1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
|
<?xml version='1.0' encoding='utf-8'?>
<rfc xmlns:xi="http://www.w3.org/2001/XInclude" version="3" category="exp" consensus="true" docName="draft-ietf-tls-tls13-cert-with-extern-psk-07" indexInclude="true" ipr="trust200902" number="8773" prepTime="2020-03-29T14:38:23" scripts="Common,Latin" sortRefs="true" submissionType="IETF" symRefs="true" tocDepth="3" tocInclude="true" xml:lang="en">
<link href="https://datatracker.ietf.org/doc/draft-ietf-tls-tls13-cert-with-extern-psk-07" rel="prev"/>
<link href="https://dx.doi.org/10.17487/rfc8773" rel="alternate"/>
<link href="urn:issn:2070-1721" rel="alternate"/>
<front>
<title abbrev="Certificate with External PSK">TLS 1.3 Extension for Certificate-Based Authentication with an External Pre-Shared Key</title>
<seriesInfo name="RFC" value="8773" stream="IETF"/>
<author fullname="Russ Housley" initials="R." surname="Housley">
<organization abbrev="Vigil Security" showOnFrontPage="true">Vigil Security, LLC</organization>
<address>
<postal>
<street>516 Dranesville Road</street>
<city>Herndon</city>
<region>VA</region>
<code>20170</code>
<country>United States of America</country>
</postal>
<email>housley@vigilsec.com</email>
</address>
</author>
<date month="03" year="2020"/>
<keyword>cryptography</keyword>
<abstract pn="section-abstract">
<t pn="section-abstract-1">
This document specifies a TLS 1.3 extension that allows a server to
authenticate with a combination of a certificate and an external
pre-shared key (PSK).
</t>
</abstract>
<boilerplate>
<section anchor="status-of-memo" numbered="false" removeInRFC="false" toc="exclude" pn="section-boilerplate.1">
<name slugifiedName="name-status-of-this-memo">Status of This Memo</name>
<t pn="section-boilerplate.1-1">
This document is not an Internet Standards Track specification; it is
published for examination, experimental implementation, and
evaluation.
</t>
<t pn="section-boilerplate.1-2">
This document defines an Experimental Protocol for the Internet
community. This document is a product of the Internet Engineering
Task Force (IETF). It represents the consensus of the IETF community.
It has received public review and has been approved for publication
by the Internet Engineering Steering Group (IESG). Not all documents
approved by the IESG are candidates for any level of Internet
Standard; see Section 2 of RFC 7841.
</t>
<t pn="section-boilerplate.1-3">
Information about the current status of this document, any
errata, and how to provide feedback on it may be obtained at
<eref target="https://www.rfc-editor.org/info/rfc8773" brackets="none"/>.
</t>
</section>
<section anchor="copyright" numbered="false" removeInRFC="false" toc="exclude" pn="section-boilerplate.2">
<name slugifiedName="name-copyright-notice">Copyright Notice</name>
<t pn="section-boilerplate.2-1">
Copyright (c) 2020 IETF Trust and the persons identified as the
document authors. All rights reserved.
</t>
<t pn="section-boilerplate.2-2">
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<eref target="https://trustee.ietf.org/license-info" brackets="none"/>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with
respect to this document. Code Components extracted from this
document must include Simplified BSD License text as described in
Section 4.e of the Trust Legal Provisions and are provided without
warranty as described in the Simplified BSD License.
</t>
</section>
</boilerplate>
<toc>
<section anchor="toc" numbered="false" removeInRFC="false" toc="exclude" pn="section-toc.1">
<name slugifiedName="name-table-of-contents">Table of Contents</name>
<ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1">
<li pn="section-toc.1-1.1">
<t keepWithNext="true" pn="section-toc.1-1.1.1"><xref derivedContent="1" format="counter" sectionFormat="of" target="section-1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-introduction">Introduction</xref></t>
</li>
<li pn="section-toc.1-1.2">
<t keepWithNext="true" pn="section-toc.1-1.2.1"><xref derivedContent="2" format="counter" sectionFormat="of" target="section-2"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-terminology">Terminology</xref></t>
</li>
<li pn="section-toc.1-1.3">
<t keepWithNext="true" pn="section-toc.1-1.3.1"><xref derivedContent="3" format="counter" sectionFormat="of" target="section-3"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-motivation-and-design-ratio">Motivation and Design Rationale</xref></t>
</li>
<li pn="section-toc.1-1.4">
<t keepWithNext="true" pn="section-toc.1-1.4.1"><xref derivedContent="4" format="counter" sectionFormat="of" target="section-4"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-extension-overview">Extension Overview</xref></t>
</li>
<li pn="section-toc.1-1.5">
<t keepWithNext="true" pn="section-toc.1-1.5.1"><xref derivedContent="5" format="counter" sectionFormat="of" target="section-5"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-certificate-with-external-p">Certificate with External PSK Extension</xref></t>
<ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.5.2">
<li pn="section-toc.1-1.5.2.1">
<t keepWithNext="true" pn="section-toc.1-1.5.2.1.1"><xref derivedContent="5.1" format="counter" sectionFormat="of" target="section-5.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-companion-extensions">Companion Extensions</xref></t>
</li>
<li pn="section-toc.1-1.5.2.2">
<t keepWithNext="true" pn="section-toc.1-1.5.2.2.1"><xref derivedContent="5.2" format="counter" sectionFormat="of" target="section-5.2"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-authentication">Authentication</xref></t>
</li>
<li pn="section-toc.1-1.5.2.3">
<t keepWithNext="true" pn="section-toc.1-1.5.2.3.1"><xref derivedContent="5.3" format="counter" sectionFormat="of" target="section-5.3"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-keying-material">Keying Material</xref></t>
</li>
</ul>
</li>
<li pn="section-toc.1-1.6">
<t keepWithNext="true" pn="section-toc.1-1.6.1"><xref derivedContent="6" format="counter" sectionFormat="of" target="section-6"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-iana-considerations">IANA Considerations</xref></t>
</li>
<li pn="section-toc.1-1.7">
<t keepWithNext="true" pn="section-toc.1-1.7.1"><xref derivedContent="7" format="counter" sectionFormat="of" target="section-7"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-security-considerations">Security Considerations</xref></t>
</li>
<li pn="section-toc.1-1.8">
<t keepWithNext="true" pn="section-toc.1-1.8.1"><xref derivedContent="8" format="counter" sectionFormat="of" target="section-8"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-privacy-considerations">Privacy Considerations</xref></t>
</li>
<li pn="section-toc.1-1.9">
<t keepWithNext="true" pn="section-toc.1-1.9.1"><xref derivedContent="9" format="counter" sectionFormat="of" target="section-9"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-references">References</xref></t>
<ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.9.2">
<li pn="section-toc.1-1.9.2.1">
<t keepWithNext="true" pn="section-toc.1-1.9.2.1.1"><xref derivedContent="9.1" format="counter" sectionFormat="of" target="section-9.1"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-normative-references">Normative References</xref></t>
</li>
<li pn="section-toc.1-1.9.2.2">
<t keepWithNext="true" pn="section-toc.1-1.9.2.2.1"><xref derivedContent="9.2" format="counter" sectionFormat="of" target="section-9.2"/>. <xref derivedContent="" format="title" sectionFormat="of" target="name-informative-references">Informative References</xref></t>
</li>
</ul>
</li>
<li pn="section-toc.1-1.10">
<t keepWithNext="true" pn="section-toc.1-1.10.1"><xref derivedContent="" format="none" sectionFormat="of" target="section-appendix.a"/><xref derivedContent="" format="title" sectionFormat="of" target="name-acknowledgments">Acknowledgments</xref></t>
</li>
<li pn="section-toc.1-1.11">
<t keepWithNext="true" pn="section-toc.1-1.11.1"><xref derivedContent="" format="none" sectionFormat="of" target="section-appendix.b"/><xref derivedContent="" format="title" sectionFormat="of" target="name-authors-address">Author's Address</xref></t>
</li>
</ul>
</section>
</toc>
</front>
<middle>
<section anchor="intro" numbered="true" toc="include" removeInRFC="false" pn="section-1">
<name slugifiedName="name-introduction">Introduction</name>
<t pn="section-1-1">
The TLS 1.3 <xref target="RFC8446" format="default" sectionFormat="of" derivedContent="RFC8446"/> handshake
protocol provides two mutually exclusive forms of server
authentication. First, the server can be authenticated by
providing a signature certificate and creating a valid digital
signature to demonstrate that it possesses the corresponding
private key. Second, the server can be authenticated
by demonstrating that it possesses a pre-shared key (PSK) that
was established by a previous handshake. A PSK that
is established in this fashion is called a resumption PSK. A
PSK that is established by any other means is called an external
PSK. This document specifies a TLS 1.3 extension permitting
certificate-based server authentication to be combined with
an external PSK as an input to the TLS 1.3 key schedule.
</t>
<t pn="section-1-2">
Several implementors wanted to gain more experience with this
specification before producing a Standards Track RFC. As a
result, this specification is being published as an Experimental
RFC to enable interoperable implementations and gain deployment
and operational experience.
</t>
</section>
<section anchor="term" numbered="true" toc="include" removeInRFC="false" pn="section-2">
<name slugifiedName="name-terminology">Terminology</name>
<t pn="section-2-1">
The key words "<bcp14>MUST</bcp14>", "<bcp14>MUST NOT</bcp14>",
"<bcp14>REQUIRED</bcp14>", "<bcp14>SHALL</bcp14>", "<bcp14>SHALL NOT</bcp14>", "<bcp14>SHOULD</bcp14>", "<bcp14>SHOULD NOT</bcp14>",
"<bcp14>RECOMMENDED</bcp14>", "<bcp14>NOT RECOMMENDED</bcp14>",
"<bcp14>MAY</bcp14>", and "<bcp14>OPTIONAL</bcp14>" in this document are to be interpreted as
described in BCP 14 <xref target="RFC2119" format="default" sectionFormat="of" derivedContent="RFC2119"/> <xref target="RFC8174" format="default" sectionFormat="of" derivedContent="RFC8174"/>
when, and only when, they appear in all capitals, as shown here.
</t>
</section>
<section anchor="motive" numbered="true" toc="include" removeInRFC="false" pn="section-3">
<name slugifiedName="name-motivation-and-design-ratio">Motivation and Design Rationale</name>
<t pn="section-3-1">
The development of a large-scale quantum computer would pose a serious
challenge for the cryptographic algorithms that are widely deployed
today, including the digital signature algorithms that are used
to authenticate the server in the TLS 1.3 handshake protocol. It
is an open question whether or not it is feasible to build
a large-scale quantum computer, and if so, when that might
happen. However, if such a quantum computer is invented, many
of the cryptographic algorithms and the security protocols that
use them would become vulnerable.
</t>
<t pn="section-3-2">
The TLS 1.3 handshake protocol employs key agreement algorithms
and digital signature algorithms that could be broken by the
development of a large-scale quantum computer
<xref target="I-D.hoffman-c2pq" format="default" sectionFormat="of" derivedContent="TRANSITION"/>. The key agreement algorithms
include Diffie-Hellman (DH) <xref target="DH1976" format="default" sectionFormat="of" derivedContent="DH1976"/> and
Elliptic Curve Diffie-Hellman (ECDH) <xref target="IEEE1363" format="default" sectionFormat="of" derivedContent="IEEE1363"/>;
the digital signature algorithms include RSA <xref target="RFC8017" format="default" sectionFormat="of" derivedContent="RFC8017"/>
and the Elliptic Curve Digital Signature Algorithm (ECDSA)
<xref target="FIPS186" format="default" sectionFormat="of" derivedContent="FIPS186"/>. As a result, an adversary that
stores a TLS 1.3 handshake protocol exchange today could
decrypt the associated encrypted communications in the
future when a large-scale quantum computer becomes
available.
</t>
<t pn="section-3-3">
In the near term, this document describes a TLS 1.3 extension to protect
today's communications from the future invention of a large-scale
quantum computer by providing a strong external PSK as an input to
the TLS 1.3 key schedule while preserving the authentication provided
by the existing certificate and digital signature mechanisms.
</t>
</section>
<section anchor="over" numbered="true" toc="include" removeInRFC="false" pn="section-4">
<name slugifiedName="name-extension-overview">Extension Overview</name>
<t pn="section-4-1">
This section provides a brief overview of the
"tls_cert_with_extern_psk" extension.
</t>
<t pn="section-4-2">
The client includes the "tls_cert_with_extern_psk" extension in the
ClientHello message. The "tls_cert_with_extern_psk" extension <bcp14>MUST</bcp14>
be accompanied by the "key_share", "psk_key_exchange_modes", and
"pre_shared_key" extensions. The client <bcp14>MAY</bcp14> also find it useful
to include the "supported_groups" extension. Since the
"tls_cert_with_extern_psk" extension is intended to be used only
with initial handshakes, it <bcp14>MUST NOT</bcp14> be sent alongside the
"early_data" extension. These extensions are all described in
<xref target="RFC8446" sectionFormat="of" section="4.2" format="default" derivedLink="https://rfc-editor.org/rfc/rfc8446#section-4.2" derivedContent="RFC8446"/>, which also requires
the "pre_shared_key" extension to be the last extension in the
ClientHello message.
</t>
<t pn="section-4-3">
If the client includes both the "tls_cert_with_extern_psk" extension
and the "early_data" extension, then the server <bcp14>MUST</bcp14> terminate the
connection with an "illegal_parameter" alert.
</t>
<t pn="section-4-4">
If the server is willing to use one of the external PSKs listed in the
"pre_shared_key" extension and perform certificate-based authentication,
then the server includes the "tls_cert_with_extern_psk" extension in the
ServerHello message. The "tls_cert_with_extern_psk" extension <bcp14>MUST</bcp14> be
accompanied by the "key_share" and "pre_shared_key" extensions. If none
of the external PSKs in the list provided by the client is acceptable
to the server, then the "tls_cert_with_extern_psk" extension is
omitted from the ServerHello message.
</t>
<t pn="section-4-5">
When the "tls_cert_with_extern_psk" extension is successfully
negotiated, the TLS 1.3 key schedule processing includes
both the selected external PSK and the (EC)DHE shared secret
value. (EC)DHE refers to Diffie-Hellman over either finite fields
or elliptic curves. As a result, the Early Secret, Handshake
Secret, and Master Secret values all depend upon the value of the
selected external PSK. Of course, the Early Secret does not
depend upon the (EC)DHE shared secret.
</t>
<t pn="section-4-6">
The authentication of the server and optional authentication of
the client depend upon the ability to generate a signature that
can be validated with the public key in their certificates. The
authentication processing is not changed in any way by the
selected external PSK.
</t>
<t pn="section-4-7">
Each external PSK is associated with a single hash algorithm, which
is required by <xref target="RFC8446" sectionFormat="of" section="4.2.11" format="default" derivedLink="https://rfc-editor.org/rfc/rfc8446#section-4.2.11" derivedContent="RFC8446"/>. The
hash algorithm <bcp14>MUST</bcp14> be set when the PSK is established, with a
default of SHA-256.
</t>
</section>
<section anchor="extn" numbered="true" toc="include" removeInRFC="false" pn="section-5">
<name slugifiedName="name-certificate-with-external-p">Certificate with External PSK Extension</name>
<t pn="section-5-1">
This section specifies the "tls_cert_with_extern_psk" extension,
which <bcp14>MAY</bcp14> appear in the ClientHello message and ServerHello message. It
<bcp14>MUST NOT</bcp14> appear in any other messages. The "tls_cert_with_extern_psk"
extension <bcp14>MUST NOT</bcp14> appear in the ServerHello message unless the
"tls_cert_with_extern_psk" extension appeared in the preceding
ClientHello message. If an implementation recognizes the
"tls_cert_with_extern_psk" extension and receives it in any other
message, then the implementation <bcp14>MUST</bcp14> abort the handshake with an
"illegal_parameter" alert.
</t>
<t pn="section-5-2">
The general extension mechanisms enable clients and servers to
negotiate the use of specific extensions. Clients request
extended functionality from servers with the extensions field
in the ClientHello message. If the server responds with a
HelloRetryRequest message, then the client sends another
ClientHello message as described in <xref target="RFC8446" sectionFormat="of" section="4.1.2" format="default" derivedLink="https://rfc-editor.org/rfc/rfc8446#section-4.1.2" derivedContent="RFC8446"/>, including the same
"tls_cert_with_extern_psk" extension as the original
ClientHello message, or aborts the handshake.
</t>
<t pn="section-5-3">
Many server extensions are carried in the EncryptedExtensions
message; however, the "tls_cert_with_extern_psk" extension is
carried in the ServerHello message. Successful negotiation of
the "tls_cert_with_extern_psk" extension affects the key used for
encryption, so it cannot be carried in the EncryptedExtensions
message. Therefore, the "tls_cert_with_extern_psk" extension
is only present in the ServerHello message if the server
recognizes the "tls_cert_with_extern_psk" extension and the
server possesses one of the external PSKs offered by the client
in the "pre_shared_key" extension in the ClientHello message.
</t>
<t pn="section-5-4">
The Extension structure is defined in <xref target="RFC8446" format="default" sectionFormat="of" derivedContent="RFC8446"/>;
it is repeated here for convenience.
</t>
<sourcecode type="tls-presentation" markers="false" pn="section-5-5"> struct {
ExtensionType extension_type;
opaque extension_data<0..2^16-1>;
} Extension;
</sourcecode>
<t pn="section-5-6">
The "extension_type" identifies the particular extension type,
and the "extension_data" contains information specific to the
particular extension type.
</t>
<t pn="section-5-7">
This document specifies the "tls_cert_with_extern_psk" extension,
adding one new type to ExtensionType:
</t>
<sourcecode type="tls-presentation" markers="false" pn="section-5-8"> enum {
tls_cert_with_extern_psk(33), (65535)
} ExtensionType;
</sourcecode>
<t pn="section-5-9">
The "tls_cert_with_extern_psk" extension is relevant when the
client and server possess an external PSK in common that can be
used as an input to the TLS 1.3 key schedule. The
"tls_cert_with_extern_psk" extension is essentially a flag to
use the external PSK in the key schedule, and it has the
following syntax:
</t>
<sourcecode type="tls-presentation" markers="false" pn="section-5-10"> struct {
select (Handshake.msg_type) {
case client_hello: Empty;
case server_hello: Empty;
};
} CertWithExternPSK;
</sourcecode>
<section anchor="other-extns" numbered="true" toc="include" removeInRFC="false" pn="section-5.1">
<name slugifiedName="name-companion-extensions">Companion Extensions</name>
<t pn="section-5.1-1">
<xref target="over" format="default" sectionFormat="of" derivedContent="Section 4"/> lists the extensions that are required to accompany the
"tls_cert_with_extern_psk" extension. Most of those extensions
are not impacted in any way by this specification. However, this
section discusses the extensions that require additional consideration.
</t>
<t pn="section-5.1-2">
The "psk_key_exchange_modes" extension is defined in
of <xref target="RFC8446" sectionFormat="of" section="4.2.9" format="default" derivedLink="https://rfc-editor.org/rfc/rfc8446#section-4.2.9" derivedContent="RFC8446"/>. The
"psk_key_exchange_modes"
extension restricts the use of both the PSKs offered in this
ClientHello and those that the server might supply via a subsequent
NewSessionTicket. As a result, when the "psk_key_exchange_modes"
extension is included in the ClientHello message, clients <bcp14>MUST</bcp14>
include psk_dhe_ke mode. In addition, clients <bcp14>MAY</bcp14> also include
psk_ke mode to support a subsequent NewSessionTicket. When the
"psk_key_exchange_modes" extension is included in the ServerHello
message, servers <bcp14>MUST</bcp14> select the psk_dhe_ke mode for the initial
handshake. Servers <bcp14>MUST</bcp14> select a key exchange mode that is listed
by the client for subsequent handshakes that include the resumption
PSK from the initial handshake.
</t>
<t pn="section-5.1-3">
The "pre_shared_key" extension is defined in <xref target="RFC8446" sectionFormat="of" section="4.2.11" format="default" derivedLink="https://rfc-editor.org/rfc/rfc8446#section-4.2.11" derivedContent="RFC8446"/>. The
syntax is repeated below for
convenience. All of the listed PSKs <bcp14>MUST</bcp14> be external PSKs. If a
resumption PSK is listed along with the "tls_cert_with_extern_psk"
extension, the server <bcp14>MUST</bcp14> abort the handshake with an
"illegal_parameter" alert.
</t>
<sourcecode type="tls-presentation" markers="false" pn="section-5.1-4"> struct {
opaque identity<1..2^16-1>;
uint32 obfuscated_ticket_age;
} PskIdentity;
opaque PskBinderEntry<32..255>;
struct {
PskIdentity identities<7..2^16-1>;
PskBinderEntry binders<33..2^16-1>;
} OfferedPsks;
struct {
select (Handshake.msg_type) {
case client_hello: OfferedPsks;
case server_hello: uint16 selected_identity;
};
} PreSharedKeyExtension;
</sourcecode>
<t pn="section-5.1-5">
"OfferedPsks" contains the list of PSK identities and
associated binders for the external PSKs that the client is
willing to use with the server.
</t>
<t pn="section-5.1-6">
The identities are a list of external PSK identities that the
client is willing to negotiate with the server. Each external
PSK has an associated identity that is known to the client
and the server; the associated identities may be known to other
parties as well. In addition, the binder validation (see below)
confirms that the client and server have the same key associated
with the identity.
</t>
<t pn="section-5.1-7">
The "obfuscated_ticket_age" is not used for external PSKs. As
stated in <xref target="RFC8446" sectionFormat="of" section="4.2.11" format="default" derivedLink="https://rfc-editor.org/rfc/rfc8446#section-4.2.11" derivedContent="RFC8446"/>, clients
<bcp14>SHOULD</bcp14> set this value to 0, and servers <bcp14>MUST</bcp14> ignore the value.
</t>
<t pn="section-5.1-8">
The binders are a series of HMAC <xref target="RFC2104" format="default" sectionFormat="of" derivedContent="RFC2104"/> values, one
for each external PSK offered by the client, in the same order as the
identities list. The HMAC value is computed using the binder_key, which
is derived from the external PSK, and a partial transcript of the current
handshake. Generation of the binder_key from the external PSK is
described in <xref target="RFC8446" sectionFormat="of" section="7.1" format="default" derivedLink="https://rfc-editor.org/rfc/rfc8446#section-7.1" derivedContent="RFC8446"/>. The
partial transcript of the current handshake includes a partial
ClientHello up to and including the PreSharedKeyExtension.identities
field, as described in <xref target="RFC8446" sectionFormat="of" section="4.2.11.2" format="default" derivedLink="https://rfc-editor.org/rfc/rfc8446#section-4.2.11.2" derivedContent="RFC8446"/>.
</t>
<t pn="section-5.1-9">
The "selected_identity" contains the index of the external PSK
identity that the server selected from the list offered by the
client. As described in <xref target="RFC8446" sectionFormat="of" section="4.2.11" format="default" derivedLink="https://rfc-editor.org/rfc/rfc8446#section-4.2.11" derivedContent="RFC8446"/>,
the server <bcp14>MUST</bcp14> validate the binder value that corresponds to the
selected external PSK, and if the binder does not validate, the
server <bcp14>MUST</bcp14> abort the handshake with an "illegal_parameter" alert.
</t>
</section>
<section anchor="authn" numbered="true" toc="include" removeInRFC="false" pn="section-5.2">
<name slugifiedName="name-authentication">Authentication</name>
<t pn="section-5.2-1">
When the "tls_cert_with_extern_psk" extension is successfully
negotiated, authentication of the server depends upon the ability to
generate a signature that can be validated with the public key in
the server's certificate. This is accomplished by the server
sending the Certificate and CertificateVerify messages, as described
in Sections <xref target="RFC8446" sectionFormat="bare" section="4.4.2" format="default" derivedLink="https://rfc-editor.org/rfc/rfc8446#section-4.4.2" derivedContent="RFC8446"/> and <xref target="RFC8446" sectionFormat="bare" section="4.4.3" format="default" derivedLink="https://rfc-editor.org/rfc/rfc8446#section-4.4.3" derivedContent="RFC8446"/> of <xref target="RFC8446" format="default" sectionFormat="of" derivedContent="RFC8446"/>.
</t>
<t pn="section-5.2-2">
TLS 1.3 does not permit the server to send a CertificateRequest message
when a PSK is being used. This restriction is removed when the
"tls_cert_with_extern_psk" extension is negotiated, allowing
certificate-based authentication for both the client and the server. If
certificate-based client authentication is desired, this is accomplished
by the client sending the Certificate and CertificateVerify messages as
described in Sections <xref target="RFC8446" sectionFormat="bare" section="4.4.2" format="default" derivedLink="https://rfc-editor.org/rfc/rfc8446#section-4.4.2" derivedContent="RFC8446"/> and <xref target="RFC8446" sectionFormat="bare" section="4.4.3" format="default" derivedLink="https://rfc-editor.org/rfc/rfc8446#section-4.4.3" derivedContent="RFC8446"/> of <xref target="RFC8446" format="default" sectionFormat="of" derivedContent="RFC8446"/>.
</t>
</section>
<section anchor="keying" numbered="true" toc="include" removeInRFC="false" pn="section-5.3">
<name slugifiedName="name-keying-material">Keying Material</name>
<t pn="section-5.3-1">
<xref target="RFC8446" sectionFormat="of" section="7.1" format="default" derivedLink="https://rfc-editor.org/rfc/rfc8446#section-7.1" derivedContent="RFC8446"/> specifies the
TLS 1.3 key schedule. The successful negotiation of the
"tls_cert_with_extern_psk" extension requires the key schedule
processing to include both the external PSK and the (EC)DHE
shared secret value.
</t>
<t pn="section-5.3-2">
If the client and the server have different values associated
with the selected external PSK identifier, then the client and
the server will compute different values for every entry in the
key schedule, which will lead to the client aborting the
handshake with a "decrypt_error" alert.
</t>
</section>
</section>
<section anchor="IANA-con" numbered="true" toc="include" removeInRFC="false" pn="section-6">
<name slugifiedName="name-iana-considerations">IANA Considerations</name>
<t pn="section-6-1">
IANA has updated the "TLS ExtensionType Values" registry
<xref target="IANA" format="default" sectionFormat="of" derivedContent="IANA"/>
to include "tls_cert_with_extern_psk" with a value of 33 and the list of
messages "CH, SH" in which the "tls_cert_with_extern_psk" extension may
appear.
</t>
</section>
<section anchor="security" numbered="true" toc="include" removeInRFC="false" pn="section-7">
<name slugifiedName="name-security-considerations">Security Considerations</name>
<t pn="section-7-1">
The Security Considerations in <xref target="RFC8446" format="default" sectionFormat="of" derivedContent="RFC8446"/>
remain relevant.
</t>
<t pn="section-7-2">
TLS 1.3 <xref target="RFC8446" format="default" sectionFormat="of" derivedContent="RFC8446"/> does not permit
the server to send a CertificateRequest message when a PSK
is being used. This restriction is removed when the
"tls_cert_with_extern_psk" extension is offered by the client
and accepted by the server. However, TLS 1.3 does not
permit an external PSK to be used in the same fashion as a
resumption PSK, and this extension does not alter those
restrictions. Thus, a certificate <bcp14>MUST NOT</bcp14> be used with
a resumption PSK.
</t>
<t pn="section-7-3">
Implementations must protect the external pre-shared key (PSK).
Compromise of the external PSK will make the encrypted session
content vulnerable to the future development of a large-scale
quantum computer. However, the generation, distribution, and
management of the external PSKs is out of scope for this
specification.
</t>
<t pn="section-7-4">
Implementers should not transmit the same content on a connection
that is protected with an external PSK and a connection that is
not. Doing so may allow an eavesdropper to correlate the
connections, making the content vulnerable to the future
invention of a large-scale quantum computer.
</t>
<t pn="section-7-5">
Implementations must generate external PSKs with a secure key-management
technique, such as pseudorandom generation of the key or derivation of
the key from one or more other secure keys. The use of inadequate
pseudorandom number generators (PRNGs) to generate external PSKs can
result in little or no security. An attacker may find it much easier
to reproduce the PRNG environment that produced the external PSKs and
search the resulting small set of possibilities, rather than brute-force
searching the whole key space. The generation of quality random
numbers is difficult. <xref target="RFC4086" format="default" sectionFormat="of" derivedContent="RFC4086"/> offers important
guidance in this area.
</t>
<t pn="section-7-6">
If the external PSK is known to any party other than the client and
the server, then the external PSK <bcp14>MUST NOT</bcp14> be the sole basis for
authentication. The reasoning is explained in Section 4.2 of
<xref target="K2016" format="default" sectionFormat="of" derivedContent="K2016"/>. When this extension is used, authentication
is based on certificates, not the external PSK.
</t>
<t pn="section-7-7">
In this extension, the external PSK preserves confidentiality if the
(EC)DH key agreement is ever broken by cryptanalysis or the future
invention of a large-scale quantum computer. As long as the attacker
does not know the PSK and the key derivation algorithm remains
unbroken, the attacker cannot derive the session secrets, even if they
are able to compute the (EC)DH shared secret. Should the attacker be
able compute the (EC)DH shared secret, the forward-secrecy advantages
traditionally associated with ephemeral (EC)DH keys will no longer be
relevant. Although the ephemeral private keys used during a given TLS
session are destroyed at the end of a session, preventing the attacker
from later accessing them, these private keys would nevertheless be
recoverable due to the break in the algorithm. However, a more
general notion of "secrecy after key material is destroyed" would still
be achievable using external PSKs, if they are managed in a way that
ensures their destruction when they are no longer needed, and with
the assumption that the algorithms that use the external PSKs remain
quantum-safe.
</t>
<t pn="section-7-8">
TLS 1.3 key derivation makes use of the HMAC-based Key Derivation
Function (HKDF) algorithm, which depends
upon the HMAC <xref target="RFC2104" format="default" sectionFormat="of" derivedContent="RFC2104"/> construction and a hash
function. This extension provides the desired protection for the
session secrets, as long as HMAC with the selected hash function is
a pseudorandom function (PRF) <xref target="GGM1986" format="default" sectionFormat="of" derivedContent="GGM1986"/>.
</t>
<t pn="section-7-9">
This specification does not require that the external PSK is known only by
the client and server. The external PSK may be known to a group. Since
authentication depends on the public key in a certificate, knowledge of
the external PSK by other parties does not enable impersonation. Since
confidentiality depends on the shared secret from (EC)DH, knowledge of
the external PSK by other parties does not enable eavesdropping. However,
group members can record the traffic of other members and then decrypt it
if they ever gain access to a large-scale quantum computer. Also, when
many parties know the external PSK, there are many opportunities for theft
of the external PSK by an attacker. Once an attacker has the external PSK,
they can decrypt stored traffic if they ever gain access to a large-scale
quantum computer, in the same manner as a legitimate group member.
</t>
<t pn="section-7-10">
TLS 1.3 <xref target="RFC8446" format="default" sectionFormat="of" derivedContent="RFC8446"/> takes a conservative approach to PSKs;
they are bound to a specific hash function and KDF. By contrast,
TLS 1.2 <xref target="RFC5246" format="default" sectionFormat="of" derivedContent="RFC5246"/> allows PSKs to be used with any hash
function and the TLS 1.2 PRF. Thus, the safest approach is to use a PSK
exclusively with TLS 1.2 or exclusively with TLS 1.3. Given one PSK,
one can derive a PSK for exclusive use with TLS 1.2 and derive another
PSK for exclusive use with TLS 1.3 using the mechanism specified in
<xref target="I-D.ietf-tls-external-psk-importer" format="default" sectionFormat="of" derivedContent="IMPORT"/>.
</t>
<t pn="section-7-11">
TLS 1.3 <xref target="RFC8446" format="default" sectionFormat="of" derivedContent="RFC8446"/> has received careful security analysis,
and the following informal reasoning shows that the addition of this
extension does not introduce any security defects. This extension
requires the use of certificates for authentication, but the processing
of certificates is unchanged by this extension. This extension places
an external PSK in the key schedule as part of the computation of the
Early Secret. In the initial handshake without this extension, the
Early Secret is computed as:
</t>
<sourcecode markers="false" pn="section-7-12">
Early Secret = HKDF-Extract(0, 0)
</sourcecode>
<t pn="section-7-13">
With this extension, the Early Secret is computed as:
</t>
<sourcecode markers="false" pn="section-7-14">
Early Secret = HKDF-Extract(External PSK, 0)
</sourcecode>
<t pn="section-7-15">
Any entropy contributed by the external PSK can only make the Early
Secret better; the External PSK cannot make it worse. For these two
reasons, TLS 1.3 continues to meet its security goals when this extension
is used.
</t>
</section>
<section anchor="privacy" numbered="true" toc="include" removeInRFC="false" pn="section-8">
<name slugifiedName="name-privacy-considerations">Privacy Considerations</name>
<t pn="section-8-1">
<xref target="RFC8446" sectionFormat="of" section="E.6" format="default" derivedLink="https://rfc-editor.org/rfc/rfc8446#appendix-E.6" derivedContent="RFC8446"/> discusses identity-exposure
attacks on PSKs. The guidance in this section remains relevant.
</t>
<t pn="section-8-2">
This extension makes use of external PSKs to improve resilience against
attackers that gain access to a large-scale quantum computer in the
future. This extension is always accompanied by the "pre_shared_key"
extension to provide the PSK identities in plaintext in the ClientHello
message. Passive observation of the these PSK identities will aid an
attacker in tracking users of this extension.
</t>
</section>
</middle>
<back>
<displayreference target="I-D.hoffman-c2pq" to="TRANSITION"/>
<displayreference target="I-D.ietf-tls-external-psk-importer" to="IMPORT"/>
<references pn="section-9">
<name slugifiedName="name-references">References</name>
<references pn="section-9.1">
<name slugifiedName="name-normative-references">Normative References</name>
<reference anchor="RFC2119" target="https://www.rfc-editor.org/info/rfc2119" quoteTitle="true" derivedAnchor="RFC2119">
<front>
<title>Key words for use in RFCs to Indicate Requirement Levels</title>
<author initials="S." surname="Bradner" fullname="S. Bradner">
<organization showOnFrontPage="true"/>
</author>
<date year="1997" month="March"/>
<abstract>
<t>In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.</t>
</abstract>
</front>
<seriesInfo name="BCP" value="14"/>
<seriesInfo name="RFC" value="2119"/>
<seriesInfo name="DOI" value="10.17487/RFC2119"/>
</reference>
<reference anchor="RFC8174" target="https://www.rfc-editor.org/info/rfc8174" quoteTitle="true" derivedAnchor="RFC8174">
<front>
<title>Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words</title>
<author initials="B." surname="Leiba" fullname="B. Leiba">
<organization showOnFrontPage="true"/>
</author>
<date year="2017" month="May"/>
<abstract>
<t>RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.</t>
</abstract>
</front>
<seriesInfo name="BCP" value="14"/>
<seriesInfo name="RFC" value="8174"/>
<seriesInfo name="DOI" value="10.17487/RFC8174"/>
</reference>
<reference anchor="RFC8446" target="https://www.rfc-editor.org/info/rfc8446" quoteTitle="true" derivedAnchor="RFC8446">
<front>
<title>The Transport Layer Security (TLS) Protocol Version 1.3</title>
<author initials="E." surname="Rescorla" fullname="E. Rescorla">
<organization showOnFrontPage="true"/>
</author>
<date year="2018" month="August"/>
<abstract>
<t>This document specifies version 1.3 of the Transport Layer Security (TLS) protocol. TLS allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.</t>
<t>This document updates RFCs 5705 and 6066, and obsoletes RFCs 5077, 5246, and 6961. This document also specifies new requirements for TLS 1.2 implementations.</t>
</abstract>
</front>
<seriesInfo name="RFC" value="8446"/>
<seriesInfo name="DOI" value="10.17487/RFC8446"/>
</reference>
</references>
<references pn="section-9.2">
<name slugifiedName="name-informative-references">Informative References</name>
<reference anchor="DH1976" target="https://ieeexplore.ieee.org/document/1055638" quoteTitle="true" derivedAnchor="DH1976">
<front>
<title>New Directions in Cryptography</title>
<author initials="W" surname="Diffie" fullname="Whitfield Diffie"/>
<author initials="M" surname="Hellman" fullname="Martin Hellman"/>
<date month="November" year="1976"/>
</front>
<refcontent>IEEE Transactions on Information Theory</refcontent>
<refcontent>Vol. 22, No. 6</refcontent>
<seriesInfo name="DOI" value="10.1109/TIT.1976.1055638"/>
</reference>
<reference anchor="FIPS186" quoteTitle="true" target="https://doi.org/10.6028/NIST.FIPS.186-4" derivedAnchor="FIPS186">
<front>
<title>Digital Signature Standard (DSS)</title>
<author>
<organization showOnFrontPage="true">NIST</organization>
</author>
<date year="2013" month="July"/>
</front>
<seriesInfo name="Federal Information Processing Standards Publication (FIPS)" value="186-4"/>
<seriesInfo name="DOI" value="10.6028/NIST.FIPS.186-4"/>
</reference>
<reference anchor="GGM1986" quoteTitle="true" target="https://doi.org/10.1145/6490.6503" derivedAnchor="GGM1986">
<front>
<title>How to construct random functions</title>
<author initials="O" surname="Goldreich" fullname="Oded Goldreich"/>
<author initials="S" surname="Goldwasser" fullname="Shafi Goldwasser"/>
<author initials="S" surname="Micali" fullname="Silvio Micali"/>
<date year="1986" month="August"/>
</front>
<refcontent>Journal of the ACM</refcontent>
<refcontent>Vol. 33, No. 4</refcontent>
<refcontent>pp. 792-807</refcontent>
<seriesInfo name="DOI" value="10.1145/6490.6503"/>
</reference>
<reference anchor="IANA" target="https://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.xhtml" quoteTitle="true" derivedAnchor="IANA">
<front>
<title>TLS ExtensionType Values</title>
<author>
<organization showOnFrontPage="true">IANA</organization>
</author>
</front>
</reference>
<reference anchor="IEEE1363" target="https://ieeexplore.ieee.org/document/891000" quoteTitle="true" derivedAnchor="IEEE1363">
<front>
<title>IEEE Standard Specifications for Public-Key Cryptography</title>
<author>
<organization showOnFrontPage="true">IEEE</organization>
</author>
<date year="2000" month="August"/>
</front>
<seriesInfo name="IEEE Std" value="1363-2000"/>
<seriesInfo name="DOI" value="10.1109/IEEESTD.2000.92292"/>
</reference>
<reference anchor="I-D.ietf-tls-external-psk-importer" quoteTitle="true" target="https://tools.ietf.org/html/draft-ietf-tls-external-psk-importer-03" derivedAnchor="IMPORT">
<front>
<title>Importing External PSKs for TLS</title>
<author initials="D" surname="Benjamin" fullname="David Benjamin">
<organization showOnFrontPage="true"/>
</author>
<author initials="C" surname="Wood" fullname="Christopher Wood">
<organization showOnFrontPage="true"/>
</author>
<date month="February" day="15" year="2020"/>
<abstract>
<t>This document describes an interface for importing external PSK (Pre- Shared Key) into TLS 1.3.</t>
</abstract>
</front>
<seriesInfo name="Internet-Draft" value="draft-ietf-tls-external-psk-importer-03"/>
<format type="TXT" target="http://www.ietf.org/internet-drafts/draft-ietf-tls-external-psk-importer-03.txt"/>
<refcontent>Work in Progress</refcontent>
</reference>
<reference anchor="K2016" target="https://dl.acm.org/doi/10.1145/2976749.2978325" quoteTitle="true" derivedAnchor="K2016">
<front>
<title>A Unilateral-to-Mutual Authentication Compiler for Key Exchange (with Applications to Client Authentication in TLS 1.3)</title>
<author initials="H" surname="Krawczyk" fullname="Hugo Krawczyk"/>
<date month="October" year="2016"/>
</front>
<refcontent>CCS '16: Proceedings of the 2016 ACM Communications Security</refcontent>
<refcontent>pp. 1438-50</refcontent>
<seriesInfo name="DOI" value="10.1145/2976749.2978325"/>
</reference>
<reference anchor="RFC2104" target="https://www.rfc-editor.org/info/rfc2104" quoteTitle="true" derivedAnchor="RFC2104">
<front>
<title>HMAC: Keyed-Hashing for Message Authentication</title>
<author initials="H." surname="Krawczyk" fullname="H. Krawczyk">
<organization showOnFrontPage="true"/>
</author>
<author initials="M." surname="Bellare" fullname="M. Bellare">
<organization showOnFrontPage="true"/>
</author>
<author initials="R." surname="Canetti" fullname="R. Canetti">
<organization showOnFrontPage="true"/>
</author>
<date year="1997" month="February"/>
<abstract>
<t>This document describes HMAC, a mechanism for message authentication using cryptographic hash functions. HMAC can be used with any iterative cryptographic hash function, e.g., MD5, SHA-1, in combination with a secret shared key. The cryptographic strength of HMAC depends on the properties of the underlying hash function. This memo provides information for the Internet community. This memo does not specify an Internet standard of any kind</t>
</abstract>
</front>
<seriesInfo name="RFC" value="2104"/>
<seriesInfo name="DOI" value="10.17487/RFC2104"/>
</reference>
<reference anchor="RFC4086" target="https://www.rfc-editor.org/info/rfc4086" quoteTitle="true" derivedAnchor="RFC4086">
<front>
<title>Randomness Requirements for Security</title>
<author initials="D." surname="Eastlake 3rd" fullname="D. Eastlake 3rd">
<organization showOnFrontPage="true"/>
</author>
<author initials="J." surname="Schiller" fullname="J. Schiller">
<organization showOnFrontPage="true"/>
</author>
<author initials="S." surname="Crocker" fullname="S. Crocker">
<organization showOnFrontPage="true"/>
</author>
<date year="2005" month="June"/>
<abstract>
<t>Security systems are built on strong cryptographic algorithms that foil pattern analysis attempts. However, the security of these systems is dependent on generating secret quantities for passwords, cryptographic keys, and similar quantities. The use of pseudo-random processes to generate secret quantities can result in pseudo-security. A sophisticated attacker may find it easier to reproduce the environment that produced the secret quantities and to search the resulting small set of possibilities than to locate the quantities in the whole of the potential number space.</t>
<t>Choosing random quantities to foil a resourceful and motivated adversary is surprisingly difficult. This document points out many pitfalls in using poor entropy sources or traditional pseudo-random number generation techniques for generating such quantities. It recommends the use of truly random hardware techniques and shows that the existing hardware on many systems can be used for this purpose. It provides suggestions to ameliorate the problem when a hardware solution is not available, and it gives examples of how large such quantities need to be for some applications. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.</t>
</abstract>
</front>
<seriesInfo name="BCP" value="106"/>
<seriesInfo name="RFC" value="4086"/>
<seriesInfo name="DOI" value="10.17487/RFC4086"/>
</reference>
<reference anchor="RFC5246" target="https://www.rfc-editor.org/info/rfc5246" quoteTitle="true" derivedAnchor="RFC5246">
<front>
<title>The Transport Layer Security (TLS) Protocol Version 1.2</title>
<author initials="T." surname="Dierks" fullname="T. Dierks">
<organization showOnFrontPage="true"/>
</author>
<author initials="E." surname="Rescorla" fullname="E. Rescorla">
<organization showOnFrontPage="true"/>
</author>
<date year="2008" month="August"/>
<abstract>
<t>This document specifies Version 1.2 of the Transport Layer Security (TLS) protocol. The TLS protocol provides communications security over the Internet. The protocol allows client/server applications to communicate in a way that is designed to prevent eavesdropping, tampering, or message forgery. [STANDARDS-TRACK]</t>
</abstract>
</front>
<seriesInfo name="RFC" value="5246"/>
<seriesInfo name="DOI" value="10.17487/RFC5246"/>
</reference>
<reference anchor="RFC8017" target="https://www.rfc-editor.org/info/rfc8017" quoteTitle="true" derivedAnchor="RFC8017">
<front>
<title>PKCS #1: RSA Cryptography Specifications Version 2.2</title>
<author initials="K." surname="Moriarty" fullname="K. Moriarty" role="editor">
<organization showOnFrontPage="true"/>
</author>
<author initials="B." surname="Kaliski" fullname="B. Kaliski">
<organization showOnFrontPage="true"/>
</author>
<author initials="J." surname="Jonsson" fullname="J. Jonsson">
<organization showOnFrontPage="true"/>
</author>
<author initials="A." surname="Rusch" fullname="A. Rusch">
<organization showOnFrontPage="true"/>
</author>
<date year="2016" month="November"/>
<abstract>
<t>This document provides recommendations for the implementation of public-key cryptography based on the RSA algorithm, covering cryptographic primitives, encryption schemes, signature schemes with appendix, and ASN.1 syntax for representing keys and for identifying the schemes.</t>
<t>This document represents a republication of PKCS #1 v2.2 from RSA Laboratories' Public-Key Cryptography Standards (PKCS) series. By publishing this RFC, change control is transferred to the IETF.</t>
<t>This document also obsoletes RFC 3447.</t>
</abstract>
</front>
<seriesInfo name="RFC" value="8017"/>
<seriesInfo name="DOI" value="10.17487/RFC8017"/>
</reference>
<reference anchor="I-D.hoffman-c2pq" quoteTitle="true" target="https://tools.ietf.org/html/draft-hoffman-c2pq-06" derivedAnchor="TRANSITION">
<front>
<title>The Transition from Classical to Post-Quantum Cryptography</title>
<author initials="P" surname="Hoffman" fullname="Paul Hoffman">
<organization showOnFrontPage="true"/>
</author>
<date month="November" day="25" year="2019"/>
<abstract>
<t>Quantum computing is the study of computers that use quantum features in calculations. For over 20 years, it has been known that if very large, specialized quantum computers could be built, they could have a devastating effect on asymmetric classical cryptographic algorithms such as RSA and elliptic curve signatures and key exchange, as well as (but in smaller scale) on symmetric cryptographic algorithms such as block ciphers, MACs, and hash functions. There has already been a great deal of study on how to create algorithms that will resist large, specialized quantum computers, but so far, the properties of those algorithms make them onerous to adopt before they are needed. Small quantum computers are being built today, but it is still far from clear when large, specialized quantum computers will be built that can recover private or secret keys in classical algorithms at the key sizes commonly used today. It is important to be able to predict when large, specialized quantum computers usable for cryptanalysis will be possible so that organization can change to post-quantum cryptographic algorithms well before they are needed. This document describes quantum computing, how it might be used to attack classical cryptographic algorithms, and possibly how to predict when large, specialized quantum computers will become feasible.</t>
</abstract>
</front>
<seriesInfo name="Internet-Draft" value="draft-hoffman-c2pq-06"/>
<format type="TXT" target="http://www.ietf.org/internet-drafts/draft-hoffman-c2pq-06.txt"/>
<refcontent>Work in Progress</refcontent>
</reference>
</references>
</references>
<section anchor="acks" numbered="false" toc="include" removeInRFC="false" pn="section-appendix.a">
<name slugifiedName="name-acknowledgments">Acknowledgments</name>
<t pn="section-appendix.a-1">
Many thanks to
<contact fullname="Liliya Akhmetzyanova"/>,
<contact fullname="Roman Danyliw"/>,
<contact fullname="Christian Huitema"/>,
<contact fullname="Ben Kaduk"/>,
<contact fullname="Geoffrey Keating"/>,
<contact fullname="Hugo Krawczyk"/>,
<contact fullname="Mirja Kühlewind"/>,
<contact fullname="Nikos Mavrogiannopoulos"/>,
<contact fullname="Nick Sullivan"/>,
<contact fullname="Martin Thomson"/>, and
<contact fullname="Peter Yee"/>
for their review and comments; their efforts have improved this document.
</t>
</section>
<section anchor="authors-addresses" numbered="false" removeInRFC="false" toc="include" pn="section-appendix.b">
<name slugifiedName="name-authors-address">Author's Address</name>
<author fullname="Russ Housley" initials="R." surname="Housley">
<organization abbrev="Vigil Security" showOnFrontPage="true">Vigil Security, LLC</organization>
<address>
<postal>
<street>516 Dranesville Road</street>
<city>Herndon</city>
<region>VA</region>
<code>20170</code>
<country>United States of America</country>
</postal>
<email>housley@vigilsec.com</email>
</address>
</author>
</section>
</back>
</rfc>
|