1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
|
<pre>Network Working Group K. McCloghrie
Request for Comments: 1503 Hughes LAN Systems
M. Rose
Dover Beach Consulting, Inc.
August 1993
<span class="h1">Algorithms for Automating Administration</span>
<span class="h1">in SNMPv2 Managers</span>
Status of this Memo
This memo provides information for the Internet community. It does
not specify an Internet standard. Distribution of this memo is
unlimited.
Table of Contents
<a href="#section-1">1</a>. Introduction .......................................... <a href="#page-1">1</a>
<a href="#section-2">2</a>. Implementation Model .................................. <a href="#page-1">1</a>
<a href="#section-3">3</a>. Configuration Assumptions ............................. <a href="#page-3">3</a>
<a href="#section-4">4</a>. Normal Operations ..................................... <a href="#page-4">4</a>
<a href="#section-4.1">4.1</a> Getting a Context Handle ............................. <a href="#page-4">4</a>
<a href="#section-4.2">4.2</a> Requesting an Operation .............................. <a href="#page-7">7</a>
<a href="#section-5">5</a>. Determining and Using Maintenance Knowledge ........... <a href="#page-8">8</a>
<a href="#section-5.1">5.1</a> Determination of Synchronization Knowledge ........... <a href="#page-9">9</a>
<a href="#section-5.2">5.2</a> Use of Clock Synchronization Knowledge ............... <a href="#page-10">10</a>
<a href="#section-5.3">5.3</a> Determination of Secret Update Knowledge ............. <a href="#page-11">11</a>
<a href="#section-5.4">5.4</a> Use of Secret Update Knowledge ....................... <a href="#page-13">13</a>
<a href="#section-6">6</a>. Other Kinds and Uses of Maintenance Knowledge ......... <a href="#page-13">13</a>
<a href="#section-7">7</a>. Security Considerations ............................... <a href="#page-13">13</a>
<a href="#section-8">8</a>. Acknowledgements ...................................... <a href="#page-13">13</a>
<a href="#section-9">9</a>. References ............................................ <a href="#page-14">14</a>
<a href="#section-10">10</a>. Authors' Addresses ................................... <a href="#page-14">14</a>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
When a user invokes an SNMPv2 [<a href="#ref-1" title=""Introduction to version 2 of the Internet-standard Network Management Framework"">1</a>] management application, it may be
desirable for the user to specify the minimum amount of information
necessary to establish and maintain SNMPv2 communications. This memo
suggests an approach to achieve this goal.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Implementation Model</span>
In order to discuss the approach outlined in this memo, it is useful
to have a model of how the various parts of an SNMPv2 manager fit
together. The model assumed in this memo is depicted in Figure 2.1.
This model is, of course, merely for expository purposes, and the
<span class="grey">McCloghrie & Rose [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc1503">RFC 1503</a> Automating Administration in SNMPv2 Manager August 1993</span>
approach should be readily adaptable to other models.
(Human) User
*
*
===========User Interface (UI)===========
*
+--------------------------+
... | Management Application N |
+---------------------------+ |
| Management Application 2 |-----+
+--------------------------+ | *
| Management Application 1 |----+ *
+--------------------------+ * *
* * *
========Management API======================
* *
* ________ *
+-------------+ / Local \ +---------------+
| Context |***/ Party \***| SNMP protocol |
| Resolver(s) | \ Database / | engine(s) |
+-------------+ \________/ +---------------+
*
*
===========Transport APIs============
*
+---------------------------------+
| Transport Stacks (e.g., UDP/IP) |
+---------------------------------+
*
Network(s)
Figure 2.1 SNMPv2 Manager Implementation Model
Note that there might be just one SNMP protocol engine and one
"context resolver" which are accessed by all local management
applications, or, each management application might have its own SNMP
protocol engine and its own "context resolver", all of which have
shared access to the local party database [<a href="#ref-2" title=""Party MIB for version 2 of the Simple Network Management Protocol (SNMPv2)"">2</a>].
In addition to the elements shown in the figure, there would need to
be an interface for the administrator to access the local party
database, e.g., for configuring initial information, including
secrets. There might also be facilities for different users to have
different access privileges, and/or other reasons for there to be
multiple (coordinated) subsets of the local party database.
<span class="grey">McCloghrie & Rose [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc1503">RFC 1503</a> Automating Administration in SNMPv2 Manager August 1993</span>
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Configuration Assumptions</span>
Now, let's assume that the administrator has already configured a
local party database for the management application, e.g.,
partyIdentifier: initialPartyId.a.b.c.d.1
partyIndex: 1
partyTAddress: a.b.c.d:161
partyLocal: false
partyAuthProtocol: noAuth
partyPrivProtocol: noPriv
partyIdentifier: initialPartyId.a.b.c.d.2
partyIndex: 2
partyTAddress: local address
partyLocal: true
partyAuthProtocol: noAuth
partyPrivProtocol: noPriv
partyIdentifier: initialPartyId.a.b.c.d.3
partyIndex: 3
partyTAddress: a.b.c.d:161
partyLocal: false
partyAuthProtocol: md5Auth
partyPrivProtocol: noPriv
partyIdentifier: initialPartyId.a.b.c.d.4
partyIndex: 4
partyTAddress: local address
partyLocal: true
partyAuthProtocol: md5Auth
partyPrivProtocol: noPriv
contextIdentifier: initialContextId.a.b.c.d.1
contextIndex: 1
contextLocal: false
textual handle: router.xyz.com-public
contextIdentifier: initialContextId.a.b.c.d.2
contextIndex: 2
contextLocal: false
textual handle: router.xyz.com-all
aclTarget (dest. party): 1
aclSubject (src party): 2
aclResources (context): 1
aclPrivileges: get, get-next, get-bulk
<span class="grey">McCloghrie & Rose [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc1503">RFC 1503</a> Automating Administration in SNMPv2 Manager August 1993</span>
aclTarget (dest. party): 3
aclSubject (src party): 4
aclResources (context): 2
aclPrivileges: get, get-next, get-bulk, set
Note that each context has associated with it a "textual handle".
This is simply a string chosen by the administrator to aid in
selecting a context.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Normal Operations</span>
When the user tells the management application to do something, the
user shouldn't have to specify party or context information.
One approach to achieve this is as follows: the user provides a
textual string indicating the managed objects to be manipulated, and
the management application invokes the "context resolver" to map this
into a "context handle", and later, when an SNMPv2 operation is
performed, the "context handle" and a minimal set of security
requirements are provided to the management API.
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. Getting a Context Handle</span>
A "context handle" is created when the management application
supplies a textual string, that was probably given to it by the user.
The "context resolver" performs these steps based on the
application's input:
(1) In the local party database, each context has associated
with it a unique string, termed its "textual handle". If
a context in the local database has a textual handle
which exactly matches the textual string, then the
"context resolver" returns a handle identifying that
context.
So, if the application supplies "router.xyz.com-public",
then the "context resolver" returns a handle to the first
context; instead, if the application supplies
"router.xyz.com-all", then the "context resolver" returns
a handle to the second context.
(2) Otherwise, if any contexts are present whose textual
handle is longer than the textual string, and whose
initial characters exactly match the entire textual
string, then the "context resolver" returns a handle
identifying all of those contexts.
So, if the application supplies "router.xyz.com", then
<span class="grey">McCloghrie & Rose [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc1503">RFC 1503</a> Automating Administration in SNMPv2 Manager August 1993</span>
the "context resolver" returns a handle to both contexts.
(3) Otherwise, if the textual string specifies an IP address
or a domain name which resolves to a single IP address,
then the "context resolver" adds to the local party
database, a volatile noAuth/noPriv party pair, a volatile
context, and a volatile access control entry allowing
interrogation operations, using the "initialPartyId" and
"initialContextId" conventions. The "context resolver"
returns a handle identifying the newly created context.
So, if the application supplies "89.0.0.1", then the
"context resolver" adds the following information to the
local party database:
partyIdentifier: initialPartyId.89.0.0.1.1
partyIndex: 101
partyTAddress: 89.0.0.1:161
partyLocal: false
partyAuthProtocol: noAuth
partyPrivProtocol: noPriv
partyStorageType: volatile
partyIdentifier: initialPartyId.89.0.0.1.2
partyIndex: 102
partyTAddress: local address
partyLocal: true
partyAuthProtocol: noAuth
partyPrivProtocol: noPriv
partyStorageType: volatile
contextIdentifier: initialContextId.89.0.0.1.1
contextIndex: 101
contextLocal: false
contextStorageType: volatile
textual handle: 89.0.0.1
aclTarget (dest. party): 101
aclSubject (src party): 102
aclResources (context): 101
aclPrivileges: get, get-next, get-bulk
aclStorageType: volatile
and the "context resolver" returns a handle to the newly
created context.
(4) Otherwise, if the textual string specifies a domain name
which resolves to multiple IP addresses, then for each
<span class="grey">McCloghrie & Rose [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc1503">RFC 1503</a> Automating Administration in SNMPv2 Manager August 1993</span>
such IP address, the "context resolver" adds to the local
party database, a volatile noAuth/noPriv party pair, a
volatile context, and a volatile access control entry
allowing interrogation operations, using the
"initialPartyId" and "initialContextId" conventions.
Then, the "context resolver" returns a handle identifying
all of those newly created contexts.
(5) Otherwise, if the textual string contains a '/'-
character, and everything to the left of the first
occurrence of this character specifies an IP address or a
domain name which resolves to a single IP address, then
the "context resolver" adds to the local party database,
a volatile SNMPv1 party, a volatile context, and a
volatile access control entry allowing interrogation
operations. (The SNMPv1 community string consists of any
characters following the first occurrence of the '/'-
character in the textual string.) Then, the "context
resolver" returns a handle identifying the newly created
context.
So, if the application supplied "89.0.0.2/public", then
the "context resolver" adds the following information to
the local party database:
partyIdentifier: initialPartyId.89.0.0.2.1
partyIndex: 201
partyTDomain: rfc1157Domain
partyTAddress: 89.0.0.2:161
partyLocal: false
partyAuthProtocol: rfc1157noAuth
partyAuthPrivate: public
partyPrivProtocol: noPriv
partyStorageType: volatile
contextIdentifier: initialContextId.89.0.0.2.1
contextIndex: 201
contextLocal: false
contextStorageType: volatile
textual handle: 89.0.0.2
aclTarget (dest. party): 201
aclSubject (src party): 201
aclResources (context): 201
aclPrivileges: get, get-next, get-bulk
aclStorageType: volatile
and the "context resolver" returns a handle to the the
<span class="grey">McCloghrie & Rose [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc1503">RFC 1503</a> Automating Administration in SNMPv2 Manager August 1993</span>
newly created context.
(6) Otherwise, if the textual string contains a '/'-
character, and everything to the left of the first
occurrence of this character specifies a domain name
which resolves to multiple IP addresses, then for each
such IP address, the "context resolver" adds to the local
party database, a volatile SNMPv1 party, a volatile
context, and a volatile access control entry allowing
interrogation operations. (The SNMPv1 community string
consists of any characters following the first occurrence
of the '/'-character in the textual string.) Then, the
"context resolver" returns a handle identifying all of
those newly created contexts.
(7) Otherwise, an error is raised.
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. Requesting an Operation</span>
Later, when an SNMPv2 operation is to be performed, the management
application supplies a "context handle" and a minimal set of security
requirements to the management API:
(1) If the "context handle" refers to a single context, then
all access control entries having that context as its
aclResources, allowing the specified operation, having a
non-local SNMPv2 party as its aclTarget, which satisfies
the privacy requirements, and having a local party as its
aclSubject, which satisfies the authentication
requirements, are identified.
So, if the application wanted to issue a get-next
operation, with no security requirements, and supplied a
"context handle" identifying context #1, then acl #1
would be identified.
(2) For each such access control entry, the one which
minimally meets the security requirements is selected for
use. If no such entry is identified, and authentication
requirements are present, then the operation will be not
performed.
So, if the application requests a get-next operation,
with no security requirements, and supplies a "context
handle" identifying context #1, and step 1 above
identified acl #1, then because acl #1 satisfies the no-
security requirements, the operation would be generated
using acl #1, i.e., using party #1, party #2, and context
<span class="grey">McCloghrie & Rose [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc1503">RFC 1503</a> Automating Administration in SNMPv2 Manager August 1993</span>
#1.
(3) Otherwise, all access control entries having the (single)
context as its aclResources, allowing the specified
operation, and having a non-local SNMPv1 party as its
aclTarget, are identified. If no such entry is
identified, then the operation will not performed.
Otherwise, any of the identified access control entries
may be selected for use.
The effect of separating out step 3 is to prefer SNMPv2
communications over SNMPv1 communications.
(4) If the "context handle" refers to more than one context,
then all access control entries whose aclResources refers
any one of the contexts, are identified. For each such
context, step 2 is performed, and any (e.g., the first)
access control entry identified is selected for use. If
no access control entry is identified, then step 3 is
performed for each such context, and any (e.g., the
first) access control entry identified is selected for
use.
So, if the application wanted to issue a get-bulk
operation, with no security requirements, and supplied a
"context handle" identifying contexts #1 and #2, then
acls #1 and #2 would be identified in step 1; and, in
step 2, party #1, party #2, and context #1 would be
selected.
However, if the application wanted to issue an
authenticated get-bulk operation, and supplied a "context
handle" identifying contexts #1 and #2, then acls #1 and
#2 would still be identified in step 1; but, in step 2,
only acl #2 satisfies the security requirement, and so,
party #3, party #4, and context #2 would be selected.
(5) If no access control entry is identified, then an error
is raised.
Note that for steps 1 and 3, an implementation might choose to pre-
compute (i.e., cache) for each context those access control entries
having that context as its aclResources.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Determining and Using Maintenance Knowledge</span>
When using authentication services, two "maintenance" tasks may have
to be performed: clock synchronization and secret update. These
<span class="grey">McCloghrie & Rose [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc1503">RFC 1503</a> Automating Administration in SNMPv2 Manager August 1993</span>
tasks should be performed transparently, independent of the
management applications, and without user/administrator intervention.
In order to operate transparently, the SNMP protocol engine must
maintain "maintenance knowledge" (knowledge of which parties and
contexts to use). It is useful for this maintenance knowledge to be
determined at run-time, rather than being directly configured by an
administrator.
One approach to achieve this is as follows: the first time that the
SNMP protocol engine determines that it will be communicating with
another SNMPv2 entity, the SNMP protocol engine first consults its
local party database and then interrogates its peer, before engaging
in the actual communications.
Note that with such an approach, both the clock synchronization
knowledge, and the secret update knowledge, associated with a party,
can each be represented as (a pointer to) an access control entry.
Further note that once an implementation has computed this knowledge,
it might choose to retain this knowledge across restarts.
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. Determination of Synchronization Knowledge</span>
To determine maintenance knowledge for clock synchronization:
(1) The SNMP protocol engine examines each active, non-local,
noAuth party.
So, this would be party #1.
(2) For each such party, P, all access control entries having
that party as its aclTarget, and allowing the get-bulk
operation, are identified.
So, for party #1, this would be acl #1.
(3) For each such access control entry, A, at least one
active, non-local, md5Auth party, Q, must be present
which meets the following criteria:
- the transport domain and address of P and Q are
identical;
- an access control entry, B, exists having either: Q as
its aclTarget and a local party, R, as its aclSubject,
or, Q as its aclSubject and a local party, R, as its
aclTarget; and,
- no clock synchronization knowledge is known for R.
<span class="grey">McCloghrie & Rose [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc1503">RFC 1503</a> Automating Administration in SNMPv2 Manager August 1993</span>
So, for acl #1, party #3 is identified as having the same
transport domain and address as party #1, and being
present as the aclTarget in acl #2, which has local party
#4 as the aclSubject.
(4) Whenever such a party, Q, is present, then all instances
of the "partyAuthProtocol" and "partyAuthClock" objects
are retrieved via the get-bulk operator using the parties
and context identified by the access control entry, A.
So, party #1, party #2, and context #1 would be used to
sweep these two columns on the agent.
(5) Only those instances corresponding to parties in the
local database, which have no clock synchronization
knowledge, and are local mdAuth parties, are examined.
So, only instances corresponding to party #4 are
examined.
(6) For each instance of "partyAuthProtocol", if the
corresponding value does not match the value in the local
database, then a configuration error is signalled, and
the corresponding party is marked as being unavailable
for maintenance knowledge.
So, we make sure that the manager and the agent agree
that party #4 is an md5Auth party.
(7) For each instance of "partyAuthClock", if the
corresponding value is greater than the value in the
local database, then the authentication clock of the
party is warped according to the procedures defined in
Section 5.3 of [<a href="#ref-3" title=""Security Protocols for version 2 of the Simple Network Management Protocol (SNMPv2)"">3</a>]. Regardless, A is recorded as the
clock synchronization knowledge for the corresponding
party.
So, if the column sweep returns information for party #4,
then party #4's authentication clock is advanced if
necessary, and the clock synchronization knowledge for
party #4 is recorded as acl #1.
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. Use of Clock Synchronization Knowledge</span>
Whenever a response to an authenticated operation is not received,
the SNMP protocol engine may suspect that a clock synchronization
problem for the source party is the cause [<a href="#ref-3" title=""Security Protocols for version 2 of the Simple Network Management Protocol (SNMPv2)"">3</a>]. The SNMP protocol
engine may use different criteria when making this determination; for
<span class="grey">McCloghrie & Rose [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc1503">RFC 1503</a> Automating Administration in SNMPv2 Manager August 1993</span>
example: on a retrieval operation, the operation might be retried
using an exponential back-off algorithm; in contrast, on a
modification operation, the operation would not be automatically
retried.
When clock mis-synchronization for a source party, S, is suspected,
if clock synchronization knowledge for S is present, then this
knowledge is used to perform steps 4-7 above, which should retrieve
the instances of the "partyAuthProtocol" and "partyAuthClock" objects
which correspond to S (and perhaps other parties as well). If
information on these objects cannot be determined, then S is marked
as no longer having clock synchronization knowledge. Otherwise, if
the value of the corresponding instance of "partyAuthClock" is
greater than the value in the local database, then the authentication
clock of the party is warped according to the procedures defined in
Section 5.3 of [<a href="#ref-3" title=""Security Protocols for version 2 of the Simple Network Management Protocol (SNMPv2)"">3</a>], and the original operation is retried, if
appropriate.
So, if traffic from party #4 times out, then a column sweep is
automatically initiated, using acl #1 (party #1, party #2, context
#1).
When clock mis-synchronization for a source party, S, is suspected,
and clock synchronization knowledge for S is not present, then the
full algorithm above can be used. In this case, if clock
synchronization knowledge for S can be determined, and as a result,
"partyAuthClock" value for S in the local database is warped
according to the procedures defined in Section 5.3 of [<a href="#ref-3" title=""Security Protocols for version 2 of the Simple Network Management Protocol (SNMPv2)"">3</a>], then the
original operation is retried, if appropriate.
<span class="h3"><a class="selflink" id="section-5.3" href="#section-5.3">5.3</a>. Determination of Secret Update Knowledge</span>
To determine maintenance knowledge for secret update:
(1) The SNMP protocol engine examines each active, non-local,
md5Auth party.
So, this would be party #3.
(2) For each such party, P, all access control entries having
that party as its aclTarget, and allowing the get-bulk
and set operations, are identified.
So, for party #3, this would be acl #2.
(3) For each such access control entry, A, at least one
active, non-local, md5Auth party, Q, must be present
which meets the following criteria:
<span class="grey">McCloghrie & Rose [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc1503">RFC 1503</a> Automating Administration in SNMPv2 Manager August 1993</span>
- the transport domain and address of P and Q are
identical;
- an access control entry, B, exists having either: Q as
its aclTarget and a local party, R, as its aclSubject,
or, Q as its aclSubject and a local party, R, as its
aclTarget; and,
- no secret update knowledge is known for R.
So, for acl #2, party #3 is (redundantly) identified as
having the same transport domain and address as party #3,
and being present as the aclTarget in acl #2, which has
local party #4 as the aclSubject.
(4) Whenever such a party, Q, is present, then all instances
of the "partyAuthProtocol", "partyAuthClock", and
"partyAuthPrivate" objects are retrieved via the get-bulk
operator using the parties and context identified by the
access control entry, A.
So, party #3, party #4, and context #2 would be used to
sweep these three columns on the agent.
(5) Only those instances corresponding to parties in the
local database, which have no secret update knowledge,
and are md5Auth parties, are examined.
So, only instances corresponding to parties #3 and #4 are
examined.
(6) For each instance of "partyAuthProtocol", if the
corresponding value does not match the value in the local
database, then a configuration error is signalled, and
this party is marked as being unavailable for maintenance
knowledge.
So, we make sure that the manager and the agent agree
that both party #3 and #4 are md5Auth parties.
(7) For each instance of "partyAuthPrivate", if a
corresponding instance of "partyAuthClock" was also
returned, then A is recorded as the secret update
knowledge for this party.
So, if the column sweep returned information on party #3,
then the clock synchronization knowledge for party #3
would be recorded as acl #2. Further, if the column
<span class="grey">McCloghrie & Rose [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc1503">RFC 1503</a> Automating Administration in SNMPv2 Manager August 1993</span>
sweep returned information on party #4, then the clock
synchronization knowledge for party #4 would be recorded
as acl #2.
<span class="h3"><a class="selflink" id="section-5.4" href="#section-5.4">5.4</a>. Use of Secret Update Knowledge</span>
Whenever the SNMP protocol engine determines that the authentication
clock of a party, S, is approaching an upper limit, and secret update
knowledge for S is present, then this knowledge is used to modify the
current secret of S and reset the authentication clock of S,
according to the procedures defined in Section 5.4 of [<a href="#ref-3" title=""Security Protocols for version 2 of the Simple Network Management Protocol (SNMPv2)"">3</a>].
So, whenever the SNMP protocol engine decides to update the secrets
for party #4, it can automatically use acl #2 (party #3, party #4,
context #2) for this purpose.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Other Kinds and Uses of Maintenance Knowledge</span>
Readers should note that there are other kinds of maintenance
knowledge that an SNMPv2 manager could derive and use. In the
interests of brevity, one example is now considered: when an SNMPv2
manager first communicates with an agent, it may wish to synchronize
the maximum-message size values held by itself and the agent.
For those parties that execute at the agent, the manager retrieves
the corresponding instances of partyMaxMessageSize (preferrably using
authentication), and, if need be, adjusts the values held in the
manager's local party database. Thus, the maintenance knowledge to
be determined must allow for retrieval of partyMaxMessageSize.
For those parties that execute at the manager, the manager retrieves
the corresponding instances of partyMaxMessageSize (using
authentication), and, if need be, adjusts the values held in the
agent's local party database using the set operation. Thus, the
maintenance knowledge to be determined must allow both for retrieval
and modification of partyMaxMessageSize.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Security Considerations</span>
Security issues are not discussed in this memo.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Acknowledgements</span>
Jeffrey D. Case of SNMP Research and the University of Tennessee, and
Robert L. Stewart of Xyplex, both provided helpful comments on the
ideas contained in this document and the presentation of those ideas.
<span class="grey">McCloghrie & Rose [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc1503">RFC 1503</a> Automating Administration in SNMPv2 Manager August 1993</span>
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. References</span>
[<a id="ref-1">1</a>] Case, J., McCloghrie, K., Rose, M., and S. Waldbusser,
"Introduction to version 2 of the Internet-standard Network
Management Framework", <a href="./rfc1441">RFC 1441</a>, SNMP Research, Inc., Hughes LAN
Systems, Dover Beach Consulting, Inc., Carnegie Mellon
University, April 1993.
[<a id="ref-2">2</a>] McCloghrie, K., and J. Galvin, "Party MIB for version 2 of the
Simple Network Management Protocol (SNMPv2)", <a href="./rfc1447">RFC 1447</a>, Hughes
LAN Systems, Trusted Information Systems, April 1993.
[<a id="ref-3">3</a>] Galvin, J., and K. McCloghrie, "Security Protocols for version 2
of the Simple Network Management Protocol (SNMPv2)", <a href="./rfc1446">RFC 1446</a>,
Trusted Information Systems, Hughes LAN Systems, April 1993.
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. Authors' Addresses</span>
Keith McCloghrie
Hughes LAN Systems
1225 Charleston Road
Mountain View, CA 94043
US
Phone: +1 415 966 7934
EMail: kzm@hls.com
Marshall T. Rose
Dover Beach Consulting, Inc.
420 Whisman Court
Mountain View, CA 94043-2186
US
Phone: +1 415 968 1052
EMail: mrose@dbc.mtview.ca.us
McCloghrie & Rose [Page 14]
</pre>
|