1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
|
<pre>Network Working Group S. Senum
Request for Comments: 1376 Network Systems Corporation
November 1992
<span class="h1">The PPP DECnet Phase IV Control Protocol (DNCP)</span>
Status of this Memo
This RFC specifies an IAB standards track protocol for the Internet
community, and requests discussion and suggestions for improvements.
Please refer to the current edition of the "IAB Official Protocol
Standards" for the standardization state and status of this protocol.
Distribution of this memo is unlimited.
Abstract
The Point-to-Point Protocol (PPP) [<a href="#ref-1" title=""The Point-to-Point Protocol (PPP)"">1</a>] provides a standard method of
encapsulating Network Layer protocol information over point-to-point
links. PPP also defines an extensible Link Control Protocol, and
proposes a family of Network Control Protocols (NCPs) for
establishing and configuring different network-layer protocols.
This document defines the NCP for establishing and configuring
Digital's DNA Phase IV Routing protocol (DECnet Phase IV) over PPP.
This document applies only to DNA Phase IV Routing messages (both
data and control), and not to other DNA Phase IV protocols (MOP, LAT,
etc.).
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
There are two basic approaches to running the DNA Phase IV Routing
protocol over a serial line:
1. The approached that several router vendors have taken which is to
treat the serial link as an Ethernet, using the same data and
control messages an Ethernet would use.
2. The approach defined by Digital, which uses DDCMP and slightly
different control messages.
This document will define a method that uses the first approach.
<span class="grey">Senum [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc1376">RFC 1376</a> PPP DNCP November 1992</span>
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Overview Of Phase IV DNA Protocols</span>
The Phase IV DNA protocols which act as data link clients are:
o DNA Phase IV Routing
The Phase IV Digital Network Architecture (DNA) Routing
protocol is a network layer protocol providing services similar
to that of DoD IP. It routes messages in Phase IV DECnet
networks and manages the packet flow. The complete definition
of the DNA Phase IV Routing protocol can be found in [<a href="#ref-2" title=""DNA Routing Layer Functional Specification"">2</a>].
o DNA System Console
The Digital Network Architecture (DNA) System Console protocol
is a maintenance protocol providing low level access to a
system for the functions of:
. Identify processor
. Read data link counters
. Boot system
. Console carrier (a general purpose i/o channel)
The complete definition of the DNA System Console protocol can
be found in [<a href="#ref-3" title=""DNA Maintenance Operations Functional Specification"">3</a>].
o Digital Customer Use
The Digital Customer Use protocol type is a value reserved for
use by Digital customers. It allocates a type for private use
which will not conflict with Digital or other vendor protocols.
o DNA Diagnostics
The Digital Network Architecture (DNA) Diagnostics protocol
type is reserved to allow diagnostic software communications in
parallel with other data link clients.
o DNA Naming Service (DNS)
The Digital Network Architecture Naming Service (DNS) provides
a distributed naming service. It allows clients to register
named objects and to bind a set of attributes to the objects in
a distributed database.
o DNA Time Service (DTS)
The Digital Network Architecture Time Service (DTS) is a
protocol providing global clock synchronization in a
distributed environment.
o DNA Load/Dump
The Digital Network Architecture (DNA) Load/Dump protocol is a
maintenance protocol for copying the contents of processor
<span class="grey">Senum [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc1376">RFC 1376</a> PPP DNCP November 1992</span>
memory to or from a remote system. For example, a system
manager can load an operating system into an unattended, remote
system. The complete definition of the Phase IV DNA Load/Dump
protocol can be found in [<a href="#ref-3" title=""DNA Maintenance Operations Functional Specification"">3</a>].
o DNA Experimental Use
The Digital Network Architecture (DNA) Experimental Use
protocol type allows Digital experimental protocols to share a
data link with other data link clients. It is for use by
Digital Equipment Corporation only.
o DNA Communications Test
The Digital Network Architecture (DNA) Communications Test
protocol is a maintenance protocol for testing the data link
communications path. The complete definition of the DNA
Communications Test protocol can be found in [<a href="#ref-3" title=""DNA Maintenance Operations Functional Specification"">3</a>].
o Digital Protocol X1
The Digital X1 protocol is a network layer protocol currently
private to Digital.
This document defines the NCP for establishing and configuring
Digital's DNA Phase IV Routing protocol (DECnet Phase IV) over PPP.
This document applies only to DNA Phase IV Routing messages (both
data and control), and not to other DNA Phase IV protocols (MOP, LAT,
etc.).
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. A PPP Network Control Protocol for DNA Phase IV Routing</span>
The DNA Phase IV Routing Control Protocol (DNCP) is responsible for
configuring, enabling, and disabling the DNA Phase IV Routing
protocol modules on both ends of the point-to-point link. DNCP uses
the same packet exchange mechanism as the Link Control Protocol
(LCP). DNCP packets may not be exchanged until PPP has reached the
Network-Layer Protocol phase. DNCP packets received before this
phase is reached should be silently discarded.
The DNA Phase IV Routing Control Protocol is exactly the same as the
Link Control Protocol [<a href="#ref-1" title=""The Point-to-Point Protocol (PPP)"">1</a>] with the following exceptions:
Frame Modifications
The packet may utilize any modifications to the basic frame format
which have been negotiated during the Link Establishment phase.
Data Link Layer Protocol Field
Exactly one DNCP packet is encapsulated in the Information field
<span class="grey">Senum [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc1376">RFC 1376</a> PPP DNCP November 1992</span>
of a PPP Data Link Layer frame where the Protocol field indicates
type hex 8027 (DNA Phase IV Control Protocol).
Code field
Only Codes 1 through 7 (Configure-Request, Configure-Ack,
Configure-Nak, Configure-Reject, Terminate-Request, Terminate-Ack
and Code-Reject) are used. Other Codes should be treated as
unrecognized and should result in Code-Rejects.
Timeouts
DNCP packets may not be exchanged until PPP has reached the
Network-Layer Protocol phase. An implementation should be
prepared to wait for Authentication and Link Quality Determination
to finish before timing out waiting for a Configure-Ack or other
response. It is suggested that an implementation give up only
after user intervention or a configurable amount of time.
Configuration Option Types
DNCP has no Configuration Options.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Sending DNA Phase IV Routing Packets</span>
Before any DNA Phase IV Routing packets may be communicated, PPP must
reach the Network-Layer Protocol phase, and the DNA Phase IV Routing
Control Protocol must reach the Opened state.
Exactly one octet-count field and one DNA Phase IV Routing packet are
encapsulated in the information field of a PPP Data Link Layer frame
where the Protocol field indicates type hex 0027 (DNA Phase IV
Routing). The octet-count contains a count of the number of octets
in the DNA Phase IV Routing packet. It is two octets in length
itself, and is stored in VAX byte ordering, to be more consistent
with DNA Phase IV Routing over Ethernet (i.e. least significant byte
first). It is needed to disambiguate optional padding octets from
real information.
The maximum length of an DNA Phase IV Routing packet transmitted over
a PPP link is the same as the maximum length of the Information field
of a PPP data link layer frame minus 2 octets (for the Length field).
The format of the packets themselves is the same as the format used
over Ethernet, without the Ethernet header, Pad, and FCS fields.
A summary of the information field is shown below. The fields are
transmitted from left to right.
<span class="grey">Senum [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc1376">RFC 1376</a> PPP DNCP November 1992</span>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Length LSB | Length MSB | DATA | ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Length LSB
Least significant byte of length field
Length MSG
Most significant byte of length field
DATA
DNA Phase IV Routing data, as specified in [<a href="#ref-2" title=""DNA Routing Layer Functional Specification"">2</a>]
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. General Considerations</span>
When a topology change in the network occurs, DNA Phase IV Routing
nodes immediately propagate changes via Level 1 and Level 2 Routing
messages, with a 1 second minimum delay between updates. DNA Phase
IV Routing nodes also periodically retransmit the complete Level 1
and Level 2 distance vectors to guard against data corruption in host
memory, and (in the case of Ethernet) loss of packets due to media
errors. Because Digital's serial links run a protocol that
guarantees delivery of packets (DDCMP), the recommended default
retransmit time is long (600 seconds), whereas for Ethernet, where
packet delivery is not guaranteed, the recommended default is short
(10 seconds), as documented in [<a href="#ref-2" title=""DNA Routing Layer Functional Specification"">2</a>]. To achieve convergence of routes
within a satisfactory time, the interval between updates should be
based upon the error rate of underlying data link. As such, it is
recommended that the time between routing updates be user
configurable per PPP interface.
The Hello timer and Listen timer should be set according to the
recommendations for broadcast links (15 and 45 seconds,
respectively).
Routers are not required to send routing updates if the remote node
connected via the PPP link is an endnode. Endnodes are required to
discard all routing updates received over a PPP link. The type of a
node (endnode versus routing) can be determined from the hello
messages received from it.
<span class="grey">Senum [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc1376">RFC 1376</a> PPP DNCP November 1992</span>
References
[<a id="ref-1">1</a>] Simpson, W., "The Point-to-Point Protocol (PPP)", <a href="./rfc1331">RFC 1331</a>,
Daydreamer, May 1992.
[<a id="ref-2">2</a>] Digital Equipment Corporation, "DNA Routing Layer Functional
Specification", Version 2.0.0, Order No. AA-X435A-TK.
[<a id="ref-3">3</a>] Digital Equipment Corporation, "DNA Maintenance Operations
Functional Specification", Version 3.0.0, Order No. AA-X436A-TK.
Acknowledgments
Some of the text in this document is taken from previous documents
produced by the Point-to-Point Protocol Working Group of the Internet
Engineering Task Force (IETF).
The author wishes to thank Jim Muchow (Network Systems Corporation),
and Arthur Harvey (Digital Equipment Corporation) for their input to
this memo.
Security Considerations
Security issues are not discussed in this memo.
Chair's Address
The working group can be contacted via the current chair:
Brian Lloyd
Lloyd & Associates
3420 Sudbury Road
Cameron Park, California 95682
Phone: (916) 676-1147
EMail: brian@lloyd.com
Author's Address
Questions about this memo can also be directed to the author:
Steven J. Senum
Network Systems Corporation
7600 Boone Avenue North
Minneapolis, Minnesota 55428
Phone: (612) 424-4888
EMail: sjs@network.com
Senum [Page 6]
</pre>
|