs) in a network. It includes architectural concepts, principles, and components used in the construction of composite services through deployment of SFCs, with a focus on those to be standardized in the IETF. This document does not propose solutions, protocols, or extensions to existing protocols.</t>
</abstract>
</front>
<seriesInfo name="RFC" value="7665"/>
<seriesInfo name="DOI" value="10.17487/RFC7665"/>
</reference>
<reference anchor="RFC7927" target="https://www.rfc-editor.org/info/rfc7927" quoteTitle="true" derivedAnchor="RFC7927">
<front>
<title>Information-Centric Networking (ICN) Research Challenges</title>
<author initials="D." surname="Kutscher" fullname="D. Kutscher" role="editor">
<organization showOnFrontPage="true"/>
</author>
<author initials="S." surname="Eum" fullname="S. Eum">
<organization showOnFrontPage="true"/>
</author>
<author initials="K." surname="Pentikousis" fullname="K. Pentikousis">
<organization showOnFrontPage="true"/>
</author>
<author initials="I." surname="Psaras" fullname="I. Psaras">
<organization showOnFrontPage="true"/>
</author>
<author initials="D." surname="Corujo" fullname="D. Corujo">
<organization showOnFrontPage="true"/>
</author>
<author initials="D." surname="Saucez" fullname="D. Saucez">
<organization showOnFrontPage="true"/>
</author>
<author initials="T." surname="Schmidt" fullname="T. Schmidt">
<organization showOnFrontPage="true"/>
</author>
<author initials="M." surname="Waehlisch" fullname="M. Waehlisch">
<organization showOnFrontPage="true"/>
</author>
<date year="2016" month="July"/>
<abstract>
<t>This memo describes research challenges for Information-Centric Networking (ICN), an approach to evolve the Internet infrastructure to directly support information distribution by introducing uniquely named data as a core Internet principle. Data becomes independent from location, application, storage, and means of transportation, enabling or enhancing a number of desirable features, such as security, user mobility, multicast, and in-network caching. Mechanisms for realizing these benefits is the subject of ongoing research in the IRTF and elsewhere. This document describes current research challenges in ICN, including naming, security, routing, system scalability, mobility management, wireless networking, transport services, in-network caching, and network management.</t>
<t>This document is a product of the IRTF Information-Centric Networking Research Group (ICNRG).</t>
</abstract>
</front>
<seriesInfo name="RFC" value="7927"/>
<seriesInfo name="DOI" value="10.17487/RFC7927"/>
</reference>
<reference anchor="RFC7945" target="https://www.rfc-editor.org/info/rfc7945" quoteTitle="true" derivedAnchor="RFC7945">
<front>
<title>Information-Centric Networking: Evaluation and Security Considerations</title>
<author initials="K." surname="Pentikousis" fullname="K. Pentikousis" role="editor">
<organization showOnFrontPage="true"/>
</author>
<author initials="B." surname="Ohlman" fullname="B. Ohlman">
<organization showOnFrontPage="true"/>
</author>
<author initials="E." surname="Davies" fullname="E. Davies">
<organization showOnFrontPage="true"/>
</author>
<author initials="S." surname="Spirou" fullname="S. Spirou">
<organization showOnFrontPage="true"/>
</author>
<author initials="G." surname="Boggia" fullname="G. Boggia">
<organization showOnFrontPage="true"/>
</author>
<date year="2016" month="September"/>
<abstract>
<t>This document presents a number of considerations regarding evaluating Information-Centric Networking (ICN) and sheds some light on the impact of ICN on network security. It also surveys the evaluation tools currently available to researchers in the ICN area and provides suggestions regarding methodology and metrics.</t>
</abstract>
</front>
<seriesInfo name="RFC" value="7945"/>
<seriesInfo name="DOI" value="10.17487/RFC7945"/>
</reference>
<reference anchor="RFC8075" target="https://www.rfc-editor.org/info/rfc8075" quoteTitle="true" derivedAnchor="RFC8075">
<front>
<title>Guidelines for Mapping Implementations: HTTP to the Constrained Application Protocol (CoAP)</title>
<author initials="A." surname="Castellani" fullname="A. Castellani">
<organization showOnFrontPage="true"/>
</author>
<author initials="S." surname="Loreto" fullname="S. Loreto">
<organization showOnFrontPage="true"/>
</author>
<author initials="A." surname="Rahman" fullname="A. Rahman">
<organization showOnFrontPage="true"/>
</author>
<author initials="T." surname="Fossati" fullname="T. Fossati">
<organization showOnFrontPage="true"/>
</author>
<author initials="E." surname="Dijk" fullname="E. Dijk">
<organization showOnFrontPage="true"/>
</author>
<date year="2017" month="February"/>
<abstract>
<t>This document provides reference information for implementing a cross-protocol network proxy that performs translation from the HTTP protocol to the Constrained Application Protocol (CoAP). This will enable an HTTP client to access resources on a CoAP server through the proxy. This document describes how an HTTP request is mapped to a CoAP request and how a CoAP response is mapped back to an HTTP response. This includes guidelines for status code, URI, and media type mappings, as well as additional interworking advice.</t>
</abstract>
</front>
<seriesInfo name="RFC" value="8075"/>
<seriesInfo name="DOI" value="10.17487/RFC8075"/>
</reference>
<reference anchor="RFC8568" target="https://www.rfc-editor.org/info/rfc8568" quoteTitle="true" derivedAnchor="RFC8568">
<front>
<title>Network Virtualization Research Challenges</title>
<author initials="CJ." surname="Bernardos" fullname="CJ. Bernardos">
<organization showOnFrontPage="true"/>
</author>
<author initials="A." surname="Rahman" fullname="A. Rahman">
<organization showOnFrontPage="true"/>
</author>
<author initials="JC." surname="Zuniga" fullname="JC. Zuniga">
<organization showOnFrontPage="true"/>
</author>
<author initials="LM." surname="Contreras" fullname="LM. Contreras">
<organization showOnFrontPage="true"/>
</author>
<author initials="P." surname="Aranda" fullname="P. Aranda">
<organization showOnFrontPage="true"/>
</author>
<author initials="P." surname="Lynch" fullname="P. Lynch">
<organization showOnFrontPage="true"/>
</author>
<date year="2019" month="April"/>
<abstract>
<t>This document describes open research challenges for network virtualization. Network virtualization is following a similar path as previously taken by cloud computing. Specifically, cloud computing popularized migration of computing functions (e.g., applications) and storage from local, dedicated, physical resources to remote virtual functions accessible through the Internet. In a similar manner, network virtualization is encouraging migration of networking functions from dedicated physical hardware nodes to a virtualized pool of resources. However, network virtualization can be considered to be a more complex problem than cloud computing as it not only involves virtualization of computing and storage functions but also involves abstraction of the network itself. This document describes current research and engineering challenges in network virtualization including the guarantee of quality of service, performance improvement, support for multiple domains, network slicing, service composition, device virtualization, privacy and security, separation of control concerns, network function placement, and testing. In addition, some proposals are made for new activities in the IETF and IRTF that could address some of these challenges. This document is a product of the Network Function Virtualization Research Group (NFVRG).</t>
</abstract>
</front>
<seriesInfo name="RFC" value="8568"/>
<seriesInfo name="DOI" value="10.17487/RFC8568"/>
</reference>
<reference anchor="RFC8569" target="https://www.rfc-editor.org/info/rfc8569" quoteTitle="true" derivedAnchor="RFC8569">
<front>
<title>Content-Centric Networking (CCNx) Semantics</title>
<author initials="M." surname="Mosko" fullname="M. Mosko">
<organization showOnFrontPage="true"/>
</author>
<author initials="I." surname="Solis" fullname="I. Solis">
<organization showOnFrontPage="true"/>
</author>
<author initials="C." surname="Wood" fullname="C. Wood">
<organization showOnFrontPage="true"/>
</author>
<date year="2019" month="July"/>
<abstract>
<t>This document describes the core concepts of the Content-Centric Networking (CCNx) architecture and presents a network protocol based on two messages: Interests and Content Objects. It specifies the set of mandatory and optional fields within those messages and describes their behavior and interpretation. This architecture and protocol specification is independent of a specific wire encoding.</t>
<t>The protocol also uses a control message called an Interest Return, whereby one system can return an Interest message to the previous hop due to an error condition. This indicates to the previous hop that the current system will not respond to the Interest.</t>
<t>This document is a product of the Information-Centric Networking Research Group (ICNRG). The document received wide review among ICNRG participants. Two full implementations are in active use and have informed the technical maturity of the protocol specification.</t>
</abstract>
</front>
<seriesInfo name="RFC" value="8569"/>
<seriesInfo name="DOI" value="10.17487/RFC8569"/>
</reference>
<reference anchor="RFC8609" target="https://www.rfc-editor.org/info/rfc8609" quoteTitle="true" derivedAnchor="RFC8609">
<front>
<title>Content-Centric Networking (CCNx) Messages in TLV Format</title>
<author initials="M." surname="Mosko" fullname="M. Mosko">
<organization showOnFrontPage="true"/>
</author>
<author initials="I." surname="Solis" fullname="I. Solis">
<organization showOnFrontPage="true"/>
</author>
<author initials="C." surname="Wood" fullname="C. Wood">
<organization showOnFrontPage="true"/>
</author>
<date year="2019" month="July"/>
<abstract>
<t>Content-Centric Networking (CCNx) is a network protocol that uses a hierarchical name to forward requests and to match responses to requests. This document specifies the encoding of CCNx messages in a TLV packet format, including the TLV types used by each message element and the encoding of each value. The semantics of CCNx messages follow the encoding-independent CCNx Semantics specification.</t>
<t>This document is a product of the Information Centric Networking research group (ICNRG). The document received wide review among ICNRG participants and has two full implementations currently in active use, which have informed the technical maturity of the protocol specification.</t>
</abstract>
</front>
<seriesInfo name="RFC" value="8609"/>
<seriesInfo name="DOI" value="10.17487/RFC8609"/>
</reference>
<reference anchor="RFC8613" target="https://www.rfc-editor.org/info/rfc8613" quoteTitle="true" derivedAnchor="RFC8613">
<front>
<title>Object Security for Constrained RESTful Environments (OSCORE)</title>
<author initials="G." surname="Selander" fullname="G. Selander">
<organization showOnFrontPage="true"/>
</author>
<author initials="J." surname="Mattsson" fullname="J. Mattsson">
<organization showOnFrontPage="true"/>
</author>
<author initials="F." surname="Palombini" fullname="F. Palombini">
<organization showOnFrontPage="true"/>
</author>
<author initials="L." surname="Seitz" fullname="L. Seitz">
<organization showOnFrontPage="true"/>
</author>
<date year="2019" month="July"/>
<abstract>
<t>This document defines Object Security for Constrained RESTful Environments (OSCORE), a method for application-layer protection of the Constrained Application Protocol (CoAP), using CBOR Object Signing and Encryption (COSE). OSCORE provides end-to-end protection between endpoints communicating using CoAP or CoAP-mappable HTTP. OSCORE is designed for constrained nodes and networks supporting a range of proxy operations, including translation between different transport protocols.</t>
<t>Although an optional functionality of CoAP, OSCORE alters CoAP options processing and IANA registration. Therefore, this document updates RFC 7252.</t>
</abstract>
</front>
<seriesInfo name="RFC" value="8613"/>
<seriesInfo name="DOI" value="10.17487/RFC8613"/>
</reference>
<reference anchor="SAIL" target="http://www.sail-project.eu/" quoteTitle="true" derivedAnchor="SAIL">
<front>
<title>Scalable and Adaptive Internet Solutions (SAIL)</title>
<author>
<organization showOnFrontPage="true">SAIL</organization>
</author>
</front>
</reference>
<reference anchor="SAIL_Content_Delivery" target="https://sail-project.eu/wp-content/uploads/2012/06/SAIL_DB2_v1_0_final-Public.pdf" quoteTitle="true" derivedAnchor="SAIL_Content_Delivery">
<front>
<title>NetInf Content Delivery and Operations</title>
<author>
<organization showOnFrontPage="true">FP7</organization>
</author>
<date month="January" year="2013"/>
</front>
<seriesInfo name="Objective" value="FP7-ICT-2009-5-257448/D-3.2"/>
</reference>
<reference anchor="SAIL_Prototyping" target="http://www.sail-project.eu/wp-content/uploads/2013/05/SAIL_DB4_v1.1_Final_Public.pdf" quoteTitle="true" derivedAnchor="SAIL_Prototyping">
<front>
<title>Prototyping and Evaluation</title>
<author>
<organization showOnFrontPage="true">FP7</organization>
</author>
<date month="March" year="2013"/>
</front>
<seriesInfo name="Objective" value="FP7-ICT-2009-5-257448/D.B.4"/>
</reference>
<reference anchor="Tateson" target="http://www.psirp.org/files/Deliverables/FP7-INFSO-ICT-216173-PSIRP-D4.6_FinalReportOnDeplIncBusinessModels.pdf" quoteTitle="true" derivedAnchor="Tateson">
<front>
<title>Final Evaluation Report on Deployment Incentives and Business Models</title>
<author>
<organization showOnFrontPage="true">Tateson, J., et al.</organization>
</author>
<date month="May" year="2010"/>
</front>
<seriesInfo name="Version" value="1.0"/>
<refcontent>PSIRP</refcontent>
</reference>
<reference anchor="Techno_Economic" quoteTitle="true" target="https://doi.org/10.5325/jinfopoli.2.2012.0026" derivedAnchor="Techno_Economic">
<front>
<title>Techno-Economics Aspects of Information-Centric Networking</title>
<author initials="D." surname="Trossen" fullname="Dirk Trossen">
<organization showOnFrontPage="true"/>
</author>
<author initials="A." surname="Kostopoulos" fullname="Alexandros Kostopoulos">
<organization showOnFrontPage="true"/>
</author>
<date month="June" year="2012"/>
</front>
<seriesInfo name="Journal for Information Policy" value=""/>
<refcontent>Volume 2</refcontent>
<seriesInfo name="DOI" value="10.5325/jinfopoli.2.2012.0026"/>
</reference>
<reference anchor="UMOBILE-2" quoteTitle="true" target="https://doi.org/10.1109/MCOM.2018.1700325" derivedAnchor="UMOBILE-2">
<front>
<title>Connecting the Edges: A Universal, Mobile-Centric, and Opportunistic Communications Architecture</title>
<author>
<organization showOnFrontPage="true">Sarros, C., et al.</organization>
</author>
<date month="February" year="2018"/>
</front>
<seriesInfo name="DOI" value="10.1109/MCOM.2018.1700325"/>
<refcontent>IEEE Communications Magazine, Volume 56, Issue 2</refcontent>
</reference>
<reference anchor="UMOBILE-3" quoteTitle="true" target="https://doi.org/10.1145/3210240.3210809" derivedAnchor="UMOBILE-3">
<front>
<title>Named-data Emergency Network Services</title>
<author initials="M." surname="Tavares" fullname="Miguel Tavares">
<organization showOnFrontPage="true"/>
</author>
<author initials="O." surname="Aponte" fullname="Omar Aponte">
<organization showOnFrontPage="true"/>
</author>
<author initials="P." surname="Mendes" fullname="Paulo Mendes">
<organization showOnFrontPage="true"/>
</author>
<date month="June" year="2018"/>
</front>
<seriesInfo name="DOI" value="10.1145/3210240.3210809"/>
<refcontent>MobiSys '18: Proceedings of the 16th Annual International
Conference on Mobile Systems, Applications, and Services</refcontent>
</reference>
<reference anchor="UMOBILE-4" quoteTitle="true" target="https://doi.org/10.1109/INFCOMW.2016.7562142" derivedAnchor="UMOBILE-4">
<front>
<title>Oi! - Opportunistic Data Transmission Based on Wi-Fi Direct</title>
<author>
<organization showOnFrontPage="true">Amaral, L., et al.</organization>
</author>
<date month="April" year="2016"/>
</front>
<seriesInfo name="DOI" value="10.1109/INFCOMW.2016.7562142"/>
<refcontent>2016 IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS)</refcontent>
</reference>
<reference anchor="UMOBILE-5" quoteTitle="true" target="https://doi.org/10.1145/3125719.3132107" derivedAnchor="UMOBILE-5">
<front>
<title>Demo: named-data networking in opportunistic network</title>
<author initials="S." surname="Dynerowicz" fullname="Seweryn Dynerowicz">
<organization showOnFrontPage="true"/>
</author>
<author initials="P." surname="Mendes" fullname="Paulo Mendes">
<organization showOnFrontPage="true"/>
</author>
<date month="September" year="2017"/>
</front>
<seriesInfo name="DOI" value="10.1145/3125719.3132107"/>
<refcontent>ICN '17: Proceedings of the 4th ACM Conference on
Information-Centric Networking</refcontent>
</reference>
<reference anchor="UMOBILE-6" quoteTitle="true" target="https://doi.org/10.1145/3267955.3269011" derivedAnchor="UMOBILE-6">
<front>
<title>Information-centric routing for opportunistic wireless networks</title>
<author>
<organization showOnFrontPage="true">Mendes, P.,et al.</organization>
</author>
<date month="September" year="2018"/>
</front>
<seriesInfo name="DOI" value="10.1145/3267955.3269011"/>
<refcontent>ICN '18: Proceedings of the 5th ACM Conference on
Information-Centric Networking</refcontent>
</reference>
<reference anchor="UMOBILE-7" quoteTitle="true" derivedAnchor="UMOBILE-7">
<front>
<title>D4.5 Report on Data Collection and Inference Models</title>
<author initials="R." surname="Sofia" fullname="Rute C. Sofia"/>
<date month="September" year="2017"/>
</front>
<refcontent>Deliverable</refcontent>
</reference>
<reference anchor="UMOBILE-8" quoteTitle="true" target="https://doi.org/10.1145/3125719.3132096" derivedAnchor="UMOBILE-8">
<front>
<title>ICN-based edge service deployment in challenged networks</title>
<author>
<organization showOnFrontPage="true">Sarros, C., et al.</organization>
</author>
<date month="September" year="2017"/>
</front>
<seriesInfo name="DOI" value="10.1145/3125719.3132096"/>
<refcontent>ICN '17: Proceedings of the 4th ACM Conference on
Information-Centric Networking</refcontent>
</reference>
<reference anchor="UMOBILE-9" quoteTitle="true" target="https://doi.org/10.1145/3209811.3209867" derivedAnchor="UMOBILE-9">
<front>
<title>Information-Centric Multi-Access Edge Computing Platform for Community Mesh Networks</title>
<author>
<organization showOnFrontPage="true">Lertsinsrubtavee, A., et al.</organization>
</author>
<date month="June" year="2018"/>
</front>
<seriesInfo name="DOI" value="10.1145/3209811.3209867"/>
<refcontent>COMPASS '18: Proceedings of the 1st ACM SIGCAS Conference
on Computing and Sustainable Societies</refcontent>
</reference>
<reference anchor="UMOBILE-overview" target="http://www.umobile-project.eu/" quoteTitle="true" derivedAnchor="UMOBILE-overview">
<front>
<title>Universal, mobile-centric and opportunistic communications architecture</title>
<author>
<organization showOnFrontPage="true">UMOBILE</organization>
</author>
</front>
</reference>
<reference anchor="VSER" quoteTitle="true" target="https://doi.org/10.1109/CloudNet.2013.6710583" derivedAnchor="VSER">
<front>
<title>Towards software defined ICN based edge-cloud services</title>
<author>
<organization showOnFrontPage="true">Ravindran, R., et al.</organization>
</author>
<date/>
</front>
<seriesInfo name="DOI" value="10.1109/CloudNet.2013.6710583"/>
<refcontent>2013 IEEE 2nd International Conference on Cloud Networking (CloudNet)</refcontent>
</reference>
<reference anchor="VSER-Mob" quoteTitle="true" target="https://doi.org/10.1145/2984356.2988521" derivedAnchor="VSER-Mob">
<front>
<title>Seamless Producer Mobility as a Service in Information-centric Networks</title>
<author>
<organization showOnFrontPage="true">Azgin, A., et al.</organization>
</author>
<date month="September" year="2016"/>
</front>
<seriesInfo name="DOI" value="10.1145/2984356.2988521"/>
<refcontent>ACM-ICN '16: Proceedings of the 3rd ACM Conference on
Information-Centric Networking</refcontent>
</reference>
<reference anchor="White" target="http://www.cablelabs.com/wp-content/uploads/2016/02/Content-Delivery-with-Content-Centric-Networking-Feb-2016.pdf" quoteTitle="true" derivedAnchor="White">
<front>
<title>Content Delivery with Content-Centric Networking</title>
<author initials="G." surname="White" fullname="Greg White">
<organization showOnFrontPage="true"/>
</author>
<author initials="G." surname="Rutz" fullname="Greg Rutz">
<organization showOnFrontPage="true"/>
</author>
<date month="February" year="2016"/>
</front>
</reference>
</references>
<section anchor="Acknowledgments" numbered="false" toc="include" removeInRFC="false" pn="section-appendix.a">
<name slugifiedName="name-acknowledgments">Acknowledgments</name>
<t pn="section-appendix.a-1">The authors want to thank <contact fullname="Alex Afanasyev"/>,
<contact fullname="Hitoshi Asaeda"/>, <contact fullname="Giovanna Carofiglio"/>, <contact fullname="Xavier de Foy"/>, <contact fullname="Guillaume Doyen"/>, <contact fullname="Hannu Flinck"/>,
<contact fullname="Anil Jangam"/>, <contact fullname="Michael Kowal"/>,
<contact fullname="Adisorn Lertsinsrubtavee"/>, <contact fullname="Paulo Mendes"/>, <contact fullname="Luca Muscariello"/>, <contact fullname="Thomas Schmidt"/>, <contact fullname="Jan Seedorf"/>, <contact fullname="Eve Schooler"/>, <contact fullname="Samar Shailendra"/>,
<contact fullname="Milan Stolic"/>, <contact fullname="Prakash Suthar"/>,
<contact fullname="Atsushi Mayutan"/>, and <contact fullname="Lixia Zhang"/> for their very useful reviews and comments to the document.
</t>
<t pn="section-appendix.a-2">Special thanks to <contact fullname="Dave Oran"/> (ICNRG Co-chair)
and <contact fullname="Marie-Jose Montpetit"/> for their extensive and
thoughtful reviews of the document. Their reviews helped to
immeasurably improve the document quality.</t>
</section>
<section anchor="authors-addresses" numbered="false" removeInRFC="false" toc="include" pn="section-appendix.b">
<name slugifiedName="name-authors-addresses">Authors' Addresses</name>
<author fullname="Akbar Rahman" initials="A." surname="Rahman">
<organization abbrev="InterDigital Communications, LLC" showOnFrontPage="true">InterDigital Communications, LLC</organization>
<address>
<postal>
<street>1000 Sherbrooke Street West, 10th floor</street>
<city>Montreal</city>
<code>H3A 3G4</code>
<country>Canada</country>
</postal>
<email>Akbar.Rahman@InterDigital.com</email>
<uri>http://www.InterDigital.com/</uri>
</address>
</author>
<author fullname="Dirk Trossen" initials="D." surname="Trossen">
<organization abbrev="Huawei" showOnFrontPage="true">Huawei Technologies Duesseldorf GmbH</organization>
<address>
<postal>
<street>Riesstrasse 25</street>
<city>Munich</city>
<code>80992</code>
<country>Germany</country>
</postal>
<email>dirk.trossen@huawei.com</email>
<uri>http://www.huawei.com/</uri>
</address>
</author>
<author fullname="Dirk Kutscher" initials="D." surname="Kutscher">
<organization abbrev="Emden University" showOnFrontPage="true">University of Applied Sciences Emden/Leer</organization>
<address>
<postal>
<street>Constantiapl. 4</street>
<city>Emden</city>
<code>26723</code>
<country>Germany</country>
</postal>
<email>ietf@dkutscher.net</email>
<uri>https://www.hs-emden-leer.de/en/</uri>
</address>
</author>
<author fullname="Ravi Ravindran" initials="R." surname="Ravindran">
<organization showOnFrontPage="true">Sterlite Technologies</organization>
<address>
<postal>
<street>5201 Greatamerica Pkwy</street>
<city>Santa Clara</city>
<code>95054</code>
<country>United States of America</country>
</postal>
<email>ravi.ravindran@gmail.com</email>
</address>
</author>
</section>
</back>
</rfc>
|