File: rfc8922.xml

package info (click to toggle)
doc-rfc 20201128-1
  • links: PTS, VCS
  • area: non-free
  • in suites: bullseye
  • size: 1,307,124 kB
file content (1860 lines) | stat: -rw-r--r-- 125,607 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
<?xml version='1.0' encoding='utf-8'?>
<rfc xmlns:xi="http://www.w3.org/2001/XInclude" version="3" category="info" consensus="true" docName="draft-ietf-taps-transport-security-12" indexInclude="true" ipr="trust200902" number="8922" prepTime="2020-10-21T15:53:15" scripts="Common,Latin" sortRefs="true" submissionType="IETF" symRefs="true" tocDepth="3" tocInclude="true" xml:lang="en">
  <link href="https://datatracker.ietf.org/doc/draft-ietf-taps-transport-security-12" rel="prev"/>
  <link href="https://dx.doi.org/10.17487/rfc8922" rel="alternate"/>
  <link href="urn:issn:2070-1721" rel="alternate"/>
  <front>
    <title abbrev="Transport Security Survey">A Survey of the Interaction between Security Protocols and Transport Services</title>
    <seriesInfo name="RFC" value="8922" stream="IETF"/>
    <author initials="T." surname="Enghardt" fullname="Theresa Enghardt">
      <organization showOnFrontPage="true">TU Berlin</organization>
      <address>
        <postal>
          <street>Marchstr. 23</street>
          <city>Berlin</city>
          <code>10587</code>
          <country>Germany</country>
        </postal>
        <email>ietf@tenghardt.net</email>
      </address>
    </author>
    <author initials="T." surname="Pauly" fullname="Tommy Pauly">
      <organization showOnFrontPage="true">Apple Inc.</organization>
      <address>
        <postal>
          <street>One Apple Park Way</street>
          <city>Cupertino</city>
          <region>California</region>
          <code>95014</code>
          <country>United States of America</country>
        </postal>
        <email>tpauly@apple.com</email>
      </address>
    </author>
    <author initials="C." surname="Perkins" fullname="Colin Perkins">
      <organization showOnFrontPage="true">University of Glasgow</organization>
      <address>
        <postal>
          <street>School of Computing Science</street>
          <city>Glasgow</city>
          <code>G12 8QQ</code>
          <country>United Kingdom</country>
        </postal>
        <email>csp@csperkins.org</email>
      </address>
    </author>
    <author initials="K." surname="Rose" fullname="Kyle Rose">
      <organization showOnFrontPage="true">Akamai Technologies, Inc.</organization>
      <address>
        <postal>
          <street>150 Broadway</street>
          <city>Cambridge</city>
          <region>MA</region>
          <code>02144</code>
          <country>United States of America</country>
        </postal>
        <email>krose@krose.org</email>
      </address>
    </author>
    <author initials="C." surname="Wood" fullname="Christopher A. Wood">
      <organization showOnFrontPage="true">Cloudflare</organization>
      <address>
        <postal>
          <street>101 Townsend St</street>
          <city>San Francisco</city>
          <country>United States of America</country>
        </postal>
        <email>caw@heapingbits.net</email>
      </address>
    </author>
    <date month="10" year="2020"/>
    <keyword>Transport Protocols</keyword>
    <keyword>Transport Security</keyword>
    <abstract pn="section-abstract">
      <t indent="0" pn="section-abstract-1">This document provides a survey of commonly used or notable network
      security protocols, with a focus on how they interact and integrate with
      applications and transport protocols. Its goal is to supplement efforts
      to define and catalog Transport Services by describing the interfaces
      required to add security protocols. This survey is not limited to
      protocols developed within the scope or context of the IETF, and those
      included represent a superset of features a Transport Services system
      may need to support.</t>
    </abstract>
    <boilerplate>
      <section anchor="status-of-memo" numbered="false" removeInRFC="false" toc="exclude" pn="section-boilerplate.1">
        <name slugifiedName="name-status-of-this-memo">Status of This Memo</name>
        <t indent="0" pn="section-boilerplate.1-1">
            This document is not an Internet Standards Track specification; it is
            published for informational purposes.  
        </t>
        <t indent="0" pn="section-boilerplate.1-2">
            This document is a product of the Internet Engineering Task Force
            (IETF).  It represents the consensus of the IETF community.  It has
            received public review and has been approved for publication by the
            Internet Engineering Steering Group (IESG).  Not all documents
            approved by the IESG are candidates for any level of Internet
            Standard; see Section 2 of RFC 7841. 
        </t>
        <t indent="0" pn="section-boilerplate.1-3">
            Information about the current status of this document, any
            errata, and how to provide feedback on it may be obtained at
            <eref target="https://www.rfc-editor.org/info/rfc8922" brackets="none"/>.
        </t>
      </section>
      <section anchor="copyright" numbered="false" removeInRFC="false" toc="exclude" pn="section-boilerplate.2">
        <name slugifiedName="name-copyright-notice">Copyright Notice</name>
        <t indent="0" pn="section-boilerplate.2-1">
            Copyright (c) 2020 IETF Trust and the persons identified as the
            document authors. All rights reserved.
        </t>
        <t indent="0" pn="section-boilerplate.2-2">
            This document is subject to BCP 78 and the IETF Trust's Legal
            Provisions Relating to IETF Documents
            (<eref target="https://trustee.ietf.org/license-info" brackets="none"/>) in effect on the date of
            publication of this document. Please review these documents
            carefully, as they describe your rights and restrictions with
            respect to this document. Code Components extracted from this
            document must include Simplified BSD License text as described in
            Section 4.e of the Trust Legal Provisions and are provided without
            warranty as described in the Simplified BSD License.
        </t>
      </section>
    </boilerplate>
    <toc>
      <section anchor="toc" numbered="false" removeInRFC="false" toc="exclude" pn="section-toc.1">
        <name slugifiedName="name-table-of-contents">Table of Contents</name>
        <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1">
          <li pn="section-toc.1-1.1">
            <t indent="0" keepWithNext="true" pn="section-toc.1-1.1.1"><xref derivedContent="1" format="counter" sectionFormat="of" target="section-1"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-introduction">Introduction</xref></t>
            <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.1.2">
              <li pn="section-toc.1-1.1.2.1">
                <t indent="0" keepWithNext="true" pn="section-toc.1-1.1.2.1.1"><xref derivedContent="1.1" format="counter" sectionFormat="of" target="section-1.1"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-goals">Goals</xref></t>
              </li>
              <li pn="section-toc.1-1.1.2.2">
                <t indent="0" keepWithNext="true" pn="section-toc.1-1.1.2.2.1"><xref derivedContent="1.2" format="counter" sectionFormat="of" target="section-1.2"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-non-goals">Non-goals</xref></t>
              </li>
            </ul>
          </li>
          <li pn="section-toc.1-1.2">
            <t indent="0" pn="section-toc.1-1.2.1"><xref derivedContent="2" format="counter" sectionFormat="of" target="section-2"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-terminology">Terminology</xref></t>
          </li>
          <li pn="section-toc.1-1.3">
            <t indent="0" pn="section-toc.1-1.3.1"><xref derivedContent="3" format="counter" sectionFormat="of" target="section-3"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-transport-security-protocol">Transport Security Protocol Descriptions</xref></t>
            <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.3.2">
              <li pn="section-toc.1-1.3.2.1">
                <t indent="0" pn="section-toc.1-1.3.2.1.1"><xref derivedContent="3.1" format="counter" sectionFormat="of" target="section-3.1"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-application-payload-securit">Application Payload Security Protocols</xref></t>
                <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.3.2.1.2">
                  <li pn="section-toc.1-1.3.2.1.2.1">
                    <t indent="0" pn="section-toc.1-1.3.2.1.2.1.1"><xref derivedContent="3.1.1" format="counter" sectionFormat="of" target="section-3.1.1"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-tls">TLS</xref></t>
                  </li>
                  <li pn="section-toc.1-1.3.2.1.2.2">
                    <t indent="0" pn="section-toc.1-1.3.2.1.2.2.1"><xref derivedContent="3.1.2" format="counter" sectionFormat="of" target="section-3.1.2"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-dtls">DTLS</xref></t>
                  </li>
                </ul>
              </li>
              <li pn="section-toc.1-1.3.2.2">
                <t indent="0" pn="section-toc.1-1.3.2.2.1"><xref derivedContent="3.2" format="counter" sectionFormat="of" target="section-3.2"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-application-specific-securi">Application-Specific Security Protocols</xref></t>
                <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.3.2.2.2">
                  <li pn="section-toc.1-1.3.2.2.2.1">
                    <t indent="0" pn="section-toc.1-1.3.2.2.2.1.1"><xref derivedContent="3.2.1" format="counter" sectionFormat="of" target="section-3.2.1"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-secure-rtp">Secure RTP</xref></t>
                  </li>
                </ul>
              </li>
              <li pn="section-toc.1-1.3.2.3">
                <t indent="0" pn="section-toc.1-1.3.2.3.1"><xref derivedContent="3.3" format="counter" sectionFormat="of" target="section-3.3"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-transport-layer-security-pr">Transport-Layer Security Protocols</xref></t>
                <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.3.2.3.2">
                  <li pn="section-toc.1-1.3.2.3.2.1">
                    <t indent="0" pn="section-toc.1-1.3.2.3.2.1.1"><xref derivedContent="3.3.1" format="counter" sectionFormat="of" target="section-3.3.1"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-ietf-quic">IETF QUIC</xref></t>
                  </li>
                  <li pn="section-toc.1-1.3.2.3.2.2">
                    <t indent="0" pn="section-toc.1-1.3.2.3.2.2.1"><xref derivedContent="3.3.2" format="counter" sectionFormat="of" target="section-3.3.2"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-google-quic">Google QUIC</xref></t>
                  </li>
                  <li pn="section-toc.1-1.3.2.3.2.3">
                    <t indent="0" pn="section-toc.1-1.3.2.3.2.3.1"><xref derivedContent="3.3.3" format="counter" sectionFormat="of" target="section-3.3.3"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-tcpcrypt">tcpcrypt</xref></t>
                  </li>
                  <li pn="section-toc.1-1.3.2.3.2.4">
                    <t indent="0" pn="section-toc.1-1.3.2.3.2.4.1"><xref derivedContent="3.3.4" format="counter" sectionFormat="of" target="section-3.3.4"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-minimalt">MinimaLT</xref></t>
                  </li>
                  <li pn="section-toc.1-1.3.2.3.2.5">
                    <t indent="0" pn="section-toc.1-1.3.2.3.2.5.1"><xref derivedContent="3.3.5" format="counter" sectionFormat="of" target="section-3.3.5"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-curvecp">CurveCP</xref></t>
                  </li>
                </ul>
              </li>
              <li pn="section-toc.1-1.3.2.4">
                <t indent="0" pn="section-toc.1-1.3.2.4.1"><xref derivedContent="3.4" format="counter" sectionFormat="of" target="section-3.4"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-packet-security-protocols">Packet Security Protocols</xref></t>
                <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.3.2.4.2">
                  <li pn="section-toc.1-1.3.2.4.2.1">
                    <t indent="0" pn="section-toc.1-1.3.2.4.2.1.1"><xref derivedContent="3.4.1" format="counter" sectionFormat="of" target="section-3.4.1"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-ipsec">IPsec</xref></t>
                  </li>
                  <li pn="section-toc.1-1.3.2.4.2.2">
                    <t indent="0" pn="section-toc.1-1.3.2.4.2.2.1"><xref derivedContent="3.4.2" format="counter" sectionFormat="of" target="section-3.4.2"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-wireguard">WireGuard</xref></t>
                  </li>
                  <li pn="section-toc.1-1.3.2.4.2.3">
                    <t indent="0" pn="section-toc.1-1.3.2.4.2.3.1"><xref derivedContent="3.4.3" format="counter" sectionFormat="of" target="section-3.4.3"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-openvpn">OpenVPN</xref></t>
                  </li>
                </ul>
              </li>
            </ul>
          </li>
          <li pn="section-toc.1-1.4">
            <t indent="0" pn="section-toc.1-1.4.1"><xref derivedContent="4" format="counter" sectionFormat="of" target="section-4"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-transport-dependencies">Transport Dependencies</xref></t>
            <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.4.2">
              <li pn="section-toc.1-1.4.2.1">
                <t indent="0" pn="section-toc.1-1.4.2.1.1"><xref derivedContent="4.1" format="counter" sectionFormat="of" target="section-4.1"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-reliable-byte-stream-transp">Reliable Byte-Stream Transports</xref></t>
              </li>
              <li pn="section-toc.1-1.4.2.2">
                <t indent="0" pn="section-toc.1-1.4.2.2.1"><xref derivedContent="4.2" format="counter" sectionFormat="of" target="section-4.2"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-unreliable-datagram-transpo">Unreliable Datagram Transports</xref></t>
                <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.4.2.2.2">
                  <li pn="section-toc.1-1.4.2.2.2.1">
                    <t indent="0" pn="section-toc.1-1.4.2.2.2.1.1"><xref derivedContent="4.2.1" format="counter" sectionFormat="of" target="section-4.2.1"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-datagram-protocols-with-def">Datagram Protocols with Defined Byte-Stream Mappings</xref></t>
                  </li>
                </ul>
              </li>
              <li pn="section-toc.1-1.4.2.3">
                <t indent="0" pn="section-toc.1-1.4.2.3.1"><xref derivedContent="4.3" format="counter" sectionFormat="of" target="section-4.3"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-transport-specific-dependen">Transport-Specific Dependencies</xref></t>
              </li>
            </ul>
          </li>
          <li pn="section-toc.1-1.5">
            <t indent="0" pn="section-toc.1-1.5.1"><xref derivedContent="5" format="counter" sectionFormat="of" target="section-5"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-application-interface">Application Interface</xref></t>
            <ul bare="true" empty="true" indent="2" spacing="compact" pn="section-toc.1-1.5.2">
              <li pn="section-toc.1-1.5.2.1">
                <t indent="0" pn="section-toc.1-1.5.2.1.1"><xref derivedContent="5.1" format="counter" sectionFormat="of" target="section-5.1"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-pre-connection-interfaces">Pre-connection Interfaces</xref></t>
              </li>
              <li pn="section-toc.1-1.5.2.2">
                <t indent="0" pn="section-toc.1-1.5.2.2.1"><xref derivedContent="5.2" format="counter" sectionFormat="of" target="section-5.2"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-connection-interfaces">Connection Interfaces</xref></t>
              </li>
              <li pn="section-toc.1-1.5.2.3">
                <t indent="0" pn="section-toc.1-1.5.2.3.1"><xref derivedContent="5.3" format="counter" sectionFormat="of" target="section-5.3"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-post-connection-interfaces">Post-connection Interfaces</xref></t>
              </li>
              <li pn="section-toc.1-1.5.2.4">
                <t indent="0" pn="section-toc.1-1.5.2.4.1"><xref derivedContent="5.4" format="counter" sectionFormat="of" target="section-5.4"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-summary-of-interfaces-expos">Summary of Interfaces Exposed by Protocols</xref></t>
              </li>
            </ul>
          </li>
          <li pn="section-toc.1-1.6">
            <t indent="0" pn="section-toc.1-1.6.1"><xref derivedContent="6" format="counter" sectionFormat="of" target="section-6"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-iana-considerations">IANA Considerations</xref></t>
          </li>
          <li pn="section-toc.1-1.7">
            <t indent="0" pn="section-toc.1-1.7.1"><xref derivedContent="7" format="counter" sectionFormat="of" target="section-7"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-security-considerations">Security Considerations</xref></t>
          </li>
          <li pn="section-toc.1-1.8">
            <t indent="0" pn="section-toc.1-1.8.1"><xref derivedContent="8" format="counter" sectionFormat="of" target="section-8"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-privacy-considerations">Privacy Considerations</xref></t>
          </li>
          <li pn="section-toc.1-1.9">
            <t indent="0" pn="section-toc.1-1.9.1"><xref derivedContent="9" format="counter" sectionFormat="of" target="section-9"/>.  <xref derivedContent="" format="title" sectionFormat="of" target="name-informative-references">Informative References</xref></t>
          </li>
          <li pn="section-toc.1-1.10">
            <t indent="0" pn="section-toc.1-1.10.1"><xref derivedContent="" format="none" sectionFormat="of" target="section-appendix.a"/><xref derivedContent="" format="title" sectionFormat="of" target="name-acknowledgments">Acknowledgments</xref></t>
          </li>
          <li pn="section-toc.1-1.11">
            <t indent="0" pn="section-toc.1-1.11.1"><xref derivedContent="" format="none" sectionFormat="of" target="section-appendix.b"/><xref derivedContent="" format="title" sectionFormat="of" target="name-authors-addresses">Authors' Addresses</xref></t>
          </li>
        </ul>
      </section>
    </toc>
  </front>
  <middle>
    <section anchor="introduction" numbered="true" toc="include" removeInRFC="false" pn="section-1">
      <name slugifiedName="name-introduction">Introduction</name>
      <t indent="0" pn="section-1-1">Services and features provided by transport protocols have been
      cataloged in <xref target="RFC8095" format="default" sectionFormat="of" derivedContent="RFC8095"/>. This document
      supplements that work by surveying commonly used and notable network
      security protocols, and identifying the interfaces between these
      protocols and both transport protocols and applications.  It examines
      Transport Layer Security (TLS), Datagram Transport Layer Security
      (DTLS), IETF QUIC, Google QUIC (gQUIC), tcpcrypt, Internet Protocol
      Security (IPsec), Secure Real-time Transport Protocol (SRTP) with DTLS,
      WireGuard, CurveCP, and MinimaLT. For each protocol, this document
      provides a brief description.  Then, it describes the interfaces between
      these protocols and transports in <xref target="transport-interface" format="default" sectionFormat="of" derivedContent="Section 4"/> and the interfaces between these protocols and
      applications in <xref target="application-interface" format="default" sectionFormat="of" derivedContent="Section 5"/>.</t>
      <t indent="0" pn="section-1-2">A Transport Services system exposes an interface for applications to
      access various (secure) transport protocol features.  The security
      protocols included in this survey represent a superset of functionality
      and features a Transport Services system may need to support both
      internally and externally (via an API) for applications <xref target="I-D.ietf-taps-arch" format="default" sectionFormat="of" derivedContent="TAPS-ARCH"/>. Ubiquitous IETF
      protocols such as (D)TLS, as well as non-standard protocols such as
      gQUIC, are included despite overlapping features. As such, this survey
      is not limited to protocols developed within the scope or context of the
      IETF. Outside of this candidate set, protocols that do not offer new
      features are omitted. For example, newer protocols such as WireGuard
      make unique design choices that have implications for and limitations on
      application usage. In contrast, protocols such as secure shell (SSH)
      <xref target="RFC4253" format="default" sectionFormat="of" derivedContent="RFC4253"/>, GRE <xref target="RFC2890" format="default" sectionFormat="of" derivedContent="RFC2890"/>, the Layer 2 Tunneling Protocol (L2TP) <xref target="RFC5641" format="default" sectionFormat="of" derivedContent="RFC5641"/>, and Application Layer Transport
      Security (ALTS) <xref target="ALTS" format="default" sectionFormat="of" derivedContent="ALTS"/> are omitted since they do not provide interfaces
      deemed unique.</t>
      <t indent="0" pn="section-1-3">Authentication-only protocols such as the TCP Authentication Option
      (TCP-AO) <xref target="RFC5925" format="default" sectionFormat="of" derivedContent="RFC5925"/> and the IPsec
      Authentication Header (AH) <xref target="RFC4302" format="default" sectionFormat="of" derivedContent="RFC4302"/> are
      excluded from this survey. TCP-AO adds authentication to long-lived TCP
      connections, e.g., replay protection with per-packet Message
      Authentication Codes. (TCP-AO obsoletes TCP MD5 "signature" options
      specified in <xref target="RFC2385" format="default" sectionFormat="of" derivedContent="RFC2385"/>.) One primary use
      case of TCP-AO is for protecting BGP connections.  Similarly, AH adds
      per-datagram authentication and integrity, along with replay
      protection. Despite these improvements, neither protocol sees general
      use and both lack critical properties important for emergent transport
      security protocols, such as confidentiality and privacy
      protections. Such protocols are thus omitted from this survey.</t>
      <t indent="0" pn="section-1-4">This document only surveys point-to-point protocols; multicast protocols are out of scope.</t>
      <section anchor="goals" numbered="true" toc="include" removeInRFC="false" pn="section-1.1">
        <name slugifiedName="name-goals">Goals</name>
        <t indent="0" pn="section-1.1-1">This survey is intended to help identify the most common interface
        surfaces between security protocols and transport protocols, and
        between security protocols and applications.</t>
        <t indent="0" pn="section-1.1-2">One of the goals of the Transport Services effort is to define a
        common interface for using transport protocols that allows software
        using transport protocols to easily adopt new protocols that provide
        similar feature sets. The survey of the dependencies security
        protocols have upon transport protocols can guide implementations in
        determining which transport protocols are appropriate to be able to
        use beneath a given security protocol. For example, a security
        protocol that expects to run over a reliable stream of bytes, like
        TLS, restricts the set of transport protocols that can be used to
        those that offer a reliable stream of bytes.</t>
        <t indent="0" pn="section-1.1-3">Defining the common interfaces that security protocols provide to
        applications also allows interfaces to be designed in a way that
        common functionality can use the same APIs. For example, many security
        protocols that provide authentication let the application be involved
        in peer identity validation. Any interface to use a secure transport
        protocol stack thus needs to allow applications to perform this action
        during connection establishment.</t>
      </section>
      <section anchor="non-goals" numbered="true" toc="include" removeInRFC="false" pn="section-1.2">
        <name slugifiedName="name-non-goals">Non-goals</name>
        <t indent="0" pn="section-1.2-1">While this survey provides similar analysis to that which was performed for transport protocols in <xref target="RFC8095" format="default" sectionFormat="of" derivedContent="RFC8095"/>,
it is important to distinguish that the use of security protocols requires more consideration.</t>
        <t indent="0" pn="section-1.2-2">It is not a goal to allow software implementations to automatically
        switch between different security protocols, even where their
        interfaces to transport and applications are equivalent. Even between
        versions, security protocols have subtly different guarantees and
        vulnerabilities. Thus, any implementation needs to only use the set of
        protocols and algorithms that are requested by applications or by a
        system policy.</t>
        <t indent="0" pn="section-1.2-3">Different security protocols also can use incompatible notions of
        peer identity and authentication, and cryptographic options. It is not
        a goal to identify a common set of representations for these
        concepts.</t>
        <t indent="0" pn="section-1.2-4">The protocols surveyed in this document represent a superset of
        functionality and features a Transport Services system may need to
        support. It does not list all transport protocols that a Transport
        Services system may need to implement, nor does it mandate that a
        Transport Service system implement any particular protocol.</t>
        <t indent="0" pn="section-1.2-5">A Transport Services system may implement any secure transport
        protocol that provides the described features. In doing so, it may
        need to expose an interface to the application to configure these
        features.</t>
      </section>
    </section>
    <section anchor="terminology" numbered="true" toc="include" removeInRFC="false" pn="section-2">
      <name slugifiedName="name-terminology">Terminology</name>
      <t indent="0" pn="section-2-1">The following terms are used throughout this document to describe the
      roles and interactions of transport security protocols (some of which
      are also defined in <xref target="RFC8095" format="default" sectionFormat="of" derivedContent="RFC8095"/>):</t>
      <dl indent="3" newline="false" spacing="normal" pn="section-2-2">
        <dt pn="section-2-2.1">Transport Feature:</dt>
        <dd pn="section-2-2.2">a specific end-to-end feature that the
        transport layer provides to an application.  Examples include
        confidentiality, reliable delivery, ordered delivery, and
        message-versus-stream orientation.</dd>
        <dt pn="section-2-2.3">Transport Service:</dt>
        <dd pn="section-2-2.4">a set of Transport Features, without an
        association to any given framing protocol, that provides
        functionality to an application.</dd>
        <dt pn="section-2-2.5">Transport Services system:</dt>
        <dd pn="section-2-2.6">a software component that exposes an
        interface to different Transport Services to an application.</dd>
        <dt pn="section-2-2.7">Transport Protocol:</dt>
        <dd pn="section-2-2.8">an implementation that provides one or more
        different Transport Services using a specific framing and header
        format on the wire. A Transport Protocol services an application,
        whether directly or in conjunction with a security protocol.</dd>
        <dt pn="section-2-2.9">Application:</dt>
        <dd pn="section-2-2.10">an entity that uses a transport protocol for
        end-to-end delivery of data across the network.  This may also be an
        upper layer protocol or tunnel encapsulation.</dd>
        <dt pn="section-2-2.11">Security Protocol:</dt>
        <dd pn="section-2-2.12">a defined network protocol that implements one
        or more security features, such as authentication, encryption, key
        generation, session resumption, and privacy. Security protocols may be
        used alongside transport protocols, and in combination with other
        security protocols when appropriate.</dd>
        <dt pn="section-2-2.13">Handshake Protocol:</dt>
        <dd pn="section-2-2.14">a protocol that enables peers to validate each
        other and to securely establish shared cryptographic context.</dd>
        <dt pn="section-2-2.15">Record:</dt>
        <dd pn="section-2-2.16">framed protocol messages.</dd>
        <dt pn="section-2-2.17">Record Protocol:</dt>
        <dd pn="section-2-2.18">a security protocol that allows data to be
        divided into manageable blocks and protected using shared
        cryptographic context.</dd>
        <dt pn="section-2-2.19">Session:</dt>
        <dd pn="section-2-2.20">an ephemeral security association between
        applications.</dd>
        <dt pn="section-2-2.21">Connection:</dt>
        <dd pn="section-2-2.22">the shared state of two or more endpoints that
        persists across messages that are transmitted between these
        endpoints. A connection is a transient participant of a session, and a
        session generally lasts between connection instances.</dd>
        <dt pn="section-2-2.23">Peer:</dt>
        <dd pn="section-2-2.24">an endpoint application party to a session.</dd>
        <dt pn="section-2-2.25">Client:</dt>
        <dd pn="section-2-2.26">the peer responsible for initiating a session.</dd>
        <dt pn="section-2-2.27">Server:</dt>
        <dd pn="section-2-2.28">the peer responsible for responding to a session initiation.</dd>
      </dl>
    </section>
    <section anchor="transport-security-protocol-descriptions" numbered="true" toc="include" removeInRFC="false" pn="section-3">
      <name slugifiedName="name-transport-security-protocol">Transport Security Protocol Descriptions</name>
      <t indent="0" pn="section-3-1">This section contains brief transport and security descriptions of
      various security protocols currently used to protect data being sent
      over a network. These protocols are grouped based on where in the
      protocol stack they are implemented, which influences which parts of a
      packet they protect: Generic application payload, application payload
      for specific application-layer protocols, both application payload and
      transport headers, or entire IP packets.</t>
      <t indent="0" pn="section-3-2">Note that not all security protocols can be easily categorized, e.g.,
      as some protocols can be used in different ways or in combination with
      other protocols.  One major reason for this is that channel security
      protocols often consist of two components:</t>
      <ul spacing="normal" bare="false" empty="false" indent="3" pn="section-3-3">
        <li pn="section-3-3.1">A handshake protocol, which is responsible for negotiating parameters, authenticating the
endpoints, and establishing shared keys.</li>
        <li pn="section-3-3.2">A record protocol, which is used to encrypt traffic using keys and parameters provided by the
handshake protocol.</li>
      </ul>
      <t indent="0" pn="section-3-4">For some protocols, such as tcpcrypt, these two components are
      tightly integrated. In contrast, for IPsec, these components are
      implemented in separate protocols: AH and the Encapsulating Security Payload
      (ESP) are record protocols, which can use keys supplied by the handshake
      protocol Internet Key Exchange Protocol Version 2 (IKEv2), by other
      handshake protocols, or by manual configuration. Moreover, some
      protocols can be used in different ways: While the base TLS protocol as
      defined in <xref target="RFC8446" format="default" sectionFormat="of" derivedContent="RFC8446"/> has an integrated
      handshake and record protocol, TLS or DTLS can also be used to negotiate
      keys for other protocols, as in DTLS-SRTP, or the handshake protocol can
      be used with a separate record layer, as in QUIC <xref target="I-D.ietf-quic-transport" format="default" sectionFormat="of" derivedContent="QUIC-TRANSPORT"/>.</t>
      <section anchor="application-payload-security-protocols" numbered="true" toc="include" removeInRFC="false" pn="section-3.1">
        <name slugifiedName="name-application-payload-securit">Application Payload Security Protocols</name>
        <t indent="0" pn="section-3.1-1">The following protocols provide security that protects application payloads sent over a
transport. They do not specifically protect any headers used for transport-layer functionality.</t>
        <section anchor="tls" numbered="true" toc="include" removeInRFC="false" pn="section-3.1.1">
          <name slugifiedName="name-tls">TLS</name>
          <t indent="0" pn="section-3.1.1-1">TLS (Transport Layer Security) <xref target="RFC8446" format="default" sectionFormat="of" derivedContent="RFC8446"/> is a common protocol used to establish a secure
          session between two endpoints. Communication over this session
          prevents "eavesdropping, tampering, and message forgery." TLS
          consists of a tightly coupled handshake and record protocol. The
          handshake protocol is used to authenticate peers, negotiate protocol
          options such as cryptographic algorithms, and derive
          session-specific keying material. The record protocol is used to
          marshal and, once the handshake has sufficiently progressed,
          encrypt data from one peer to the other. This data may contain
          handshake messages or raw application data.</t>
        </section>
        <section anchor="dtls" numbered="true" toc="include" removeInRFC="false" pn="section-3.1.2">
          <name slugifiedName="name-dtls">DTLS</name>
          <t indent="0" pn="section-3.1.2-1">DTLS (Datagram Transport Layer Security) <xref target="RFC6347" format="default" sectionFormat="of" derivedContent="RFC6347"/> <xref target="I-D.ietf-tls-dtls13" format="default" sectionFormat="of" derivedContent="DTLS-1.3"/> is based on TLS, but differs in that it is
          designed to run over unreliable datagram protocols like UDP instead
          of TCP.  DTLS modifies the protocol to make sure it can still
          provide equivalent security guarantees to TLS with the exception of
          order protection/non-replayability. DTLS was designed to be as
          similar to TLS as possible, so this document assumes that all
          properties from TLS are carried over except where specified.</t>
        </section>
      </section>
      <section anchor="application-specific-security-protocols" numbered="true" toc="include" removeInRFC="false" pn="section-3.2">
        <name slugifiedName="name-application-specific-securi">Application-Specific Security Protocols</name>
        <t indent="0" pn="section-3.2-1">The following protocols provide application-specific security by protecting
application payloads used for specific use cases. Unlike the protocols above,
these are not intended for generic application use.</t>
        <section anchor="secure-rtp" numbered="true" toc="include" removeInRFC="false" pn="section-3.2.1">
          <name slugifiedName="name-secure-rtp">Secure RTP</name>
          <t indent="0" pn="section-3.2.1-1">Secure RTP (SRTP) is a profile for RTP that provides confidentiality,
message authentication, and replay protection for RTP data packets
and RTP control protocol (RTCP) packets <xref target="RFC3711" format="default" sectionFormat="of" derivedContent="RFC3711"/>.
SRTP provides a record layer only, and requires a separate handshake
protocol to provide key agreement and identity management.</t>
          <t indent="0" pn="section-3.2.1-2">The commonly used handshake protocol for SRTP is DTLS, in the form of
DTLS-SRTP <xref target="RFC5764" format="default" sectionFormat="of" derivedContent="RFC5764"/>.  This is an extension to DTLS that negotiates
the use of SRTP as the record layer and describes how to export keys
for use with SRTP.</t>
          <t indent="0" pn="section-3.2.1-3">ZRTP <xref target="RFC6189" format="default" sectionFormat="of" derivedContent="RFC6189"/> is an alternative key agreement and identity management
protocol for SRTP.  ZRTP Key agreement is performed using a Diffie-Hellman
key exchange that runs on the media path. This generates a shared secret
that is then used to generate the master key and salt for SRTP.</t>
        </section>
      </section>
      <section anchor="transport-layer-security-protocols" numbered="true" toc="include" removeInRFC="false" pn="section-3.3">
        <name slugifiedName="name-transport-layer-security-pr">Transport-Layer Security Protocols</name>
        <t indent="0" pn="section-3.3-1">The following security protocols provide protection for both application payloads and
headers that are used for Transport Services.</t>
        <section anchor="quic" numbered="true" toc="include" removeInRFC="false" pn="section-3.3.1">
          <name slugifiedName="name-ietf-quic">IETF QUIC</name>
          <t indent="0" pn="section-3.3.1-1">QUIC is a new standards-track transport protocol that runs over UDP, loosely based on Google's
original proprietary gQUIC protocol <xref target="I-D.ietf-quic-transport" format="default" sectionFormat="of" derivedContent="QUIC-TRANSPORT"/> (See <xref target="gquic" format="default" sectionFormat="of" derivedContent="Section 3.3.2"/> for more details).
The QUIC transport layer itself provides support for data confidentiality and integrity. This requires
keys to be derived with a separate handshake protocol. A mapping for QUIC of TLS 1.3 <xref target="I-D.ietf-quic-tls" format="default" sectionFormat="of" derivedContent="QUIC-TLS"/>
has been specified to provide this handshake.</t>
        </section>
        <section anchor="gquic" numbered="true" toc="include" removeInRFC="false" pn="section-3.3.2">
          <name slugifiedName="name-google-quic">Google QUIC</name>
          <t indent="0" pn="section-3.3.2-1">Google QUIC (gQUIC) is a UDP-based multiplexed streaming protocol
          designed and deployed by Google following experience from deploying
          SPDY, the proprietary predecessor to HTTP/2.  gQUIC was originally
          known as "QUIC"; this document uses gQUIC to unambiguously
          distinguish it from the standards-track IETF QUIC. The proprietary
          technical forebear of IETF QUIC, gQUIC was originally designed with
          tightly integrated security and application data transport
          protocols.</t>
        </section>
        <section anchor="tcpcrypt" numbered="true" toc="include" removeInRFC="false" pn="section-3.3.3">
          <name slugifiedName="name-tcpcrypt">tcpcrypt</name>
          <t indent="0" pn="section-3.3.3-1">Tcpcrypt <xref target="RFC8548" format="default" sectionFormat="of" derivedContent="RFC8548"/> is a lightweight extension to the TCP protocol for opportunistic encryption. Applications may
use tcpcrypt's unique session ID for further application-level authentication. Absent this authentication,
tcpcrypt is vulnerable to active attacks.</t>
        </section>
        <section anchor="minimalt" numbered="true" toc="include" removeInRFC="false" pn="section-3.3.4">
          <name slugifiedName="name-minimalt">MinimaLT</name>
          <t indent="0" pn="section-3.3.4-1">MinimaLT <xref target="MinimaLT" format="default" sectionFormat="of" derivedContent="MinimaLT"/> is a UDP-based transport security protocol designed to offer confidentiality,
mutual authentication, DoS prevention, and connection mobility. One major
goal of the protocol is to leverage existing protocols to obtain server-side configuration
information used to more quickly bootstrap a connection. MinimaLT uses a variant of TCP's
congestion control algorithm.</t>
        </section>
        <section anchor="curvecp" numbered="true" toc="include" removeInRFC="false" pn="section-3.3.5">
          <name slugifiedName="name-curvecp">CurveCP</name>
          <t indent="0" pn="section-3.3.5-1">CurveCP <xref target="CurveCP" format="default" sectionFormat="of" derivedContent="CurveCP"/> is a UDP-based
          transport security that, unlike many other security protocols, is
          based entirely upon public key algorithms. CurveCP provides its own
          reliability for application data as part of its protocol.</t>
        </section>
      </section>
      <section anchor="packet-security-protocols" numbered="true" toc="include" removeInRFC="false" pn="section-3.4">
        <name slugifiedName="name-packet-security-protocols">Packet Security Protocols</name>
        <t indent="0" pn="section-3.4-1">The following protocols provide protection for IP packets. These
        are generally used as tunnels, such as for Virtual Private Networks
        (VPNs). Often, applications will not interact directly with these
        protocols. However, applications that implement tunnels will interact
        directly with these protocols.</t>
        <section anchor="ipsec" numbered="true" toc="include" removeInRFC="false" pn="section-3.4.1">
          <name slugifiedName="name-ipsec">IPsec</name>
          <t indent="0" pn="section-3.4.1-1">IKEv2 <xref target="RFC7296" format="default" sectionFormat="of" derivedContent="RFC7296"/> and ESP <xref target="RFC4303" format="default" sectionFormat="of" derivedContent="RFC4303"/> together form the modern IPsec
          protocol suite that encrypts and authenticates IP packets, either
          for creating tunnels (tunnel-mode) or for direct transport
          connections (transport-mode). This suite of protocols separates out
          the key generation protocol (IKEv2) from the transport encryption
          protocol (ESP). Each protocol can be used independently, but this
          document considers them together, since that is the most common
          pattern.</t>
        </section>
        <section anchor="wireguard" numbered="true" toc="include" removeInRFC="false" pn="section-3.4.2">
          <name slugifiedName="name-wireguard">WireGuard</name>
          <t indent="0" pn="section-3.4.2-1">WireGuard <xref target="WireGuard" format="default" sectionFormat="of" derivedContent="WireGuard"/> is an IP-layer protocol designed as an alternative to IPsec
for certain use cases. It uses UDP to encapsulate IP datagrams between peers.
Unlike most transport security protocols, which rely on Public Key Infrastructure (PKI)
for peer authentication, WireGuard authenticates peers using pre-shared public keys
delivered out of band, each of which is bound to one or more IP addresses.
Moreover, as a protocol suited for VPNs, WireGuard offers no extensibility, negotiation,
or cryptographic agility.</t>
        </section>
        <section anchor="openvpn" numbered="true" toc="include" removeInRFC="false" pn="section-3.4.3">
          <name slugifiedName="name-openvpn">OpenVPN</name>
          <t indent="0" pn="section-3.4.3-1">OpenVPN <xref target="OpenVPN" format="default" sectionFormat="of" derivedContent="OpenVPN"/> is a commonly used protocol designed as an alternative to
IPsec. A major goal of this protocol is to provide a VPN that is simple to
configure and works over a variety of transports. OpenVPN encapsulates either
IP packets or Ethernet frames within a secure tunnel and can run over either UDP or TCP.
For key establishment, OpenVPN can either use TLS as a handshake protocol or use pre-shared keys.</t>
        </section>
      </section>
    </section>
    <section anchor="transport-interface" numbered="true" toc="include" removeInRFC="false" pn="section-4">
      <name slugifiedName="name-transport-dependencies">Transport Dependencies</name>
      <t indent="0" pn="section-4-1">Across the different security protocols listed above, the primary dependency on transport
protocols is the presentation of data: either an unbounded stream of bytes, or framed
messages. Within protocols that rely on the transport for message framing, most are
built to run over transports that inherently provide framing, like UDP, but some also define
how their messages can be framed over byte-stream transports.</t>
      <section anchor="reliable-byte-stream-transports" numbered="true" toc="include" removeInRFC="false" pn="section-4.1">
        <name slugifiedName="name-reliable-byte-stream-transp">Reliable Byte-Stream Transports</name>
        <t indent="0" pn="section-4.1-1">The following protocols all depend upon running on a transport protocol that provides
a reliable, in-order stream of bytes. This is typically TCP.</t>
        <t indent="0" pn="section-4.1-2">Application Payload Security Protocols:</t>
        <ul spacing="normal" bare="false" empty="false" indent="3" pn="section-4.1-3">
          <li pn="section-4.1-3.1">TLS</li>
        </ul>
        <t indent="0" pn="section-4.1-4">Transport-Layer Security Protocols:</t>
        <ul spacing="normal" bare="false" empty="false" indent="3" pn="section-4.1-5">
          <li pn="section-4.1-5.1">tcpcrypt</li>
        </ul>
      </section>
      <section anchor="unreliable-datagram-transports" numbered="true" toc="include" removeInRFC="false" pn="section-4.2">
        <name slugifiedName="name-unreliable-datagram-transpo">Unreliable Datagram Transports</name>
        <t indent="0" pn="section-4.2-1">The following protocols all depend on the transport protocol to provide message framing
to encapsulate their data. These protocols are built to run using UDP, and thus do not
have any requirement for reliability. Running these protocols over a protocol that
does provide reliability will not break functionality but may lead to multiple layers
of reliability if the security protocol is encapsulating other transport protocol traffic.</t>
        <t indent="0" pn="section-4.2-2">Application Payload Security Protocols:</t>
        <ul spacing="normal" bare="false" empty="false" indent="3" pn="section-4.2-3">
          <li pn="section-4.2-3.1">DTLS</li>
          <li pn="section-4.2-3.2">ZRTP</li>
          <li pn="section-4.2-3.3">SRTP</li>
        </ul>
        <t indent="0" pn="section-4.2-4">Transport-Layer Security Protocols:</t>
        <ul spacing="normal" bare="false" empty="false" indent="3" pn="section-4.2-5">
          <li pn="section-4.2-5.1">QUIC</li>
          <li pn="section-4.2-5.2">MinimaLT</li>
          <li pn="section-4.2-5.3">CurveCP</li>
        </ul>
        <t indent="0" pn="section-4.2-6">Packet Security Protocols:</t>
        <ul spacing="normal" bare="false" empty="false" indent="3" pn="section-4.2-7">
          <li pn="section-4.2-7.1">IPsec</li>
          <li pn="section-4.2-7.2">WireGuard</li>
          <li pn="section-4.2-7.3">OpenVPN</li>
        </ul>
        <section anchor="datagram-protocols-with-defined-byte-stream-mappings" numbered="true" toc="include" removeInRFC="false" pn="section-4.2.1">
          <name slugifiedName="name-datagram-protocols-with-def">Datagram Protocols with Defined Byte-Stream Mappings</name>
          <t indent="0" pn="section-4.2.1-1">Of the protocols listed above that depend on the transport for message framing, some
do have well-defined mappings for sending their messages over byte-stream transports
like TCP.</t>
          <t indent="0" pn="section-4.2.1-2">Application Payload Security Protocols:</t>
          <ul spacing="normal" bare="false" empty="false" indent="3" pn="section-4.2.1-3">
            <li pn="section-4.2.1-3.1">DTLS when used as a handshake protocol for SRTP <xref target="RFC7850" format="default" sectionFormat="of" derivedContent="RFC7850"/></li>
            <li pn="section-4.2.1-3.2">ZRTP <xref target="RFC6189" format="default" sectionFormat="of" derivedContent="RFC6189"/></li>
            <li pn="section-4.2.1-3.3">SRTP <xref target="RFC4571" format="default" sectionFormat="of" derivedContent="RFC4571"/><xref target="RFC3711" format="default" sectionFormat="of" derivedContent="RFC3711"/></li>
          </ul>
          <t indent="0" pn="section-4.2.1-4">Packet Security Protocols:</t>
          <ul spacing="normal" bare="false" empty="false" indent="3" pn="section-4.2.1-5">
            <li pn="section-4.2.1-5.1">IPsec <xref target="RFC8229" format="default" sectionFormat="of" derivedContent="RFC8229"/></li>
          </ul>
        </section>
      </section>
      <section anchor="transport-specific-dependencies" numbered="true" toc="include" removeInRFC="false" pn="section-4.3">
        <name slugifiedName="name-transport-specific-dependen">Transport-Specific Dependencies</name>
        <t indent="0" pn="section-4.3-1">One protocol surveyed, tcpcrypt, has a direct dependency on a
        feature in the transport that is needed for its
        functionality. Specifically, tcpcrypt is designed to run on top of
        TCP and uses the TCP Encryption Negotiation Option (TCP-ENO) <xref target="RFC8547" format="default" sectionFormat="of" derivedContent="RFC8547"/> to negotiate its protocol
        support.</t>
        <t indent="0" pn="section-4.3-2">QUIC, CurveCP, and MinimaLT provide both transport functionality and security functionality. They
depend on running over a framed protocol like UDP, but they add their own layers of
reliability and other Transport Services. Thus, an application that uses one of these protocols
cannot decouple the security from transport functionality.</t>
      </section>
    </section>
    <section anchor="application-interface" numbered="true" toc="include" removeInRFC="false" pn="section-5">
      <name slugifiedName="name-application-interface">Application Interface</name>
      <t indent="0" pn="section-5-1">This section describes the interface exposed by the security protocols described above.
We partition these interfaces into
pre-connection (configuration), connection, and post-connection interfaces, following
conventions in <xref target="I-D.ietf-taps-interface" format="default" sectionFormat="of" derivedContent="TAPS-INTERFACE"/> and <xref target="I-D.ietf-taps-arch" format="default" sectionFormat="of" derivedContent="TAPS-ARCH"/>.</t>
      <t indent="0" pn="section-5-2">Note that not all protocols support each interface.
The table in <xref target="interface-protocols-table" format="default" sectionFormat="of" derivedContent="Section 5.4"/> summarizes which protocol exposes which of the interfaces.
In the following sections, we provide abbreviations of the interface names to use in the summary table.</t>
      <section anchor="pre-connection-interfaces" numbered="true" toc="include" removeInRFC="false" pn="section-5.1">
        <name slugifiedName="name-pre-connection-interfaces">Pre-connection Interfaces</name>
        <t indent="0" pn="section-5.1-1">Configuration interfaces are used to configure the security protocols before a
handshake begins or keys are negotiated.</t>
        <dl spacing="normal" indent="3" newline="false" pn="section-5.1-2">
          <dt pn="section-5.1-2.1">Identities and Private Keys (IPK):</dt>
          <dd pn="section-5.1-2.2">
            <t indent="0" pn="section-5.1-2.2.1">The application can provide its identity, credentials (e.g.,
	  certificates), and private keys, or mechanisms to access these, to
	  the security protocol to use during handshakes.
            </t>
            <ul spacing="normal" bare="false" empty="false" indent="3" pn="section-5.1-2.2.2">
              <li pn="section-5.1-2.2.2.1">TLS</li>
              <li pn="section-5.1-2.2.2.2">DTLS</li>
              <li pn="section-5.1-2.2.2.3">ZRTP</li>
              <li pn="section-5.1-2.2.2.4">QUIC</li>
              <li pn="section-5.1-2.2.2.5">MinimaLT</li>
              <li pn="section-5.1-2.2.2.6">CurveCP</li>
              <li pn="section-5.1-2.2.2.7">IPsec</li>
              <li pn="section-5.1-2.2.2.8">WireGuard</li>
              <li pn="section-5.1-2.2.2.9">OpenVPN</li>
            </ul>
          </dd>
          <dt pn="section-5.1-2.3">Supported Algorithms (Key Exchange, Signatures, and Ciphersuites) (ALG):</dt>
          <dd pn="section-5.1-2.4">
            <t indent="0" pn="section-5.1-2.4.1">
The application can choose the algorithms that are supported for key exchange,
signatures, and ciphersuites.
            </t>
            <ul spacing="normal" bare="false" empty="false" indent="3" pn="section-5.1-2.4.2">
              <li pn="section-5.1-2.4.2.1">TLS</li>
              <li pn="section-5.1-2.4.2.2">DTLS</li>
              <li pn="section-5.1-2.4.2.3">ZRTP</li>
              <li pn="section-5.1-2.4.2.4">QUIC</li>
              <li pn="section-5.1-2.4.2.5">tcpcrypt</li>
              <li pn="section-5.1-2.4.2.6">MinimaLT</li>
              <li pn="section-5.1-2.4.2.7">IPsec</li>
              <li pn="section-5.1-2.4.2.8">OpenVPN</li>
            </ul>
          </dd>
          <dt pn="section-5.1-2.5">Extensions (EXT):</dt>
          <dd pn="section-5.1-2.6">
            <t indent="0" pn="section-5.1-2.6.1">
The application enables or configures extensions that are to be negotiated by
the security protocol, such as Application-Layer Protocol Negotiation (ALPN) <xref target="RFC7301" format="default" sectionFormat="of" derivedContent="RFC7301"/>.
            </t>
            <ul spacing="normal" bare="false" empty="false" indent="3" pn="section-5.1-2.6.2">
              <li pn="section-5.1-2.6.2.1">TLS</li>
              <li pn="section-5.1-2.6.2.2">DTLS</li>
              <li pn="section-5.1-2.6.2.3">QUIC</li>
            </ul>
          </dd>
          <dt pn="section-5.1-2.7">Session Cache Management (CM):</dt>
          <dd pn="section-5.1-2.8">
            <t indent="0" pn="section-5.1-2.8.1">The application provides the
            ability to save and retrieve session state (such as tickets,
            keying material, and server parameters) that may be used to resume
            the security session.
            </t>
            <ul spacing="normal" bare="false" empty="false" indent="3" pn="section-5.1-2.8.2">
              <li pn="section-5.1-2.8.2.1">TLS</li>
              <li pn="section-5.1-2.8.2.2">DTLS</li>
              <li pn="section-5.1-2.8.2.3">ZRTP</li>
              <li pn="section-5.1-2.8.2.4">QUIC</li>
              <li pn="section-5.1-2.8.2.5">tcpcrypt</li>
              <li pn="section-5.1-2.8.2.6">MinimaLT</li>
            </ul>
          </dd>
          <dt pn="section-5.1-2.9">Authentication Delegation (AD):</dt>
          <dd pn="section-5.1-2.10">
            <t indent="0" pn="section-5.1-2.10.1">
The application provides access to a separate module that will provide authentication,
using the Extensible Authentication Protocol (EAP) <xref target="RFC3748" format="default" sectionFormat="of" derivedContent="RFC3748"/> for example.
            </t>
            <ul spacing="normal" bare="false" empty="false" indent="3" pn="section-5.1-2.10.2">
              <li pn="section-5.1-2.10.2.1">IPsec</li>
              <li pn="section-5.1-2.10.2.2">tcpcrypt</li>
            </ul>
          </dd>
          <dt pn="section-5.1-2.11">Pre-Shared Key Import (PSKI):</dt>
          <dd pn="section-5.1-2.12">
            <t indent="0" pn="section-5.1-2.12.1">
Either the handshake protocol or the application directly can supply pre-shared keys for use
in encrypting (and authenticating) communication with a peer.
            </t>
            <ul spacing="normal" bare="false" empty="false" indent="3" pn="section-5.1-2.12.2">
              <li pn="section-5.1-2.12.2.1">TLS</li>
              <li pn="section-5.1-2.12.2.2">DTLS</li>
              <li pn="section-5.1-2.12.2.3">ZRTP</li>
              <li pn="section-5.1-2.12.2.4">QUIC</li>
              <li pn="section-5.1-2.12.2.5">tcpcrypt</li>
              <li pn="section-5.1-2.12.2.6">MinimaLT</li>
              <li pn="section-5.1-2.12.2.7">IPsec</li>
              <li pn="section-5.1-2.12.2.8">WireGuard</li>
              <li pn="section-5.1-2.12.2.9">OpenVPN</li>
            </ul>
          </dd>
        </dl>
      </section>
      <section anchor="connection-interfaces" numbered="true" toc="include" removeInRFC="false" pn="section-5.2">
        <name slugifiedName="name-connection-interfaces">Connection Interfaces</name>
        <dl spacing="normal" indent="3" newline="false" pn="section-5.2-1">
          <dt pn="section-5.2-1.1">Identity Validation (IV):</dt>
          <dd pn="section-5.2-1.2">
            <t indent="0" pn="section-5.2-1.2.1">
During a handshake, the security protocol will conduct identity validation of the peer.
This can offload validation or occur transparently to the application.
            </t>
            <ul spacing="normal" bare="false" empty="false" indent="3" pn="section-5.2-1.2.2">
              <li pn="section-5.2-1.2.2.1">TLS</li>
              <li pn="section-5.2-1.2.2.2">DTLS</li>
              <li pn="section-5.2-1.2.2.3">ZRTP</li>
              <li pn="section-5.2-1.2.2.4">QUIC</li>
              <li pn="section-5.2-1.2.2.5">MinimaLT</li>
              <li pn="section-5.2-1.2.2.6">CurveCP</li>
              <li pn="section-5.2-1.2.2.7">IPsec</li>
              <li pn="section-5.2-1.2.2.8">WireGuard</li>
              <li pn="section-5.2-1.2.2.9">OpenVPN</li>
            </ul>
          </dd>
          <dt pn="section-5.2-1.3">Source Address Validation (SAV):</dt>
          <dd pn="section-5.2-1.4">
            <t indent="0" pn="section-5.2-1.4.1">
The handshake protocol may interact with the transport protocol or application to
validate the address of the remote peer that has sent data. This involves sending a cookie
exchange to avoid DoS attacks. (This list omits protocols that depend on TCP and therefore
implicitly perform SAV.)
            </t>
            <ul spacing="normal" bare="false" empty="false" indent="3" pn="section-5.2-1.4.2">
              <li pn="section-5.2-1.4.2.1">DTLS</li>
              <li pn="section-5.2-1.4.2.2">QUIC</li>
              <li pn="section-5.2-1.4.2.3">IPsec</li>
              <li pn="section-5.2-1.4.2.4">WireGuard</li>
            </ul>
          </dd>
        </dl>
      </section>
      <section anchor="post-connection-interfaces" numbered="true" toc="include" removeInRFC="false" pn="section-5.3">
        <name slugifiedName="name-post-connection-interfaces">Post-connection Interfaces</name>
        <dl spacing="normal" indent="3" newline="false" pn="section-5.3-1">
          <dt pn="section-5.3-1.1">Connection Termination (CT):</dt>
          <dd pn="section-5.3-1.2">
            <t indent="0" pn="section-5.3-1.2.1">
The security protocol may be instructed to tear down its connection and session information.
This is needed by some protocols, e.g., to prevent application data truncation attacks in
which an attacker terminates an underlying insecure connection-oriented protocol to terminate
the session.
            </t>
            <ul spacing="normal" bare="false" empty="false" indent="3" pn="section-5.3-1.2.2">
              <li pn="section-5.3-1.2.2.1">TLS</li>
              <li pn="section-5.3-1.2.2.2">DTLS</li>
              <li pn="section-5.3-1.2.2.3">ZRTP</li>
              <li pn="section-5.3-1.2.2.4">QUIC</li>
              <li pn="section-5.3-1.2.2.5">tcpcrypt</li>
              <li pn="section-5.3-1.2.2.6">MinimaLT</li>
              <li pn="section-5.3-1.2.2.7">IPsec</li>
              <li pn="section-5.3-1.2.2.8">OpenVPN</li>
            </ul>
          </dd>
          <dt pn="section-5.3-1.3">Key Update (KU):</dt>
          <dd pn="section-5.3-1.4">
            <t indent="0" pn="section-5.3-1.4.1">
The handshake protocol may be instructed to update its keying material, either
by the application directly or by the record protocol sending a key expiration event.
            </t>
            <ul spacing="normal" bare="false" empty="false" indent="3" pn="section-5.3-1.4.2">
              <li pn="section-5.3-1.4.2.1">TLS</li>
              <li pn="section-5.3-1.4.2.2">DTLS</li>
              <li pn="section-5.3-1.4.2.3">QUIC</li>
              <li pn="section-5.3-1.4.2.4">tcpcrypt</li>
              <li pn="section-5.3-1.4.2.5">MinimaLT</li>
              <li pn="section-5.3-1.4.2.6">IPsec</li>
            </ul>
          </dd>
          <dt pn="section-5.3-1.5">Shared Secret Key Export (SSKE):</dt>
          <dd pn="section-5.3-1.6">
            <t indent="0" pn="section-5.3-1.6.1">
The handshake protocol may provide an interface for producing shared secrets for application-specific uses.
            </t>
            <ul spacing="normal" bare="false" empty="false" indent="3" pn="section-5.3-1.6.2">
              <li pn="section-5.3-1.6.2.1">TLS</li>
              <li pn="section-5.3-1.6.2.2">DTLS</li>
              <li pn="section-5.3-1.6.2.3">tcpcrypt</li>
              <li pn="section-5.3-1.6.2.4">IPsec</li>
              <li pn="section-5.3-1.6.2.5">OpenVPN</li>
              <li pn="section-5.3-1.6.2.6">MinimaLT</li>
            </ul>
          </dd>
          <dt pn="section-5.3-1.7">Key Expiration (KE):</dt>
          <dd pn="section-5.3-1.8">
            <t indent="0" pn="section-5.3-1.8.1">The record protocol can signal that its
            keys are expiring due to reaching a time-based deadline or a
            use-based deadline (number of bytes that have been encrypted with
            the key). This interaction is often limited to signaling between
            the record layer and the handshake layer.
            </t>
            <ul spacing="normal" bare="false" empty="false" indent="3" pn="section-5.3-1.8.2">
              <li pn="section-5.3-1.8.2.1">IPsec</li>
            </ul>
          </dd>
          <dt pn="section-5.3-1.9">Mobility Events (ME):</dt>
          <dd pn="section-5.3-1.10">
            <t indent="0" pn="section-5.3-1.10.1"> The record protocol can be signaled that
it is being migrated to another transport or interface due to connection
mobility, which may reset address and state validation and induce state
changes such as use of a new Connection Identifier (CID).
            </t>
            <ul spacing="normal" bare="false" empty="false" indent="3" pn="section-5.3-1.10.2">
              <li pn="section-5.3-1.10.2.1">DTLS (version 1.3 only <xref target="I-D.ietf-tls-dtls13" format="default" sectionFormat="of" derivedContent="DTLS-1.3"/>)</li>
              <li pn="section-5.3-1.10.2.2">QUIC</li>
              <li pn="section-5.3-1.10.2.3">MinimaLT</li>
              <li pn="section-5.3-1.10.2.4">CurveCP</li>
              <li pn="section-5.3-1.10.2.5">IPsec <xref target="RFC4555" format="default" sectionFormat="of" derivedContent="RFC4555"/></li>
              <li pn="section-5.3-1.10.2.6">WireGuard</li>
            </ul>
          </dd>
        </dl>
      </section>
      <section anchor="interface-protocols-table" numbered="true" toc="include" removeInRFC="false" pn="section-5.4">
        <name slugifiedName="name-summary-of-interfaces-expos">Summary of Interfaces Exposed by Protocols</name>
        <t indent="0" pn="section-5.4-1">The following table summarizes which protocol exposes which interface.</t>
        <table align="center" pn="table-1">
          <thead>
            <tr>
              <th align="left" colspan="1" rowspan="1">Protocol</th>
              <th align="center" colspan="1" rowspan="1">IPK</th>
              <th align="center" colspan="1" rowspan="1">ALG</th>
              <th align="center" colspan="1" rowspan="1">EXT</th>
              <th align="center" colspan="1" rowspan="1">CM</th>
              <th align="center" colspan="1" rowspan="1">AD</th>
              <th align="center" colspan="1" rowspan="1">PSKI</th>
              <th align="center" colspan="1" rowspan="1">IV</th>
              <th align="center" colspan="1" rowspan="1">SAV</th>
              <th align="center" colspan="1" rowspan="1">CT</th>
              <th align="center" colspan="1" rowspan="1">KU</th>
              <th align="center" colspan="1" rowspan="1">SSKE</th>
              <th align="center" colspan="1" rowspan="1">KE</th>
              <th align="center" colspan="1" rowspan="1">ME</th>
            </tr>
          </thead>
          <tbody>
            <tr>
              <td align="left" colspan="1" rowspan="1">TLS</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1"> </td>
            </tr>
            <tr>
              <td align="left" colspan="1" rowspan="1">DTLS</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1">x</td>
            </tr>
            <tr>
              <td align="left" colspan="1" rowspan="1">ZRTP</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1"> </td>
            </tr>
            <tr>
              <td align="left" colspan="1" rowspan="1">QUIC</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1">x</td>
            </tr>
            <tr>
              <td align="left" colspan="1" rowspan="1">tcpcrypt</td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1"> </td>
            </tr>
            <tr>
              <td align="left" colspan="1" rowspan="1">MinimaLT</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1">x</td>
            </tr>
            <tr>
              <td align="left" colspan="1" rowspan="1">CurveCP</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1">x</td>
            </tr>
            <tr>
              <td align="left" colspan="1" rowspan="1">IPsec</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1">x</td>
            </tr>
            <tr>
              <td align="left" colspan="1" rowspan="1">WireGuard</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1">x</td>
            </tr>
            <tr>
              <td align="left" colspan="1" rowspan="1">OpenVPN</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1">x</td>
              <td align="center" colspan="1" rowspan="1"> </td>
              <td align="center" colspan="1" rowspan="1"> </td>
            </tr>
          </tbody>
        </table>
        <t indent="0" pn="section-5.4-3">x = Interface is exposed<br/> 
(blank) = Interface is not exposed</t>
      </section>
    </section>
    <section anchor="iana-considerations" numbered="true" toc="include" removeInRFC="false" pn="section-6">
      <name slugifiedName="name-iana-considerations">IANA Considerations</name>
      <t indent="0" pn="section-6-1">This document has no IANA actions.</t>
    </section>
    <section anchor="security-considerations" numbered="true" toc="include" removeInRFC="false" pn="section-7">
      <name slugifiedName="name-security-considerations">Security Considerations</name>
      <t indent="0" pn="section-7-1">This document summarizes existing transport security protocols and their interfaces.
It does not propose changes to or recommend usage of reference protocols. Moreover,
no claims of security and privacy properties beyond those guaranteed by the protocols
discussed are made. For example, metadata leakage via timing side channels and traffic
analysis may compromise any protocol discussed in this survey. Applications using
Security Interfaces should take such limitations into consideration when using a particular
protocol implementation.</t>
    </section>
    <section anchor="privacy-considerations" numbered="true" toc="include" removeInRFC="false" pn="section-8">
      <name slugifiedName="name-privacy-considerations">Privacy Considerations</name>
      <t indent="0" pn="section-8-1">Analysis of how features improve or degrade privacy is intentionally omitted from this survey.
All security protocols surveyed generally improve privacy by using encryption to reduce information
leakage. However, varying amounts of metadata remain in the clear across each
protocol. For example, client and server certificates are sent in cleartext in TLS
1.2 <xref target="RFC5246" format="default" sectionFormat="of" derivedContent="RFC5246"/>, whereas they are encrypted in TLS 1.3 <xref target="RFC8446" format="default" sectionFormat="of" derivedContent="RFC8446"/>. A survey of privacy
features, or lack thereof, for various security protocols could be addressed in a
separate document.</t>
    </section>
  </middle>
  <back>
    <displayreference target="I-D.ietf-taps-arch" to="TAPS-ARCH"/>
    <displayreference target="I-D.ietf-quic-transport" to="QUIC-TRANSPORT"/>
    <displayreference target="I-D.ietf-tls-dtls13" to="DTLS-1.3"/>
    <displayreference target="I-D.ietf-quic-tls" to="QUIC-TLS"/>
    <displayreference target="I-D.ietf-taps-interface" to="TAPS-INTERFACE"/>
    <references pn="section-9">
      <name slugifiedName="name-informative-references">Informative References</name>
      <reference anchor="ALTS" target="https://cloud.google.com/security/encryption-in-transit/application-layer-transport-security/" quoteTitle="true" derivedAnchor="ALTS">
        <front>
          <title>Application Layer Transport Security</title>
          <author initials="C" surname="Ghali">
            <organization showOnFrontPage="true"/>
          </author>
          <author initials="A" surname="Stubblefield">
            <organization showOnFrontPage="true"/>
          </author>
          <author initials="E" surname="Knapp">
            <organization showOnFrontPage="true"/>
          </author>
          <author initials="J" surname="Li">
            <organization showOnFrontPage="true"/>
          </author>
          <author initials="B" surname="Schmidt">
            <organization showOnFrontPage="true"/>
          </author>
          <author initials="J" surname="Boeuf">
            <organization showOnFrontPage="true"/>
          </author>
        </front>
      </reference>
      <reference anchor="CurveCP" target="https://curvecp.org/" quoteTitle="true" derivedAnchor="CurveCP">
        <front>
          <title>CurveCP: Usable security for the Internet</title>
          <author initials="D" surname="Bernstein">
            <organization showOnFrontPage="true">CurveCP</organization>
          </author>
        </front>
      </reference>
      <reference anchor="I-D.ietf-tls-dtls13" quoteTitle="true" target="https://tools.ietf.org/html/draft-ietf-tls-dtls13-38" derivedAnchor="DTLS-1.3">
        <front>
          <title>The Datagram Transport Layer Security (DTLS) Protocol Version 1.3</title>
          <author fullname="Eric Rescorla">
            <organization showOnFrontPage="true">RTFM, Inc.</organization>
          </author>
          <author fullname="Hannes Tschofenig">
            <organization showOnFrontPage="true">Arm Limited</organization>
          </author>
          <author fullname="Nagendra Modadugu">
            <organization showOnFrontPage="true">Google, Inc.</organization>
          </author>
          <date month="May" day="29" year="2020"/>
          <abstract>
            <t indent="0">   This document specifies Version 1.3 of the Datagram Transport Layer
   Security (DTLS) protocol.  DTLS 1.3 allows client/server applications
   to communicate over the Internet in a way that is designed to prevent
   eavesdropping, tampering, and message forgery.

   The DTLS 1.3 protocol is intentionally based on the Transport Layer
   Security (TLS) 1.3 protocol and provides equivalent security
   guarantees with the exception of order protection/non-replayability.
   Datagram semantics of the underlying transport are preserved by the
   DTLS protocol.

            </t>
          </abstract>
        </front>
        <seriesInfo name="Internet-Draft" value="draft-ietf-tls-dtls13-38"/>
        <format type="TXT" target="https://www.ietf.org/internet-drafts/draft-ietf-tls-dtls13-38.txt"/>
        <refcontent>Work in Progress</refcontent>
      </reference>
      <reference anchor="MinimaLT" target="https://dl.acm.org/citation.cfm?id=2516737" quoteTitle="true" derivedAnchor="MinimaLT">
        <front>
          <title>MinimaLT: minimal-latency networking through better security</title>
          <author initials="W" surname="Petullo">
            <organization showOnFrontPage="true">United States Military Academy, West Point, NY, USA</organization>
          </author>
          <author initials="X" surname="Zhang">
            <organization showOnFrontPage="true">University of Illinois at Chicago, Chicago, IL, USA</organization>
          </author>
          <author initials="J" surname="Solworth">
            <organization showOnFrontPage="true">University of Illinois at Chicago, Chicago, IL, USA</organization>
          </author>
          <author initials="D" surname="Bernstein">
            <organization showOnFrontPage="true">University of Illinois at Chicago, Chicago, IL, USA</organization>
          </author>
          <author initials="T" surname="Lange">
            <organization showOnFrontPage="true">TU Eindhoven, Eindhoven, Netherlands</organization>
          </author>
        </front>
        <seriesInfo name="DOI" value="10.1145/2508859.2516737"/>
      </reference>
      <reference anchor="OpenVPN" target="https://openvpn.net/community-resources/openvpn-cryptographic-layer/" quoteTitle="true" derivedAnchor="OpenVPN">
        <front>
          <title>OpenVPN cryptographic layer</title>
          <author>
            <organization showOnFrontPage="true">OpenVPN</organization>
          </author>
        </front>
      </reference>
      <reference anchor="I-D.ietf-quic-tls" quoteTitle="true" target="https://tools.ietf.org/html/draft-ietf-quic-tls-31" derivedAnchor="QUIC-TLS">
        <front>
          <title>Using TLS to Secure QUIC</title>
          <author fullname="Martin Thomson">
            <organization showOnFrontPage="true">Mozilla</organization>
          </author>
          <author fullname="Sean Turner">
            <organization showOnFrontPage="true">sn3rd</organization>
          </author>
          <date month="September" day="24" year="2020"/>
          <abstract>
            <t indent="0">   This document describes how Transport Layer Security (TLS) is used to
   secure QUIC.

Note to Readers

   Discussion of this draft takes place on the QUIC working group
   mailing list (quic@ietf.org), which is archived at
   https://mailarchive.ietf.org/arch/search/?email_list=quic.

   Working Group information can be found at https://github.com/quicwg;
   source code and issues list for this draft can be found at
   https://github.com/quicwg/base-drafts/labels/-tls.

            </t>
          </abstract>
        </front>
        <seriesInfo name="Internet-Draft" value="draft-ietf-quic-tls-31"/>
        <format type="TXT" target="https://www.ietf.org/internet-drafts/draft-ietf-quic-tls-31.txt"/>
        <refcontent>Work in Progress</refcontent>
      </reference>
      <reference anchor="I-D.ietf-quic-transport" quoteTitle="true" target="https://tools.ietf.org/html/draft-ietf-quic-transport-31" derivedAnchor="QUIC-TRANSPORT">
        <front>
          <title>QUIC: A UDP-Based Multiplexed and Secure Transport</title>
          <author fullname="Jana Iyengar">
            <organization showOnFrontPage="true">Fastly</organization>
          </author>
          <author fullname="Martin Thomson">
            <organization showOnFrontPage="true">Mozilla</organization>
          </author>
          <date month="September" day="24" year="2020"/>
          <abstract>
            <t indent="0">   This document defines the core of the QUIC transport protocol.
   Accompanying documents describe QUIC's loss detection and congestion
   control and the use of TLS for key negotiation.

Note to Readers

   Discussion of this draft takes place on the QUIC working group
   mailing list (quic@ietf.org (mailto:quic@ietf.org)), which is
   archived at https://mailarchive.ietf.org/arch/search/?email_list=quic

   Working Group information can be found at https://github.com/quicwg;
   source code and issues list for this draft can be found at
   https://github.com/quicwg/base-drafts/labels/-transport.

            </t>
          </abstract>
        </front>
        <seriesInfo name="Internet-Draft" value="draft-ietf-quic-transport-31"/>
        <format type="TXT" target="https://www.ietf.org/internet-drafts/draft-ietf-quic-transport-31.txt"/>
        <refcontent>Work in Progress</refcontent>
      </reference>
      <reference anchor="RFC2385" target="https://www.rfc-editor.org/info/rfc2385" quoteTitle="true" derivedAnchor="RFC2385">
        <front>
          <title>Protection of BGP Sessions via the TCP MD5 Signature Option</title>
          <author initials="A." surname="Heffernan" fullname="A. Heffernan">
            <organization showOnFrontPage="true"/>
          </author>
          <date year="1998" month="August"/>
          <abstract>
            <t indent="0">This memo describes a TCP extension to enhance security for BGP. [STANDARDS-TRACK]</t>
          </abstract>
        </front>
        <seriesInfo name="RFC" value="2385"/>
        <seriesInfo name="DOI" value="10.17487/RFC2385"/>
      </reference>
      <reference anchor="RFC2890" target="https://www.rfc-editor.org/info/rfc2890" quoteTitle="true" derivedAnchor="RFC2890">
        <front>
          <title>Key and Sequence Number Extensions to GRE</title>
          <author initials="G." surname="Dommety" fullname="G. Dommety">
            <organization showOnFrontPage="true"/>
          </author>
          <date year="2000" month="September"/>
          <abstract>
            <t indent="0">This document describes extensions by which two fields, Key and Sequence Number, can be optionally carried in the GRE Header.  [STANDARDS-TRACK]</t>
          </abstract>
        </front>
        <seriesInfo name="RFC" value="2890"/>
        <seriesInfo name="DOI" value="10.17487/RFC2890"/>
      </reference>
      <reference anchor="RFC3711" target="https://www.rfc-editor.org/info/rfc3711" quoteTitle="true" derivedAnchor="RFC3711">
        <front>
          <title>The Secure Real-time Transport Protocol (SRTP)</title>
          <author initials="M." surname="Baugher" fullname="M. Baugher">
            <organization showOnFrontPage="true"/>
          </author>
          <author initials="D." surname="McGrew" fullname="D. McGrew">
            <organization showOnFrontPage="true"/>
          </author>
          <author initials="M." surname="Naslund" fullname="M. Naslund">
            <organization showOnFrontPage="true"/>
          </author>
          <author initials="E." surname="Carrara" fullname="E. Carrara">
            <organization showOnFrontPage="true"/>
          </author>
          <author initials="K." surname="Norrman" fullname="K. Norrman">
            <organization showOnFrontPage="true"/>
          </author>
          <date year="2004" month="March"/>
          <abstract>
            <t indent="0">This document describes the Secure Real-time Transport Protocol (SRTP), a profile of the Real-time Transport Protocol (RTP), which can provide confidentiality, message authentication, and replay protection to the RTP traffic and to the control traffic for RTP, the Real-time Transport Control Protocol (RTCP).   [STANDARDS-TRACK]</t>
          </abstract>
        </front>
        <seriesInfo name="RFC" value="3711"/>
        <seriesInfo name="DOI" value="10.17487/RFC3711"/>
      </reference>
      <reference anchor="RFC3748" target="https://www.rfc-editor.org/info/rfc3748" quoteTitle="true" derivedAnchor="RFC3748">
        <front>
          <title>Extensible Authentication Protocol (EAP)</title>
          <author initials="B." surname="Aboba" fullname="B. Aboba">
            <organization showOnFrontPage="true"/>
          </author>
          <author initials="L." surname="Blunk" fullname="L. Blunk">
            <organization showOnFrontPage="true"/>
          </author>
          <author initials="J." surname="Vollbrecht" fullname="J. Vollbrecht">
            <organization showOnFrontPage="true"/>
          </author>
          <author initials="J." surname="Carlson" fullname="J. Carlson">
            <organization showOnFrontPage="true"/>
          </author>
          <author initials="H." surname="Levkowetz" fullname="H. Levkowetz" role="editor">
            <organization showOnFrontPage="true"/>
          </author>
          <date year="2004" month="June"/>
          <abstract>
            <t indent="0">This document defines the Extensible Authentication Protocol (EAP), an authentication framework which supports multiple authentication methods.  EAP typically runs directly over data link layers such as Point-to-Point Protocol (PPP) or IEEE 802, without requiring IP.  EAP provides its own support for duplicate elimination and retransmission, but is reliant on lower layer ordering guarantees.  Fragmentation is not supported within EAP itself; however, individual EAP methods may support this.  This document obsoletes RFC 2284.  A summary of the changes between this document and RFC 2284 is available in Appendix A.  [STANDARDS-TRACK]</t>
          </abstract>
        </front>
        <seriesInfo name="RFC" value="3748"/>
        <seriesInfo name="DOI" value="10.17487/RFC3748"/>
      </reference>
      <reference anchor="RFC4253" target="https://www.rfc-editor.org/info/rfc4253" quoteTitle="true" derivedAnchor="RFC4253">
        <front>
          <title>The Secure Shell (SSH) Transport Layer Protocol</title>
          <author initials="T." surname="Ylonen" fullname="T. Ylonen">
            <organization showOnFrontPage="true"/>
          </author>
          <author initials="C." surname="Lonvick" fullname="C. Lonvick" role="editor">
            <organization showOnFrontPage="true"/>
          </author>
          <date year="2006" month="January"/>
          <abstract>
            <t indent="0">The Secure Shell (SSH) is a protocol for secure remote login and other secure network services over an insecure network.</t>
            <t indent="0">This document describes the SSH transport layer protocol, which typically runs on top of TCP/IP.  The protocol can be used as a basis for a number of secure network services.  It provides strong encryption, server authentication, and integrity protection.  It may also provide compression.</t>
            <t indent="0">Key exchange method, public key algorithm, symmetric encryption algorithm, message authentication algorithm, and hash algorithm are all negotiated.</t>
            <t indent="0">This document also describes the Diffie-Hellman key exchange method and the minimal set of algorithms that are needed to implement the SSH transport layer protocol.  [STANDARDS-TRACK]</t>
          </abstract>
        </front>
        <seriesInfo name="RFC" value="4253"/>
        <seriesInfo name="DOI" value="10.17487/RFC4253"/>
      </reference>
      <reference anchor="RFC4302" target="https://www.rfc-editor.org/info/rfc4302" quoteTitle="true" derivedAnchor="RFC4302">
        <front>
          <title>IP Authentication Header</title>
          <author initials="S." surname="Kent" fullname="S. Kent">
            <organization showOnFrontPage="true"/>
          </author>
          <date year="2005" month="December"/>
          <abstract>
            <t indent="0">This document describes an updated version of the IP Authentication Header (AH), which is designed to provide authentication services in IPv4 and IPv6.  This document obsoletes RFC 2402 (November 1998).  [STANDARDS-TRACK]</t>
          </abstract>
        </front>
        <seriesInfo name="RFC" value="4302"/>
        <seriesInfo name="DOI" value="10.17487/RFC4302"/>
      </reference>
      <reference anchor="RFC4303" target="https://www.rfc-editor.org/info/rfc4303" quoteTitle="true" derivedAnchor="RFC4303">
        <front>
          <title>IP Encapsulating Security Payload (ESP)</title>
          <author initials="S." surname="Kent" fullname="S. Kent">
            <organization showOnFrontPage="true"/>
          </author>
          <date year="2005" month="December"/>
          <abstract>
            <t indent="0">This document describes an updated version of the Encapsulating Security Payload (ESP) protocol, which is designed to provide a mix of security services in IPv4 and IPv6.  ESP is used to provide confidentiality, data origin authentication, connectionless integrity, an anti-replay service (a form of partial sequence integrity), and limited traffic flow confidentiality.  This document obsoletes RFC 2406 (November 1998).  [STANDARDS-TRACK]</t>
          </abstract>
        </front>
        <seriesInfo name="RFC" value="4303"/>
        <seriesInfo name="DOI" value="10.17487/RFC4303"/>
      </reference>
      <reference anchor="RFC4555" target="https://www.rfc-editor.org/info/rfc4555" quoteTitle="true" derivedAnchor="RFC4555">
        <front>
          <title>IKEv2 Mobility and Multihoming Protocol (MOBIKE)</title>
          <author initials="P." surname="Eronen" fullname="P. Eronen">
            <organization showOnFrontPage="true"/>
          </author>
          <date year="2006" month="June"/>
          <abstract>
            <t indent="0">This document describes the MOBIKE protocol, a mobility and multihoming extension to Internet Key Exchange (IKEv2).  MOBIKE allows the IP addresses associated with IKEv2 and tunnel mode IPsec Security Associations to change.  A mobile Virtual Private Network (VPN) client could use MOBIKE to keep the connection with the VPN gateway active while moving from one address to another.  Similarly, a multihomed host could use MOBIKE to move the traffic to a different interface if, for instance, the one currently being used stops working.  [STANDARDS-TRACK]</t>
          </abstract>
        </front>
        <seriesInfo name="RFC" value="4555"/>
        <seriesInfo name="DOI" value="10.17487/RFC4555"/>
      </reference>
      <reference anchor="RFC4571" target="https://www.rfc-editor.org/info/rfc4571" quoteTitle="true" derivedAnchor="RFC4571">
        <front>
          <title>Framing Real-time Transport Protocol (RTP) and RTP Control Protocol (RTCP) Packets over Connection-Oriented Transport</title>
          <author initials="J." surname="Lazzaro" fullname="J. Lazzaro">
            <organization showOnFrontPage="true"/>
          </author>
          <date year="2006" month="July"/>
          <abstract>
            <t indent="0">This memo defines a method for framing Real-time Transport Protocol (RTP) and RTP Control Protocol (RTCP) packets onto connection-oriented transport (such as TCP).  The memo also defines how session descriptions may specify RTP streams that use the framing method.  [STANDARDS-TRACK]</t>
          </abstract>
        </front>
        <seriesInfo name="RFC" value="4571"/>
        <seriesInfo name="DOI" value="10.17487/RFC4571"/>
      </reference>
      <reference anchor="RFC5246" target="https://www.rfc-editor.org/info/rfc5246" quoteTitle="true" derivedAnchor="RFC5246">
        <front>
          <title>The Transport Layer Security (TLS) Protocol Version 1.2</title>
          <author initials="T." surname="Dierks" fullname="T. Dierks">
            <organization showOnFrontPage="true"/>
          </author>
          <author initials="E." surname="Rescorla" fullname="E. Rescorla">
            <organization showOnFrontPage="true"/>
          </author>
          <date year="2008" month="August"/>
          <abstract>
            <t indent="0">This document specifies Version 1.2 of the Transport Layer Security (TLS) protocol.  The TLS protocol provides communications security over the Internet.  The protocol allows client/server applications to communicate in a way that is designed to prevent eavesdropping, tampering, or message forgery.  [STANDARDS-TRACK]</t>
          </abstract>
        </front>
        <seriesInfo name="RFC" value="5246"/>
        <seriesInfo name="DOI" value="10.17487/RFC5246"/>
      </reference>
      <reference anchor="RFC5641" target="https://www.rfc-editor.org/info/rfc5641" quoteTitle="true" derivedAnchor="RFC5641">
        <front>
          <title>Layer 2 Tunneling Protocol Version 3 (L2TPv3) Extended Circuit Status Values</title>
          <author initials="N." surname="McGill" fullname="N. McGill">
            <organization showOnFrontPage="true"/>
          </author>
          <author initials="C." surname="Pignataro" fullname="C. Pignataro">
            <organization showOnFrontPage="true"/>
          </author>
          <date year="2009" month="August"/>
          <abstract>
            <t indent="0">This document defines additional Layer 2 Tunneling Protocol Version 3 (L2TPv3) bit values to be used within the "Circuit Status" Attribute Value Pair (AVP) to communicate finer-grained error states for Attachment Circuits (ACs) and pseudowires (PWs).  It also generalizes the Active bit and deprecates the use of the New bit in the Circuit Status AVP, updating RFC 3931, RFC 4349, RFC 4454, RFC 4591, and RFC 4719.  [STANDARDS-TRACK]</t>
          </abstract>
        </front>
        <seriesInfo name="RFC" value="5641"/>
        <seriesInfo name="DOI" value="10.17487/RFC5641"/>
      </reference>
      <reference anchor="RFC5764" target="https://www.rfc-editor.org/info/rfc5764" quoteTitle="true" derivedAnchor="RFC5764">
        <front>
          <title>Datagram Transport Layer Security (DTLS) Extension to Establish Keys for the Secure Real-time Transport Protocol (SRTP)</title>
          <author initials="D." surname="McGrew" fullname="D. McGrew">
            <organization showOnFrontPage="true"/>
          </author>
          <author initials="E." surname="Rescorla" fullname="E. Rescorla">
            <organization showOnFrontPage="true"/>
          </author>
          <date year="2010" month="May"/>
          <abstract>
            <t indent="0">This document describes a Datagram Transport Layer Security (DTLS) extension to establish keys for Secure RTP (SRTP) and Secure RTP Control Protocol (SRTCP) flows.  DTLS keying happens on the media path, independent of any out-of-band signalling channel present. [STANDARDS-TRACK]</t>
          </abstract>
        </front>
        <seriesInfo name="RFC" value="5764"/>
        <seriesInfo name="DOI" value="10.17487/RFC5764"/>
      </reference>
      <reference anchor="RFC5925" target="https://www.rfc-editor.org/info/rfc5925" quoteTitle="true" derivedAnchor="RFC5925">
        <front>
          <title>The TCP Authentication Option</title>
          <author initials="J." surname="Touch" fullname="J. Touch">
            <organization showOnFrontPage="true"/>
          </author>
          <author initials="A." surname="Mankin" fullname="A. Mankin">
            <organization showOnFrontPage="true"/>
          </author>
          <author initials="R." surname="Bonica" fullname="R. Bonica">
            <organization showOnFrontPage="true"/>
          </author>
          <date year="2010" month="June"/>
          <abstract>
            <t indent="0">This document specifies the TCP Authentication Option (TCP-AO), which obsoletes the TCP MD5 Signature option of RFC 2385 (TCP MD5).  TCP-AO specifies the use of stronger Message Authentication Codes (MACs), protects against replays even for long-lived TCP connections, and provides more details on the association of security with TCP connections than TCP MD5.  TCP-AO is compatible with either a static Master Key Tuple (MKT) configuration or an external, out-of-band MKT management mechanism; in either case, TCP-AO also protects connections when using the same MKT across repeated instances of a connection, using traffic keys derived from the MKT, and coordinates MKT changes between endpoints.  The result is intended to support current infrastructure uses of TCP MD5, such as to protect long-lived connections (as used, e.g., in BGP and LDP), and to support a larger set of MACs with minimal other system and operational changes.  TCP-AO uses a different option identifier than TCP MD5, even though TCP-AO and TCP MD5 are never permitted to be used simultaneously.  TCP-AO supports IPv6, and is fully compatible with the proposed requirements for the replacement of TCP MD5.  [STANDARDS-TRACK]</t>
          </abstract>
        </front>
        <seriesInfo name="RFC" value="5925"/>
        <seriesInfo name="DOI" value="10.17487/RFC5925"/>
      </reference>
      <reference anchor="RFC6189" target="https://www.rfc-editor.org/info/rfc6189" quoteTitle="true" derivedAnchor="RFC6189">
        <front>
          <title>ZRTP: Media Path Key Agreement for Unicast Secure RTP</title>
          <author initials="P." surname="Zimmermann" fullname="P. Zimmermann">
            <organization showOnFrontPage="true"/>
          </author>
          <author initials="A." surname="Johnston" fullname="A. Johnston" role="editor">
            <organization showOnFrontPage="true"/>
          </author>
          <author initials="J." surname="Callas" fullname="J. Callas">
            <organization showOnFrontPage="true"/>
          </author>
          <date year="2011" month="April"/>
          <abstract>
            <t indent="0">This document defines ZRTP, a protocol for media path Diffie-Hellman exchange to agree on a session key and parameters for establishing unicast Secure Real-time Transport Protocol (SRTP) sessions for Voice over IP (VoIP) applications.  The ZRTP protocol is media path keying because it is multiplexed on the same port as RTP and does not require support in the signaling protocol.  ZRTP does not assume a Public Key Infrastructure (PKI) or require the complexity of certificates in end devices.  For the media session, ZRTP provides confidentiality, protection against man-in-the-middle (MiTM) attacks, and, in cases where the signaling protocol provides end-to-end integrity protection, authentication.  ZRTP can utilize a Session Description Protocol (SDP) attribute to provide discovery and authentication through the signaling channel.  To provide best effort SRTP, ZRTP utilizes normal RTP/AVP (Audio-Visual Profile) profiles. ZRTP secures media sessions that include a voice media stream and can also secure media sessions that do not include voice by using an optional digital signature.  This document is not an Internet  Standards Track specification; it is published for informational purposes.</t>
          </abstract>
        </front>
        <seriesInfo name="RFC" value="6189"/>
        <seriesInfo name="DOI" value="10.17487/RFC6189"/>
      </reference>
      <reference anchor="RFC6347" target="https://www.rfc-editor.org/info/rfc6347" quoteTitle="true" derivedAnchor="RFC6347">
        <front>
          <title>Datagram Transport Layer Security Version 1.2</title>
          <author initials="E." surname="Rescorla" fullname="E. Rescorla">
            <organization showOnFrontPage="true"/>
          </author>
          <author initials="N." surname="Modadugu" fullname="N. Modadugu">
            <organization showOnFrontPage="true"/>
          </author>
          <date year="2012" month="January"/>
          <abstract>
            <t indent="0">This document specifies version 1.2 of the Datagram Transport Layer Security (DTLS) protocol.  The DTLS protocol provides communications privacy for datagram protocols.  The protocol allows client/server applications to communicate in a way that is designed to prevent eavesdropping, tampering, or message forgery.  The DTLS protocol is based on the Transport Layer Security (TLS) protocol and provides equivalent security guarantees.  Datagram semantics of the underlying transport are preserved by the DTLS protocol.  This document updates DTLS 1.0 to work with TLS version 1.2.  [STANDARDS-TRACK]</t>
          </abstract>
        </front>
        <seriesInfo name="RFC" value="6347"/>
        <seriesInfo name="DOI" value="10.17487/RFC6347"/>
      </reference>
      <reference anchor="RFC7296" target="https://www.rfc-editor.org/info/rfc7296" quoteTitle="true" derivedAnchor="RFC7296">
        <front>
          <title>Internet Key Exchange Protocol Version 2 (IKEv2)</title>
          <author initials="C." surname="Kaufman" fullname="C. Kaufman">
            <organization showOnFrontPage="true"/>
          </author>
          <author initials="P." surname="Hoffman" fullname="P. Hoffman">
            <organization showOnFrontPage="true"/>
          </author>
          <author initials="Y." surname="Nir" fullname="Y. Nir">
            <organization showOnFrontPage="true"/>
          </author>
          <author initials="P." surname="Eronen" fullname="P. Eronen">
            <organization showOnFrontPage="true"/>
          </author>
          <author initials="T." surname="Kivinen" fullname="T. Kivinen">
            <organization showOnFrontPage="true"/>
          </author>
          <date year="2014" month="October"/>
          <abstract>
            <t indent="0">This document describes version 2 of the Internet Key Exchange (IKE) protocol.  IKE is a component of IPsec used for performing mutual authentication and establishing and maintaining Security Associations (SAs).  This document obsoletes RFC 5996, and includes all of the errata for it.  It advances IKEv2 to be an Internet Standard.</t>
          </abstract>
        </front>
        <seriesInfo name="STD" value="79"/>
        <seriesInfo name="RFC" value="7296"/>
        <seriesInfo name="DOI" value="10.17487/RFC7296"/>
      </reference>
      <reference anchor="RFC7301" target="https://www.rfc-editor.org/info/rfc7301" quoteTitle="true" derivedAnchor="RFC7301">
        <front>
          <title>Transport Layer Security (TLS) Application-Layer Protocol Negotiation Extension</title>
          <author initials="S." surname="Friedl" fullname="S. Friedl">
            <organization showOnFrontPage="true"/>
          </author>
          <author initials="A." surname="Popov" fullname="A. Popov">
            <organization showOnFrontPage="true"/>
          </author>
          <author initials="A." surname="Langley" fullname="A. Langley">
            <organization showOnFrontPage="true"/>
          </author>
          <author initials="E." surname="Stephan" fullname="E. Stephan">
            <organization showOnFrontPage="true"/>
          </author>
          <date year="2014" month="July"/>
          <abstract>
            <t indent="0">This document describes a Transport Layer Security (TLS) extension for application-layer protocol negotiation within the TLS handshake. For instances in which multiple application protocols are supported on the same TCP or UDP port, this extension allows the application layer to negotiate which protocol will be used within the TLS connection.</t>
          </abstract>
        </front>
        <seriesInfo name="RFC" value="7301"/>
        <seriesInfo name="DOI" value="10.17487/RFC7301"/>
      </reference>
      <reference anchor="RFC7850" target="https://www.rfc-editor.org/info/rfc7850" quoteTitle="true" derivedAnchor="RFC7850">
        <front>
          <title>Registering Values of the SDP 'proto' Field for Transporting RTP Media over TCP under Various RTP Profiles</title>
          <author initials="S." surname="Nandakumar" fullname="S. Nandakumar">
            <organization showOnFrontPage="true"/>
          </author>
          <date year="2016" month="April"/>
          <abstract>
            <t indent="0">The Real-time Transport Protocol (RTP) specification establishes a registry of profile names for use by higher-level control protocols, such as the Session Description Protocol (SDP), to refer to the transport methods.  This specification describes the following new SDP transport protocol identifiers for transporting RTP Media over TCP: 'TCP/RTP/AVPF', 'TCP/RTP/SAVP', 'TCP/RTP/SAVPF', 'TCP/DTLS/RTP/SAVP', 'TCP/DTLS/RTP/SAVPF', 'TCP/TLS/RTP/AVP', and 'TCP/TLS/RTP/AVPF'.</t>
          </abstract>
        </front>
        <seriesInfo name="RFC" value="7850"/>
        <seriesInfo name="DOI" value="10.17487/RFC7850"/>
      </reference>
      <reference anchor="RFC8095" target="https://www.rfc-editor.org/info/rfc8095" quoteTitle="true" derivedAnchor="RFC8095">
        <front>
          <title>Services Provided by IETF Transport Protocols and Congestion Control Mechanisms</title>
          <author initials="G." surname="Fairhurst" fullname="G. Fairhurst" role="editor">
            <organization showOnFrontPage="true"/>
          </author>
          <author initials="B." surname="Trammell" fullname="B. Trammell" role="editor">
            <organization showOnFrontPage="true"/>
          </author>
          <author initials="M." surname="Kuehlewind" fullname="M. Kuehlewind" role="editor">
            <organization showOnFrontPage="true"/>
          </author>
          <date year="2017" month="March"/>
          <abstract>
            <t indent="0">This document describes, surveys, and classifies the protocol mechanisms provided by existing IETF protocols, as background for determining a common set of transport services.  It examines the Transmission Control Protocol (TCP), Multipath TCP, the Stream Control Transmission Protocol (SCTP), the User Datagram Protocol (UDP), UDP-Lite, the Datagram Congestion Control Protocol (DCCP), the Internet Control Message Protocol (ICMP), the Real-Time Transport Protocol (RTP), File Delivery over Unidirectional Transport / Asynchronous Layered Coding (FLUTE/ALC) for Reliable Multicast, NACK- Oriented Reliable Multicast (NORM), Transport Layer Security (TLS), Datagram TLS (DTLS), and the Hypertext Transport Protocol (HTTP), when HTTP is used as a pseudotransport.  This survey provides background for the definition of transport services within the TAPS working group.</t>
          </abstract>
        </front>
        <seriesInfo name="RFC" value="8095"/>
        <seriesInfo name="DOI" value="10.17487/RFC8095"/>
      </reference>
      <reference anchor="RFC8229" target="https://www.rfc-editor.org/info/rfc8229" quoteTitle="true" derivedAnchor="RFC8229">
        <front>
          <title>TCP Encapsulation of IKE and IPsec Packets</title>
          <author initials="T." surname="Pauly" fullname="T. Pauly">
            <organization showOnFrontPage="true"/>
          </author>
          <author initials="S." surname="Touati" fullname="S. Touati">
            <organization showOnFrontPage="true"/>
          </author>
          <author initials="R." surname="Mantha" fullname="R. Mantha">
            <organization showOnFrontPage="true"/>
          </author>
          <date year="2017" month="August"/>
          <abstract>
            <t indent="0">This document describes a method to transport Internet Key Exchange Protocol (IKE) and IPsec packets over a TCP connection for traversing network middleboxes that may block IKE negotiation over UDP.  This method, referred to as "TCP encapsulation", involves sending both IKE packets for Security Association establishment and Encapsulating Security Payload (ESP) packets over a TCP connection.  This method is intended to be used as a fallback option when IKE cannot be negotiated over UDP.</t>
          </abstract>
        </front>
        <seriesInfo name="RFC" value="8229"/>
        <seriesInfo name="DOI" value="10.17487/RFC8229"/>
      </reference>
      <reference anchor="RFC8446" target="https://www.rfc-editor.org/info/rfc8446" quoteTitle="true" derivedAnchor="RFC8446">
        <front>
          <title>The Transport Layer Security (TLS) Protocol Version 1.3</title>
          <author initials="E." surname="Rescorla" fullname="E. Rescorla">
            <organization showOnFrontPage="true"/>
          </author>
          <date year="2018" month="August"/>
          <abstract>
            <t indent="0">This document specifies version 1.3 of the Transport Layer Security (TLS) protocol.  TLS allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.</t>
            <t indent="0">This document updates RFCs 5705 and 6066, and obsoletes RFCs 5077, 5246, and 6961.  This document also specifies new requirements for TLS 1.2 implementations.</t>
          </abstract>
        </front>
        <seriesInfo name="RFC" value="8446"/>
        <seriesInfo name="DOI" value="10.17487/RFC8446"/>
      </reference>
      <reference anchor="RFC8547" target="https://www.rfc-editor.org/info/rfc8547" quoteTitle="true" derivedAnchor="RFC8547">
        <front>
          <title>TCP-ENO: Encryption Negotiation Option</title>
          <author initials="A." surname="Bittau" fullname="A. Bittau">
            <organization showOnFrontPage="true"/>
          </author>
          <author initials="D." surname="Giffin" fullname="D. Giffin">
            <organization showOnFrontPage="true"/>
          </author>
          <author initials="M." surname="Handley" fullname="M. Handley">
            <organization showOnFrontPage="true"/>
          </author>
          <author initials="D." surname="Mazieres" fullname="D. Mazieres">
            <organization showOnFrontPage="true"/>
          </author>
          <author initials="E." surname="Smith" fullname="E. Smith">
            <organization showOnFrontPage="true"/>
          </author>
          <date year="2019" month="May"/>
          <abstract>
            <t indent="0">Despite growing adoption of TLS, a significant fraction of TCP traffic on the Internet remains unencrypted.  The persistence of unencrypted traffic can be attributed to at least two factors. First, some legacy protocols lack a signaling mechanism (such as a STARTTLS command) by which to convey support for encryption, thus making incremental deployment impossible.  Second, legacy applications themselves cannot always be upgraded and therefore require a way to implement encryption transparently entirely within the transport layer.  The TCP Encryption Negotiation Option (TCP-ENO) addresses both of these problems through a new TCP option kind providing out-of-band, fully backward-compatible negotiation of encryption.</t>
          </abstract>
        </front>
        <seriesInfo name="RFC" value="8547"/>
        <seriesInfo name="DOI" value="10.17487/RFC8547"/>
      </reference>
      <reference anchor="RFC8548" target="https://www.rfc-editor.org/info/rfc8548" quoteTitle="true" derivedAnchor="RFC8548">
        <front>
          <title>Cryptographic Protection of TCP Streams (tcpcrypt)</title>
          <author initials="A." surname="Bittau" fullname="A. Bittau">
            <organization showOnFrontPage="true"/>
          </author>
          <author initials="D." surname="Giffin" fullname="D. Giffin">
            <organization showOnFrontPage="true"/>
          </author>
          <author initials="M." surname="Handley" fullname="M. Handley">
            <organization showOnFrontPage="true"/>
          </author>
          <author initials="D." surname="Mazieres" fullname="D. Mazieres">
            <organization showOnFrontPage="true"/>
          </author>
          <author initials="Q." surname="Slack" fullname="Q. Slack">
            <organization showOnFrontPage="true"/>
          </author>
          <author initials="E." surname="Smith" fullname="E. Smith">
            <organization showOnFrontPage="true"/>
          </author>
          <date year="2019" month="May"/>
          <abstract>
            <t indent="0">This document specifies "tcpcrypt", a TCP encryption protocol designed for use in conjunction with the TCP Encryption Negotiation Option (TCP-ENO).  Tcpcrypt coexists with middleboxes by tolerating resegmentation, NATs, and other manipulations of the TCP header.  The protocol is self-contained and specifically tailored to TCP implementations, which often reside in kernels or other environments in which large external software dependencies can be undesirable. Because the size of TCP options is limited, the protocol requires one additional one-way message latency to perform key exchange before application data can be transmitted.  However, the extra latency can be avoided between two hosts that have recently established a previous tcpcrypt connection.</t>
          </abstract>
        </front>
        <seriesInfo name="RFC" value="8548"/>
        <seriesInfo name="DOI" value="10.17487/RFC8548"/>
      </reference>
      <reference anchor="I-D.ietf-taps-arch" quoteTitle="true" target="https://tools.ietf.org/html/draft-ietf-taps-arch-08" derivedAnchor="TAPS-ARCH">
        <front>
          <title>An Architecture for Transport Services</title>
          <author fullname="Tommy Pauly">
            <organization showOnFrontPage="true">Apple Inc.</organization>
          </author>
          <author fullname="Brian Trammell">
            <organization showOnFrontPage="true">Google Switzerland GmbH</organization>
          </author>
          <author fullname="Anna Brunstrom">
            <organization showOnFrontPage="true">Karlstad University</organization>
          </author>
          <author fullname="Godred Fairhurst">
            <organization showOnFrontPage="true">University of Aberdeen</organization>
          </author>
          <author fullname="Colin Perkins">
            <organization showOnFrontPage="true">University of Glasgow</organization>
          </author>
          <author fullname="Philipp S. Tiesel">
            <organization showOnFrontPage="true">TU Berlin</organization>
          </author>
          <author fullname="Christopher A. Wood">
            <organization showOnFrontPage="true">Cloudflare</organization>
          </author>
          <date month="July" day="13" year="2020"/>
          <abstract>
            <t indent="0">   This document describes an architecture for exposing transport
   protocol features to applications for network communication, the
   Transport Services architecture.  The Transport Services Application
   Programming Interface (API) is based on an asynchronous, event-driven
   interaction pattern.  It uses messages for representing data transfer
   to applications, and it describes how implementations can use
   multiple IP addresses, multiple protocols, and multiple paths, and
   provide multiple application streams.  This document further defines
   common terminology and concepts to be used in definitions of
   Transport Services APIs and implementations.

            </t>
          </abstract>
        </front>
        <seriesInfo name="Internet-Draft" value="draft-ietf-taps-arch-08"/>
        <format type="TXT" target="https://www.ietf.org/internet-drafts/draft-ietf-taps-arch-08.txt"/>
        <refcontent>Work in Progress</refcontent>
      </reference>
      <reference anchor="I-D.ietf-taps-interface" quoteTitle="true" target="https://tools.ietf.org/html/draft-ietf-taps-interface-09" derivedAnchor="TAPS-INTERFACE">
        <front>
          <title>An Abstract Application Layer Interface to Transport Services</title>
          <author fullname="Brian Trammell">
            <organization showOnFrontPage="true">Google Switzerland GmbH</organization>
          </author>
          <author fullname="Michael Welzl">
            <organization showOnFrontPage="true">University of Oslo</organization>
          </author>
          <author fullname="Theresa Enghardt">
            <organization showOnFrontPage="true">Netflix</organization>
          </author>
          <author fullname="Godred Fairhurst">
            <organization showOnFrontPage="true">University of Aberdeen</organization>
          </author>
          <author fullname="Mirja Kuehlewind">
            <organization showOnFrontPage="true">Ericsson</organization>
          </author>
          <author fullname="Colin Perkins">
            <organization showOnFrontPage="true">University of Glasgow</organization>
          </author>
          <author fullname="Philipp S. Tiesel">
            <organization showOnFrontPage="true">TU Berlin</organization>
          </author>
          <author fullname="Christopher A. Wood">
            <organization showOnFrontPage="true">Cloudflare</organization>
          </author>
          <author fullname="Tommy Pauly">
            <organization showOnFrontPage="true">Apple Inc.</organization>
          </author>
          <date month="July" day="27" year="2020"/>
          <abstract>
            <t indent="0">   This document describes an abstract application programming
   interface, API, to the transport layer, following the Transport
   Services Architecture.  It supports the asynchronous, atomic
   transmission of messages over transport protocols and network paths
   dynamically selected at runtime.  It is intended to replace the
   traditional BSD sockets API as the common interface to the transport
   layer, in an environment where endpoints could select from multiple
   interfaces and potential transport protocols.

            </t>
          </abstract>
        </front>
        <seriesInfo name="Internet-Draft" value="draft-ietf-taps-interface-09"/>
        <format type="TXT" target="https://www.ietf.org/internet-drafts/draft-ietf-taps-interface-09.txt"/>
        <refcontent>Work in Progress</refcontent>
      </reference>
      <reference anchor="WireGuard" target="https://www.wireguard.com/papers/wireguard.pdf" quoteTitle="true" derivedAnchor="WireGuard">
        <front>
          <title>WireGuard: Next Generation Kernel Network Tunnel</title>
          <author initials="J" surname="Donenfeld">
            <organization showOnFrontPage="true">WireGuard</organization>
          </author>
        </front>
      </reference>
    </references>
    <section anchor="acknowledgments" numbered="false" toc="include" removeInRFC="false" pn="section-appendix.a">
      <name slugifiedName="name-acknowledgments">Acknowledgments</name>
      <t indent="0" pn="section-appendix.a-1">The authors would like to thank <contact fullname="Bob Bradley"/>,
      <contact fullname="Frederic Jacobs"/>, <contact fullname="Mirja       Kühlewind"/>, <contact fullname="Yannick Sierra"/>, <contact fullname="Brian Trammell"/>, and <contact fullname="Magnus Westerlund"/>
      for their input and feedback on this document.</t>
    </section>
    <section anchor="authors-addresses" numbered="false" removeInRFC="false" toc="include" pn="section-appendix.b">
      <name slugifiedName="name-authors-addresses">Authors' Addresses</name>
      <author initials="T." surname="Enghardt" fullname="Theresa Enghardt">
        <organization showOnFrontPage="true">TU Berlin</organization>
        <address>
          <postal>
            <street>Marchstr. 23</street>
            <city>Berlin</city>
            <code>10587</code>
            <country>Germany</country>
          </postal>
          <email>ietf@tenghardt.net</email>
        </address>
      </author>
      <author initials="T." surname="Pauly" fullname="Tommy Pauly">
        <organization showOnFrontPage="true">Apple Inc.</organization>
        <address>
          <postal>
            <street>One Apple Park Way</street>
            <city>Cupertino</city>
            <region>California</region>
            <code>95014</code>
            <country>United States of America</country>
          </postal>
          <email>tpauly@apple.com</email>
        </address>
      </author>
      <author initials="C." surname="Perkins" fullname="Colin Perkins">
        <organization showOnFrontPage="true">University of Glasgow</organization>
        <address>
          <postal>
            <street>School of Computing Science</street>
            <city>Glasgow</city>
            <code>G12 8QQ</code>
            <country>United Kingdom</country>
          </postal>
          <email>csp@csperkins.org</email>
        </address>
      </author>
      <author initials="K." surname="Rose" fullname="Kyle Rose">
        <organization showOnFrontPage="true">Akamai Technologies, Inc.</organization>
        <address>
          <postal>
            <street>150 Broadway</street>
            <city>Cambridge</city>
            <region>MA</region>
            <code>02144</code>
            <country>United States of America</country>
          </postal>
          <email>krose@krose.org</email>
        </address>
      </author>
      <author initials="C." surname="Wood" fullname="Christopher A. Wood">
        <organization showOnFrontPage="true">Cloudflare</organization>
        <address>
          <postal>
            <street>101 Townsend St</street>
            <city>San Francisco</city>
            <country>United States of America</country>
          </postal>
          <email>caw@heapingbits.net</email>
        </address>
      </author>
    </section>
  </back>
</rfc>