1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269
|
<pre>Network Working Group J. Kohl
Request for Comments: 1510 Digital Equipment Corporation
C. Neuman
ISI
September 1993
<span class="h1">The Kerberos Network Authentication Service (V5)</span>
Status of this Memo
This RFC specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" for the standardization state and status
of this protocol. Distribution of this memo is unlimited.
Abstract
This document gives an overview and specification of Version 5 of the
protocol for the Kerberos network authentication system. Version 4,
described elsewhere [<a href="#ref-1" title="">1</a>,<a href="#ref-2" title=""Kerberos: An Authentication Service for Open Network Systems"">2</a>], is presently in production use at MIT's
Project Athena, and at other Internet sites.
Overview
Project Athena, Athena, Athena MUSE, Discuss, Hesiod, Kerberos,
Moira, and Zephyr are trademarks of the Massachusetts Institute of
Technology (MIT). No commercial use of these trademarks may be made
without prior written permission of MIT.
This RFC describes the concepts and model upon which the Kerberos
network authentication system is based. It also specifies Version 5
of the Kerberos protocol.
The motivations, goals, assumptions, and rationale behind most design
decisions are treated cursorily; for Version 4 they are fully
described in the Kerberos portion of the Athena Technical Plan [<a href="#ref-1" title="">1</a>].
The protocols are under review, and are not being submitted for
consideration as an Internet standard at this time. Comments are
encouraged. Requests for addition to an electronic mailing list for
discussion of Kerberos, kerberos@MIT.EDU, may be addressed to
kerberos-request@MIT.EDU. This mailing list is gatewayed onto the
Usenet as the group comp.protocols.kerberos. Requests for further
information, including documents and code availability, may be sent
to info-kerberos@MIT.EDU.
<span class="grey">Kohl & Neuman [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
Background
The Kerberos model is based in part on Needham and Schroeder's
trusted third-party authentication protocol [<a href="#ref-3" title=""Using Encryption for Authentication in Large Networks of Computers"">3</a>] and on modifications
suggested by Denning and Sacco [<a href="#ref-4" title=""Time stamps in Key Distribution Protocols"">4</a>]. The original design and
implementation of Kerberos Versions 1 through 4 was the work of two
former Project Athena staff members, Steve Miller of Digital
Equipment Corporation and Clifford Neuman (now at the Information
Sciences Institute of the University of Southern California), along
with Jerome Saltzer, Technical Director of Project Athena, and
Jeffrey Schiller, MIT Campus Network Manager. Many other members of
Project Athena have also contributed to the work on Kerberos.
Version 4 is publicly available, and has seen wide use across the
Internet.
Version 5 (described in this document) has evolved from Version 4
based on new requirements and desires for features not available in
Version 4. Details on the differences between Kerberos Versions 4
and 5 can be found in [<a href="#ref-5" title=""The Evolution of the Kerberos Authentication Service"">5</a>].
Table of Contents
<a href="#section-1">1</a>. Introduction ....................................... <a href="#page-5">5</a>
<a href="#section-1.1">1.1</a>. Cross-Realm Operation ............................ <a href="#page-7">7</a>
<a href="#section-1.2">1.2</a>. Environmental assumptions ........................ <a href="#page-8">8</a>
<a href="#section-1.3">1.3</a>. Glossary of terms ................................ <a href="#page-9">9</a>
<a href="#section-2">2</a>. Ticket flag uses and requests ...................... <a href="#page-12">12</a>
<a href="#section-2.1">2.1</a>. Initial and pre-authenticated tickets ............ <a href="#page-12">12</a>
<a href="#section-2.2">2.2</a>. Invalid tickets .................................. <a href="#page-12">12</a>
<a href="#section-2.3">2.3</a>. Renewable tickets ................................ <a href="#page-12">12</a>
<a href="#section-2.4">2.4</a>. Postdated tickets ................................ <a href="#page-13">13</a>
<a href="#section-2.5">2.5</a>. Proxiable and proxy tickets ...................... <a href="#page-14">14</a>
<a href="#section-2.6">2.6</a>. Forwardable tickets .............................. <a href="#page-15">15</a>
<a href="#section-2.7">2.7</a>. Other KDC options ................................ <a href="#page-15">15</a>
<a href="#section-3">3</a>. Message Exchanges .................................. <a href="#page-16">16</a>
<a href="#section-3.1">3.1</a>. The Authentication Service Exchange .............. <a href="#page-16">16</a>
<a href="#section-3.1.1">3.1.1</a>. Generation of KRB_AS_REQ message ............... <a href="#page-17">17</a>
<a href="#section-3.1.2">3.1.2</a>. Receipt of KRB_AS_REQ message .................. <a href="#page-17">17</a>
<a href="#section-3.1.3">3.1.3</a>. Generation of KRB_AS_REP message ............... <a href="#page-17">17</a>
<a href="#section-3.1.4">3.1.4</a>. Generation of KRB_ERROR message ................ <a href="#page-19">19</a>
<a href="#section-3.1.5">3.1.5</a>. Receipt of KRB_AS_REP message .................. <a href="#page-19">19</a>
<a href="#section-3.1.6">3.1.6</a>. Receipt of KRB_ERROR message ................... <a href="#page-20">20</a>
<a href="#section-3.2">3.2</a>. The Client/Server Authentication Exchange ........ <a href="#page-20">20</a>
<a href="#section-3.2.1">3.2.1</a>. The KRB_AP_REQ message ......................... <a href="#page-20">20</a>
<a href="#section-3.2.2">3.2.2</a>. Generation of a KRB_AP_REQ message ............. <a href="#page-20">20</a>
<a href="#section-3.2.3">3.2.3</a>. Receipt of KRB_AP_REQ message .................. <a href="#page-21">21</a>
<a href="#section-3.2.4">3.2.4</a>. Generation of a KRB_AP_REP message ............. <a href="#page-23">23</a>
<a href="#section-3.2.5">3.2.5</a>. Receipt of KRB_AP_REP message .................. <a href="#page-23">23</a>
<span class="grey">Kohl & Neuman [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
<a href="#section-3.2.6">3.2.6</a>. Using the encryption key ....................... <a href="#page-24">24</a>
<a href="#section-3.3">3.3</a>. The Ticket-Granting Service (TGS) Exchange ....... <a href="#page-24">24</a>
<a href="#section-3.3.1">3.3.1</a>. Generation of KRB_TGS_REQ message .............. <a href="#page-25">25</a>
<a href="#section-3.3.2">3.3.2</a>. Receipt of KRB_TGS_REQ message ................. <a href="#page-26">26</a>
<a href="#section-3.3.3">3.3.3</a>. Generation of KRB_TGS_REP message .............. <a href="#page-27">27</a>
<a href="#section-3.3.3.1">3.3.3.1</a>. Encoding the transited field ................. <a href="#page-29">29</a>
<a href="#section-3.3.4">3.3.4</a>. Receipt of KRB_TGS_REP message ................. <a href="#page-31">31</a>
<a href="#section-3.4">3.4</a>. The KRB_SAFE Exchange ............................ <a href="#page-31">31</a>
<a href="#section-3.4.1">3.4.1</a>. Generation of a KRB_SAFE message ............... <a href="#page-31">31</a>
<a href="#section-3.4.2">3.4.2</a>. Receipt of KRB_SAFE message .................... <a href="#page-32">32</a>
<a href="#section-3.5">3.5</a>. The KRB_PRIV Exchange ............................ <a href="#page-33">33</a>
<a href="#section-3.5.1">3.5.1</a>. Generation of a KRB_PRIV message ............... <a href="#page-33">33</a>
<a href="#section-3.5.2">3.5.2</a>. Receipt of KRB_PRIV message .................... <a href="#page-33">33</a>
<a href="#section-3.6">3.6</a>. The KRB_CRED Exchange ............................ <a href="#page-34">34</a>
<a href="#section-3.6.1">3.6.1</a>. Generation of a KRB_CRED message ............... <a href="#page-34">34</a>
<a href="#section-3.6.2">3.6.2</a>. Receipt of KRB_CRED message .................... <a href="#page-34">34</a>
<a href="#section-4">4</a>. The Kerberos Database .............................. <a href="#page-35">35</a>
<a href="#section-4.1">4.1</a>. Database contents ................................ <a href="#page-35">35</a>
<a href="#section-4.2">4.2</a>. Additional fields ................................ <a href="#page-36">36</a>
<a href="#section-4.3">4.3</a>. Frequently Changing Fields ....................... <a href="#page-37">37</a>
<a href="#section-4.4">4.4</a>. Site Constants ................................... <a href="#page-37">37</a>
<a href="#section-5">5</a>. Message Specifications ............................. <a href="#page-38">38</a>
<a href="#section-5.1">5.1</a>. ASN.1 Distinguished Encoding Representation ...... <a href="#page-38">38</a>
<a href="#section-5.2">5.2</a>. ASN.1 Base Definitions ........................... <a href="#page-38">38</a>
<a href="#section-5.3">5.3</a>. Tickets and Authenticators ....................... <a href="#page-42">42</a>
<a href="#section-5.3.1">5.3.1</a>. Tickets ........................................ <a href="#page-42">42</a>
<a href="#section-5.3.2">5.3.2</a>. Authenticators ................................. <a href="#page-47">47</a>
<a href="#section-5.4">5.4</a>. Specifications for the AS and TGS exchanges ...... <a href="#page-49">49</a>
<a href="#section-5.4.1">5.4.1</a>. KRB_KDC_REQ definition ......................... <a href="#page-49">49</a>
<a href="#section-5.4.2">5.4.2</a>. KRB_KDC_REP definition ......................... <a href="#page-56">56</a>
<a href="#section-5.5">5.5</a>. Client/Server (CS) message specifications ........ <a href="#page-58">58</a>
<a href="#section-5.5.1">5.5.1</a>. KRB_AP_REQ definition .......................... <a href="#page-58">58</a>
<a href="#section-5.5.2">5.5.2</a>. KRB_AP_REP definition .......................... <a href="#page-60">60</a>
<a href="#section-5.5.3">5.5.3</a>. Error message reply ............................ <a href="#page-61">61</a>
<a href="#section-5.6">5.6</a>. KRB_SAFE message specification ................... <a href="#page-61">61</a>
<a href="#section-5.6.1">5.6.1</a>. KRB_SAFE definition ............................ <a href="#page-61">61</a>
<a href="#section-5.7">5.7</a>. KRB_PRIV message specification ................... <a href="#page-62">62</a>
<a href="#section-5.7.1">5.7.1</a>. KRB_PRIV definition ............................ <a href="#page-62">62</a>
<a href="#section-5.8">5.8</a>. KRB_CRED message specification ................... <a href="#page-63">63</a>
<a href="#section-5.8.1">5.8.1</a>. KRB_CRED definition ............................ <a href="#page-63">63</a>
<a href="#section-5.9">5.9</a>. Error message specification ...................... <a href="#page-65">65</a>
<a href="#section-5.9.1">5.9.1</a>. KRB_ERROR definition ........................... <a href="#page-66">66</a>
<a href="#section-6">6</a>. Encryption and Checksum Specifications ............. <a href="#page-67">67</a>
<a href="#section-6.1">6.1</a>. Encryption Specifications ........................ <a href="#page-68">68</a>
<a href="#section-6.2">6.2</a>. Encryption Keys .................................. <a href="#page-71">71</a>
<a href="#section-6.3">6.3</a>. Encryption Systems ............................... <a href="#page-71">71</a>
<a href="#section-6.3.1">6.3.1</a>. The NULL Encryption System (null) .............. <a href="#page-71">71</a>
6.3.2. DES in CBC mode with a CRC-32 checksum (descbc-crc)71
<span class="grey">Kohl & Neuman [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
6.3.3. DES in CBC mode with an MD4 checksum (descbc-md4) 72
6.3.4. DES in CBC mode with an MD5 checksum (descbc-md5) 72
<a href="#section-6.4">6.4</a>. Checksums ........................................ <a href="#page-74">74</a>
<a href="#section-6.4.1">6.4.1</a>. The CRC-32 Checksum (crc32) .................... <a href="#page-74">74</a>
<a href="#section-6.4.2">6.4.2</a>. The RSA MD4 Checksum (rsa-md4) ................. <a href="#page-75">75</a>
6.4.3. RSA MD4 Cryptographic Checksum Using DES
(rsa-md4-des) ......................................... <a href="#page-75">75</a>
<a href="#section-6.4.4">6.4.4</a>. The RSA MD5 Checksum (rsa-md5) ................. <a href="#page-76">76</a>
6.4.5. RSA MD5 Cryptographic Checksum Using DES
(rsa-md5-des) ......................................... <a href="#page-76">76</a>
6.4.6. DES cipher-block chained checksum (des-mac)
6.4.7. RSA MD4 Cryptographic Checksum Using DES
alternative (rsa-md4-des-k) ........................... <a href="#page-77">77</a>
6.4.8. DES cipher-block chained checksum alternative
(des-mac-k) ........................................... <a href="#page-77">77</a>
<a href="#section-7">7</a>. Naming Constraints ................................. <a href="#page-78">78</a>
<a href="#section-7.1">7.1</a>. Realm Names ...................................... <a href="#page-77">77</a>
<a href="#section-7.2">7.2</a>. Principal Names .................................. <a href="#page-79">79</a>
<a href="#section-7.2.1">7.2.1</a>. Name of server principals ...................... <a href="#page-80">80</a>
<a href="#section-8">8</a>. Constants and other defined values ................. <a href="#page-80">80</a>
<a href="#section-8.1">8.1</a>. Host address types ............................... <a href="#page-80">80</a>
<a href="#section-8.2">8.2</a>. KDC messages ..................................... <a href="#page-81">81</a>
<a href="#section-8.2.1">8.2.1</a>. IP transport ................................... <a href="#page-81">81</a>
<a href="#section-8.2.2">8.2.2</a>. OSI transport .................................. <a href="#page-82">82</a>
<a href="#section-8.2.3">8.2.3</a>. Name of the TGS ................................ <a href="#page-82">82</a>
<a href="#section-8.3">8.3</a>. Protocol constants and associated values ......... <a href="#page-82">82</a>
<a href="#section-9">9</a>. Interoperability requirements ...................... <a href="#page-86">86</a>
<a href="#section-9.1">9.1</a>. Specification 1 .................................. <a href="#page-86">86</a>
<a href="#section-9.2">9.2</a>. Recommended KDC values ........................... <a href="#page-88">88</a>
<a href="#section-10">10</a>. Acknowledgments ................................... <a href="#page-88">88</a>
<a href="#section-11">11</a>. References ........................................ <a href="#page-89">89</a>
<a href="#section-12">12</a>. Security Considerations ........................... <a href="#page-90">90</a>
<a href="#section-13">13</a>. Authors' Addresses ................................ <a href="#page-90">90</a>
<a href="#appendix-A">A</a>. Pseudo-code for protocol processing ................ <a href="#page-91">91</a>
<a href="#appendix-A.1">A.1</a>. KRB_AS_REQ generation ............................ <a href="#page-91">91</a>
A.2. KRB_AS_REQ verification and KRB_AS_REP generation 92
<a href="#appendix-A.3">A.3</a>. KRB_AS_REP verification .......................... <a href="#page-95">95</a>
<a href="#appendix-A.4">A.4</a>. KRB_AS_REP and KRB_TGS_REP common checks ......... <a href="#page-96">96</a>
<a href="#appendix-A.5">A.5</a>. KRB_TGS_REQ generation ........................... <a href="#page-97">97</a>
A.6. KRB_TGS_REQ verification and KRB_TGS_REP generation 98
<a href="#appendix-A.7">A.7</a>. KRB_TGS_REP verification ......................... <a href="#page-104">104</a>
<a href="#appendix-A.8">A.8</a>. Authenticator generation ......................... <a href="#page-104">104</a>
<a href="#appendix-A.9">A.9</a>. KRB_AP_REQ generation ............................ <a href="#page-105">105</a>
<a href="#appendix-A.10">A.10</a>. KRB_AP_REQ verification ......................... <a href="#page-105">105</a>
<a href="#appendix-A.11">A.11</a>. KRB_AP_REP generation ........................... <a href="#page-106">106</a>
<a href="#appendix-A.12">A.12</a>. KRB_AP_REP verification ......................... <a href="#page-107">107</a>
<a href="#appendix-A.13">A.13</a>. KRB_SAFE generation ............................. <a href="#page-107">107</a>
<a href="#appendix-A.14">A.14</a>. KRB_SAFE verification ........................... <a href="#page-108">108</a>
<span class="grey">Kohl & Neuman [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
<a href="#appendix-A.15">A.15</a>. KRB_SAFE and KRB_PRIV common checks ............. <a href="#page-108">108</a>
<a href="#appendix-A.16">A.16</a>. KRB_PRIV generation ............................. <a href="#page-109">109</a>
<a href="#appendix-A.17">A.17</a>. KRB_PRIV verification ........................... <a href="#page-110">110</a>
<a href="#appendix-A.18">A.18</a>. KRB_CRED generation ............................. <a href="#page-110">110</a>
<a href="#appendix-A.19">A.19</a>. KRB_CRED verification ........................... <a href="#page-111">111</a>
<a href="#appendix-A.20">A.20</a>. KRB_ERROR generation ............................ <a href="#page-112">112</a>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
Kerberos provides a means of verifying the identities of principals,
(e.g., a workstation user or a network server) on an open
(unprotected) network. This is accomplished without relying on
authentication by the host operating system, without basing trust on
host addresses, without requiring physical security of all the hosts
on the network, and under the assumption that packets traveling along
the network can be read, modified, and inserted at will. (Note,
however, that many applications use Kerberos' functions only upon the
initiation of a stream-based network connection, and assume the
absence of any "hijackers" who might subvert such a connection. Such
use implicitly trusts the host addresses involved.) Kerberos
performs authentication under these conditions as a trusted third-
party authentication service by using conventional cryptography,
i.e., shared secret key. (shared secret key - Secret and private are
often used interchangeably in the literature. In our usage, it takes
two (or more) to share a secret, thus a shared DES key is a secret
key. Something is only private when no one but its owner knows it.
Thus, in public key cryptosystems, one has a public and a private
key.)
The authentication process proceeds as follows: A client sends a
request to the authentication server (AS) requesting "credentials"
for a given server. The AS responds with these credentials,
encrypted in the client's key. The credentials consist of 1) a
"ticket" for the server and 2) a temporary encryption key (often
called a "session key"). The client transmits the ticket (which
contains the client's identity and a copy of the session key, all
encrypted in the server's key) to the server. The session key (now
shared by the client and server) is used to authenticate the client,
and may optionally be used to authenticate the server. It may also
be used to encrypt further communication between the two parties or
to exchange a separate sub-session key to be used to encrypt further
communication.
The implementation consists of one or more authentication servers
running on physically secure hosts. The authentication servers
maintain a database of principals (i.e., users and servers) and their
secret keys. Code libraries provide encryption and implement the
Kerberos protocol. In order to add authentication to its
<span class="grey">Kohl & Neuman [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
transactions, a typical network application adds one or two calls to
the Kerberos library, which results in the transmission of the
necessary messages to achieve authentication.
The Kerberos protocol consists of several sub-protocols (or
exchanges). There are two methods by which a client can ask a
Kerberos server for credentials. In the first approach, the client
sends a cleartext request for a ticket for the desired server to the
AS. The reply is sent encrypted in the client's secret key. Usually
this request is for a ticket-granting ticket (TGT) which can later be
used with the ticket-granting server (TGS). In the second method,
the client sends a request to the TGS. The client sends the TGT to
the TGS in the same manner as if it were contacting any other
application server which requires Kerberos credentials. The reply is
encrypted in the session key from the TGT.
Once obtained, credentials may be used to verify the identity of the
principals in a transaction, to ensure the integrity of messages
exchanged between them, or to preserve privacy of the messages. The
application is free to choose whatever protection may be necessary.
To verify the identities of the principals in a transaction, the
client transmits the ticket to the server. Since the ticket is sent
"in the clear" (parts of it are encrypted, but this encryption
doesn't thwart replay) and might be intercepted and reused by an
attacker, additional information is sent to prove that the message
was originated by the principal to whom the ticket was issued. This
information (called the authenticator) is encrypted in the session
key, and includes a timestamp. The timestamp proves that the message
was recently generated and is not a replay. Encrypting the
authenticator in the session key proves that it was generated by a
party possessing the session key. Since no one except the requesting
principal and the server know the session key (it is never sent over
the network in the clear) this guarantees the identity of the client.
The integrity of the messages exchanged between principals can also
be guaranteed using the session key (passed in the ticket and
contained in the credentials). This approach provides detection of
both replay attacks and message stream modification attacks. It is
accomplished by generating and transmitting a collision-proof
checksum (elsewhere called a hash or digest function) of the client's
message, keyed with the session key. Privacy and integrity of the
messages exchanged between principals can be secured by encrypting
the data to be passed using the session key passed in the ticket, and
contained in the credentials.
The authentication exchanges mentioned above require read-only access
to the Kerberos database. Sometimes, however, the entries in the
<span class="grey">Kohl & Neuman [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
database must be modified, such as when adding new principals or
changing a principal's key. This is done using a protocol between a
client and a third Kerberos server, the Kerberos Administration
Server (KADM). The administration protocol is not described in this
document. There is also a protocol for maintaining multiple copies of
the Kerberos database, but this can be considered an implementation
detail and may vary to support different database technologies.
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. Cross-Realm Operation</span>
The Kerberos protocol is designed to operate across organizational
boundaries. A client in one organization can be authenticated to a
server in another. Each organization wishing to run a Kerberos
server establishes its own "realm". The name of the realm in which a
client is registered is part of the client's name, and can be used by
the end-service to decide whether to honor a request.
By establishing "inter-realm" keys, the administrators of two realms
can allow a client authenticated in the local realm to use its
authentication remotely (Of course, with appropriate permission the
client could arrange registration of a separately-named principal in
a remote realm, and engage in normal exchanges with that realm's
services. However, for even small numbers of clients this becomes
cumbersome, and more automatic methods as described here are
necessary). The exchange of inter-realm keys (a separate key may be
used for each direction) registers the ticket-granting service of
each realm as a principal in the other realm. A client is then able
to obtain a ticket-granting ticket for the remote realm's ticket-
granting service from its local realm. When that ticket-granting
ticket is used, the remote ticket-granting service uses the inter-
realm key (which usually differs from its own normal TGS key) to
decrypt the ticket-granting ticket, and is thus certain that it was
issued by the client's own TGS. Tickets issued by the remote ticket-
granting service will indicate to the end-service that the client was
authenticated from another realm.
A realm is said to communicate with another realm if the two realms
share an inter-realm key, or if the local realm shares an inter-realm
key with an intermediate realm that communicates with the remote
realm. An authentication path is the sequence of intermediate realms
that are transited in communicating from one realm to another.
Realms are typically organized hierarchically. Each realm shares a
key with its parent and a different key with each child. If an
inter-realm key is not directly shared by two realms, the
hierarchical organization allows an authentication path to be easily
constructed. If a hierarchical organization is not used, it may be
necessary to consult some database in order to construct an
<span class="grey">Kohl & Neuman [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
authentication path between realms.
Although realms are typically hierarchical, intermediate realms may
be bypassed to achieve cross-realm authentication through alternate
authentication paths (these might be established to make
communication between two realms more efficient). It is important
for the end-service to know which realms were transited when deciding
how much faith to place in the authentication process. To facilitate
this decision, a field in each ticket contains the names of the
realms that were involved in authenticating the client.
<span class="h3"><a class="selflink" id="section-1.2" href="#section-1.2">1.2</a>. Environmental assumptions</span>
Kerberos imposes a few assumptions on the environment in which it can
properly function:
+ "Denial of service" attacks are not solved with Kerberos. There
are places in these protocols where an intruder intruder can
prevent an application from participating in the proper
authentication steps. Detection and solution of such attacks
(some of which can appear to be not-uncommon "normal" failure
modes for the system) is usually best left to the human
administrators and users.
+ Principals must keep their secret keys secret. If an intruder
somehow steals a principal's key, it will be able to masquerade
as that principal or impersonate any server to the legitimate
principal.
+ "Password guessing" attacks are not solved by Kerberos. If a
user chooses a poor password, it is possible for an attacker to
successfully mount an offline dictionary attack by repeatedly
attempting to decrypt, with successive entries from a
dictionary, messages obtained which are encrypted under a key
derived from the user's password.
+ Each host on the network must have a clock which is "loosely
synchronized" to the time of the other hosts; this
synchronization is used to reduce the bookkeeping needs of
application servers when they do replay detection. The degree
of "looseness" can be configured on a per-server basis. If the
clocks are synchronized over the network, the clock
synchronization protocol must itself be secured from network
attackers.
+ Principal identifiers are not recycled on a short-term basis. A
typical mode of access control will use access control lists
(ACLs) to grant permissions to particular principals. If a
<span class="grey">Kohl & Neuman [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
stale ACL entry remains for a deleted principal and the
principal identifier is reused, the new principal will inherit
rights specified in the stale ACL entry. By not re-using
principal identifiers, the danger of inadvertent access is
removed.
<span class="h3"><a class="selflink" id="section-1.3" href="#section-1.3">1.3</a>. Glossary of terms</span>
Below is a list of terms used throughout this document.
Authentication Verifying the claimed identity of a
principal.
Authentication header A record containing a Ticket and an
Authenticator to be presented to a
server as part of the authentication
process.
Authentication path A sequence of intermediate realms transited
in the authentication process when
communicating from one realm to another.
Authenticator A record containing information that can
be shown to have been recently generated
using the session key known only by the
client and server.
Authorization The process of determining whether a
client may use a service, which objects
the client is allowed to access, and the
type of access allowed for each.
Capability A token that grants the bearer permission
to access an object or service. In
Kerberos, this might be a ticket whose
use is restricted by the contents of the
authorization data field, but which
lists no network addresses, together
with the session key necessary to use
the ticket.
<span class="grey">Kohl & Neuman [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
Ciphertext The output of an encryption function.
Encryption transforms plaintext into
ciphertext.
Client A process that makes use of a network
service on behalf of a user. Note that
in some cases a Server may itself be a
client of some other server (e.g., a
print server may be a client of a file
server).
Credentials A ticket plus the secret session key
necessary to successfully use that
ticket in an authentication exchange.
KDC Key Distribution Center, a network service
that supplies tickets and temporary
session keys; or an instance of that
service or the host on which it runs.
The KDC services both initial ticket and
ticket-granting ticket requests. The
initial ticket portion is sometimes
referred to as the Authentication Server
(or service). The ticket-granting
ticket portion is sometimes referred to
as the ticket-granting server (or service).
Kerberos Aside from the 3-headed dog guarding
Hades, the name given to Project
Athena's authentication service, the
protocol used by that service, or the
code used to implement the authentication
service.
Plaintext The input to an encryption function or
the output of a decryption function.
Decryption transforms ciphertext into
plaintext.
Principal A uniquely named client or server
instance that participates in a network
communication.
<span class="grey">Kohl & Neuman [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
Principal identifier The name used to uniquely identify each
different principal.
Seal To encipher a record containing several
fields in such a way that the fields
cannot be individually replaced without
either knowledge of the encryption key
or leaving evidence of tampering.
Secret key An encryption key shared by a principal
and the KDC, distributed outside the
bounds of the system, with a long lifetime.
In the case of a human user's
principal, the secret key is derived
from a password.
Server A particular Principal which provides a
resource to network clients.
Service A resource provided to network clients;
often provided by more than one server
(for example, remote file service).
Session key A temporary encryption key used between
two principals, with a lifetime limited
to the duration of a single login "session".
Sub-session key A temporary encryption key used between
two principals, selected and exchanged
by the principals using the session key,
and with a lifetime limited to the duration
of a single association.
Ticket A record that helps a client authenticate
itself to a server; it contains the
client's identity, a session key, a
timestamp, and other information, all
sealed using the server's secret key.
It only serves to authenticate a client
when presented along with a fresh
Authenticator.
<span class="grey">Kohl & Neuman [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Ticket flag uses and requests</span>
Each Kerberos ticket contains a set of flags which are used to
indicate various attributes of that ticket. Most flags may be
requested by a client when the ticket is obtained; some are
automatically turned on and off by a Kerberos server as required.
The following sections explain what the various flags mean, and gives
examples of reasons to use such a flag.
<span class="h3"><a class="selflink" id="section-2.1" href="#section-2.1">2.1</a>. Initial and pre-authenticated tickets</span>
The INITIAL flag indicates that a ticket was issued using the AS
protocol and not issued based on a ticket-granting ticket.
Application servers that want to require the knowledge of a client's
secret key (e.g., a passwordchanging program) can insist that this
flag be set in any tickets they accept, and thus be assured that the
client's key was recently presented to the application client.
The PRE-AUTHENT and HW-AUTHENT flags provide addition information
about the initial authentication, regardless of whether the current
ticket was issued directly (in which case INITIAL will also be set)
or issued on the basis of a ticket-granting ticket (in which case the
INITIAL flag is clear, but the PRE-AUTHENT and HW-AUTHENT flags are
carried forward from the ticket-granting ticket).
<span class="h3"><a class="selflink" id="section-2.2" href="#section-2.2">2.2</a>. Invalid tickets</span>
The INVALID flag indicates that a ticket is invalid. Application
servers must reject tickets which have this flag set. A postdated
ticket will usually be issued in this form. Invalid tickets must be
validated by the KDC before use, by presenting them to the KDC in a
TGS request with the VALIDATE option specified. The KDC will only
validate tickets after their starttime has passed. The validation is
required so that postdated tickets which have been stolen before
their starttime can be rendered permanently invalid (through a hot-
list mechanism).
<span class="h3"><a class="selflink" id="section-2.3" href="#section-2.3">2.3</a>. Renewable tickets</span>
Applications may desire to hold tickets which can be valid for long
periods of time. However, this can expose their credentials to
potential theft for equally long periods, and those stolen
credentials would be valid until the expiration time of the
ticket(s). Simply using shortlived tickets and obtaining new ones
periodically would require the client to have long-term access to its
secret key, an even greater risk. Renewable tickets can be used to
mitigate the consequences of theft. Renewable tickets have two
"expiration times": the first is when the current instance of the
<span class="grey">Kohl & Neuman [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
ticket expires, and the second is the latest permissible value for an
individual expiration time. An application client must periodically
(i.e., before it expires) present a renewable ticket to the KDC, with
the RENEW option set in the KDC request. The KDC will issue a new
ticket with a new session key and a later expiration time. All other
fields of the ticket are left unmodified by the renewal process.
When the latest permissible expiration time arrives, the ticket
expires permanently. At each renewal, the KDC may consult a hot-list
to determine if the ticket had been reported stolen since its last
renewal; it will refuse to renew such stolen tickets, and thus the
usable lifetime of stolen tickets is reduced.
The RENEWABLE flag in a ticket is normally only interpreted by the
ticket-granting service (discussed below in <a href="#section-3.3">section 3.3</a>). It can
usually be ignored by application servers. However, some
particularly careful application servers may wish to disallow
renewable tickets.
If a renewable ticket is not renewed by its expiration time, the KDC
will not renew the ticket. The RENEWABLE flag is reset by default,
but a client may request it be set by setting the RENEWABLE option
in the KRB_AS_REQ message. If it is set, then the renew-till field
in the ticket contains the time after which the ticket may not be
renewed.
<span class="h3"><a class="selflink" id="section-2.4" href="#section-2.4">2.4</a>. Postdated tickets</span>
Applications may occasionally need to obtain tickets for use much
later, e.g., a batch submission system would need tickets to be valid
at the time the batch job is serviced. However, it is dangerous to
hold valid tickets in a batch queue, since they will be on-line
longer and more prone to theft. Postdated tickets provide a way to
obtain these tickets from the KDC at job submission time, but to
leave them "dormant" until they are activated and validated by a
further request of the KDC. If a ticket theft were reported in the
interim, the KDC would refuse to validate the ticket, and the thief
would be foiled.
The MAY-POSTDATE flag in a ticket is normally only interpreted by the
ticket-granting service. It can be ignored by application servers.
This flag must be set in a ticket-granting ticket in order to issue a
postdated ticket based on the presented ticket. It is reset by
default; it may be requested by a client by setting the ALLOW-
POSTDATE option in the KRB_AS_REQ message. This flag does not allow
a client to obtain a postdated ticket-granting ticket; postdated
ticket-granting tickets can only by obtained by requesting the
postdating in the KRB_AS_REQ message. The life (endtime-starttime)
of a postdated ticket will be the remaining life of the ticket-
<span class="grey">Kohl & Neuman [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
granting ticket at the time of the request, unless the RENEWABLE
option is also set, in which case it can be the full life (endtime-
starttime) of the ticket-granting ticket. The KDC may limit how far
in the future a ticket may be postdated.
The POSTDATED flag indicates that a ticket has been postdated. The
application server can check the authtime field in the ticket to see
when the original authentication occurred. Some services may choose
to reject postdated tickets, or they may only accept them within a
certain period after the original authentication. When the KDC issues
a POSTDATED ticket, it will also be marked as INVALID, so that the
application client must present the ticket to the KDC to be validated
before use.
<span class="h3"><a class="selflink" id="section-2.5" href="#section-2.5">2.5</a>. Proxiable and proxy tickets</span>
At times it may be necessary for a principal to allow a service to
perform an operation on its behalf. The service must be able to take
on the identity of the client, but only for a particular purpose. A
principal can allow a service to take on the principal's identity for
a particular purpose by granting it a proxy.
The PROXIABLE flag in a ticket is normally only interpreted by the
ticket-granting service. It can be ignored by application servers.
When set, this flag tells the ticket-granting server that it is OK to
issue a new ticket (but not a ticket-granting ticket) with a
different network address based on this ticket. This flag is set by
default.
This flag allows a client to pass a proxy to a server to perform a
remote request on its behalf, e.g., a print service client can give
the print server a proxy to access the client's files on a particular
file server in order to satisfy a print request.
In order to complicate the use of stolen credentials, Kerberos
tickets are usually valid from only those network addresses
specifically included in the ticket (It is permissible to request or
issue tickets with no network addresses specified, but we do not
recommend it). For this reason, a client wishing to grant a proxy
must request a new ticket valid for the network address of the
service to be granted the proxy.
The PROXY flag is set in a ticket by the TGS when it issues a
proxy ticket. Application servers may check this flag and require
additional authentication from the agent presenting the proxy in
order to provide an audit trail.
<span class="grey">Kohl & Neuman [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
<span class="h3"><a class="selflink" id="section-2.6" href="#section-2.6">2.6</a>. Forwardable tickets</span>
Authentication forwarding is an instance of the proxy case where the
service is granted complete use of the client's identity. An example
where it might be used is when a user logs in to a remote system and
wants authentication to work from that system as if the login were
local.
The FORWARDABLE flag in a ticket is normally only interpreted by the
ticket-granting service. It can be ignored by application servers.
The FORWARDABLE flag has an interpretation similar to that of the
PROXIABLE flag, except ticket-granting tickets may also be issued
with different network addresses. This flag is reset by default, but
users may request that it be set by setting the FORWARDABLE option in
the AS request when they request their initial ticket-granting
ticket.
This flag allows for authentication forwarding without requiring the
user to enter a password again. If the flag is not set, then
authentication forwarding is not permitted, but the same end result
can still be achieved if the user engages in the AS exchange with the
requested network addresses and supplies a password.
The FORWARDED flag is set by the TGS when a client presents a ticket
with the FORWARDABLE flag set and requests it be set by specifying
the FORWARDED KDC option and supplying a set of addresses for the new
ticket. It is also set in all tickets issued based on tickets with
the FORWARDED flag set. Application servers may wish to process
FORWARDED tickets differently than non-FORWARDED tickets.
<span class="h3"><a class="selflink" id="section-2.7" href="#section-2.7">2.7</a>. Other KDC options</span>
There are two additional options which may be set in a client's
request of the KDC. The RENEWABLE-OK option indicates that the
client will accept a renewable ticket if a ticket with the requested
life cannot otherwise be provided. If a ticket with the requested
life cannot be provided, then the KDC may issue a renewable ticket
with a renew-till equal to the the requested endtime. The value of
the renew-till field may still be adjusted by site-determined limits
or limits imposed by the individual principal or server.
The ENC-TKT-IN-SKEY option is honored only by the ticket-granting
service. It indicates that the to-be-issued ticket for the end
server is to be encrypted in the session key from the additional
ticket-granting ticket provided with the request. See <a href="#section-3.3.3">section 3.3.3</a>
for specific details.
<span class="grey">Kohl & Neuman [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Message Exchanges</span>
The following sections describe the interactions between network
clients and servers and the messages involved in those exchanges.
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. The Authentication Service Exchange</span>
Summary
Message direction Message type <a href="#section-1">Section</a>
<a href="#section-1">1</a>. Client to Kerberos KRB_AS_REQ 5.4.1
2. Kerberos to client KRB_AS_REP or 5.4.2
KRB_ERROR 5.9.1
The Authentication Service (AS) Exchange between the client and the
Kerberos Authentication Server is usually initiated by a client when
it wishes to obtain authentication credentials for a given server but
currently holds no credentials. The client's secret key is used for
encryption and decryption. This exchange is typically used at the
initiation of a login session, to obtain credentials for a Ticket-
Granting Server, which will subsequently be used to obtain
credentials for other servers (see <a href="#section-3.3">section 3.3</a>) without requiring
further use of the client's secret key. This exchange is also used
to request credentials for services which must not be mediated
through the Ticket-Granting Service, but rather require a principal's
secret key, such as the password-changing service. (The password-
changing request must not be honored unless the requester can provide
the old password (the user's current secret key). Otherwise, it
would be possible for someone to walk up to an unattended session and
change another user's password.) This exchange does not by itself
provide any assurance of the the identity of the user. (To
authenticate a user logging on to a local system, the credentials
obtained in the AS exchange may first be used in a TGS exchange to
obtain credentials for a local server. Those credentials must then
be verified by the local server through successful completion of the
Client/Server exchange.)
The exchange consists of two messages: KRB_AS_REQ from the client to
Kerberos, and KRB_AS_REP or KRB_ERROR in reply. The formats for these
messages are described in sections <a href="#section-5.4.1">5.4.1</a>, <a href="#section-5.4.2">5.4.2</a>, and <a href="#section-5.9.1">5.9.1</a>.
In the request, the client sends (in cleartext) its own identity and
the identity of the server for which it is requesting credentials.
The response, KRB_AS_REP, contains a ticket for the client to present
to the server, and a session key that will be shared by the client
and the server. The session key and additional information are
encrypted in the client's secret key. The KRB_AS_REP message
contains information which can be used to detect replays, and to
<span class="grey">Kohl & Neuman [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
associate it with the message to which it replies. Various errors
can occur; these are indicated by an error response (KRB_ERROR)
instead of the KRB_AS_REP response. The error message is not
encrypted. The KRB_ERROR message also contains information which can
be used to associate it with the message to which it replies. The
lack of encryption in the KRB_ERROR message precludes the ability to
detect replays or fabrications of such messages.
In the normal case the authentication server does not know whether
the client is actually the principal named in the request. It simply
sends a reply without knowing or caring whether they are the same.
This is acceptable because nobody but the principal whose identity
was given in the request will be able to use the reply. Its critical
information is encrypted in that principal's key. The initial
request supports an optional field that can be used to pass
additional information that might be needed for the initial exchange.
This field may be used for preauthentication if desired, but the
mechanism is not currently specified.
<span class="h4"><a class="selflink" id="section-3.1.1" href="#section-3.1.1">3.1.1</a>. Generation of KRB_AS_REQ message</span>
The client may specify a number of options in the initial request.
Among these options are whether preauthentication is to be performed;
whether the requested ticket is to be renewable, proxiable, or
forwardable; whether it should be postdated or allow postdating of
derivative tickets; and whether a renewable ticket will be accepted
in lieu of a non-renewable ticket if the requested ticket expiration
date cannot be satisfied by a nonrenewable ticket (due to
configuration constraints; see <a href="#section-4">section 4</a>). See section A.1 for
pseudocode.
The client prepares the KRB_AS_REQ message and sends it to the KDC.
<span class="h4"><a class="selflink" id="section-3.1.2" href="#section-3.1.2">3.1.2</a>. Receipt of KRB_AS_REQ message</span>
If all goes well, processing the KRB_AS_REQ message will result in
the creation of a ticket for the client to present to the server.
The format for the ticket is described in <a href="#section-5.3.1">section 5.3.1</a>. The
contents of the ticket are determined as follows.
<span class="h4"><a class="selflink" id="section-3.1.3" href="#section-3.1.3">3.1.3</a>. Generation of KRB_AS_REP message</span>
The authentication server looks up the client and server principals
named in the KRB_AS_REQ in its database, extracting their respective
keys. If required, the server pre-authenticates the request, and if
the pre-authentication check fails, an error message with the code
KDC_ERR_PREAUTH_FAILED is returned. If the server cannot accommodate
the requested encryption type, an error message with code
<span class="grey">Kohl & Neuman [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
KDC_ERR_ETYPE_NOSUPP is returned. Otherwise it generates a "random"
session key ("Random" means that, among other things, it should be
impossible to guess the next session key based on knowledge of past
session keys. This can only be achieved in a pseudo-random number
generator if it is based on cryptographic principles. It would be
more desirable to use a truly random number generator, such as one
based on measurements of random physical phenomena.).
If the requested start time is absent or indicates a time in the
past, then the start time of the ticket is set to the authentication
server's current time. If it indicates a time in the future, but the
POSTDATED option has not been specified, then the error
KDC_ERR_CANNOT_POSTDATE is returned. Otherwise the requested start
time is checked against the policy of the local realm (the
administrator might decide to prohibit certain types or ranges of
postdated tickets), and if acceptable, the ticket's start time is set
as requested and the INVALID flag is set in the new ticket. The
postdated ticket must be validated before use by presenting it to the
KDC after the start time has been reached.
The expiration time of the ticket will be set to the minimum of the
following:
+The expiration time (endtime) requested in the KRB_AS_REQ
message.
+The ticket's start time plus the maximum allowable lifetime
associated with the client principal (the authentication
server's database includes a maximum ticket lifetime field
in each principal's record; see <a href="#section-4">section 4</a>).
+The ticket's start time plus the maximum allowable lifetime
associated with the server principal.
+The ticket's start time plus the maximum lifetime set by
the policy of the local realm.
If the requested expiration time minus the start time (as determined
above) is less than a site-determined minimum lifetime, an error
message with code KDC_ERR_NEVER_VALID is returned. If the requested
expiration time for the ticket exceeds what was determined as above,
and if the "RENEWABLE-OK" option was requested, then the "RENEWABLE"
flag is set in the new ticket, and the renew-till value is set as if
the "RENEWABLE" option were requested (the field and option names are
described fully in <a href="#section-5.4.1">section 5.4.1</a>). If the RENEWABLE option has been
requested or if the RENEWABLE-OK option has been set and a renewable
ticket is to be issued, then the renew-till field is set to the
minimum of:
<span class="grey">Kohl & Neuman [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
+Its requested value.
+The start time of the ticket plus the minimum of the two
maximum renewable lifetimes associated with the principals'
database entries.
+The start time of the ticket plus the maximum renewable
lifetime set by the policy of the local realm.
The flags field of the new ticket will have the following options set
if they have been requested and if the policy of the local realm
allows: FORWARDABLE, MAY-POSTDATE, POSTDATED, PROXIABLE, RENEWABLE.
If the new ticket is postdated (the start time is in the future), its
INVALID flag will also be set.
If all of the above succeed, the server formats a KRB_AS_REP message
(see <a href="#section-5.4.2">section 5.4.2</a>), copying the addresses in the request into the
caddr of the response, placing any required pre-authentication data
into the padata of the response, and encrypts the ciphertext part in
the client's key using the requested encryption method, and sends it
to the client. See section A.2 for pseudocode.
<span class="h4"><a class="selflink" id="section-3.1.4" href="#section-3.1.4">3.1.4</a>. Generation of KRB_ERROR message</span>
Several errors can occur, and the Authentication Server responds by
returning an error message, KRB_ERROR, to the client, with the
error-code and e-text fields set to appropriate values. The error
message contents and details are described in <a href="#section-5.9.1">Section 5.9.1</a>.
<span class="h4"><a class="selflink" id="section-3.1.5" href="#section-3.1.5">3.1.5</a>. Receipt of KRB_AS_REP message</span>
If the reply message type is KRB_AS_REP, then the client verifies
that the cname and crealm fields in the cleartext portion of the
reply match what it requested. If any padata fields are present,
they may be used to derive the proper secret key to decrypt the
message. The client decrypts the encrypted part of the response
using its secret key, verifies that the nonce in the encrypted part
matches the nonce it supplied in its request (to detect replays). It
also verifies that the sname and srealm in the response match those
in the request, and that the host address field is also correct. It
then stores the ticket, session key, start and expiration times, and
other information for later use. The key-expiration field from the
encrypted part of the response may be checked to notify the user of
impending key expiration (the client program could then suggest
remedial action, such as a password change). See section A.3 for
pseudocode.
Proper decryption of the KRB_AS_REP message is not sufficient to
<span class="grey">Kohl & Neuman [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
verify the identity of the user; the user and an attacker could
cooperate to generate a KRB_AS_REP format message which decrypts
properly but is not from the proper KDC. If the host wishes to
verify the identity of the user, it must require the user to present
application credentials which can be verified using a securely-stored
secret key. If those credentials can be verified, then the identity
of the user can be assured.
<span class="h4"><a class="selflink" id="section-3.1.6" href="#section-3.1.6">3.1.6</a>. Receipt of KRB_ERROR message</span>
If the reply message type is KRB_ERROR, then the client interprets it
as an error and performs whatever application-specific tasks are
necessary to recover.
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. The Client/Server Authentication Exchange</span>
Summary
Message direction Message type Section
Client to Application server KRB_AP_REQ 5.5.1
[optional] Application server to client KRB_AP_REP or 5.5.2
KRB_ERROR 5.9.1
The client/server authentication (CS) exchange is used by network
applications to authenticate the client to the server and vice versa.
The client must have already acquired credentials for the server
using the AS or TGS exchange.
<span class="h4"><a class="selflink" id="section-3.2.1" href="#section-3.2.1">3.2.1</a>. The KRB_AP_REQ message</span>
The KRB_AP_REQ contains authentication information which should be
part of the first message in an authenticated transaction. It
contains a ticket, an authenticator, and some additional bookkeeping
information (see <a href="#section-5.5.1">section 5.5.1</a> for the exact format). The ticket by
itself is insufficient to authenticate a client, since tickets are
passed across the network in cleartext(Tickets contain both an
encrypted and unencrypted portion, so cleartext here refers to the
entire unit, which can be copied from one message and replayed in
another without any cryptographic skill.), so the authenticator is
used to prevent invalid replay of tickets by proving to the server
that the client knows the session key of the ticket and thus is
entitled to use it. The KRB_AP_REQ message is referred to elsewhere
as the "authentication header."
<span class="h4"><a class="selflink" id="section-3.2.2" href="#section-3.2.2">3.2.2</a>. Generation of a KRB_AP_REQ message</span>
When a client wishes to initiate authentication to a server, it
obtains (either through a credentials cache, the AS exchange, or the
<span class="grey">Kohl & Neuman [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
TGS exchange) a ticket and session key for the desired service. The
client may re-use any tickets it holds until they expire. The client
then constructs a new Authenticator from the the system time, its
name, and optionally an application specific checksum, an initial
sequence number to be used in KRB_SAFE or KRB_PRIV messages, and/or a
session subkey to be used in negotiations for a session key unique to
this particular session. Authenticators may not be re-used and will
be rejected if replayed to a server (Note that this can make
applications based on unreliable transports difficult to code
correctly, if the transport might deliver duplicated messages. In
such cases, a new authenticator must be generated for each retry.).
If a sequence number is to be included, it should be randomly chosen
so that even after many messages have been exchanged it is not likely
to collide with other sequence numbers in use.
The client may indicate a requirement of mutual authentication or the
use of a session-key based ticket by setting the appropriate flag(s)
in the ap-options field of the message.
The Authenticator is encrypted in the session key and combined with
the ticket to form the KRB_AP_REQ message which is then sent to the
end server along with any additional application-specific
information. See section A.9 for pseudocode.
<span class="h4"><a class="selflink" id="section-3.2.3" href="#section-3.2.3">3.2.3</a>. Receipt of KRB_AP_REQ message</span>
Authentication is based on the server's current time of day (clocks
must be loosely synchronized), the authenticator, and the ticket.
Several errors are possible. If an error occurs, the server is
expected to reply to the client with a KRB_ERROR message. This
message may be encapsulated in the application protocol if its "raw"
form is not acceptable to the protocol. The format of error messages
is described in <a href="#section-5.9.1">section 5.9.1</a>.
The algorithm for verifying authentication information is as follows.
If the message type is not KRB_AP_REQ, the server returns the
KRB_AP_ERR_MSG_TYPE error. If the key version indicated by the Ticket
in the KRB_AP_REQ is not one the server can use (e.g., it indicates
an old key, and the server no longer possesses a copy of the old
key), the KRB_AP_ERR_BADKEYVER error is returned. If the USE-
SESSION-KEY flag is set in the ap-options field, it indicates to the
server that the ticket is encrypted in the session key from the
server's ticket-granting ticket rather than its secret key (This is
used for user-to-user authentication as described in [<a href="#ref-6" title=""Workstation Services and Kerberos Authentication at Project Athena"">6</a>]). Since it
is possible for the server to be registered in multiple realms, with
different keys in each, the srealm field in the unencrypted portion
of the ticket in the KRB_AP_REQ is used to specify which secret key
the server should use to decrypt that ticket. The KRB_AP_ERR_NOKEY
<span class="grey">Kohl & Neuman [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
error code is returned if the server doesn't have the proper key to
decipher the ticket.
The ticket is decrypted using the version of the server's key
specified by the ticket. If the decryption routines detect a
modification of the ticket (each encryption system must provide
safeguards to detect modified ciphertext; see <a href="#section-6">section 6</a>), the
KRB_AP_ERR_BAD_INTEGRITY error is returned (chances are good that
different keys were used to encrypt and decrypt).
The authenticator is decrypted using the session key extracted from
the decrypted ticket. If decryption shows it to have been modified,
the KRB_AP_ERR_BAD_INTEGRITY error is returned. The name and realm
of the client from the ticket are compared against the same fields in
the authenticator. If they don't match, the KRB_AP_ERR_BADMATCH
error is returned (they might not match, for example, if the wrong
session key was used to encrypt the authenticator). The addresses in
the ticket (if any) are then searched for an address matching the
operating-system reported address of the client. If no match is
found or the server insists on ticket addresses but none are present
in the ticket, the KRB_AP_ERR_BADADDR error is returned.
If the local (server) time and the client time in the authenticator
differ by more than the allowable clock skew (e.g., 5 minutes), the
KRB_AP_ERR_SKEW error is returned. If the server name, along with
the client name, time and microsecond fields from the Authenticator
match any recently-seen such tuples, the KRB_AP_ERR_REPEAT error is
returned (Note that the rejection here is restricted to
authenticators from the same principal to the same server. Other
client principals communicating with the same server principal should
not be have their authenticators rejected if the time and microsecond
fields happen to match some other client's authenticator.). The
server must remember any authenticator presented within the allowable
clock skew, so that a replay attempt is guaranteed to fail. If a
server loses track of any authenticator presented within the
allowable clock skew, it must reject all requests until the clock
skew interval has passed. This assures that any lost or re-played
authenticators will fall outside the allowable clock skew and can no
longer be successfully replayed (If this is not done, an attacker
could conceivably record the ticket and authenticator sent over the
network to a server, then disable the client's host, pose as the
disabled host, and replay the ticket and authenticator to subvert the
authentication.). If a sequence number is provided in the
authenticator, the server saves it for later use in processing
KRB_SAFE and/or KRB_PRIV messages. If a subkey is present, the
server either saves it for later use or uses it to help generate its
own choice for a subkey to be returned in a KRB_AP_REP message.
<span class="grey">Kohl & Neuman [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
The server computes the age of the ticket: local (server) time minus
the start time inside the Ticket. If the start time is later than
the current time by more than the allowable clock skew or if the
INVALID flag is set in the ticket, the KRB_AP_ERR_TKT_NYV error is
returned. Otherwise, if the current time is later than end time by
more than the allowable clock skew, the KRB_AP_ERR_TKT_EXPIRED error
is returned.
If all these checks succeed without an error, the server is assured
that the client possesses the credentials of the principal named in
the ticket and thus, the client has been authenticated to the server.
See section A.10 for pseudocode.
<span class="h4"><a class="selflink" id="section-3.2.4" href="#section-3.2.4">3.2.4</a>. Generation of a KRB_AP_REP message</span>
Typically, a client's request will include both the authentication
information and its initial request in the same message, and the
server need not explicitly reply to the KRB_AP_REQ. However, if
mutual authentication (not only authenticating the client to the
server, but also the server to the client) is being performed, the
KRB_AP_REQ message will have MUTUAL-REQUIRED set in its ap-options
field, and a KRB_AP_REP message is required in response. As with the
error message, this message may be encapsulated in the application
protocol if its "raw" form is not acceptable to the application's
protocol. The timestamp and microsecond field used in the reply must
be the client's timestamp and microsecond field (as provided in the
authenticator). [Note: In the Kerberos version 4 protocol, the
timestamp in the reply was the client's timestamp plus one. This is
not necessary in version 5 because version 5 messages are formatted
in such a way that it is not possible to create the reply by
judicious message surgery (even in encrypted form) without knowledge
of the appropriate encryption keys.] If a sequence number is to be
included, it should be randomly chosen as described above for the
authenticator. A subkey may be included if the server desires to
negotiate a different subkey. The KRB_AP_REP message is encrypted in
the session key extracted from the ticket. See section A.11 for
pseudocode.
<span class="h4"><a class="selflink" id="section-3.2.5" href="#section-3.2.5">3.2.5</a>. Receipt of KRB_AP_REP message</span>
If a KRB_AP_REP message is returned, the client uses the session key
from the credentials obtained for the server (Note that for
encrypting the KRB_AP_REP message, the sub-session key is not used,
even if present in the Authenticator.) to decrypt the message, and
verifies that the timestamp and microsecond fields match those in the
Authenticator it sent to the server. If they match, then the client
is assured that the server is genuine. The sequence number and subkey
(if present) are retained for later use. See section A.12 for
<span class="grey">Kohl & Neuman [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
pseudocode.
<span class="h4"><a class="selflink" id="section-3.2.6" href="#section-3.2.6">3.2.6</a>. Using the encryption key</span>
After the KRB_AP_REQ/KRB_AP_REP exchange has occurred, the client and
server share an encryption key which can be used by the application.
The "true session key" to be used for KRB_PRIV, KRB_SAFE, or other
application-specific uses may be chosen by the application based on
the subkeys in the KRB_AP_REP message and the authenticator
(Implementations of the protocol may wish to provide routines to
choose subkeys based on session keys and random numbers and to
orchestrate a negotiated key to be returned in the KRB_AP_REP
message.). In some cases, the use of this session key will be
implicit in the protocol; in others the method of use must be chosen
from a several alternatives. We leave the protocol negotiations of
how to use the key (e.g., selecting an encryption or checksum type)
to the application programmer; the Kerberos protocol does not
constrain the implementation options.
With both the one-way and mutual authentication exchanges, the peers
should take care not to send sensitive information to each other
without proper assurances. In particular, applications that require
privacy or integrity should use the KRB_AP_REP or KRB_ERROR responses
from the server to client to assure both client and server of their
peer's identity. If an application protocol requires privacy of its
messages, it can use the KRB_PRIV message (<a href="#section-3.5">section 3.5</a>). The KRB_SAFE
message (<a href="#section-3.4">section 3.4</a>) can be used to assure integrity.
<span class="h3"><a class="selflink" id="section-3.3" href="#section-3.3">3.3</a>. The Ticket-Granting Service (TGS) Exchange</span>
Summary
Message direction Message type <a href="#section-1">Section</a>
<a href="#section-1">1</a>. Client to Kerberos KRB_TGS_REQ 5.4.1
2. Kerberos to client KRB_TGS_REP or 5.4.2
KRB_ERROR 5.9.1
The TGS exchange between a client and the Kerberos Ticket-Granting
Server is initiated by a client when it wishes to obtain
authentication credentials for a given server (which might be
registered in a remote realm), when it wishes to renew or validate an
existing ticket, or when it wishes to obtain a proxy ticket. In the
first case, the client must already have acquired a ticket for the
Ticket-Granting Service using the AS exchange (the ticket-granting
ticket is usually obtained when a client initially authenticates to
the system, such as when a user logs in). The message format for the
TGS exchange is almost identical to that for the AS exchange. The
primary difference is that encryption and decryption in the TGS
<span class="grey">Kohl & Neuman [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
exchange does not take place under the client's key. Instead, the
session key from the ticket-granting ticket or renewable ticket, or
sub-session key from an Authenticator is used. As is the case for
all application servers, expired tickets are not accepted by the TGS,
so once a renewable or ticket-granting ticket expires, the client
must use a separate exchange to obtain valid tickets.
The TGS exchange consists of two messages: A request (KRB_TGS_REQ)
from the client to the Kerberos Ticket-Granting Server, and a reply
(KRB_TGS_REP or KRB_ERROR). The KRB_TGS_REQ message includes
information authenticating the client plus a request for credentials.
The authentication information consists of the authentication header
(KRB_AP_REQ) which includes the client's previously obtained ticket-
granting, renewable, or invalid ticket. In the ticket-granting
ticket and proxy cases, the request may include one or more of: a
list of network addresses, a collection of typed authorization data
to be sealed in the ticket for authorization use by the application
server, or additional tickets (the use of which are described later).
The TGS reply (KRB_TGS_REP) contains the requested credentials,
encrypted in the session key from the ticket-granting ticket or
renewable ticket, or if present, in the subsession key from the
Authenticator (part of the authentication header). The KRB_ERROR
message contains an error code and text explaining what went wrong.
The KRB_ERROR message is not encrypted. The KRB_TGS_REP message
contains information which can be used to detect replays, and to
associate it with the message to which it replies. The KRB_ERROR
message also contains information which can be used to associate it
with the message to which it replies, but the lack of encryption in
the KRB_ERROR message precludes the ability to detect replays or
fabrications of such messages.
<span class="h4"><a class="selflink" id="section-3.3.1" href="#section-3.3.1">3.3.1</a>. Generation of KRB_TGS_REQ message</span>
Before sending a request to the ticket-granting service, the client
must determine in which realm the application server is registered
[Note: This can be accomplished in several ways. It might be known
beforehand (since the realm is part of the principal identifier), or
it might be stored in a nameserver. Presently, however, this
information is obtained from a configuration file. If the realm to
be used is obtained from a nameserver, there is a danger of being
spoofed if the nameservice providing the realm name is not
authenticated. This might result in the use of a realm which has
been compromised, and would result in an attacker's ability to
compromise the authentication of the application server to the
client.]. If the client does not already possess a ticket-granting
ticket for the appropriate realm, then one must be obtained. This is
first attempted by requesting a ticket-granting ticket for the
destination realm from the local Kerberos server (using the
<span class="grey">Kohl & Neuman [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
KRB_TGS_REQ message recursively). The Kerberos server may return a
TGT for the desired realm in which case one can proceed.
Alternatively, the Kerberos server may return a TGT for a realm which
is "closer" to the desired realm (further along the standard
hierarchical path), in which case this step must be repeated with a
Kerberos server in the realm specified in the returned TGT. If
neither are returned, then the request must be retried with a
Kerberos server for a realm higher in the hierarchy. This request
will itself require a ticket-granting ticket for the higher realm
which must be obtained by recursively applying these directions.
Once the client obtains a ticket-granting ticket for the appropriate
realm, it determines which Kerberos servers serve that realm, and
contacts one. The list might be obtained through a configuration file
or network service; as long as the secret keys exchanged by realms
are kept secret, only denial of service results from a false Kerberos
server.
As in the AS exchange, the client may specify a number of options in
the KRB_TGS_REQ message. The client prepares the KRB_TGS_REQ
message, providing an authentication header as an element of the
padata field, and including the same fields as used in the KRB_AS_REQ
message along with several optional fields: the enc-authorization-
data field for application server use and additional tickets required
by some options.
In preparing the authentication header, the client can select a sub-
session key under which the response from the Kerberos server will be
encrypted (If the client selects a sub-session key, care must be
taken to ensure the randomness of the selected subsession key. One
approach would be to generate a random number and XOR it with the
session key from the ticket-granting ticket.). If the sub-session key
is not specified, the session key from the ticket-granting ticket
will be used. If the enc-authorization-data is present, it must be
encrypted in the sub-session key, if present, from the authenticator
portion of the authentication header, or if not present in the
session key from the ticket-granting ticket.
Once prepared, the message is sent to a Kerberos server for the
destination realm. See section A.5 for pseudocode.
<span class="h4"><a class="selflink" id="section-3.3.2" href="#section-3.3.2">3.3.2</a>. Receipt of KRB_TGS_REQ message</span>
The KRB_TGS_REQ message is processed in a manner similar to the
KRB_AS_REQ message, but there are many additional checks to be
performed. First, the Kerberos server must determine which server
the accompanying ticket is for and it must select the appropriate key
to decrypt it. For a normal KRB_TGS_REQ message, it will be for the
<span class="grey">Kohl & Neuman [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
ticket granting service, and the TGS's key will be used. If the TGT
was issued by another realm, then the appropriate inter-realm key
must be used. If the accompanying ticket is not a ticket granting
ticket for the current realm, but is for an application server in the
current realm, the RENEW, VALIDATE, or PROXY options are specified in
the request, and the server for which a ticket is requested is the
server named in the accompanying ticket, then the KDC will decrypt
the ticket in the authentication header using the key of the server
for which it was issued. If no ticket can be found in the padata
field, the KDC_ERR_PADATA_TYPE_NOSUPP error is returned.
Once the accompanying ticket has been decrypted, the user-supplied
checksum in the Authenticator must be verified against the contents
of the request, and the message rejected if the checksums do not
match (with an error code of KRB_AP_ERR_MODIFIED) or if the checksum
is not keyed or not collision-proof (with an error code of
KRB_AP_ERR_INAPP_CKSUM). If the checksum type is not supported, the
KDC_ERR_SUMTYPE_NOSUPP error is returned. If the authorization-data
are present, they are decrypted using the sub-session key from the
Authenticator.
If any of the decryptions indicate failed integrity checks, the
KRB_AP_ERR_BAD_INTEGRITY error is returned.
<span class="h4"><a class="selflink" id="section-3.3.3" href="#section-3.3.3">3.3.3</a>. Generation of KRB_TGS_REP message</span>
The KRB_TGS_REP message shares its format with the KRB_AS_REP
(KRB_KDC_REP), but with its type field set to KRB_TGS_REP. The
detailed specification is in <a href="#section-5.4.2">section 5.4.2</a>.
The response will include a ticket for the requested server. The
Kerberos database is queried to retrieve the record for the requested
server (including the key with which the ticket will be encrypted).
If the request is for a ticket granting ticket for a remote realm,
and if no key is shared with the requested realm, then the Kerberos
server will select the realm "closest" to the requested realm with
which it does share a key, and use that realm instead. This is the
only case where the response from the KDC will be for a different
server than that requested by the client.
By default, the address field, the client's name and realm, the list
of transited realms, the time of initial authentication, the
expiration time, and the authorization data of the newly-issued
ticket will be copied from the ticket-granting ticket (TGT) or
renewable ticket. If the transited field needs to be updated, but
the transited type is not supported, the KDC_ERR_TRTYPE_NOSUPP error
is returned.
<span class="grey">Kohl & Neuman [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
If the request specifies an endtime, then the endtime of the new
ticket is set to the minimum of (a) that request, (b) the endtime
from the TGT, and (c) the starttime of the TGT plus the minimum of
the maximum life for the application server and the maximum life for
the local realm (the maximum life for the requesting principal was
already applied when the TGT was issued). If the new ticket is to be
a renewal, then the endtime above is replaced by the minimum of (a)
the value of the renew_till field of the ticket and (b) the starttime
for the new ticket plus the life (endtimestarttime) of the old
ticket.
If the FORWARDED option has been requested, then the resulting ticket
will contain the addresses specified by the client. This option will
only be honored if the FORWARDABLE flag is set in the TGT. The PROXY
option is similar; the resulting ticket will contain the addresses
specified by the client. It will be honored only if the PROXIABLE
flag in the TGT is set. The PROXY option will not be honored on
requests for additional ticket-granting tickets.
If the requested start time is absent or indicates a time in the
past, then the start time of the ticket is set to the authentication
server's current time. If it indicates a time in the future, but the
POSTDATED option has not been specified or the MAY-POSTDATE flag is
not set in the TGT, then the error KDC_ERR_CANNOT_POSTDATE is
returned. Otherwise, if the ticket-granting ticket has the
MAYPOSTDATE flag set, then the resulting ticket will be postdated and
the requested starttime is checked against the policy of the local
realm. If acceptable, the ticket's start time is set as requested,
and the INVALID flag is set. The postdated ticket must be validated
before use by presenting it to the KDC after the starttime has been
reached. However, in no case may the starttime, endtime, or renew-
till time of a newly-issued postdated ticket extend beyond the
renew-till time of the ticket-granting ticket.
If the ENC-TKT-IN-SKEY option has been specified and an additional
ticket has been included in the request, the KDC will decrypt the
additional ticket using the key for the server to which the
additional ticket was issued and verify that it is a ticket-granting
ticket. If the name of the requested server is missing from the
request, the name of the client in the additional ticket will be
used. Otherwise the name of the requested server will be compared to
the name of the client in the additional ticket and if different, the
request will be rejected. If the request succeeds, the session key
from the additional ticket will be used to encrypt the new ticket
that is issued instead of using the key of the server for which the
new ticket will be used (This allows easy implementation of user-to-
user authentication [<a href="#ref-6" title=""Workstation Services and Kerberos Authentication at Project Athena"">6</a>], which uses ticket-granting ticket session
keys in lieu of secret server keys in situations where such secret
<span class="grey">Kohl & Neuman [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
keys could be easily compromised.).
If the name of the server in the ticket that is presented to the KDC
as part of the authentication header is not that of the ticket-
granting server itself, and the server is registered in the realm of
the KDC, If the RENEW option is requested, then the KDC will verify
that the RENEWABLE flag is set in the ticket and that the renew_till
time is still in the future. If the VALIDATE option is rqeuested,
the KDC will check that the starttime has passed and the INVALID flag
is set. If the PROXY option is requested, then the KDC will check
that the PROXIABLE flag is set in the ticket. If the tests succeed,
the KDC will issue the appropriate new ticket.
Whenever a request is made to the ticket-granting server, the
presented ticket(s) is(are) checked against a hot-list of tickets
which have been canceled. This hot-list might be implemented by
storing a range of issue dates for "suspect tickets"; if a presented
ticket had an authtime in that range, it would be rejected. In this
way, a stolen ticket-granting ticket or renewable ticket cannot be
used to gain additional tickets (renewals or otherwise) once the
theft has been reported. Any normal ticket obtained before it was
reported stolen will still be valid (because they require no
interaction with the KDC), but only until their normal expiration
time.
The ciphertext part of the response in the KRB_TGS_REP message is
encrypted in the sub-session key from the Authenticator, if present,
or the session key key from the ticket-granting ticket. It is not
encrypted using the client's secret key. Furthermore, the client's
key's expiration date and the key version number fields are left out
since these values are stored along with the client's database
record, and that record is not needed to satisfy a request based on a
ticket-granting ticket. See section A.6 for pseudocode.
<span class="h5"><a class="selflink" id="section-3.3.3.1" href="#section-3.3.3.1">3.3.3.1</a>. Encoding the transited field</span>
If the identity of the server in the TGT that is presented to the KDC
as part of the authentication header is that of the ticket-granting
service, but the TGT was issued from another realm, the KDC will look
up the inter-realm key shared with that realm and use that key to
decrypt the ticket. If the ticket is valid, then the KDC will honor
the request, subject to the constraints outlined above in the section
describing the AS exchange. The realm part of the client's identity
will be taken from the ticket-granting ticket. The name of the realm
that issued the ticket-granting ticket will be added to the transited
field of the ticket to be issued. This is accomplished by reading
the transited field from the ticket-granting ticket (which is treated
as an unordered set of realm names), adding the new realm to the set,
<span class="grey">Kohl & Neuman [Page 29]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-30" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
then constructing and writing out its encoded (shorthand) form (this
may involve a rearrangement of the existing encoding).
Note that the ticket-granting service does not add the name of its
own realm. Instead, its responsibility is to add the name of the
previous realm. This prevents a malicious Kerberos server from
intentionally leaving out its own name (it could, however, omit other
realms' names).
The names of neither the local realm nor the principal's realm are to
be included in the transited field. They appear elsewhere in the
ticket and both are known to have taken part in authenticating the
principal. Since the endpoints are not included, both local and
single-hop inter-realm authentication result in a transited field
that is empty.
Because the name of each realm transited is added to this field,
it might potentially be very long. To decrease the length of this
field, its contents are encoded. The initially supported encoding is
optimized for the normal case of inter-realm communication: a
hierarchical arrangement of realms using either domain or X.500 style
realm names. This encoding (called DOMAIN-X500-COMPRESS) is now
described.
Realm names in the transited field are separated by a ",". The ",",
"\", trailing "."s, and leading spaces (" ") are special characters,
and if they are part of a realm name, they must be quoted in the
transited field by preceding them with a "\".
A realm name ending with a "." is interpreted as being prepended to
the previous realm. For example, we can encode traversal of EDU,
MIT.EDU, ATHENA.MIT.EDU, WASHINGTON.EDU, and CS.WASHINGTON.EDU as:
"EDU,MIT.,ATHENA.,WASHINGTON.EDU,CS.".
Note that if ATHENA.MIT.EDU, or CS.WASHINGTON.EDU were endpoints,
that they would not be included in this field, and we would have:
"EDU,MIT.,WASHINGTON.EDU"
A realm name beginning with a "/" is interpreted as being appended to
the previous realm (For the purpose of appending, the realm preceding
the first listed realm is considered to be the null realm ("")). If
it is to stand by itself, then it should be preceded by a space ("
"). For example, we can encode traversal of /COM/HP/APOLLO, /COM/HP,
/COM, and /COM/DEC as:
"/COM,/HP,/APOLLO, /COM/DEC".
<span class="grey">Kohl & Neuman [Page 30]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-31" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
Like the example above, if /COM/HP/APOLLO and /COM/DEC are endpoints,
they they would not be included in this field, and we would have:
"/COM,/HP"
A null subfield preceding or following a "," indicates that all
realms between the previous realm and the next realm have been
traversed (For the purpose of interpreting null subfields, the
client's realm is considered to precede those in the transited field,
and the server's realm is considered to follow them.). Thus, ","
means that all realms along the path between the client and the
server have been traversed. ",EDU, /COM," means that that all realms
from the client's realm up to EDU (in a domain style hierarchy) have
been traversed, and that everything from /COM down to the server's
realm in an X.500 style has also been traversed. This could occur if
the EDU realm in one hierarchy shares an inter-realm key directly
with the /COM realm in another hierarchy.
<span class="h4"><a class="selflink" id="section-3.3.4" href="#section-3.3.4">3.3.4</a>. Receipt of KRB_TGS_REP message</span>
When the KRB_TGS_REP is received by the client, it is processed in
the same manner as the KRB_AS_REP processing described above. The
primary difference is that the ciphertext part of the response must
be decrypted using the session key from the ticket-granting ticket
rather than the client's secret key. See section A.7 for pseudocode.
<span class="h3"><a class="selflink" id="section-3.4" href="#section-3.4">3.4</a>. The KRB_SAFE Exchange</span>
The KRB_SAFE message may be used by clients requiring the ability to
detect modifications of messages they exchange. It achieves this by
including a keyed collisionproof checksum of the user data and some
control information. The checksum is keyed with an encryption key
(usually the last key negotiated via subkeys, or the session key if
no negotiation has occured).
<span class="h4"><a class="selflink" id="section-3.4.1" href="#section-3.4.1">3.4.1</a>. Generation of a KRB_SAFE message</span>
When an application wishes to send a KRB_SAFE message, it collects
its data and the appropriate control information and computes a
checksum over them. The checksum algorithm should be some sort of
keyed one-way hash function (such as the RSA-MD5-DES checksum
algorithm specified in <a href="#section-6.4.5">section 6.4.5</a>, or the DES MAC), generated
using the sub-session key if present, or the session key. Different
algorithms may be selected by changing the checksum type in the
message. Unkeyed or non-collision-proof checksums are not suitable
for this use.
The control information for the KRB_SAFE message includes both a
<span class="grey">Kohl & Neuman [Page 31]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-32" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
timestamp and a sequence number. The designer of an application
using the KRB_SAFE message must choose at least one of the two
mechanisms. This choice should be based on the needs of the
application protocol.
Sequence numbers are useful when all messages sent will be received
by one's peer. Connection state is presently required to maintain
the session key, so maintaining the next sequence number should not
present an additional problem.
If the application protocol is expected to tolerate lost messages
without them being resent, the use of the timestamp is the
appropriate replay detection mechanism. Using timestamps is also the
appropriate mechanism for multi-cast protocols where all of one's
peers share a common sub-session key, but some messages will be sent
to a subset of one's peers.
After computing the checksum, the client then transmits the
information and checksum to the recipient in the message format
specified in <a href="#section-5.6.1">section 5.6.1</a>.
<span class="h4"><a class="selflink" id="section-3.4.2" href="#section-3.4.2">3.4.2</a>. Receipt of KRB_SAFE message</span>
When an application receives a KRB_SAFE message, it verifies it as
follows. If any error occurs, an error code is reported for use by
the application.
The message is first checked by verifying that the protocol version
and type fields match the current version and KRB_SAFE, respectively.
A mismatch generates a KRB_AP_ERR_BADVERSION or KRB_AP_ERR_MSG_TYPE
error. The application verifies that the checksum used is a
collisionproof keyed checksum, and if it is not, a
KRB_AP_ERR_INAPP_CKSUM error is generated. The recipient verifies
that the operating system's report of the sender's address matches
the sender's address in the message, and (if a recipient address is
specified or the recipient requires an address) that one of the
recipient's addresses appears as the recipient's address in the
message. A failed match for either case generates a
KRB_AP_ERR_BADADDR error. Then the timestamp and usec and/or the
sequence number fields are checked. If timestamp and usec are
expected and not present, or they are present but not current, the
KRB_AP_ERR_SKEW error is generated. If the server name, along with
the client name, time and microsecond fields from the Authenticator
match any recently-seen such tuples, the KRB_AP_ERR_REPEAT error is
generated. If an incorrect sequence number is included, or a
sequence number is expected but not present, the KRB_AP_ERR_BADORDER
error is generated. If neither a timestamp and usec or a sequence
number is present, a KRB_AP_ERR_MODIFIED error is generated.
<span class="grey">Kohl & Neuman [Page 32]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-33" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
Finally, the checksum is computed over the data and control
information, and if it doesn't match the received checksum, a
KRB_AP_ERR_MODIFIED error is generated.
If all the checks succeed, the application is assured that the
message was generated by its peer and was not modified in transit.
<span class="h3"><a class="selflink" id="section-3.5" href="#section-3.5">3.5</a>. The KRB_PRIV Exchange</span>
The KRB_PRIV message may be used by clients requiring confidentiality
and the ability to detect modifications of exchanged messages. It
achieves this by encrypting the messages and adding control
information.
<span class="h4"><a class="selflink" id="section-3.5.1" href="#section-3.5.1">3.5.1</a>. Generation of a KRB_PRIV message</span>
When an application wishes to send a KRB_PRIV message, it collects
its data and the appropriate control information (specified in
<a href="#section-5.7.1">section 5.7.1</a>) and encrypts them under an encryption key (usually the
last key negotiated via subkeys, or the session key if no negotiation
has occured). As part of the control information, the client must
choose to use either a timestamp or a sequence number (or both); see
the discussion in <a href="#section-3.4.1">section 3.4.1</a> for guidelines on which to use.
After the user data and control information are encrypted, the client
transmits the ciphertext and some "envelope" information to the
recipient.
<span class="h4"><a class="selflink" id="section-3.5.2" href="#section-3.5.2">3.5.2</a>. Receipt of KRB_PRIV message</span>
When an application receives a KRB_PRIV message, it verifies it as
follows. If any error occurs, an error code is reported for use by
the application.
The message is first checked by verifying that the protocol version
and type fields match the current version and KRB_PRIV, respectively.
A mismatch generates a KRB_AP_ERR_BADVERSION or KRB_AP_ERR_MSG_TYPE
error. The application then decrypts the ciphertext and processes
the resultant plaintext. If decryption shows the data to have been
modified, a KRB_AP_ERR_BAD_INTEGRITY error is generated. The
recipient verifies that the operating system's report of the sender's
address matches the sender's address in the message, and (if a
recipient address is specified or the recipient requires an address)
that one of the recipient's addresses appears as the recipient's
address in the message. A failed match for either case generates a
KRB_AP_ERR_BADADDR error. Then the timestamp and usec and/or the
sequence number fields are checked. If timestamp and usec are
expected and not present, or they are present but not current, the
KRB_AP_ERR_SKEW error is generated. If the server name, along with
<span class="grey">Kohl & Neuman [Page 33]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-34" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
the client name, time and microsecond fields from the Authenticator
match any recently-seen such tuples, the KRB_AP_ERR_REPEAT error is
generated. If an incorrect sequence number is included, or a
sequence number is expected but not present, the KRB_AP_ERR_BADORDER
error is generated. If neither a timestamp and usec or a sequence
number is present, a KRB_AP_ERR_MODIFIED error is generated.
If all the checks succeed, the application can assume the message was
generated by its peer, and was securely transmitted (without
intruders able to see the unencrypted contents).
<span class="h3"><a class="selflink" id="section-3.6" href="#section-3.6">3.6</a>. The KRB_CRED Exchange</span>
The KRB_CRED message may be used by clients requiring the ability to
send Kerberos credentials from one host to another. It achieves this
by sending the tickets together with encrypted data containing the
session keys and other information associated with the tickets.
<span class="h4"><a class="selflink" id="section-3.6.1" href="#section-3.6.1">3.6.1</a>. Generation of a KRB_CRED message</span>
When an application wishes to send a KRB_CRED message it first (using
the KRB_TGS exchange) obtains credentials to be sent to the remote
host. It then constructs a KRB_CRED message using the ticket or
tickets so obtained, placing the session key needed to use each
ticket in the key field of the corresponding KrbCredInfo sequence of
the encrypted part of the the KRB_CRED message.
Other information associated with each ticket and obtained during the
KRB_TGS exchange is also placed in the corresponding KrbCredInfo
sequence in the encrypted part of the KRB_CRED message. The current
time and, if specifically required by the application the nonce, s-
address, and raddress fields, are placed in the encrypted part of the
KRB_CRED message which is then encrypted under an encryption key
previosuly exchanged in the KRB_AP exchange (usually the last key
negotiated via subkeys, or the session key if no negotiation has
occured).
<span class="h4"><a class="selflink" id="section-3.6.2" href="#section-3.6.2">3.6.2</a>. Receipt of KRB_CRED message</span>
When an application receives a KRB_CRED message, it verifies it. If
any error occurs, an error code is reported for use by the
application. The message is verified by checking that the protocol
version and type fields match the current version and KRB_CRED,
respectively. A mismatch generates a KRB_AP_ERR_BADVERSION or
KRB_AP_ERR_MSG_TYPE error. The application then decrypts the
ciphertext and processes the resultant plaintext. If decryption shows
the data to have been modified, a KRB_AP_ERR_BAD_INTEGRITY error is
generated.
<span class="grey">Kohl & Neuman [Page 34]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-35" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
If present or required, the recipient verifies that the operating
system's report of the sender's address matches the sender's address
in the message, and that one of the recipient's addresses appears as
the recipient's address in the message. A failed match for either
case generates a KRB_AP_ERR_BADADDR error. The timestamp and usec
fields (and the nonce field if required) are checked next. If the
timestamp and usec are not present, or they are present but not
current, the KRB_AP_ERR_SKEW error is generated.
If all the checks succeed, the application stores each of the new
tickets in its ticket cache together with the session key and other
information in the corresponding KrbCredInfo sequence from the
encrypted part of the KRB_CRED message.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. The Kerberos Database</span>
The Kerberos server must have access to a database containing the
principal identifiers and secret keys of principals to be
authenticated (The implementation of the Kerberos server need not
combine the database and the server on the same machine; it is
feasible to store the principal database in, say, a network name
service, as long as the entries stored therein are protected from
disclosure to and modification by unauthorized parties. However, we
recommend against such strategies, as they can make system management
and threat analysis quite complex.).
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. Database contents</span>
A database entry should contain at least the following fields:
Field Value
name Principal's identifier
key Principal's secret key
p_kvno Principal's key version
max_life Maximum lifetime for Tickets
max_renewable_life Maximum total lifetime for renewable
Tickets
The name field is an encoding of the principal's identifier. The key
field contains an encryption key. This key is the principal's secret
key. (The key can be encrypted before storage under a Kerberos
"master key" to protect it in case the database is compromised but
the master key is not. In that case, an extra field must be added to
indicate the master key version used, see below.) The p_kvno field is
the key version number of the principal's secret key. The max_life
field contains the maximum allowable lifetime (endtime - starttime)
for any Ticket issued for this principal. The max_renewable_life
<span class="grey">Kohl & Neuman [Page 35]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-36" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
field contains the maximum allowable total lifetime for any renewable
Ticket issued for this principal. (See <a href="#section-3.1">section 3.1</a> for a description
of how these lifetimes are used in determining the lifetime of a
given Ticket.)
A server may provide KDC service to several realms, as long as the
database representation provides a mechanism to distinguish between
principal records with identifiers which differ only in the realm
name.
When an application server's key changes, if the change is routine
(i.e., not the result of disclosure of the old key), the old key
should be retained by the server until all tickets that had been
issued using that key have expired. Because of this, it is possible
for several keys to be active for a single principal. Ciphertext
encrypted in a principal's key is always tagged with the version of
the key that was used for encryption, to help the recipient find the
proper key for decryption.
When more than one key is active for a particular principal, the
principal will have more than one record in the Kerberos database.
The keys and key version numbers will differ between the records (the
rest of the fields may or may not be the same). Whenever Kerberos
issues a ticket, or responds to a request for initial authentication,
the most recent key (known by the Kerberos server) will be used for
encryption. This is the key with the highest key version number.
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. Additional fields</span>
Project Athena's KDC implementation uses additional fields in its
database:
Field Value
K_kvno Kerberos' key version
expiration Expiration date for entry
attributes Bit field of attributes
mod_date Timestamp of last modification
mod_name Modifying principal's identifier
The K_kvno field indicates the key version of the Kerberos master key
under which the principal's secret key is encrypted.
After an entry's expiration date has passed, the KDC will return an
error to any client attempting to gain tickets as or for the
principal. (A database may want to maintain two expiration dates:
one for the principal, and one for the principal's current key. This
allows password aging to work independently of the principal's
<span class="grey">Kohl & Neuman [Page 36]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-37" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
expiration date. However, due to the limited space in the responses,
the KDC must combine the key expiration and principal expiration date
into a single value called "key_exp", which is used as a hint to the
user to take administrative action.)
The attributes field is a bitfield used to govern the operations
involving the principal. This field might be useful in conjunction
with user registration procedures, for site-specific policy
implementations (Project Athena currently uses it for their user
registration process controlled by the system-wide database service,
Moira [<a href="#ref-7" title="W.">7</a>]), or to identify the "string to key" conversion algorithm
used for a principal's key. (See the discussion of the padata field
in <a href="#section-5.4.2">section 5.4.2</a> for details on why this can be useful.) Other bits
are used to indicate that certain ticket options should not be
allowed in tickets encrypted under a principal's key (one bit each):
Disallow issuing postdated tickets, disallow issuing forwardable
tickets, disallow issuing tickets based on TGT authentication,
disallow issuing renewable tickets, disallow issuing proxiable
tickets, and disallow issuing tickets for which the principal is the
server.
The mod_date field contains the time of last modification of the
entry, and the mod_name field contains the name of the principal
which last modified the entry.
<span class="h3"><a class="selflink" id="section-4.3" href="#section-4.3">4.3</a>. Frequently Changing Fields</span>
Some KDC implementations may wish to maintain the last time that a
request was made by a particular principal. Information that might
be maintained includes the time of the last request, the time of the
last request for a ticket-granting ticket, the time of the last use
of a ticket-granting ticket, or other times. This information can
then be returned to the user in the last-req field (see <a href="#section-5.2">section 5.2</a>).
Other frequently changing information that can be maintained is the
latest expiration time for any tickets that have been issued using
each key. This field would be used to indicate how long old keys
must remain valid to allow the continued use of outstanding tickets.
<span class="h3"><a class="selflink" id="section-4.4" href="#section-4.4">4.4</a>. Site Constants</span>
The KDC implementation should have the following configurable
constants or options, to allow an administrator to make and enforce
policy decisions:
+ The minimum supported lifetime (used to determine whether the
KDC_ERR_NEVER_VALID error should be returned). This constant
should reflect reasonable expectations of round-trip time to the
<span class="grey">Kohl & Neuman [Page 37]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-38" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
KDC, encryption/decryption time, and processing time by the client
and target server, and it should allow for a minimum "useful"
lifetime.
+ The maximum allowable total (renewable) lifetime of a ticket
(renew_till - starttime).
+ The maximum allowable lifetime of a ticket (endtime - starttime).
+ Whether to allow the issue of tickets with empty address fields
(including the ability to specify that such tickets may only be
issued if the request specifies some authorization_data).
+ Whether proxiable, forwardable, renewable or post-datable tickets
are to be issued.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Message Specifications</span>
The following sections describe the exact contents and encoding of
protocol messages and objects. The ASN.1 base definitions are
presented in the first subsection. The remaining subsections specify
the protocol objects (tickets and authenticators) and messages.
Specification of encryption and checksum techniques, and the fields
related to them, appear in <a href="#section-6">section 6</a>.
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. ASN.1 Distinguished Encoding Representation</span>
All uses of ASN.1 in Kerberos shall use the Distinguished Encoding
Representation of the data elements as described in the X.509
specification, <a href="#section-8.7">section 8.7</a> [<a href="#ref-8" title="Recommendation X.509: The Directory Authentication Framework">8</a>].
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. ASN.1 Base Definitions</span>
The following ASN.1 base definitions are used in the rest of this
section. Note that since the underscore character (_) is not
permitted in ASN.1 names, the hyphen (-) is used in its place for the
purposes of ASN.1 names.
Realm ::= GeneralString
PrincipalName ::= SEQUENCE {
name-type[0] INTEGER,
name-string[1] SEQUENCE OF GeneralString
}
Kerberos realms are encoded as GeneralStrings. Realms shall not
contain a character with the code 0 (the ASCII NUL). Most realms
will usually consist of several components separated by periods (.),
in the style of Internet Domain Names, or separated by slashes (/) in
<span class="grey">Kohl & Neuman [Page 38]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-39" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
the style of X.500 names. Acceptable forms for realm names are
specified in <a href="#section-7">section 7</a>. A PrincipalName is a typed sequence of
components consisting of the following sub-fields:
name-type This field specifies the type of name that follows.
Pre-defined values for this field are
specified in <a href="#section-7.2">section 7.2</a>. The name-type should be
treated as a hint. Ignoring the name type, no two
names can be the same (i.e., at least one of the
components, or the realm, must be different).
This constraint may be eliminated in the future.
name-string This field encodes a sequence of components that
form a name, each component encoded as a General
String. Taken together, a PrincipalName and a Realm
form a principal identifier. Most PrincipalNames
will have only a few components (typically one or two).
KerberosTime ::= GeneralizedTime
-- Specifying UTC time zone (Z)
The timestamps used in Kerberos are encoded as GeneralizedTimes. An
encoding shall specify the UTC time zone (Z) and shall not include
any fractional portions of the seconds. It further shall not include
any separators. Example: The only valid format for UTC time 6
minutes, 27 seconds after 9 pm on 6 November 1985 is 19851106210627Z.
HostAddress ::= SEQUENCE {
addr-type[0] INTEGER,
address[1] OCTET STRING
}
HostAddresses ::= SEQUENCE OF SEQUENCE {
addr-type[0] INTEGER,
address[1] OCTET STRING
}
The host adddress encodings consists of two fields:
addr-type This field specifies the type of address that
follows. Pre-defined values for this field are
specified in <a href="#section-8.1">section 8.1</a>.
address This field encodes a single address of type addr-type.
The two forms differ slightly. HostAddress contains exactly one
<span class="grey">Kohl & Neuman [Page 39]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-40" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
address; HostAddresses contains a sequence of possibly many
addresses.
AuthorizationData ::= SEQUENCE OF SEQUENCE {
ad-type[0] INTEGER,
ad-data[1] OCTET STRING
}
ad-data This field contains authorization data to be
interpreted according to the value of the
corresponding ad-type field.
ad-type This field specifies the format for the ad-data
subfield. All negative values are reserved for
local use. Non-negative values are reserved for
registered use.
APOptions ::= BIT STRING {
reserved(0),
use-session-key(1),
mutual-required(2)
}
TicketFlags ::= BIT STRING {
reserved(0),
forwardable(1),
forwarded(2),
proxiable(3),
proxy(4),
may-postdate(5),
postdated(6),
invalid(7),
renewable(8),
initial(9),
pre-authent(10),
hw-authent(11)
}
KDCOptions ::= BIT STRING {
reserved(0),
forwardable(1),
forwarded(2),
proxiable(3),
proxy(4),
allow-postdate(5),
postdated(6),
<span class="grey">Kohl & Neuman [Page 40]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-41" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
unused7(7),
renewable(8),
unused9(9),
unused10(10),
unused11(11),
renewable-ok(27),
enc-tkt-in-skey(28),
renew(30),
validate(31)
}
LastReq ::= SEQUENCE OF SEQUENCE {
lr-type[0] INTEGER,
lr-value[1] KerberosTime
}
lr-type This field indicates how the following lr-value
field is to be interpreted. Negative values indicate
that the information pertains only to the
responding server. Non-negative values pertain to
all servers for the realm.
If the lr-type field is zero (0), then no information
is conveyed by the lr-value subfield. If the
absolute value of the lr-type field is one (1),
then the lr-value subfield is the time of last
initial request for a TGT. If it is two (2), then
the lr-value subfield is the time of last initial
request. If it is three (3), then the lr-value
subfield is the time of issue for the newest
ticket-granting ticket used. If it is four (4),
then the lr-value subfield is the time of the last
renewal. If it is five (5), then the lr-value
subfield is the time of last request (of any
type).
lr-value This field contains the time of the last request.
The time must be interpreted according to the contents
of the accompanying lr-type subfield.
See <a href="#section-6">section 6</a> for the definitions of Checksum, ChecksumType,
EncryptedData, EncryptionKey, EncryptionType, and KeyType.
<span class="grey">Kohl & Neuman [Page 41]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-42" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
<span class="h3"><a class="selflink" id="section-5.3" href="#section-5.3">5.3</a>. Tickets and Authenticators</span>
This section describes the format and encryption parameters for
tickets and authenticators. When a ticket or authenticator is
included in a protocol message it is treated as an opaque object.
<span class="h4"><a class="selflink" id="section-5.3.1" href="#section-5.3.1">5.3.1</a>. Tickets</span>
A ticket is a record that helps a client authenticate to a service.
A Ticket contains the following information:
Ticket ::= [APPLICATION 1] SEQUENCE {
tkt-vno[0] INTEGER,
realm[1] Realm,
sname[2] PrincipalName,
enc-part[3] EncryptedData
}
-- Encrypted part of ticket
EncTicketPart ::= [APPLICATION 3] SEQUENCE {
flags[0] TicketFlags,
key[1] EncryptionKey,
crealm[2] Realm,
cname[3] PrincipalName,
transited[4] TransitedEncoding,
authtime[5] KerberosTime,
starttime[6] KerberosTime OPTIONAL,
endtime[7] KerberosTime,
renew-till[8] KerberosTime OPTIONAL,
caddr[9] HostAddresses OPTIONAL,
authorization-data[10] AuthorizationData OPTIONAL
}
-- encoded Transited field
TransitedEncoding ::= SEQUENCE {
tr-type[0] INTEGER, -- must be registered
contents[1] OCTET STRING
}
The encoding of EncTicketPart is encrypted in the key shared by
Kerberos and the end server (the server's secret key). See <a href="#section-6">section 6</a>
for the format of the ciphertext.
tkt-vno This field specifies the version number for the ticket
format. This document describes version number 5.
realm This field specifies the realm that issued a ticket. It
also serves to identify the realm part of the server's
principal identifier. Since a Kerberos server can only
issue tickets for servers within its realm, the two will
<span class="grey">Kohl & Neuman [Page 42]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-43" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
always be identical.
sname This field specifies the name part of the server's
identity.
enc-part This field holds the encrypted encoding of the
EncTicketPart sequence.
flags This field indicates which of various options were used or
requested when the ticket was issued. It is a bit-field,
where the selected options are indicated by the bit being
set (1), and the unselected options and reserved fields
being reset (0). Bit 0 is the most significant bit. The
encoding of the bits is specified in <a href="#section-5.2">section 5.2</a>. The
flags are described in more detail above in <a href="#section-2">section 2</a>. The
meanings of the flags are:
Bit(s) Name Description
0 RESERVED Reserved for future expansion of this
field.
1 FORWARDABLE The FORWARDABLE flag is normally only
interpreted by the TGS, and can be
ignored by end servers. When set,
this flag tells the ticket-granting
server that it is OK to issue a new
ticket- granting ticket with a
different network address based on
the presented ticket.
2 FORWARDED When set, this flag indicates that
the ticket has either been forwarded
or was issued based on authentication
involving a forwarded ticket-granting
ticket.
3 PROXIABLE The PROXIABLE flag is normally only
interpreted by the TGS, and can be
ignored by end servers. The PROXIABLE
flag has an interpretation identical
to that of the FORWARDABLE flag,
except that the PROXIABLE flag tells
the ticket-granting server that only
non- ticket-granting tickets may be
issued with different network
addresses.
<span class="grey">Kohl & Neuman [Page 43]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-44" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
4 PROXY When set, this flag indicates that a
ticket is a proxy.
5 MAY-POSTDATE The MAY-POSTDATE flag is normally
only interpreted by the TGS, and can
be ignored by end servers. This flag
tells the ticket-granting server that
a post- dated ticket may be issued
based on this ticket-granting ticket.
6 POSTDATED This flag indicates that this ticket
has been postdated. The end-service
can check the authtime field to see
when the original authentication
occurred.
7 INVALID This flag indicates that a ticket is
invalid, and it must be validated by
the KDC before use. Application
servers must reject tickets which
have this flag set.
8 RENEWABLE The RENEWABLE flag is normally only
interpreted by the TGS, and can
usually be ignored by end servers
(some particularly careful servers
may wish to disallow renewable
tickets). A renewable ticket can be
used to obtain a replacement ticket
that expires at a later date.
9 INITIAL This flag indicates that this ticket
was issued using the AS protocol, and
not issued based on a ticket-granting
ticket.
10 PRE-AUTHENT This flag indicates that during
initial authentication, the client
was authenticated by the KDC before a
ticket was issued. The strength of
the preauthentication method is not
indicated, but is acceptable to the
KDC.
11 HW-AUTHENT This flag indicates that the protocol
employed for initial authentication
required the use of hardware expected
to be possessed solely by the named
<span class="grey">Kohl & Neuman [Page 44]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-45" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
client. The hardware authentication
method is selected by the KDC and the
strength of the method is not
indicated.
12-31 RESERVED Reserved for future use.
key This field exists in the ticket and the KDC response and is
used to pass the session key from Kerberos to the
application server and the client. The field's encoding is
described in <a href="#section-6.2">section 6.2</a>.
crealm This field contains the name of the realm in which the
client is registered and in which initial authentication
took place.
cname This field contains the name part of the client's principal
identifier.
transited This field lists the names of the Kerberos realms that took
part in authenticating the user to whom this ticket was
issued. It does not specify the order in which the realms
were transited. See <a href="#section-3.3.3.1">section 3.3.3.1</a> for details on how
this field encodes the traversed realms.
authtime This field indicates the time of initial authentication for
the named principal. It is the time of issue for the
original ticket on which this ticket is based. It is
included in the ticket to provide additional information to
the end service, and to provide the necessary information
for implementation of a `hot list' service at the KDC. An
end service that is particularly paranoid could refuse to
accept tickets for which the initial authentication
occurred "too far" in the past.
This field is also returned as part of the response from
the KDC. When returned as part of the response to initial
authentication (KRB_AS_REP), this is the current time on
the Kerberos server (It is NOT recommended that this time
value be used to adjust the workstation's clock since the
workstation cannot reliably determine that such a
KRB_AS_REP actually came from the proper KDC in a timely
manner.).
starttime This field in the ticket specifies the time after which the
ticket is valid. Together with endtime, this field
specifies the life of the ticket. If it is absent from
the ticket, its value should be treated as that of the
<span class="grey">Kohl & Neuman [Page 45]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-46" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
authtime field.
endtime This field contains the time after which the ticket will
not be honored (its expiration time). Note that individual
services may place their own limits on the life of a ticket
and may reject tickets which have not yet expired. As
such, this is really an upper bound on the expiration time
for the ticket.
renew-till This field is only present in tickets that have the
RENEWABLE flag set in the flags field. It indicates the
maximum endtime that may be included in a renewal. It can
be thought of as the absolute expiration time for the
ticket, including all renewals.
caddr This field in a ticket contains zero (if omitted) or more
(if present) host addresses. These are the addresses from
which the ticket can be used. If there are no addresses,
the ticket can be used from any location. The decision
by the KDC to issue or by the end server to accept zero-
address tickets is a policy decision and is left to the
Kerberos and end-service administrators; they may refuse to
issue or accept such tickets. The suggested and default
policy, however, is that such tickets will only be issued
or accepted when additional information that can be used to
restrict the use of the ticket is included in the
authorization_data field. Such a ticket is a capability.
Network addresses are included in the ticket to make it
harder for an attacker to use stolen credentials. Because
the session key is not sent over the network in cleartext,
credentials can't be stolen simply by listening to the
network; an attacker has to gain access to the session key
(perhaps through operating system security breaches or a
careless user's unattended session) to make use of stolen
tickets.
It is important to note that the network address from which
a connection is received cannot be reliably determined.
Even if it could be, an attacker who has compromised the
client's workstation could use the credentials from there.
Including the network addresses only makes it more
difficult, not impossible, for an attacker to walk off with
stolen credentials and then use them from a "safe"
location.
<span class="grey">Kohl & Neuman [Page 46]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-47" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
authorization-data The authorization-data field is used to pass
authorization data from the principal on whose behalf a
ticket was issued to the application service. If no
authorization data is included, this field will be left
out. The data in this field are specific to the end
service. It is expected that the field will contain the
names of service specific objects, and the rights to those
objects. The format for this field is described in <a href="#section-5.2">section</a>
<a href="#section-5.2">5.2</a>. Although Kerberos is not concerned with the format of
the contents of the subfields, it does carry type
information (ad-type).
By using the authorization_data field, a principal is able
to issue a proxy that is valid for a specific purpose. For
example, a client wishing to print a file can obtain a file
server proxy to be passed to the print server. By
specifying the name of the file in the authorization_data
field, the file server knows that the print server can only
use the client's rights when accessing the particular file
to be printed.
It is interesting to note that if one specifies the
authorization-data field of a proxy and leaves the host
addresses blank, the resulting ticket and session key can
be treated as a capability. See [<a href="#ref-9" title=""Proxy-Based Authorization and Accounting for Distributed Systems,"">9</a>] for some suggested
uses of this field.
The authorization-data field is optional and does not have
to be included in a ticket.
<span class="h4"><a class="selflink" id="section-5.3.2" href="#section-5.3.2">5.3.2</a>. Authenticators</span>
An authenticator is a record sent with a ticket to a server to
certify the client's knowledge of the encryption key in the ticket,
to help the server detect replays, and to help choose a "true session
key" to use with the particular session. The encoding is encrypted
in the ticket's session key shared by the client and the server:
-- Unencrypted authenticator
Authenticator ::= [APPLICATION 2] SEQUENCE {
authenticator-vno[0] INTEGER,
crealm[1] Realm,
cname[2] PrincipalName,
cksum[3] Checksum OPTIONAL,
cusec[4] INTEGER,
ctime[5] KerberosTime,
subkey[6] EncryptionKey OPTIONAL,
seq-number[7] INTEGER OPTIONAL,
<span class="grey">Kohl & Neuman [Page 47]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-48" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
authorization-data[8] AuthorizationData OPTIONAL
}
authenticator-vno This field specifies the version number for the
format of the authenticator. This document specifies
version 5.
crealm and cname These fields are the same as those described for the
ticket in <a href="#section-5.3.1">section 5.3.1</a>.
cksum This field contains a checksum of the the application data
that accompanies the KRB_AP_REQ.
cusec This field contains the microsecond part of the client's
timestamp. Its value (before encryption) ranges from 0 to
999999. It often appears along with ctime. The two fields
are used together to specify a reasonably accurate
timestamp.
ctime This field contains the current time on the client's host.
subkey This field contains the client's choice for an encryption
key which is to be used to protect this specific
application session. Unless an application specifies
otherwise, if this field is left out the session key from
the ticket will be used.
seq-number This optional field includes the initial sequence number
to be used by the KRB_PRIV or KRB_SAFE messages when
sequence numbers are used to detect replays (It may also be
used by application specific messages). When included in
the authenticator this field specifies the initial sequence
number for messages from the client to the server. When
included in the AP-REP message, the initial sequence number
is that for messages from the server to the client. When
used in KRB_PRIV or KRB_SAFE messages, it is incremented by
one after each message is sent.
For sequence numbers to adequately support the detection of
replays they should be non-repeating, even across
connection boundaries. The initial sequence number should
be random and uniformly distributed across the full space
of possible sequence numbers, so that it cannot be guessed
by an attacker and so that it and the successive sequence
numbers do not repeat other sequences.
<span class="grey">Kohl & Neuman [Page 48]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-49" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
authorization-data This field is the same as described for the ticket
in <a href="#section-5.3.1">section 5.3.1</a>. It is optional and will only appear when
additional restrictions are to be placed on the use of a
ticket, beyond those carried in the ticket itself.
<span class="h3"><a class="selflink" id="section-5.4" href="#section-5.4">5.4</a>. Specifications for the AS and TGS exchanges</span>
This section specifies the format of the messages used in exchange
between the client and the Kerberos server. The format of possible
error messages appears in <a href="#section-5.9.1">section 5.9.1</a>.
<span class="h4"><a class="selflink" id="section-5.4.1" href="#section-5.4.1">5.4.1</a>. KRB_KDC_REQ definition</span>
The KRB_KDC_REQ message has no type of its own. Instead, its type is
one of KRB_AS_REQ or KRB_TGS_REQ depending on whether the request is
for an initial ticket or an additional ticket. In either case, the
message is sent from the client to the Authentication Server to
request credentials for a service.
The message fields are:
AS-REQ ::= [APPLICATION 10] KDC-REQ
TGS-REQ ::= [APPLICATION 12] KDC-REQ
KDC-REQ ::= SEQUENCE {
pvno[1] INTEGER,
msg-type[2] INTEGER,
padata[3] SEQUENCE OF PA-DATA OPTIONAL,
req-body[4] KDC-REQ-BODY
}
PA-DATA ::= SEQUENCE {
padata-type[1] INTEGER,
padata-value[2] OCTET STRING,
-- might be encoded AP-REQ
}
KDC-REQ-BODY ::= SEQUENCE {
kdc-options[0] KDCOptions,
cname[1] PrincipalName OPTIONAL,
-- Used only in AS-REQ
realm[2] Realm, -- Server's realm
-- Also client's in AS-REQ
sname[3] PrincipalName OPTIONAL,
from[4] KerberosTime OPTIONAL,
till[5] KerberosTime,
rtime[6] KerberosTime OPTIONAL,
nonce[7] INTEGER,
<span class="grey">Kohl & Neuman [Page 49]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-50" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
etype[8] SEQUENCE OF INTEGER, -- EncryptionType,
-- in preference order
addresses[9] HostAddresses OPTIONAL,
enc-authorization-data[10] EncryptedData OPTIONAL,
-- Encrypted AuthorizationData encoding
additional-tickets[11] SEQUENCE OF Ticket OPTIONAL
}
The fields in this message are:
pvno This field is included in each message, and specifies the
protocol version number. This document specifies protocol
version 5.
msg-type This field indicates the type of a protocol message. It
will almost always be the same as the application
identifier associated with a message. It is included to
make the identifier more readily accessible to the
application. For the KDC-REQ message, this type will be
KRB_AS_REQ or KRB_TGS_REQ.
padata The padata (pre-authentication data) field contains a of
authentication information which may be needed before
credentials can be issued or decrypted. In the case of
requests for additional tickets (KRB_TGS_REQ), this field
will include an element with padata-type of PA-TGS-REQ and
data of an authentication header (ticket-granting ticket
and authenticator). The checksum in the authenticator
(which must be collisionproof) is to be computed over the
KDC-REQ-BODY encoding. In most requests for initial
authentication (KRB_AS_REQ) and most replies (KDC-REP), the
padata field will be left out.
This field may also contain information needed by certain
extensions to the Kerberos protocol. For example, it might
be used to initially verify the identity of a client before
any response is returned. This is accomplished with a
padata field with padata-type equal to PA-ENC-TIMESTAMP and
padata-value defined as follows:
padata-type ::= PA-ENC-TIMESTAMP
padata-value ::= EncryptedData -- PA-ENC-TS-ENC
PA-ENC-TS-ENC ::= SEQUENCE {
patimestamp[0] KerberosTime, -- client's time
pausec[1] INTEGER OPTIONAL
}
<span class="grey">Kohl & Neuman [Page 50]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-51" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
with patimestamp containing the client's time and pausec
containing the microseconds which may be omitted if a
client will not generate more than one request per second.
The ciphertext (padata-value) consists of the PA-ENC-TS-ENC
sequence, encrypted using the client's secret key.
The padata field can also contain information needed to
help the KDC or the client select the key needed for
generating or decrypting the response. This form of the
padata is useful for supporting the use of certain
"smartcards" with Kerberos. The details of such extensions
are beyond the scope of this specification. See [<a href="#ref-10" title=""Using Pre-Authentication to Avoid Password Guessing Attacks"">10</a>] for
additional uses of this field.
padata-type The padata-type element of the padata field indicates the
way that the padata-value element is to be interpreted.
Negative values of padata-type are reserved for
unregistered use; non-negative values are used for a
registered interpretation of the element type.
req-body This field is a placeholder delimiting the extent of the
remaining fields. If a checksum is to be calculated over
the request, it is calculated over an encoding of the KDC-
REQ-BODY sequence which is enclosed within the req-body
field.
kdc-options This field appears in the KRB_AS_REQ and KRB_TGS_REQ
requests to the KDC and indicates the flags that the client
wants set on the tickets as well as other information that
is to modify the behavior of the KDC. Where appropriate,
the name of an option may be the same as the flag that is
set by that option. Although in most case, the bit in the
options field will be the same as that in the flags field,
this is not guaranteed, so it is not acceptable to simply
copy the options field to the flags field. There are
various checks that must be made before honoring an option
anyway.
The kdc_options field is a bit-field, where the selected
options are indicated by the bit being set (1), and the
unselected options and reserved fields being reset (0).
The encoding of the bits is specified in <a href="#section-5.2">section 5.2</a>. The
options are described in more detail above in <a href="#section-2">section 2</a>.
The meanings of the options are:
<span class="grey">Kohl & Neuman [Page 51]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-52" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
Bit(s) Name Description
0 RESERVED Reserved for future expansion of this
field.
1 FORWARDABLE The FORWARDABLE option indicates that
the ticket to be issued is to have its
forwardable flag set. It may only be
set on the initial request, or in a
subsequent request if the ticket-
granting ticket on which it is based
is also forwardable.
2 FORWARDED The FORWARDED option is only specified
in a request to the ticket-granting
server and will only be honored if the
ticket-granting ticket in the request
has its FORWARDABLE bit set. This
option indicates that this is a
request for forwarding. The
address(es) of the host from which the
resulting ticket is to be valid are
included in the addresses field of the
request.
3 PROXIABLE The PROXIABLE option indicates that
the ticket to be issued is to have its
proxiable flag set. It may only be set
on the initial request, or in a
subsequent request if the ticket-
granting ticket on which it is based
is also proxiable.
4 PROXY The PROXY option indicates that this
is a request for a proxy. This option
will only be honored if the ticket-
granting ticket in the request has its
PROXIABLE bit set. The address(es) of
the host from which the resulting
ticket is to be valid are included in
the addresses field of the request.
5 ALLOW-POSTDATE The ALLOW-POSTDATE option indicates
that the ticket to be issued is to
have its MAY-POSTDATE flag set. It
may only be set on the initial
request, or in a subsequent request if
<span class="grey">Kohl & Neuman [Page 52]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-53" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
the ticket-granting ticket on which it
is based also has its MAY-POSTDATE
flag set.
6 POSTDATED The POSTDATED option indicates that
this is a request for a postdated
ticket. This option will only be
honored if the ticket-granting ticket
on which it is based has its MAY-
POSTDATE flag set. The resulting
ticket will also have its INVALID flag
set, and that flag may be reset by a
subsequent request to the KDC after
the starttime in the ticket has been
reached.
7 UNUSED This option is presently unused.
8 RENEWABLE The RENEWABLE option indicates that
the ticket to be issued is to have its
RENEWABLE flag set. It may only be
set on the initial request, or when
the ticket-granting ticket on which
the request is based is also
renewable. If this option is
requested, then the rtime field in the
request contains the desired absolute
expiration time for the ticket.
9-26 RESERVED Reserved for future use.
27 RENEWABLE-OK The RENEWABLE-OK option indicates that
a renewable ticket will be acceptable
if a ticket with the requested life
cannot otherwise be provided. If a
ticket with the requested life cannot
be provided, then a renewable ticket
may be issued with a renew-till equal
to the the requested endtime. The
value of the renew-till field may
still be limited by local limits, or
limits selected by the individual
principal or server.
28 ENC-TKT-IN-SKEY This option is used only by the
ticket-granting service. The ENC-
TKT-IN-SKEY option indicates that the
ticket for the end server is to be
<span class="grey">Kohl & Neuman [Page 53]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-54" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
encrypted in the session key from the
additional ticket-granting ticket
provided.
29 RESERVED Reserved for future use.
30 RENEW This option is used only by the
ticket-granting service. The RENEW
option indicates that the present
request is for a renewal. The ticket
provided is encrypted in the secret
key for the server on which it is
valid. This option will only be
honored if the ticket to be renewed
has its RENEWABLE flag set and if the
time in its renew till field has not
passed. The ticket to be renewed is
passed in the padata field as part of
the authentication header.
31 VALIDATE This option is used only by the
ticket-granting service. The VALIDATE
option indicates that the request is
to validate a postdated ticket. It
will only be honored if the ticket
presented is postdated, presently has
its INVALID flag set, and would be
otherwise usable at this time. A
ticket cannot be validated before its
starttime. The ticket presented for
validation is encrypted in the key of
the server for which it is valid and
is passed in the padata field as part
of the authentication header.
cname and sname These fields are the same as those described for the
ticket in <a href="#section-5.3.1">section 5.3.1</a>. sname may only be absent when the
ENC-TKT-IN-SKEY option is specified. If absent, the name
of the server is taken from the name of the client in the
ticket passed as additional-tickets.
enc-authorization-data The enc-authorization-data, if present (and it
can only be present in the TGS_REQ form), is an encoding of
the desired authorization-data encrypted under the sub-
session key if present in the Authenticator, or
alternatively from the session key in the ticket-granting
ticket, both from the padata field in the KRB_AP_REQ.
<span class="grey">Kohl & Neuman [Page 54]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-55" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
realm This field specifies the realm part of the server's
principal identifier. In the AS exchange, this is also the
realm part of the client's principal identifier.
from This field is included in the KRB_AS_REQ and KRB_TGS_REQ
ticket requests when the requested ticket is to be
postdated. It specifies the desired start time for the
requested ticket.
till This field contains the expiration date requested by the
client in a ticket request.
rtime This field is the requested renew-till time sent from a
client to the KDC in a ticket request. It is optional.
nonce This field is part of the KDC request and response. It it
intended to hold a random number generated by the client.
If the same number is included in the encrypted response
from the KDC, it provides evidence that the response is
fresh and has not been replayed by an attacker. Nonces
must never be re-used. Ideally, it should be gen erated
randomly, but if the correct time is known, it may suffice
(Note, however, that if the time is used as the nonce, one
must make sure that the workstation time is monotonically
increasing. If the time is ever reset backwards, there is
a small, but finite, probability that a nonce will be
reused.).
etype This field specifies the desired encryption algorithm to be
used in the response.
addresses This field is included in the initial request for tickets,
and optionally included in requests for additional tickets
from the ticket-granting server. It specifies the
addresses from which the requested ticket is to be valid.
Normally it includes the addresses for the client's host.
If a proxy is requested, this field will contain other
addresses. The contents of this field are usually copied
by the KDC into the caddr field of the resulting ticket.
additional-tickets Additional tickets may be optionally included in a
request to the ticket-granting server. If the ENC-TKT-IN-
SKEY option has been specified, then the session key from
the additional ticket will be used in place of the server's
key to encrypt the new ticket. If more than one option
which requires additional tickets has been specified, then
the additional tickets are used in the order specified by
the ordering of the options bits (see kdc-options, above).
<span class="grey">Kohl & Neuman [Page 55]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-56" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
The application code will be either ten (10) or twelve (12) depending
on whether the request is for an initial ticket (AS-REQ) or for an
additional ticket (TGS-REQ).
The optional fields (addresses, authorization-data and additional-
tickets) are only included if necessary to perform the operation
specified in the kdc-options field.
It should be noted that in KRB_TGS_REQ, the protocol version number
appears twice and two different message types appear: the KRB_TGS_REQ
message contains these fields as does the authentication header
(KRB_AP_REQ) that is passed in the padata field.
<span class="h4"><a class="selflink" id="section-5.4.2" href="#section-5.4.2">5.4.2</a>. KRB_KDC_REP definition</span>
The KRB_KDC_REP message format is used for the reply from the KDC for
either an initial (AS) request or a subsequent (TGS) request. There
is no message type for KRB_KDC_REP. Instead, the type will be either
KRB_AS_REP or KRB_TGS_REP. The key used to encrypt the ciphertext
part of the reply depends on the message type. For KRB_AS_REP, the
ciphertext is encrypted in the client's secret key, and the client's
key version number is included in the key version number for the
encrypted data. For KRB_TGS_REP, the ciphertext is encrypted in the
sub-session key from the Authenticator, or if absent, the session key
from the ticket-granting ticket used in the request. In that case,
no version number will be present in the EncryptedData sequence.
The KRB_KDC_REP message contains the following fields:
AS-REP ::= [APPLICATION 11] KDC-REP
TGS-REP ::= [APPLICATION 13] KDC-REP
KDC-REP ::= SEQUENCE {
pvno[0] INTEGER,
msg-type[1] INTEGER,
padata[2] SEQUENCE OF PA-DATA OPTIONAL,
crealm[3] Realm,
cname[4] PrincipalName,
ticket[5] Ticket,
enc-part[6] EncryptedData
}
EncASRepPart ::= [APPLICATION 25[25]] EncKDCRepPart
EncTGSRepPart ::= [APPLICATION 26] EncKDCRepPart
EncKDCRepPart ::= SEQUENCE {
key[0] EncryptionKey,
last-req[1] LastReq,
<span class="grey">Kohl & Neuman [Page 56]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-57" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
nonce[2] INTEGER,
key-expiration[3] KerberosTime OPTIONAL,
flags[4] TicketFlags,
authtime[5] KerberosTime,
starttime[6] KerberosTime OPTIONAL,
endtime[7] KerberosTime,
renew-till[8] KerberosTime OPTIONAL,
srealm[9] Realm,
sname[10] PrincipalName,
caddr[11] HostAddresses OPTIONAL
}
NOTE: In EncASRepPart, the application code in the encrypted
part of a message provides an additional check that
the message was decrypted properly.
pvno and msg-type These fields are described above in <a href="#section-5.4.1">section 5.4.1</a>.
msg-type is either KRB_AS_REP or KRB_TGS_REP.
padata This field is described in detail in <a href="#section-5.4.1">section 5.4.1</a>. One
possible use for this field is to encode an alternate
"mix-in" string to be used with a string-to-key algorithm
(such as is described in <a href="#section-6.3.2">section 6.3.2</a>). This ability is
useful to ease transitions if a realm name needs to change
(e.g., when a company is acquired); in such a case all
existing password-derived entries in the KDC database would
be flagged as needing a special mix-in string until the
next password change.
crealm, cname, srealm and sname These fields are the same as those
described for the ticket in <a href="#section-5.3.1">section 5.3.1</a>.
ticket The newly-issued ticket, from <a href="#section-5.3.1">section 5.3.1</a>.
enc-part This field is a place holder for the ciphertext and related
information that forms the encrypted part of a message.
The description of the encrypted part of the message
follows each appearance of this field. The encrypted part
is encoded as described in <a href="#section-6.1">section 6.1</a>.
key This field is the same as described for the ticket in
<a href="#section-5.3.1">section 5.3.1</a>.
last-req This field is returned by the KDC and specifies the time(s)
of the last request by a principal. Depending on what
information is available, this might be the last time that
a request for a ticket-granting ticket was made, or the
last time that a request based on a ticket-granting ticket
<span class="grey">Kohl & Neuman [Page 57]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-58" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
was successful. It also might cover all servers for a
realm, or just the particular server. Some implementations
may display this information to the user to aid in
discovering unauthorized use of one's identity. It is
similar in spirit to the last login time displayed when
logging into timesharing systems.
nonce This field is described above in <a href="#section-5.4.1">section 5.4.1</a>.
key-expiration The key-expiration field is part of the response from
the KDC and specifies the time that the client's secret key
is due to expire. The expiration might be the result of
password aging or an account expiration. This field will
usually be left out of the TGS reply since the response to
the TGS request is encrypted in a session key and no client
information need be retrieved from the KDC database. It is
up to the application client (usually the login program) to
take appropriate action (such as notifying the user) if the
expira tion time is imminent.
flags, authtime, starttime, endtime, renew-till and caddr These
fields are duplicates of those found in the encrypted
portion of the attached ticket (see <a href="#section-5.3.1">section 5.3.1</a>),
provided so the client may verify they match the intended
request and to assist in proper ticket caching. If the
message is of type KRB_TGS_REP, the caddr field will only
be filled in if the request was for a proxy or forwarded
ticket, or if the user is substituting a subset of the
addresses from the ticket granting ticket. If the client-
requested addresses are not present or not used, then the
addresses contained in the ticket will be the same as those
included in the ticket-granting ticket.
<span class="h3"><a class="selflink" id="section-5.5" href="#section-5.5">5.5</a>. Client/Server (CS) message specifications</span>
This section specifies the format of the messages used for the
authentication of the client to the application server.
<span class="h4"><a class="selflink" id="section-5.5.1" href="#section-5.5.1">5.5.1</a>. KRB_AP_REQ definition</span>
The KRB_AP_REQ message contains the Kerberos protocol version number,
the message type KRB_AP_REQ, an options field to indicate any options
in use, and the ticket and authenticator themselves. The KRB_AP_REQ
message is often referred to as the "authentication header".
AP-REQ ::= [APPLICATION 14] SEQUENCE {
pvno[0] INTEGER,
msg-type[1] INTEGER,
<span class="grey">Kohl & Neuman [Page 58]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-59" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
ap-options[2] APOptions,
ticket[3] Ticket,
authenticator[4] EncryptedData
}
APOptions ::= BIT STRING {
reserved(0),
use-session-key(1),
mutual-required(2)
}
pvno and msg-type These fields are described above in <a href="#section-5.4.1">section 5.4.1</a>.
msg-type is KRB_AP_REQ.
ap-options This field appears in the application request (KRB_AP_REQ)
and affects the way the request is processed. It is a
bit-field, where the selected options are indicated by the
bit being set (1), and the unselected options and reserved
fields being reset (0). The encoding of the bits is
specified in <a href="#section-5.2">section 5.2</a>. The meanings of the options are:
Bit(s) Name Description
0 RESERVED Reserved for future expansion of
this field.
1 USE-SESSION-KEYThe USE-SESSION-KEY option indicates
that the ticket the client is
presenting to a server is encrypted in
the session key from the server's
ticket-granting ticket. When this
option is not specified, the ticket is
encrypted in the server's secret key.
2 MUTUAL-REQUIREDThe MUTUAL-REQUIRED option tells the
server that the client requires mutual
authentication, and that it must
respond with a KRB_AP_REP message.
3-31 RESERVED Reserved for future use.
ticket This field is a ticket authenticating the client to the
server.
authenticator This contains the authenticator, which includes the
client's choice of a subkey. Its encoding is described in
<a href="#section-5.3.2">section 5.3.2</a>.
<span class="grey">Kohl & Neuman [Page 59]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-60" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
<span class="h4"><a class="selflink" id="section-5.5.2" href="#section-5.5.2">5.5.2</a>. KRB_AP_REP definition</span>
The KRB_AP_REP message contains the Kerberos protocol version number,
the message type, and an encrypted timestamp. The message is sent in
in response to an application request (KRB_AP_REQ) where the mutual
authentication option has been selected in the ap-options field.
AP-REP ::= [APPLICATION 15] SEQUENCE {
pvno[0] INTEGER,
msg-type[1] INTEGER,
enc-part[2] EncryptedData
}
EncAPRepPart ::= [APPLICATION 27] SEQUENCE {
ctime[0] KerberosTime,
cusec[1] INTEGER,
subkey[2] EncryptionKey OPTIONAL,
seq-number[3] INTEGER OPTIONAL
}
NOTE: in EncAPRepPart, the application code in the encrypted part of
a message provides an additional check that the message was decrypted
properly.
The encoded EncAPRepPart is encrypted in the shared session key of
the ticket. The optional subkey field can be used in an
application-arranged negotiation to choose a per association session
key.
pvno and msg-type These fields are described above in <a href="#section-5.4.1">section 5.4.1</a>.
msg-type is KRB_AP_REP.
enc-part This field is described above in <a href="#section-5.4.2">section 5.4.2</a>.
ctime This field contains the current time on the client's host.
cusec This field contains the microsecond part of the client's
timestamp.
subkey This field contains an encryption key which is to be used
to protect this specific application session. See <a href="#section-3.2.6">section</a>
<a href="#section-3.2.6">3.2.6</a> for specifics on how this field is used to negotiate
a key. Unless an application specifies otherwise, if this
field is left out, the sub-session key from the
authenticator, or if also left out, the session key from
the ticket will be used.
<span class="grey">Kohl & Neuman [Page 60]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-61" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
<span class="h4"><a class="selflink" id="section-5.5.3" href="#section-5.5.3">5.5.3</a>. Error message reply</span>
If an error occurs while processing the application request, the
KRB_ERROR message will be sent in response. See <a href="#section-5.9.1">section 5.9.1</a> for
the format of the error message. The cname and crealm fields may be
left out if the server cannot determine their appropriate values from
the corresponding KRB_AP_REQ message. If the authenticator was
decipherable, the ctime and cusec fields will contain the values from
it.
<span class="h3"><a class="selflink" id="section-5.6" href="#section-5.6">5.6</a>. KRB_SAFE message specification</span>
This section specifies the format of a message that can be used by
either side (client or server) of an application to send a tamper-
proof message to its peer. It presumes that a session key has
previously been exchanged (for example, by using the
KRB_AP_REQ/KRB_AP_REP messages).
<span class="h4"><a class="selflink" id="section-5.6.1" href="#section-5.6.1">5.6.1</a>. KRB_SAFE definition</span>
The KRB_SAFE message contains user data along with a collision-proof
checksum keyed with the session key. The message fields are:
KRB-SAFE ::= [APPLICATION 20] SEQUENCE {
pvno[0] INTEGER,
msg-type[1] INTEGER,
safe-body[2] KRB-SAFE-BODY,
cksum[3] Checksum
}
KRB-SAFE-BODY ::= SEQUENCE {
user-data[0] OCTET STRING,
timestamp[1] KerberosTime OPTIONAL,
usec[2] INTEGER OPTIONAL,
seq-number[3] INTEGER OPTIONAL,
s-address[4] HostAddress,
r-address[5] HostAddress OPTIONAL
}
pvno and msg-type These fields are described above in <a href="#section-5.4.1">section 5.4.1</a>.
msg-type is KRB_SAFE.
safe-body This field is a placeholder for the body of the KRB-SAFE
message. It is to be encoded separately and then have the
checksum computed over it, for use in the cksum field.
cksum This field contains the checksum of the application data.
Checksum details are described in <a href="#section-6.4">section 6.4</a>. The
<span class="grey">Kohl & Neuman [Page 61]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-62" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
checksum is computed over the encoding of the KRB-SAFE-BODY
sequence.
user-data This field is part of the KRB_SAFE and KRB_PRIV messages
and contain the application specific data that is being
passed from the sender to the recipient.
timestamp This field is part of the KRB_SAFE and KRB_PRIV messages.
Its contents are the current time as known by the sender of
the message. By checking the timestamp, the recipient of
the message is able to make sure that it was recently
generated, and is not a replay.
usec This field is part of the KRB_SAFE and KRB_PRIV headers.
It contains the microsecond part of the timestamp.
seq-number This field is described above in <a href="#section-5.3.2">section 5.3.2</a>.
s-address This field specifies the address in use by the sender of
the message.
r-address This field specifies the address in use by the recipient of
the message. It may be omitted for some uses (such as
broadcast protocols), but the recipient may arbitrarily
reject such messages. This field along with s-address can
be used to help detect messages which have been incorrectly
or maliciously delivered to the wrong recipient.
<span class="h3"><a class="selflink" id="section-5.7" href="#section-5.7">5.7</a>. KRB_PRIV message specification</span>
This section specifies the format of a message that can be used by
either side (client or server) of an application to securely and
privately send a message to its peer. It presumes that a session key
has previously been exchanged (for example, by using the
KRB_AP_REQ/KRB_AP_REP messages).
<span class="h4"><a class="selflink" id="section-5.7.1" href="#section-5.7.1">5.7.1</a>. KRB_PRIV definition</span>
The KRB_PRIV message contains user data encrypted in the Session Key.
The message fields are:
KRB-PRIV ::= [APPLICATION 21] SEQUENCE {
pvno[0] INTEGER,
msg-type[1] INTEGER,
enc-part[3] EncryptedData
}
<span class="grey">Kohl & Neuman [Page 62]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-63" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
EncKrbPrivPart ::= [APPLICATION 28] SEQUENCE {
user-data[0] OCTET STRING,
timestamp[1] KerberosTime OPTIONAL,
usec[2] INTEGER OPTIONAL,
seq-number[3] INTEGER OPTIONAL,
s-address[4] HostAddress, -- sender's addr
r-address[5] HostAddress OPTIONAL
-- recip's addr
}
NOTE: In EncKrbPrivPart, the application code in the encrypted part
of a message provides an additional check that the message was
decrypted properly.
pvno and msg-type These fields are described above in <a href="#section-5.4.1">section 5.4.1</a>.
msg-type is KRB_PRIV.
enc-part This field holds an encoding of the EncKrbPrivPart sequence
encrypted under the session key (If supported by the
encryption method in use, an initialization vector may be
passed to the encryption procedure, in order to achieve
proper cipher chaining. The initialization vector might
come from the last block of the ciphertext from the
previous KRB_PRIV message, but it is the application's
choice whether or not to use such an initialization vector.
If left out, the default initialization vector for the
encryption algorithm will be used.). This encrypted
encoding is used for the enc-part field of the KRB-PRIV
message. See <a href="#section-6">section 6</a> for the format of the ciphertext.
user-data, timestamp, usec, s-address and r-address These fields are
described above in <a href="#section-5.6.1">section 5.6.1</a>.
seq-number This field is described above in <a href="#section-5.3.2">section 5.3.2</a>.
<span class="h3"><a class="selflink" id="section-5.8" href="#section-5.8">5.8</a>. KRB_CRED message specification</span>
This section specifies the format of a message that can be used to
send Kerberos credentials from one principal to another. It is
presented here to encourage a common mechanism to be used by
applications when forwarding tickets or providing proxies to
subordinate servers. It presumes that a session key has already been
exchanged perhaps by using the KRB_AP_REQ/KRB_AP_REP messages.
<span class="h4"><a class="selflink" id="section-5.8.1" href="#section-5.8.1">5.8.1</a>. KRB_CRED definition</span>
The KRB_CRED message contains a sequence of tickets to be sent and
information needed to use the tickets, including the session key from
<span class="grey">Kohl & Neuman [Page 63]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-64" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
each. The information needed to use the tickets is encryped under an
encryption key previously exchanged. The message fields are:
KRB-CRED ::= [APPLICATION 22] SEQUENCE {
pvno[0] INTEGER,
msg-type[1] INTEGER, -- KRB_CRED
tickets[2] SEQUENCE OF Ticket,
enc-part[3] EncryptedData
}
EncKrbCredPart ::= [APPLICATION 29] SEQUENCE {
ticket-info[0] SEQUENCE OF KrbCredInfo,
nonce[1] INTEGER OPTIONAL,
timestamp[2] KerberosTime OPTIONAL,
usec[3] INTEGER OPTIONAL,
s-address[4] HostAddress OPTIONAL,
r-address[5] HostAddress OPTIONAL
}
KrbCredInfo ::= SEQUENCE {
key[0] EncryptionKey,
prealm[1] Realm OPTIONAL,
pname[2] PrincipalName OPTIONAL,
flags[3] TicketFlags OPTIONAL,
authtime[4] KerberosTime OPTIONAL,
starttime[5] KerberosTime OPTIONAL,
endtime[6] KerberosTime OPTIONAL
renew-till[7] KerberosTime OPTIONAL,
srealm[8] Realm OPTIONAL,
sname[9] PrincipalName OPTIONAL,
caddr[10] HostAddresses OPTIONAL
}
pvno and msg-type These fields are described above in <a href="#section-5.4.1">section 5.4.1</a>.
msg-type is KRB_CRED.
tickets
These are the tickets obtained from the KDC specifically
for use by the intended recipient. Successive tickets are
paired with the corresponding KrbCredInfo sequence from the
enc-part of the KRB-CRED message.
enc-part This field holds an encoding of the EncKrbCredPart sequence
encrypted under the session key shared between the sender
and the intended recipient. This encrypted encoding is
used for the enc-part field of the KRB-CRED message. See
<a href="#section-6">section 6</a> for the format of the ciphertext.
<span class="grey">Kohl & Neuman [Page 64]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-65" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
nonce If practical, an application may require the inclusion of a
nonce generated by the recipient of the message. If the
same value is included as the nonce in the message, it
provides evidence that the message is fresh and has not
been replayed by an attacker. A nonce must never be re-
used; it should be generated randomly by the recipient of
the message and provided to the sender of the mes sage in
an application specific manner.
timestamp and usec These fields specify the time that the KRB-CRED
message was generated. The time is used to provide
assurance that the message is fresh.
s-address and r-address These fields are described above in <a href="#section-5.6.1">section</a>
<a href="#section-5.6.1">5.6.1</a>. They are used optionally to provide additional
assurance of the integrity of the KRB-CRED message.
key This field exists in the corresponding ticket passed by the
KRB-CRED message and is used to pass the session key from
the sender to the intended recipient. The field's encoding
is described in <a href="#section-6.2">section 6.2</a>.
The following fields are optional. If present, they can be
associated with the credentials in the remote ticket file. If left
out, then it is assumed that the recipient of the credentials already
knows their value.
prealm and pname The name and realm of the delegated principal
identity.
flags, authtime, starttime, endtime, renew-till, srealm, sname,
and caddr These fields contain the values of the
corresponding fields from the ticket found in the ticket
field. Descriptions of the fields are identical to the
descriptions in the KDC-REP message.
<span class="h3"><a class="selflink" id="section-5.9" href="#section-5.9">5.9</a>. Error message specification</span>
This section specifies the format for the KRB_ERROR message. The
fields included in the message are intended to return as much
information as possible about an error. It is not expected that all
the information required by the fields will be available for all
types of errors. If the appropriate information is not available
when the message is composed, the corresponding field will be left
out of the message.
Note that since the KRB_ERROR message is not protected by any
encryption, it is quite possible for an intruder to synthesize or
<span class="grey">Kohl & Neuman [Page 65]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-66" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
modify such a message. In particular, this means that the client
should not use any fields in this message for security-critical
purposes, such as setting a system clock or generating a fresh
authenticator. The message can be useful, however, for advising a
user on the reason for some failure.
<span class="h4"><a class="selflink" id="section-5.9.1" href="#section-5.9.1">5.9.1</a>. KRB_ERROR definition</span>
The KRB_ERROR message consists of the following fields:
KRB-ERROR ::= [APPLICATION 30] SEQUENCE {
pvno[0] INTEGER,
msg-type[1] INTEGER,
ctime[2] KerberosTime OPTIONAL,
cusec[3] INTEGER OPTIONAL,
stime[4] KerberosTime,
susec[5] INTEGER,
error-code[6] INTEGER,
crealm[7] Realm OPTIONAL,
cname[8] PrincipalName OPTIONAL,
realm[9] Realm, -- Correct realm
sname[10] PrincipalName, -- Correct name
e-text[11] GeneralString OPTIONAL,
e-data[12] OCTET STRING OPTIONAL
}
pvno and msg-type These fields are described above in <a href="#section-5.4.1">section 5.4.1</a>.
msg-type is KRB_ERROR.
ctime This field is described above in <a href="#section-5.4.1">section 5.4.1</a>.
cusec This field is described above in <a href="#section-5.5.2">section 5.5.2</a>.
stime This field contains the current time on the server. It is
of type KerberosTime.
susec This field contains the microsecond part of the server's
timestamp. Its value ranges from 0 to 999. It appears
along with stime. The two fields are used in conjunction to
specify a reasonably accurate timestamp.
error-code This field contains the error code returned by Kerberos or
the server when a request fails. To interpret the value of
this field see the list of error codes in <a href="#section-8">section 8</a>.
Implementations are encouraged to provide for national
language support in the display of error messages.
crealm, cname, srealm and sname These fields are described above in
<span class="grey">Kohl & Neuman [Page 66]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-67" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
<a href="#section-5.3.1">section 5.3.1</a>.
e-text This field contains additional text to help explain the
error code associated with the failed request (for example,
it might include a principal name which was unknown).
e-data This field contains additional data about the error for use
by the application to help it recover from or handle the
error. If the errorcode is KDC_ERR_PREAUTH_REQUIRED, then
the e-data field will contain an encoding of a sequence of
padata fields, each corresponding to an acceptable pre-
authentication method and optionally containing data for
the method:
METHOD-DATA ::= SEQUENCE of PA-DATA
If the error-code is KRB_AP_ERR_METHOD, then the e-data field will
contain an encoding of the following sequence:
METHOD-DATA ::= SEQUENCE {
method-type[0] INTEGER,
method-data[1] OCTET STRING OPTIONAL
}
method-type will indicate the required alternate method; method-data
will contain any required additional information.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Encryption and Checksum Specifications</span>
The Kerberos protocols described in this document are designed to use
stream encryption ciphers, which can be simulated using commonly
available block encryption ciphers, such as the Data Encryption
Standard [<a href="#ref-11" title=""Data Encryption Standard"">11</a>], in conjunction with block chaining and checksum
methods [<a href="#ref-12" title=""DES Modes of Operation"">12</a>]. Encryption is used to prove the identities of the
network entities participating in message exchanges. The Key
Distribution Center for each realm is trusted by all principals
registered in that realm to store a secret key in confidence. Proof
of knowledge of this secret key is used to verify the authenticity of
a principal.
The KDC uses the principal's secret key (in the AS exchange) or a
shared session key (in the TGS exchange) to encrypt responses to
ticket requests; the ability to obtain the secret key or session key
implies the knowledge of the appropriate keys and the identity of the
KDC. The ability of a principal to decrypt the KDC response and
present a Ticket and a properly formed Authenticator (generated with
the session key from the KDC response) to a service verifies the
identity of the principal; likewise the ability of the service to
<span class="grey">Kohl & Neuman [Page 67]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-68" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
extract the session key from the Ticket and prove its knowledge
thereof in a response verifies the identity of the service.
The Kerberos protocols generally assume that the encryption used is
secure from cryptanalysis; however, in some cases, the order of
fields in the encrypted portions of messages are arranged to minimize
the effects of poorly chosen keys. It is still important to choose
good keys. If keys are derived from user-typed passwords, those
passwords need to be well chosen to make brute force attacks more
difficult. Poorly chosen keys still make easy targets for intruders.
The following sections specify the encryption and checksum mechanisms
currently defined for Kerberos. The encodings, chaining, and padding
requirements for each are described. For encryption methods, it is
often desirable to place random information (often referred to as a
confounder) at the start of the message. The requirements for a
confounder are specified with each encryption mechanism.
Some encryption systems use a block-chaining method to improve the
the security characteristics of the ciphertext. However, these
chaining methods often don't provide an integrity check upon
decryption. Such systems (such as DES in CBC mode) must be augmented
with a checksum of the plaintext which can be verified at decryption
and used to detect any tampering or damage. Such checksums should be
good at detecting burst errors in the input. If any damage is
detected, the decryption routine is expected to return an error
indicating the failure of an integrity check. Each encryption type is
expected to provide and verify an appropriate checksum. The
specification of each encryption method sets out its checksum
requirements.
Finally, where a key is to be derived from a user's password, an
algorithm for converting the password to a key of the appropriate
type is included. It is desirable for the string to key function to
be one-way, and for the mapping to be different in different realms.
This is important because users who are registered in more than one
realm will often use the same password in each, and it is desirable
that an attacker compromising the Kerberos server in one realm not
obtain or derive the user's key in another.
For a discussion of the integrity characteristics of the candidate
encryption and checksum methods considered for Kerberos, the the
reader is referred to [<a href="#ref-13" title=""On Message Integrity in Cryptographic Protocols"">13</a>].
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. Encryption Specifications</span>
The following ASN.1 definition describes all encrypted messages. The
enc-part field which appears in the unencrypted part of messages in
<span class="grey">Kohl & Neuman [Page 68]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-69" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
<a href="#section-5">section 5</a> is a sequence consisting of an encryption type, an optional
key version number, and the ciphertext.
EncryptedData ::= SEQUENCE {
etype[0] INTEGER, -- EncryptionType
kvno[1] INTEGER OPTIONAL,
cipher[2] OCTET STRING -- ciphertext
}
etype This field identifies which encryption algorithm was used
to encipher the cipher. Detailed specifications for
selected encryption types appear later in this section.
kvno This field contains the version number of the key under
which data is encrypted. It is only present in messages
encrypted under long lasting keys, such as principals'
secret keys.
cipher This field contains the enciphered text, encoded as an
OCTET STRING.
The cipher field is generated by applying the specified encryption
algorithm to data composed of the message and algorithm-specific
inputs. Encryption mechanisms defined for use with Kerberos must
take sufficient measures to guarantee the integrity of the plaintext,
and we recommend they also take measures to protect against
precomputed dictionary attacks. If the encryption algorithm is not
itself capable of doing so, the protections can often be enhanced by
adding a checksum and a confounder.
The suggested format for the data to be encrypted includes a
confounder, a checksum, the encoded plaintext, and any necessary
padding. The msg-seq field contains the part of the protocol message
described in <a href="#section-5">section 5</a> which is to be encrypted. The confounder,
checksum, and padding are all untagged and untyped, and their length
is exactly sufficient to hold the appropriate item. The type and
length is implicit and specified by the particular encryption type
being used (etype). The format for the data to be encrypted is
described in the following diagram:
+-----------+----------+-------------+-----+
|confounder | check | msg-seq | pad |
+-----------+----------+-------------+-----+
The format cannot be described in ASN.1, but for those who prefer an
ASN.1-like notation:
<span class="grey">Kohl & Neuman [Page 69]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-70" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
CipherText ::= ENCRYPTED SEQUENCE {
confounder[0] UNTAGGED OCTET STRING(conf_length) OPTIONAL,
check[1] UNTAGGED OCTET STRING(checksum_length) OPTIONAL,
msg-seq[2] MsgSequence,
pad UNTAGGED OCTET STRING(pad_length) OPTIONAL
}
In the above specification, UNTAGGED OCTET STRING(length) is the
notation for an octet string with its tag and length removed. It is
not a valid ASN.1 type. The tag bits and length must be removed from
the confounder since the purpose of the confounder is so that the
message starts with random data, but the tag and its length are
fixed. For other fields, the length and tag would be redundant if
they were included because they are specified by the encryption type.
One generates a random confounder of the appropriate length, placing
it in confounder; zeroes out check; calculates the appropriate
checksum over confounder, check, and msg-seq, placing the result in
check; adds the necessary padding; then encrypts using the specified
encryption type and the appropriate key.
Unless otherwise specified, a definition of an encryption algorithm
that specifies a checksum, a length for the confounder field, or an
octet boundary for padding uses this ciphertext format (The ordering
of the fields in the CipherText is important. Additionally, messages
encoded in this format must include a length as part of the msg-seq
field. This allows the recipient to verify that the message has not
been truncated. Without a length, an attacker could use a chosen
plaintext attack to generate a message which could be truncated,
while leaving the checksum intact. Note that if the msg-seq is an
encoding of an ASN.1 SEQUENCE or OCTET STRING, then the length is
part of that encoding.). Those fields which are not specified will be
omitted.
In the interest of allowing all implementations using a particular
encryption type to communicate with all others using that type, the
specification of an encryption type defines any checksum that is
needed as part of the encryption process. If an alternative checksum
is to be used, a new encryption type must be defined.
Some cryptosystems require additional information beyond the key and
the data to be encrypted. For example, DES, when used in cipher-
block-chaining mode, requires an initialization vector. If required,
the description for each encryption type must specify the source of
such additional information.
<span class="grey">Kohl & Neuman [Page 70]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-71" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>. Encryption Keys</span>
The sequence below shows the encoding of an encryption key:
EncryptionKey ::= SEQUENCE {
keytype[0] INTEGER,
keyvalue[1] OCTET STRING
}
keytype This field specifies the type of encryption key that
follows in the keyvalue field. It will almost always
correspond to the encryption algorithm used to generate the
EncryptedData, though more than one algorithm may use the
same type of key (the mapping is many to one). This might
happen, for example, if the encryption algorithm uses an
alternate checksum algorithm for an integrity check, or a
different chaining mechanism.
keyvalue This field contains the key itself, encoded as an octet
string.
All negative values for the encryption key type are reserved for
local use. All non-negative values are reserved for officially
assigned type fields and interpretations.
<span class="h3"><a class="selflink" id="section-6.3" href="#section-6.3">6.3</a>. Encryption Systems</span>
<span class="h4"><a class="selflink" id="section-6.3.1" href="#section-6.3.1">6.3.1</a>. The NULL Encryption System (null)</span>
If no encryption is in use, the encryption system is said to be the
NULL encryption system. In the NULL encryption system there is no
checksum, confounder or padding. The ciphertext is simply the
plaintext. The NULL Key is used by the null encryption system and is
zero octets in length, with keytype zero (0).
<span class="h4"><a class="selflink" id="section-6.3.2" href="#section-6.3.2">6.3.2</a>. DES in CBC mode with a CRC-32 checksum (des-cbc-crc)</span>
The des-cbc-crc encryption mode encrypts information under the Data
Encryption Standard [<a href="#ref-11" title=""Data Encryption Standard"">11</a>] using the cipher block chaining mode [<a href="#ref-12" title=""DES Modes of Operation"">12</a>].
A CRC-32 checksum (described in ISO 3309 [<a href="#ref-14" title=""ISO Information Processing Systems - Data Communication High-Level Data Link Control Procedure - Frame Structure"">14</a>]) is applied to the
confounder and message sequence (msg-seq) and placed in the cksum
field. DES blocks are 8 bytes. As a result, the data to be
encrypted (the concatenation of confounder, checksum, and message)
must be padded to an 8 byte boundary before encryption. The details
of the encryption of this data are identical to those for the des-
cbc-md5 encryption mode.
Note that, since the CRC-32 checksum is not collisionproof, an
<span class="grey">Kohl & Neuman [Page 71]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-72" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
attacker could use a probabilistic chosenplaintext attack to generate
a valid message even if a confounder is used [<a href="#ref-13" title=""On Message Integrity in Cryptographic Protocols"">13</a>]. The use of
collision-proof checksums is recommended for environments where such
attacks represent a significant threat. The use of the CRC-32 as the
checksum for ticket or authenticator is no longer mandated as an
interoperability requirement for Kerberos Version 5 Specification 1
(See <a href="#section-9.1">section 9.1</a> for specific details).
<span class="h4"><a class="selflink" id="section-6.3.3" href="#section-6.3.3">6.3.3</a>. DES in CBC mode with an MD4 checksum (des-cbc-md4)</span>
The des-cbc-md4 encryption mode encrypts information under the Data
Encryption Standard [<a href="#ref-11" title=""Data Encryption Standard"">11</a>] using the cipher block chaining mode [<a href="#ref-12" title=""DES Modes of Operation"">12</a>].
An MD4 checksum (described in [<a href="#ref-15" title=""The MD4 Message Digest Algorithm"">15</a>]) is applied to the confounder and
message sequence (msg-seq) and placed in the cksum field. DES blocks
are 8 bytes. As a result, the data to be encrypted (the
concatenation of confounder, checksum, and message) must be padded to
an 8 byte boundary before encryption. The details of the encryption
of this data are identical to those for the descbc-md5 encryption
mode.
<span class="h4"><a class="selflink" id="section-6.3.4" href="#section-6.3.4">6.3.4</a>. DES in CBC mode with an MD5 checksum (des-cbc-md5)</span>
The des-cbc-md5 encryption mode encrypts information under the Data
Encryption Standard [<a href="#ref-11" title=""Data Encryption Standard"">11</a>] using the cipher block chaining mode [<a href="#ref-12" title=""DES Modes of Operation"">12</a>].
An MD5 checksum (described in [<a href="#ref-16" title=""The MD5 Message Digest Algorithm"">16</a>]) is applied to the confounder and
message sequence (msg-seq) and placed in the cksum field. DES blocks
are 8 bytes. As a result, the data to be encrypted (the
concatenation of confounder, checksum, and message) must be padded to
an 8 byte boundary before encryption.
Plaintext and DES ciphtertext are encoded as 8-octet blocks which are
concatenated to make the 64-bit inputs for the DES algorithms. The
first octet supplies the 8 most significant bits (with the octet's
MSbit used as the DES input block's MSbit, etc.), the second octet
the next 8 bits, ..., and the eighth octet supplies the 8 least
significant bits.
Encryption under DES using cipher block chaining requires an
additional input in the form of an initialization vector. Unless
otherwise specified, zero should be used as the initialization
vector. Kerberos' use of DES requires an 8-octet confounder.
The DES specifications identify some "weak" and "semiweak" keys;
those keys shall not be used for encrypting messages for use in
Kerberos. Additionally, because of the way that keys are derived for
the encryption of checksums, keys shall not be used that yield "weak"
or "semi-weak" keys when eXclusive-ORed with the constant
F0F0F0F0F0F0F0F0.
<span class="grey">Kohl & Neuman [Page 72]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-73" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
A DES key is 8 octets of data, with keytype one (1). This consists
of 56 bits of key, and 8 parity bits (one per octet). The key is
encoded as a series of 8 octets written in MSB-first order. The bits
within the key are also encoded in MSB order. For example, if the
encryption key is:
(B1,B2,...,B7,P1,B8,...,B14,P2,B15,...,B49,P7,B50,...,B56,P8) where
B1,B2,...,B56 are the key bits in MSB order, and P1,P2,...,P8 are the
parity bits, the first octet of the key would be B1,B2,...,B7,P1
(with B1 as the MSbit). [See the FIPS 81 introduction for
reference.]
To generate a DES key from a text string (password), the text string
normally must have the realm and each component of the principal's
name appended(In some cases, it may be necessary to use a different
"mix-in" string for compatibility reasons; see the discussion of
padata in <a href="#section-5.4.2">section 5.4.2</a>.), then padded with ASCII nulls to an 8 byte
boundary. This string is then fan-folded and eXclusive-ORed with
itself to form an 8 byte DES key. The parity is corrected on the
key, and it is used to generate a DES CBC checksum on the initial
string (with the realm and name appended). Next, parity is corrected
on the CBC checksum. If the result matches a "weak" or "semiweak"
key as described in the DES specification, it is eXclusive-ORed with
the constant 00000000000000F0. Finally, the result is returned as
the key. Pseudocode follows:
string_to_key(string,realm,name) {
odd = 1;
s = string + realm;
for(each component in name) {
s = s + component;
}
tempkey = NULL;
pad(s); /* with nulls to 8 byte boundary */
for(8byteblock in s) {
if(odd == 0) {
odd = 1;
reverse(8byteblock)
}
else odd = 0;
tempkey = tempkey XOR 8byteblock;
}
fixparity(tempkey);
key = DES-CBC-check(s,tempkey);
fixparity(key);
if(is_weak_key_key(key))
key = key XOR 0xF0;
return(key);
}
<span class="grey">Kohl & Neuman [Page 73]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-74" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
<span class="h3"><a class="selflink" id="section-6.4" href="#section-6.4">6.4</a>. Checksums</span>
The following is the ASN.1 definition used for a checksum:
Checksum ::= SEQUENCE {
cksumtype[0] INTEGER,
checksum[1] OCTET STRING
}
cksumtype This field indicates the algorithm used to generate the
accompanying checksum.
checksum This field contains the checksum itself, encoded
as an octet string.
Detailed specification of selected checksum types appear later in
this section. Negative values for the checksum type are reserved for
local use. All non-negative values are reserved for officially
assigned type fields and interpretations.
Checksums used by Kerberos can be classified by two properties:
whether they are collision-proof, and whether they are keyed. It is
infeasible to find two plaintexts which generate the same checksum
value for a collision-proof checksum. A key is required to perturb
or initialize the algorithm in a keyed checksum. To prevent
message-stream modification by an active attacker, unkeyed checksums
should only be used when the checksum and message will be
subsequently encrypted (e.g., the checksums defined as part of the
encryption algorithms covered earlier in this section). Collision-
proof checksums can be made tamper-proof as well if the checksum
value is encrypted before inclusion in a message. In such cases, the
composition of the checksum and the encryption algorithm must be
considered a separate checksum algorithm (e.g., RSA-MD5 encrypted
using DES is a new checksum algorithm of type RSA-MD5-DES). For most
keyed checksums, as well as for the encrypted forms of collisionproof
checksums, Kerberos prepends a confounder before the checksum is
calculated.
<span class="h4"><a class="selflink" id="section-6.4.1" href="#section-6.4.1">6.4.1</a>. The CRC-32 Checksum (crc32)</span>
The CRC-32 checksum calculates a checksum based on a cyclic
redundancy check as described in ISO 3309 [<a href="#ref-14" title=""ISO Information Processing Systems - Data Communication High-Level Data Link Control Procedure - Frame Structure"">14</a>]. The resulting
checksum is four (4) octets in length. The CRC-32 is neither keyed
nor collision-proof. The use of this checksum is not recommended.
An attacker using a probabilistic chosen-plaintext attack as
described in [<a href="#ref-13" title=""On Message Integrity in Cryptographic Protocols"">13</a>] might be able to generate an alternative message
that satisfies the checksum. The use of collision-proof checksums is
recommended for environments where such attacks represent a
<span class="grey">Kohl & Neuman [Page 74]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-75" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
significant threat.
<span class="h4"><a class="selflink" id="section-6.4.2" href="#section-6.4.2">6.4.2</a>. The RSA MD4 Checksum (rsa-md4)</span>
The RSA-MD4 checksum calculates a checksum using the RSA MD4
algorithm [<a href="#ref-15" title=""The MD4 Message Digest Algorithm"">15</a>]. The algorithm takes as input an input message of
arbitrary length and produces as output a 128-bit (16 octet)
checksum. RSA-MD4 is believed to be collision-proof.
<span class="h4"><a class="selflink" id="section-6.4.3" href="#section-6.4.3">6.4.3</a>. RSA MD4 Cryptographic Checksum Using DES (rsa-md4des)</span>
The RSA-MD4-DES checksum calculates a keyed collisionproof checksum
by prepending an 8 octet confounder before the text, applying the RSA
MD4 checksum algorithm, and encrypting the confounder and the
checksum using DES in cipher-block-chaining (CBC) mode using a
variant of the key, where the variant is computed by eXclusive-ORing
the key with the constant F0F0F0F0F0F0F0F0 (A variant of the key is
used to limit the use of a key to a particular function, separating
the functions of generating a checksum from other encryption
performed using the session key. The constant F0F0F0F0F0F0F0F0 was
chosen because it maintains key parity. The properties of DES
precluded the use of the complement. The same constant is used for
similar purpose in the Message Integrity Check in the Privacy
Enhanced Mail standard.). The initialization vector should be zero.
The resulting checksum is 24 octets long (8 octets of which are
redundant). This checksum is tamper-proof and believed to be
collision-proof.
The DES specifications identify some "weak keys"; those keys shall
not be used for generating RSA-MD4 checksums for use in Kerberos.
The format for the checksum is described in the following diagram:
+--+--+--+--+--+--+--+--
| des-cbc(confounder
+--+--+--+--+--+--+--+--
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
rsa-md4(confounder+msg),key=var(key),iv=0) |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
The format cannot be described in ASN.1, but for those who prefer an
ASN.1-like notation:
rsa-md4-des-checksum ::= ENCRYPTED UNTAGGED SEQUENCE {
confounder[0] UNTAGGED OCTET STRING(8),
check[1] UNTAGGED OCTET STRING(16)
}
<span class="grey">Kohl & Neuman [Page 75]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-76" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
<span class="h4"><a class="selflink" id="section-6.4.4" href="#section-6.4.4">6.4.4</a>. The RSA MD5 Checksum (rsa-md5)</span>
The RSA-MD5 checksum calculates a checksum using the RSA MD5
algorithm [<a href="#ref-16" title=""The MD5 Message Digest Algorithm"">16</a>]. The algorithm takes as input an input message of
arbitrary length and produces as output a 128-bit (16 octet)
checksum. RSA-MD5 is believed to be collision-proof.
<span class="h4"><a class="selflink" id="section-6.4.5" href="#section-6.4.5">6.4.5</a>. RSA MD5 Cryptographic Checksum Using DES (rsa-md5des)</span>
The RSA-MD5-DES checksum calculates a keyed collisionproof checksum
by prepending an 8 octet confounder before the text, applying the RSA
MD5 checksum algorithm, and encrypting the confounder and the
checksum using DES in cipher-block-chaining (CBC) mode using a
variant of the key, where the variant is computed by eXclusive-ORing
the key with the constant F0F0F0F0F0F0F0F0. The initialization
vector should be zero. The resulting checksum is 24 octets long (8
octets of which are redundant). This checksum is tamper-proof and
believed to be collision-proof.
The DES specifications identify some "weak keys"; those keys shall
not be used for encrypting RSA-MD5 checksums for use in Kerberos.
The format for the checksum is described in the following diagram:
+--+--+--+--+--+--+--+--
| des-cbc(confounder
+--+--+--+--+--+--+--+--
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
rsa-md5(confounder+msg),key=var(key),iv=0) |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
The format cannot be described in ASN.1, but for those who prefer an
ASN.1-like notation:
rsa-md5-des-checksum ::= ENCRYPTED UNTAGGED SEQUENCE {
confounder[0] UNTAGGED OCTET STRING(8),
check[1] UNTAGGED OCTET STRING(16)
}
<span class="h4"><a class="selflink" id="section-6.4.6" href="#section-6.4.6">6.4.6</a>. DES cipher-block chained checksum (des-mac)</span>
The DES-MAC checksum is computed by prepending an 8 octet confounder
to the plaintext, performing a DES CBC-mode encryption on the result
using the key and an initialization vector of zero, taking the last
block of the ciphertext, prepending the same confounder and
encrypting the pair using DES in cipher-block-chaining (CBC) mode
using a a variant of the key, where the variant is computed by
<span class="grey">Kohl & Neuman [Page 76]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-77" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
eXclusive-ORing the key with the constant F0F0F0F0F0F0F0F0. The
initialization vector should be zero. The resulting checksum is 128
bits (16 octets) long, 64 bits of which are redundant. This checksum
is tamper-proof and collision-proof.
The format for the checksum is described in the following diagram:
+--+--+--+--+--+--+--+--
| des-cbc(confounder
+--+--+--+--+--+--+--+--
+-----+-----+-----+-----+-----+-----+-----+-----+
des-mac(conf+msg,iv=0,key),key=var(key),iv=0) |
+-----+-----+-----+-----+-----+-----+-----+-----+
The format cannot be described in ASN.1, but for those who prefer an
ASN.1-like notation:
des-mac-checksum ::= ENCRYPTED UNTAGGED SEQUENCE {
confounder[0] UNTAGGED OCTET STRING(8),
check[1] UNTAGGED OCTET STRING(8)
}
The DES specifications identify some "weak" and "semiweak" keys;
those keys shall not be used for generating DES-MAC checksums for use
in Kerberos, nor shall a key be used whose veriant is "weak" or
"semi-weak".
<span class="h4"><a class="selflink" id="section-6.4.7" href="#section-6.4.7">6.4.7</a>. RSA MD4 Cryptographic Checksum Using DES alternative</span>
(rsa-md4-des-k)
The RSA-MD4-DES-K checksum calculates a keyed collision-proof
checksum by applying the RSA MD4 checksum algorithm and encrypting
the results using DES in cipherblock-chaining (CBC) mode using a DES
key as both key and initialization vector. The resulting checksum is
16 octets long. This checksum is tamper-proof and believed to be
collision-proof. Note that this checksum type is the old method for
encoding the RSA-MD4-DES checksum and it is no longer recommended.
<span class="h4"><a class="selflink" id="section-6.4.8" href="#section-6.4.8">6.4.8</a>. DES cipher-block chained checksum alternative (desmac-k)</span>
The DES-MAC-K checksum is computed by performing a DES CBC-mode
encryption of the plaintext, and using the last block of the
ciphertext as the checksum value. It is keyed with an encryption key
and an initialization vector; any uses which do not specify an
additional initialization vector will use the key as both key and
initialization vector. The resulting checksum is 64 bits (8 octets)
long. This checksum is tamper-proof and collision-proof. Note that
<span class="grey">Kohl & Neuman [Page 77]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-78" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
this checksum type is the old method for encoding the DESMAC checksum
and it is no longer recommended.
The DES specifications identify some "weak keys"; those keys shall
not be used for generating DES-MAC checksums for use in Kerberos.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Naming Constraints</span>
<span class="h3"><a class="selflink" id="section-7.1" href="#section-7.1">7.1</a>. Realm Names</span>
Although realm names are encoded as GeneralStrings and although a
realm can technically select any name it chooses, interoperability
across realm boundaries requires agreement on how realm names are to
be assigned, and what information they imply.
To enforce these conventions, each realm must conform to the
conventions itself, and it must require that any realms with which
inter-realm keys are shared also conform to the conventions and
require the same from its neighbors.
There are presently four styles of realm names: domain, X500, other,
and reserved. Examples of each style follow:
domain: host.subdomain.domain (example)
X500: C=US/O=OSF (example)
other: NAMETYPE:rest/of.name=without-restrictions (example)
reserved: reserved, but will not conflict with above
Domain names must look like domain names: they consist of components
separated by periods (.) and they contain neither colons (:) nor
slashes (/).
X.500 names contain an equal (=) and cannot contain a colon (:)
before the equal. The realm names for X.500 names will be string
representations of the names with components separated by slashes.
Leading and trailing slashes will not be included.
Names that fall into the other category must begin with a prefix that
contains no equal (=) or period (.) and the prefix must be followed
by a colon (:) and the rest of the name. All prefixes must be
assigned before they may be used. Presently none are assigned.
The reserved category includes strings which do not fall into the
first three categories. All names in this category are reserved. It
is unlikely that names will be assigned to this category unless there
is a very strong argument for not using the "other" category.
These rules guarantee that there will be no conflicts between the
<span class="grey">Kohl & Neuman [Page 78]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-79" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
various name styles. The following additional constraints apply to
the assignment of realm names in the domain and X.500 categories: the
name of a realm for the domain or X.500 formats must either be used
by the organization owning (to whom it was assigned) an Internet
domain name or X.500 name, or in the case that no such names are
registered, authority to use a realm name may be derived from the
authority of the parent realm. For example, if there is no domain
name for E40.MIT.EDU, then the administrator of the MIT.EDU realm can
authorize the creation of a realm with that name.
This is acceptable because the organization to which the parent is
assigned is presumably the organization authorized to assign names to
its children in the X.500 and domain name systems as well. If the
parent assigns a realm name without also registering it in the domain
name or X.500 hierarchy, it is the parent's responsibility to make
sure that there will not in the future exists a name identical to the
realm name of the child unless it is assigned to the same entity as
the realm name.
<span class="h3"><a class="selflink" id="section-7.2" href="#section-7.2">7.2</a>. Principal Names</span>
As was the case for realm names, conventions are needed to ensure
that all agree on what information is implied by a principal name.
The name-type field that is part of the principal name indicates the
kind of information implied by the name. The name-type should be
treated as a hint. Ignoring the name type, no two names can be the
same (i.e., at least one of the components, or the realm, must be
different). This constraint may be eliminated in the future. The
following name types are defined:
name-type value meaning
NT-UNKNOWN 0 Name type not known
NT-PRINCIPAL 1 Just the name of the principal as in
DCE, or for users
NT-SRV-INST 2 Service and other unique instance (krbtgt)
NT-SRV-HST 3 Service with host name as instance
(telnet, rcommands)
NT-SRV-XHST 4 Service with host as remaining components
NT-UID 5 Unique ID
When a name implies no information other than its uniqueness at a
particular time the name type PRINCIPAL should be used. The
principal name type should be used for users, and it might also be
used for a unique server. If the name is a unique machine generated
ID that is guaranteed never to be reassigned then the name type of
UID should be used (note that it is generally a bad idea to reassign
names of any type since stale entries might remain in access control
lists).
<span class="grey">Kohl & Neuman [Page 79]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-80" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
If the first component of a name identifies a service and the
remaining components identify an instance of the service in a server
specified manner, then the name type of SRV-INST should be used. An
example of this name type is the Kerberos ticket-granting ticket
which has a first component of krbtgt and a second component
identifying the realm for which the ticket is valid.
If instance is a single component following the service name and the
instance identifies the host on which the server is running, then the
name type SRV-HST should be used. This type is typically used for
Internet services such as telnet and the Berkeley R commands. If the
separate components of the host name appear as successive components
following the name of the service, then the name type SRVXHST should
be used. This type might be used to identify servers on hosts with
X.500 names where the slash (/) might otherwise be ambiguous.
A name type of UNKNOWN should be used when the form of the name is
not known. When comparing names, a name of type UNKNOWN will match
principals authenticated with names of any type. A principal
authenticated with a name of type UNKNOWN, however, will only match
other names of type UNKNOWN.
Names of any type with an initial component of "krbtgt" are reserved
for the Kerberos ticket granting service. See <a href="#section-8.2.3">section 8.2.3</a> for the
form of such names.
<span class="h4"><a class="selflink" id="section-7.2.1" href="#section-7.2.1">7.2.1</a>. Name of server principals</span>
The principal identifier for a server on a host will generally be
composed of two parts: (1) the realm of the KDC with which the server
is registered, and (2) a two-component name of type NT-SRV-HST if the
host name is an Internet domain name or a multi-component name of
type NT-SRV-XHST if the name of the host is of a form such as X.500
that allows slash (/) separators. The first component of the two- or
multi-component name will identify the service and the latter
components will identify the host. Where the name of the host is not
case sensitive (for example, with Internet domain names) the name of
the host must be lower case. For services such as telnet and the
Berkeley R commands which run with system privileges, the first
component will be the string "host" instead of a service specific
identifier.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Constants and other defined values</span>
<span class="h3"><a class="selflink" id="section-8.1" href="#section-8.1">8.1</a>. Host address types</span>
All negative values for the host address type are reserved for local
use. All non-negative values are reserved for officially assigned
<span class="grey">Kohl & Neuman [Page 80]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-81" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
type fields and interpretations.
The values of the types for the following addresses are chosen to
match the defined address family constants in the Berkeley Standard
Distributions of Unix. They can be found in <sys/socket.h> with
symbolic names AF_xxx (where xxx is an abbreviation of the address
family name).
Internet addresses
Internet addresses are 32-bit (4-octet) quantities, encoded in MSB
order. The type of internet addresses is two (2).
CHAOSnet addresses
CHAOSnet addresses are 16-bit (2-octet) quantities, encoded in MSB
order. The type of CHAOSnet addresses is five (5).
ISO addresses
ISO addresses are variable-length. The type of ISO addresses is
seven (7).
Xerox Network Services (XNS) addresses
XNS addresses are 48-bit (6-octet) quantities, encoded in MSB
order. The type of XNS addresses is six (6).
AppleTalk Datagram Delivery Protocol (DDP) addresses
AppleTalk DDP addresses consist of an 8-bit node number and a 16-
bit network number. The first octet of the address is the node
number; the remaining two octets encode the network number in MSB
order. The type of AppleTalk DDP addresses is sixteen (16).
DECnet Phase IV addresses
DECnet Phase IV addresses are 16-bit addresses, encoded in LSB
order. The type of DECnet Phase IV addresses is twelve (12).
<span class="h3"><a class="selflink" id="section-8.2" href="#section-8.2">8.2</a>. KDC messages</span>
<span class="h4"><a class="selflink" id="section-8.2.1" href="#section-8.2.1">8.2.1</a>. IP transport</span>
When contacting a Kerberos server (KDC) for a KRB_KDC_REQ request
using IP transport, the client shall send a UDP datagram containing
only an encoding of the request to port 88 (decimal) at the KDC's IP
<span class="grey">Kohl & Neuman [Page 81]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-82" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
address; the KDC will respond with a reply datagram containing only
an encoding of the reply message (either a KRB_ERROR or a
KRB_KDC_REP) to the sending port at the sender's IP address.
<span class="h4"><a class="selflink" id="section-8.2.2" href="#section-8.2.2">8.2.2</a>. OSI transport</span>
During authentication of an OSI client to and OSI server, the mutual
authentication of an OSI server to an OSI client, the transfer of
credentials from an OSI client to an OSI server, or during exchange
of private or integrity checked messages, Kerberos protocol messages
may be treated as opaque objects and the type of the authentication
mechanism will be:
OBJECT IDENTIFIER ::= {iso (1), org(3), dod(5),internet(1),
security(5), kerberosv5(2)}
Depending on the situation, the opaque object will be an
authentication header (KRB_AP_REQ), an authentication reply
(KRB_AP_REP), a safe message (KRB_SAFE), a private message
(KRB_PRIV), or a credentials message (KRB_CRED). The opaque data
contains an application code as specified in the ASN.1 description
for each message. The application code may be used by Kerberos to
determine the message type.
<span class="h4"><a class="selflink" id="section-8.2.3" href="#section-8.2.3">8.2.3</a>. Name of the TGS</span>
The principal identifier of the ticket-granting service shall be
composed of three parts: (1) the realm of the KDC issuing the TGS
ticket (2) a two-part name of type NT-SRVINST, with the first part
"krbtgt" and the second part the name of the realm which will accept
the ticket-granting ticket. For example, a ticket-granting ticket
issued by the ATHENA.MIT.EDU realm to be used to get tickets from the
ATHENA.MIT.EDU KDC has a principal identifier of "ATHENA.MIT.EDU"
(realm), ("krbtgt", "ATHENA.MIT.EDU") (name). A ticket-granting
ticket issued by the ATHENA.MIT.EDU realm to be used to get tickets
from the MIT.EDU realm has a principal identifier of "ATHENA.MIT.EDU"
(realm), ("krbtgt", "MIT.EDU") (name).
<span class="h3"><a class="selflink" id="section-8.3" href="#section-8.3">8.3</a>. Protocol constants and associated values</span>
The following tables list constants used in the protocol and defines
their meanings.
<span class="grey">Kohl & Neuman [Page 82]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-83" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
---------------+-----------+----------+----------------+---------------
Encryption type|etype value|block size|minimum pad size|confounder size
---------------+-----------+----------+----------------+---------------
NULL 0 1 0 0
des-cbc-crc 1 8 4 8
des-cbc-md4 2 8 0 8
des-cbc-md5 3 8 0 8
-------------------------------+-------------------+-------------
Checksum type |sumtype value |checksum size
-------------------------------+-------------------+-------------
CRC32 1 4
rsa-md4 2 16
rsa-md4-des 3 24
des-mac 4 16
des-mac-k 5 8
rsa-md4-des-k 6 16
rsa-md5 7 16
rsa-md5-des 8 24
-------------------------------+-----------------
padata type |padata-type value
-------------------------------+-----------------
PA-TGS-REQ 1
PA-ENC-TIMESTAMP 2
PA-PW-SALT 3
-------------------------------+-------------
authorization data type |ad-type value
-------------------------------+-------------
reserved values 0-63
OSF-DCE 64
SESAME 65
-------------------------------+-----------------
alternate authentication type |method-type value
-------------------------------+-----------------
reserved values 0-63
ATT-CHALLENGE-RESPONSE 64
-------------------------------+-------------
transited encoding type |tr-type value
-------------------------------+-------------
DOMAIN-X500-COMPRESS 1
reserved values all others
<span class="grey">Kohl & Neuman [Page 83]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-84" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
--------------+-------+-----------------------------------------
Label |Value |Meaning or MIT code
--------------+-------+-----------------------------------------
pvno 5 current Kerberos protocol version number
message types
KRB_AS_REQ 10 Request for initial authentication
KRB_AS_REP 11 Response to KRB_AS_REQ request
KRB_TGS_REQ 12 Request for authentication based on TGT
KRB_TGS_REP 13 Response to KRB_TGS_REQ request
KRB_AP_REQ 14 application request to server
KRB_AP_REP 15 Response to KRB_AP_REQ_MUTUAL
KRB_SAFE 20 Safe (checksummed) application message
KRB_PRIV 21 Private (encrypted) application message
KRB_CRED 22 Private (encrypted) message to forward
credentials
KRB_ERROR 30 Error response
name types
KRB_NT_UNKNOWN 0 Name type not known
KRB_NT_PRINCIPAL 1 Just the name of the principal as in DCE, or
for users
KRB_NT_SRV_INST 2 Service and other unique instance (krbtgt)
KRB_NT_SRV_HST 3 Service with host name as instance (telnet,
rcommands)
KRB_NT_SRV_XHST 4 Service with host as remaining components
KRB_NT_UID 5 Unique ID
error codes
KDC_ERR_NONE 0 No error
KDC_ERR_NAME_EXP 1 Client's entry in database has
expired
KDC_ERR_SERVICE_EXP 2 Server's entry in database has
expired
KDC_ERR_BAD_PVNO 3 Requested protocol version number
not supported
KDC_ERR_C_OLD_MAST_KVNO 4 Client's key encrypted in old
master key
KDC_ERR_S_OLD_MAST_KVNO 5 Server's key encrypted in old
master key
KDC_ERR_C_PRINCIPAL_UNKNOWN 6 Client not found in Kerberos database
KDC_ERR_S_PRINCIPAL_UNKNOWN 7 Server not found in Kerberos database
KDC_ERR_PRINCIPAL_NOT_UNIQUE 8 Multiple principal entries in
database
<span class="grey">Kohl & Neuman [Page 84]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-85" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
KDC_ERR_NULL_KEY 9 The client or server has a null key
KDC_ERR_CANNOT_POSTDATE 10 Ticket not eligible for postdating
KDC_ERR_NEVER_VALID 11 Requested start time is later than
end time
KDC_ERR_POLICY 12 KDC policy rejects request
KDC_ERR_BADOPTION 13 KDC cannot accommodate requested
option
KDC_ERR_ETYPE_NOSUPP 14 KDC has no support for encryption
type
KDC_ERR_SUMTYPE_NOSUPP 15 KDC has no support for checksum type
KDC_ERR_PADATA_TYPE_NOSUPP 16 KDC has no support for padata type
KDC_ERR_TRTYPE_NOSUPP 17 KDC has no support for transited type
KDC_ERR_CLIENT_REVOKED 18 Clients credentials have been revoked
KDC_ERR_SERVICE_REVOKED 19 Credentials for server have been
revoked
KDC_ERR_TGT_REVOKED 20 TGT has been revoked
KDC_ERR_CLIENT_NOTYET 21 Client not yet valid - try again
later
KDC_ERR_SERVICE_NOTYET 22 Server not yet valid - try again
later
KDC_ERR_KEY_EXPIRED 23 Password has expired - change
password to reset
KDC_ERR_PREAUTH_FAILED 24 Pre-authentication information
was invalid
KDC_ERR_PREAUTH_REQUIRED 25 Additional pre-authentication
required*
KRB_AP_ERR_BAD_INTEGRITY 31 Integrity check on decrypted field
failed
KRB_AP_ERR_TKT_EXPIRED 32 Ticket expired
KRB_AP_ERR_TKT_NYV 33 Ticket not yet valid
KRB_AP_ERR_REPEAT 34 Request is a replay
KRB_AP_ERR_NOT_US 35 The ticket isn't for us
KRB_AP_ERR_BADMATCH 36 Ticket and authenticator don't match
KRB_AP_ERR_SKEW 37 Clock skew too great
KRB_AP_ERR_BADADDR 38 Incorrect net address
KRB_AP_ERR_BADVERSION 39 Protocol version mismatch
KRB_AP_ERR_MSG_TYPE 40 Invalid msg type
KRB_AP_ERR_MODIFIED 41 Message stream modified
KRB_AP_ERR_BADORDER 42 Message out of order
KRB_AP_ERR_BADKEYVER 44 Specified version of key is not
available
KRB_AP_ERR_NOKEY 45 Service key not available
KRB_AP_ERR_MUT_FAIL 46 Mutual authentication failed
KRB_AP_ERR_BADDIRECTION 47 Incorrect message direction
KRB_AP_ERR_METHOD 48 Alternative authentication method
required*
KRB_AP_ERR_BADSEQ 49 Incorrect sequence number in message
KRB_AP_ERR_INAPP_CKSUM 50 Inappropriate type of checksum in
<span class="grey">Kohl & Neuman [Page 85]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-86" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
message
KRB_ERR_GENERIC 60 Generic error (description in e-text)
KRB_ERR_FIELD_TOOLONG 61 Field is too long for this
implementation
*This error carries additional information in the e-data field. The
contents of the e-data field for this message is described in <a href="#section-5.9.1">section</a>
<a href="#section-5.9.1">5.9.1</a>.
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. Interoperability requirements</span>
Version 5 of the Kerberos protocol supports a myriad of options.
Among these are multiple encryption and checksum types, alternative
encoding schemes for the transited field, optional mechanisms for
pre-authentication, the handling of tickets with no addresses,
options for mutual authentication, user to user authentication,
support for proxies, forwarding, postdating, and renewing tickets,
the format of realm names, and the handling of authorization data.
In order to ensure the interoperability of realms, it is necessary to
define a minimal configuration which must be supported by all
implementations. This minimal configuration is subject to change as
technology does. For example, if at some later date it is discovered
that one of the required encryption or checksum algorithms is not
secure, it will be replaced.
<span class="h3"><a class="selflink" id="section-9.1" href="#section-9.1">9.1</a>. Specification 1</span>
This section defines the first specification of these options.
Implementations which are configured in this way can be said to
support Kerberos Version 5 Specification 1 (5.1).
Encryption and checksum methods
The following encryption and checksum mechanisms must be supported.
Implementations may support other mechanisms as well, but the
additional mechanisms may only be used when communicating with
principals known to also support them: Encryption: DES-CBC-MD5
Checksums: CRC-32, DES-MAC, DES-MAC-K, and DES-MD5
Realm Names
All implementations must understand hierarchical realms in both the
Internet Domain and the X.500 style. When a ticket granting ticket
for an unknown realm is requested, the KDC must be able to determine
the names of the intermediate realms between the KDCs realm and the
requested realm.
<span class="grey">Kohl & Neuman [Page 86]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-87" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
Transited field encoding
DOMAIN-X500-COMPRESS (described in <a href="#section-3.3.3.1">section 3.3.3.1</a>) must be
supported. Alternative encodings may be supported, but they may be
used only when that encoding is supported by ALL intermediate realms.
Pre-authentication methods
The TGS-REQ method must be supported. The TGS-REQ method is not used
on the initial request. The PA-ENC-TIMESTAMP method must be supported
by clients but whether it is enabled by default may be determined on
a realm by realm basis. If not used in the initial request and the
error KDC_ERR_PREAUTH_REQUIRED is returned specifying PA-ENCTIMESTAMP
as an acceptable method, the client should retry the initial request
using the PA-ENC-TIMESTAMP preauthentication method. Servers need not
support the PAENC-TIMESTAMP method, but if not supported the server
should ignore the presence of PA-ENC-TIMESTAMP pre-authentication in
a request.
Mutual authentication
Mutual authentication (via the KRB_AP_REP message) must be supported.
Ticket addresses and flags
All KDC's must pass on tickets that carry no addresses (i.e., if a
TGT contains no addresses, the KDC will return derivative tickets),
but each realm may set its own policy for issuing such tickets, and
each application server will set its own policy with respect to
accepting them. By default, servers should not accept them.
Proxies and forwarded tickets must be supported. Individual realms
and application servers can set their own policy on when such tickets
will be accepted.
All implementations must recognize renewable and postdated tickets,
but need not actually implement them. If these options are not
supported, the starttime and endtime in the ticket shall specify a
ticket's entire useful life. When a postdated ticket is decoded by a
server, all implementations shall make the presence of the postdated
flag visible to the calling server.
User-to-user authentication
Support for user to user authentication (via the ENC-TKTIN-SKEY KDC
option) must be provided by implementations, but individual realms
may decide as a matter of policy to reject such requests on a per-
principal or realm-wide basis.
<span class="grey">Kohl & Neuman [Page 87]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-88" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
Authorization data
Implementations must pass all authorization data subfields from
ticket-granting tickets to any derivative tickets unless directed to
suppress a subfield as part of the definition of that registered
subfield type (it is never incorrect to pass on a subfield, and no
registered subfield types presently specify suppression at the KDC).
Implementations must make the contents of any authorization data
subfields available to the server when a ticket is used.
Implementations are not required to allow clients to specify the
contents of the authorization data fields.
<span class="h3"><a class="selflink" id="section-9.2" href="#section-9.2">9.2</a>. Recommended KDC values</span>
Following is a list of recommended values for a KDC implementation,
based on the list of suggested configuration constants (see <a href="#section-4.4">section</a>
<a href="#section-4.4">4.4</a>).
minimum lifetime 5 minutes
maximum renewable lifetime 1 week
maximum ticket lifetime 1 day
empty addresses only when suitable restrictions appear
in authorization data
proxiable, etc. Allowed.
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. Acknowledgments</span>
Early versions of this document, describing version 4 of the
protocol, were written by Jennifer Steiner (formerly at Project
Athena); these drafts provided an excellent starting point for this
current version 5 specification. Many people in the Internet
community have contributed ideas and suggested protocol changes for
version 5. Notable contributions came from Ted Anderson, Steve
Bellovin and Michael Merritt [<a href="#ref-17" title=""Limitations of the Kerberos Authentication System"">17</a>], Daniel Bernstein, Mike Burrows,
Donald Davis, Ravi Ganesan, Morrie Gasser, Virgil Gligor, Bill
Griffeth, Mark Lillibridge, Mark Lomas, Steve Lunt, Piers McMahon,
Joe Pato, William Sommerfeld, Stuart Stubblebine, Ralph Swick, Ted
T'so, and Stanley Zanarotti. Many others commented and helped shape
this specification into its current form.
<span class="grey">Kohl & Neuman [Page 88]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-89" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
<span class="h2"><a class="selflink" id="section-11" href="#section-11">11</a>. References</span>
[<a id="ref-1">1</a>] Miller, S., Neuman, C., Schiller, J., and J. Saltzer, "Section
E.2.1: Kerberos Authentication and Authorization System",
M.I.T. Project Athena, Cambridge, Massachusetts, December 21,
1987.
[<a id="ref-2">2</a>] Steiner, J., Neuman, C., and J. Schiller, "Kerberos: An
Authentication Service for Open Network Systems", pp. 191-202 in
Usenix Conference Proceedings, Dallas, Texas, February, 1988.
[<a id="ref-3">3</a>] Needham, R., and M. Schroeder, "Using Encryption for
Authentication in Large Networks of Computers", Communications
of the ACM, Vol. 21 (12), pp. 993-999, December 1978.
[<a id="ref-4">4</a>] Denning, D., and G. Sacco, "Time stamps in Key Distribution
Protocols", Communications of the ACM, Vol. 24 (8), pp. 533-536,
August 1981.
[<a id="ref-5">5</a>] Kohl, J., Neuman, C., and T. Ts'o, "The Evolution of the
Kerberos Authentication Service", in an IEEE Computer Society
Text soon to be published, June 1992.
[<a id="ref-6">6</a>] Davis, D., and R. Swick, "Workstation Services and Kerberos
Authentication at Project Athena", Technical Memorandum TM-424,
MIT Laboratory for Computer Science, February 1990.
[<a id="ref-7">7</a>] Levine, P., Gretzinger, M, Diaz, J., Sommerfeld, W., and K.
Raeburn, "Section E.1: Service Management System, M.I.T.
Project Athena, Cambridge, Mas sachusetts (1987).
[<a id="ref-8">8</a>] CCITT, Recommendation X.509: The Directory Authentication
Framework, December 1988.
[<a id="ref-9">9</a>] Neuman, C., "Proxy-Based Authorization and Accounting for
Distributed Systems," in Proceedings of the 13th International
Conference on Distributed Computing Systems", Pittsburgh, PA,
May 1993.
[<a id="ref-10">10</a>] Pato, J., "Using Pre-Authentication to Avoid Password Guessing
Attacks", Open Software Foundation DCE Request for Comments 26,
December 1992.
[<a id="ref-11">11</a>] National Bureau of Standards, U.S. Department of Commerce, "Data
Encryption Standard", Federal Information Processing Standards
Publication 46, Washington, DC (1977).
<span class="grey">Kohl & Neuman [Page 89]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-90" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
[<a id="ref-12">12</a>] National Bureau of Standards, U.S. Department of Commerce, "DES
Modes of Operation", Federal Information Processing Standards
Publication 81, Springfield, VA, December 1980.
[<a id="ref-13">13</a>] Stubblebine S., and V. Gligor, "On Message Integrity in
Cryptographic Protocols", in Proceedings of the IEEE Symposium
on Research in Security and Privacy, Oakland, California, May
1992.
[<a id="ref-14">14</a>] International Organization for Standardization, "ISO Information
Processing Systems - Data Communication High-Level Data Link
Control Procedure - Frame Structure", IS 3309, October 1984, 3rd
Edition.
[<a id="ref-15">15</a>] Rivest, R., "The MD4 Message Digest Algorithm", <a href="./rfc1320">RFC 1320</a>, MIT
Laboratory for Computer Science, April 1992.
[<a id="ref-16">16</a>] Rivest, R., "The MD5 Message Digest Algorithm", <a href="./rfc1321">RFC 1321</a>, MIT
Laboratory for Computer Science, April 1992.
[<a id="ref-17">17</a>] Bellovin S., and M. Merritt, "Limitations of the Kerberos
Authentication System", Computer Communications Review, Vol.
20(5), pp. 119-132, October 1990.
<span class="h2"><a class="selflink" id="section-12" href="#section-12">12</a>. Security Considerations</span>
Security issues are discussed throughout this memo.
<span class="h2"><a class="selflink" id="section-13" href="#section-13">13</a>. Authors' Addresses</span>
John Kohl
Digital Equipment Corporation
110 Spit Brook Road, M/S ZKO3-3/U14
Nashua, NH 03062
Phone: 603-881-2481
EMail: jtkohl@zk3.dec.com
B. Clifford Neuman
USC/Information Sciences Institute
4676 Admiralty Way #1001
Marina del Rey, CA 90292-6695
Phone: 310-822-1511
EMail: bcn@isi.edu
<span class="grey">Kohl & Neuman [Page 90]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-91" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
<span class="h2"><a class="selflink" id="appendix-A" href="#appendix-A">A</a>. Pseudo-code for protocol processing</span>
This appendix provides pseudo-code describing how the messages are to
be constructed and interpreted by clients and servers.
<span class="h3"><a class="selflink" id="appendix-A.1" href="#appendix-A.1">A.1</a>. KRB_AS_REQ generation</span>
request.pvno := protocol version; /* pvno = 5 */
request.msg-type := message type; /* type = KRB_AS_REQ */
if(pa_enc_timestamp_required) then
request.padata.padata-type = PA-ENC-TIMESTAMP;
get system_time;
padata-body.patimestamp,pausec = system_time;
encrypt padata-body into request.padata.padata-value
using client.key; /* derived from password */
endif
body.kdc-options := users's preferences;
body.cname := user's name;
body.realm := user's realm;
body.sname := service's name; /* usually "krbtgt",
"localrealm" */
if (body.kdc-options.POSTDATED is set) then
body.from := requested starting time;
else
omit body.from;
endif
body.till := requested end time;
if (body.kdc-options.RENEWABLE is set) then
body.rtime := requested final renewal time;
endif
body.nonce := random_nonce();
body.etype := requested etypes;
if (user supplied addresses) then
body.addresses := user's addresses;
else
omit body.addresses;
endif
omit body.enc-authorization-data;
request.req-body := body;
kerberos := lookup(name of local kerberos server (or servers));
send(packet,kerberos);
wait(for response);
if (timed_out) then
retry or use alternate server;
endif
<span class="grey">Kohl & Neuman [Page 91]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-92" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
<span class="h3"><a class="selflink" id="appendix-A.2" href="#appendix-A.2">A.2</a>. KRB_AS_REQ verification and KRB_AS_REP generation</span>
decode message into req;
client := lookup(req.cname,req.realm);
server := lookup(req.sname,req.realm);
get system_time;
kdc_time := system_time.seconds;
if (!client) then
/* no client in Database */
error_out(KDC_ERR_C_PRINCIPAL_UNKNOWN);
endif
if (!server) then
/* no server in Database */
error_out(KDC_ERR_S_PRINCIPAL_UNKNOWN);
endif
if(client.pa_enc_timestamp_required and
pa_enc_timestamp not present) then
error_out(KDC_ERR_PREAUTH_REQUIRED(PA_ENC_TIMESTAMP));
endif
if(pa_enc_timestamp present) then
decrypt req.padata-value into decrypted_enc_timestamp
using client.key;
using auth_hdr.authenticator.subkey;
if (decrypt_error()) then
error_out(KRB_AP_ERR_BAD_INTEGRITY);
if(decrypted_enc_timestamp is not within allowable
skew) then error_out(KDC_ERR_PREAUTH_FAILED);
endif
if(decrypted_enc_timestamp and usec is replay)
error_out(KDC_ERR_PREAUTH_FAILED);
endif
add decrypted_enc_timestamp and usec to replay cache;
endif
use_etype := first supported etype in req.etypes;
if (no support for req.etypes) then
error_out(KDC_ERR_ETYPE_NOSUPP);
endif
new_tkt.vno := ticket version; /* = 5 */
new_tkt.sname := req.sname;
new_tkt.srealm := req.srealm;
reset all flags in new_tkt.flags;
<span class="grey">Kohl & Neuman [Page 92]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-93" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
/* It should be noted that local policy may affect the */
/* processing of any of these flags. For example, some */
/* realms may refuse to issue renewable tickets */
if (req.kdc-options.FORWARDABLE is set) then
set new_tkt.flags.FORWARDABLE;
endif
if (req.kdc-options.PROXIABLE is set) then
set new_tkt.flags.PROXIABLE;
endif
if (req.kdc-options.ALLOW-POSTDATE is set) then
set new_tkt.flags.ALLOW-POSTDATE;
endif
if ((req.kdc-options.RENEW is set) or
(req.kdc-options.VALIDATE is set) or
(req.kdc-options.PROXY is set) or
(req.kdc-options.FORWARDED is set) or
(req.kdc-options.ENC-TKT-IN-SKEY is set)) then
error_out(KDC_ERR_BADOPTION);
endif
new_tkt.session := random_session_key();
new_tkt.cname := req.cname;
new_tkt.crealm := req.crealm;
new_tkt.transited := empty_transited_field();
new_tkt.authtime := kdc_time;
if (req.kdc-options.POSTDATED is set) then
if (against_postdate_policy(req.from)) then
error_out(KDC_ERR_POLICY);
endif
set new_tkt.flags.INVALID;
new_tkt.starttime := req.from;
else
omit new_tkt.starttime; /* treated as authtime when
omitted */
endif
if (req.till = 0) then
till := infinity;
else
till := req.till;
endif
new_tkt.endtime := min(till,
new_tkt.starttime+client.max_life,
new_tkt.starttime+server.max_life,
new_tkt.starttime+max_life_for_realm);
<span class="grey">Kohl & Neuman [Page 93]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-94" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
if ((req.kdc-options.RENEWABLE-OK is set) and
(new_tkt.endtime < req.till)) then
/* we set the RENEWABLE option for later processing */
set req.kdc-options.RENEWABLE;
req.rtime := req.till;
endif
if (req.rtime = 0) then
rtime := infinity;
else
rtime := req.rtime;
endif
if (req.kdc-options.RENEWABLE is set) then
set new_tkt.flags.RENEWABLE;
new_tkt.renew-till := min(rtime,
new_tkt.starttime+client.max_rlife,
new_tkt.starttime+server.max_rlife,
new_tkt.starttime+max_rlife_for_realm);
else
omit new_tkt.renew-till; /* only present if RENEWABLE */
endif
if (req.addresses) then
new_tkt.caddr := req.addresses;
else
omit new_tkt.caddr;
endif
new_tkt.authorization_data := empty_authorization_data();
encode to-be-encrypted part of ticket into OCTET STRING;
new_tkt.enc-part := encrypt OCTET STRING
using etype_for_key(server.key), server.key, server.p_kvno;
/* Start processing the response */
resp.pvno := 5;
resp.msg-type := KRB_AS_REP;
resp.cname := req.cname;
resp.crealm := req.realm;
resp.ticket := new_tkt;
resp.key := new_tkt.session;
resp.last-req := fetch_last_request_info(client);
resp.nonce := req.nonce;
resp.key-expiration := client.expiration;
<span class="grey">Kohl & Neuman [Page 94]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-95" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
resp.flags := new_tkt.flags;
resp.authtime := new_tkt.authtime;
resp.starttime := new_tkt.starttime;
resp.endtime := new_tkt.endtime;
if (new_tkt.flags.RENEWABLE) then
resp.renew-till := new_tkt.renew-till;
endif
resp.realm := new_tkt.realm;
resp.sname := new_tkt.sname;
resp.caddr := new_tkt.caddr;
encode body of reply into OCTET STRING;
resp.enc-part := encrypt OCTET STRING
using use_etype, client.key, client.p_kvno;
send(resp);
<span class="h3"><a class="selflink" id="appendix-A.3" href="#appendix-A.3">A.3</a>. KRB_AS_REP verification</span>
decode response into resp;
if (resp.msg-type = KRB_ERROR) then
if(error = KDC_ERR_PREAUTH_REQUIRED(PA_ENC_TIMESTAMP))
then set pa_enc_timestamp_required;
goto KRB_AS_REQ;
endif
process_error(resp);
return;
endif
/* On error, discard the response, and zero the session key */
/* from the response immediately */
key = get_decryption_key(resp.enc-part.kvno, resp.enc-part.etype,
resp.padata);
unencrypted part of resp := decode of decrypt of resp.enc-part
using resp.enc-part.etype and key;
zero(key);
if (common_as_rep_tgs_rep_checks fail) then
destroy resp.key;
return error;
endif
if near(resp.princ_exp) then
<span class="grey">Kohl & Neuman [Page 95]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-96" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
print(warning message);
endif
save_for_later(ticket,session,client,server,times,flags);
<span class="h3"><a class="selflink" id="appendix-A.4" href="#appendix-A.4">A.4</a>. KRB_AS_REP and KRB_TGS_REP common checks</span>
if (decryption_error() or
(req.cname != resp.cname) or
(req.realm != resp.crealm) or
(req.sname != resp.sname) or
(req.realm != resp.realm) or
(req.nonce != resp.nonce) or
(req.addresses != resp.caddr)) then
destroy resp.key;
return KRB_AP_ERR_MODIFIED;
endif
/* make sure no flags are set that shouldn't be, and that */
/* all that should be are set */
if (!check_flags_for_compatability(req.kdc-options,resp.flags))
then destroy resp.key;
return KRB_AP_ERR_MODIFIED;
endif
if ((req.from = 0) and
(resp.starttime is not within allowable skew)) then
destroy resp.key;
return KRB_AP_ERR_SKEW;
endif
if ((req.from != 0) and (req.from != resp.starttime)) then
destroy resp.key;
return KRB_AP_ERR_MODIFIED;
endif
if ((req.till != 0) and (resp.endtime > req.till)) then
destroy resp.key;
return KRB_AP_ERR_MODIFIED;
endif
if ((req.kdc-options.RENEWABLE is set) and
(req.rtime != 0) and (resp.renew-till > req.rtime)) then
destroy resp.key;
return KRB_AP_ERR_MODIFIED;
endif
if ((req.kdc-options.RENEWABLE-OK is set) and
(resp.flags.RENEWABLE) and
(req.till != 0) and
(resp.renew-till > req.till)) then
destroy resp.key;
return KRB_AP_ERR_MODIFIED;
<span class="grey">Kohl & Neuman [Page 96]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-97" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
endif
<span class="h3"><a class="selflink" id="appendix-A.5" href="#appendix-A.5">A.5</a>. KRB_TGS_REQ generation</span>
/* Note that make_application_request might have to */
/* recursivly call this routine to get the appropriate */
/* ticket-granting ticket */
request.pvno := protocol version; /* pvno = 5 */
request.msg-type := message type; /* type = KRB_TGS_REQ */
body.kdc-options := users's preferences;
/* If the TGT is not for the realm of the end-server */
/* then the sname will be for a TGT for the end-realm */
/* and the realm of the requested ticket (body.realm) */
/* will be that of the TGS to which the TGT we are */
/* sending applies */
body.sname := service's name;
body.realm := service's realm;
if (body.kdc-options.POSTDATED is set) then
body.from := requested starting time;
else
omit body.from;
endif
body.till := requested end time;
if (body.kdc-options.RENEWABLE is set) then
body.rtime := requested final renewal time;
endif
body.nonce := random_nonce();
body.etype := requested etypes;
if (user supplied addresses) then
body.addresses := user's addresses;
else
omit body.addresses;
endif
body.enc-authorization-data := user-supplied data;
if (body.kdc-options.ENC-TKT-IN-SKEY) then
body.additional-tickets_ticket := second TGT;
endif
request.req-body := body;
check := generate_checksum (req.body,checksumtype);
request.padata[0].padata-type := PA-TGS-REQ;
request.padata[0].padata-value := create a KRB_AP_REQ using
the TGT and checksum
<span class="grey">Kohl & Neuman [Page 97]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-98" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
/* add in any other padata as required/supplied */
kerberos := lookup(name of local kerberose server (or servers));
send(packet,kerberos);
wait(for response);
if (timed_out) then
retry or use alternate server;
endif
<span class="h3"><a class="selflink" id="appendix-A.6" href="#appendix-A.6">A.6</a>. KRB_TGS_REQ verification and KRB_TGS_REP generation</span>
/* note that reading the application request requires first
determining the server for which a ticket was issued, and
choosing the correct key for decryption. The name of the
server appears in the plaintext part of the ticket. */
if (no KRB_AP_REQ in req.padata) then
error_out(KDC_ERR_PADATA_TYPE_NOSUPP);
endif
verify KRB_AP_REQ in req.padata;
/* Note that the realm in which the Kerberos server is
operating is determined by the instance from the
ticket-granting ticket. The realm in the ticket-granting
ticket is the realm under which the ticket granting ticket was
issued. It is possible for a single Kerberos server to
support more than one realm. */
auth_hdr := KRB_AP_REQ;
tgt := auth_hdr.ticket;
if (tgt.sname is not a TGT for local realm and is not
req.sname) then error_out(KRB_AP_ERR_NOT_US);
realm := realm_tgt_is_for(tgt);
decode remainder of request;
if (auth_hdr.authenticator.cksum is missing) then
error_out(KRB_AP_ERR_INAPP_CKSUM);
endif
if (auth_hdr.authenticator.cksum type is not supported) then
error_out(KDC_ERR_SUMTYPE_NOSUPP);
endif
if (auth_hdr.authenticator.cksum is not both collision-proof
and keyed) then
error_out(KRB_AP_ERR_INAPP_CKSUM);
endif
<span class="grey">Kohl & Neuman [Page 98]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-99" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
set computed_checksum := checksum(req);
if (computed_checksum != auth_hdr.authenticatory.cksum) then
error_out(KRB_AP_ERR_MODIFIED);
endif
server := lookup(req.sname,realm);
if (!server) then
if (is_foreign_tgt_name(server)) then
server := best_intermediate_tgs(server);
else
/* no server in Database */
error_out(KDC_ERR_S_PRINCIPAL_UNKNOWN);
endif
endif
session := generate_random_session_key();
use_etype := first supported etype in req.etypes;
if (no support for req.etypes) then
error_out(KDC_ERR_ETYPE_NOSUPP);
endif
new_tkt.vno := ticket version; /* = 5 */
new_tkt.sname := req.sname;
new_tkt.srealm := realm;
reset all flags in new_tkt.flags;
/* It should be noted that local policy may affect the */
/* processing of any of these flags. For example, some */
/* realms may refuse to issue renewable tickets */
new_tkt.caddr := tgt.caddr;
resp.caddr := NULL; /* We only include this if they change */
if (req.kdc-options.FORWARDABLE is set) then
if (tgt.flags.FORWARDABLE is reset) then
error_out(KDC_ERR_BADOPTION);
endif
set new_tkt.flags.FORWARDABLE;
endif
if (req.kdc-options.FORWARDED is set) then
if (tgt.flags.FORWARDABLE is reset) then
error_out(KDC_ERR_BADOPTION);
endif
set new_tkt.flags.FORWARDED;
new_tkt.caddr := req.addresses;
<span class="grey">Kohl & Neuman [Page 99]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-100" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
resp.caddr := req.addresses;
endif
if (tgt.flags.FORWARDED is set) then
set new_tkt.flags.FORWARDED;
endif
if (req.kdc-options.PROXIABLE is set) then
if (tgt.flags.PROXIABLE is reset)
error_out(KDC_ERR_BADOPTION);
endif
set new_tkt.flags.PROXIABLE;
endif
if (req.kdc-options.PROXY is set) then
if (tgt.flags.PROXIABLE is reset) then
error_out(KDC_ERR_BADOPTION);
endif
set new_tkt.flags.PROXY;
new_tkt.caddr := req.addresses;
resp.caddr := req.addresses;
endif
if (req.kdc-options.POSTDATE is set) then
if (tgt.flags.POSTDATE is reset)
error_out(KDC_ERR_BADOPTION);
endif
set new_tkt.flags.POSTDATE;
endif
if (req.kdc-options.POSTDATED is set) then
if (tgt.flags.POSTDATE is reset) then
error_out(KDC_ERR_BADOPTION);
endif
set new_tkt.flags.POSTDATED;
set new_tkt.flags.INVALID;
if (against_postdate_policy(req.from)) then
error_out(KDC_ERR_POLICY);
endif
new_tkt.starttime := req.from;
endif
if (req.kdc-options.VALIDATE is set) then
if (tgt.flags.INVALID is reset) then
error_out(KDC_ERR_POLICY);
endif
if (tgt.starttime > kdc_time) then
error_out(KRB_AP_ERR_NYV);
endif
if (check_hot_list(tgt)) then
<span class="grey">Kohl & Neuman [Page 100]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-101" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
error_out(KRB_AP_ERR_REPEAT);
endif
tkt := tgt;
reset new_tkt.flags.INVALID;
endif
if (req.kdc-options.(any flag except ENC-TKT-IN-SKEY, RENEW,
and those already processed) is set) then
error_out(KDC_ERR_BADOPTION);
endif
new_tkt.authtime := tgt.authtime;
if (req.kdc-options.RENEW is set) then
/* Note that if the endtime has already passed, the ticket */
/* would have been rejected in the initial authentication */
/* stage, so there is no need to check again here */
if (tgt.flags.RENEWABLE is reset) then
error_out(KDC_ERR_BADOPTION);
endif
if (tgt.renew-till >= kdc_time) then
error_out(KRB_AP_ERR_TKT_EXPIRED);
endif
tkt := tgt;
new_tkt.starttime := kdc_time;
old_life := tgt.endttime - tgt.starttime;
new_tkt.endtime := min(tgt.renew-till,
new_tkt.starttime + old_life);
else
new_tkt.starttime := kdc_time;
if (req.till = 0) then
till := infinity;
else
till := req.till;
endif
new_tkt.endtime := min(till,
new_tkt.starttime+client.max_life,
new_tkt.starttime+server.max_life,
new_tkt.starttime+max_life_for_realm,
tgt.endtime);
if ((req.kdc-options.RENEWABLE-OK is set) and
(new_tkt.endtime < req.till) and
(tgt.flags.RENEWABLE is set) then
/* we set the RENEWABLE option for later */
/* processing */
set req.kdc-options.RENEWABLE;
req.rtime := min(req.till, tgt.renew-till);
<span class="grey">Kohl & Neuman [Page 101]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-102" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
endif
endif
if (req.rtime = 0) then
rtime := infinity;
else
rtime := req.rtime;
endif
if ((req.kdc-options.RENEWABLE is set) and
(tgt.flags.RENEWABLE is set)) then
set new_tkt.flags.RENEWABLE;
new_tkt.renew-till := min(rtime,
new_tkt.starttime+client.max_rlife,
new_tkt.starttime+server.max_rlife,
new_tkt.starttime+max_rlife_for_realm,
tgt.renew-till);
else
new_tkt.renew-till := OMIT;
/* leave the renew-till field out */
endif
if (req.enc-authorization-data is present) then
decrypt req.enc-authorization-data
into decrypted_authorization_data
using auth_hdr.authenticator.subkey;
if (decrypt_error()) then
error_out(KRB_AP_ERR_BAD_INTEGRITY);
endif
endif
new_tkt.authorization_data :=
req.auth_hdr.ticket.authorization_data +
decrypted_authorization_data;
new_tkt.key := session;
new_tkt.crealm := tgt.crealm;
new_tkt.cname := req.auth_hdr.ticket.cname;
if (realm_tgt_is_for(tgt) := tgt.realm) then
/* tgt issued by local realm */
new_tkt.transited := tgt.transited;
else
/* was issued for this realm by some other realm */
if (tgt.transited.tr-type not supported) then
error_out(KDC_ERR_TRTYPE_NOSUPP);
endif
new_tkt.transited
:= compress_transited(tgt.transited + tgt.realm)
endif
<span class="grey">Kohl & Neuman [Page 102]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-103" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
encode encrypted part of new_tkt into OCTET STRING;
if (req.kdc-options.ENC-TKT-IN-SKEY is set) then
if (server not specified) then
server = req.second_ticket.client;
endif
if ((req.second_ticket is not a TGT) or
(req.second_ticket.client != server)) then
error_out(KDC_ERR_POLICY);
endif
new_tkt.enc-part := encrypt OCTET STRING using
using etype_for_key(second-ticket.key),
second-ticket.key;
else
new_tkt.enc-part := encrypt OCTET STRING
using etype_for_key(server.key), server.key,
server.p_kvno;
endif
resp.pvno := 5;
resp.msg-type := KRB_TGS_REP;
resp.crealm := tgt.crealm;
resp.cname := tgt.cname;
resp.ticket := new_tkt;
resp.key := session;
resp.nonce := req.nonce;
resp.last-req := fetch_last_request_info(client);
resp.flags := new_tkt.flags;
resp.authtime := new_tkt.authtime;
resp.starttime := new_tkt.starttime;
resp.endtime := new_tkt.endtime;
omit resp.key-expiration;
resp.sname := new_tkt.sname;
resp.realm := new_tkt.realm;
if (new_tkt.flags.RENEWABLE) then
resp.renew-till := new_tkt.renew-till;
endif
encode body of reply into OCTET STRING;
if (req.padata.authenticator.subkey)
resp.enc-part := encrypt OCTET STRING using use_etype,
<span class="grey">Kohl & Neuman [Page 103]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-104" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
req.padata.authenticator.subkey;
else resp.enc-part := encrypt OCTET STRING
using use_etype, tgt.key;
send(resp);
<span class="h3"><a class="selflink" id="appendix-A.7" href="#appendix-A.7">A.7</a>. KRB_TGS_REP verification</span>
decode response into resp;
if (resp.msg-type = KRB_ERROR) then
process_error(resp);
return;
endif
/* On error, discard the response, and zero the session key from
the response immediately */
if (req.padata.authenticator.subkey)
unencrypted part of resp :=
decode of decrypt of resp.enc-part
using resp.enc-part.etype and subkey;
else unencrypted part of resp :=
decode of decrypt of resp.enc-part
using resp.enc-part.etype and tgt's session key;
if (common_as_rep_tgs_rep_checks fail) then
destroy resp.key;
return error;
endif
check authorization_data as necessary;
save_for_later(ticket,session,client,server,times,flags);
<span class="h3"><a class="selflink" id="appendix-A.8" href="#appendix-A.8">A.8</a>. Authenticator generation</span>
body.authenticator-vno := authenticator vno; /* = 5 */
body.cname, body.crealm := client name;
if (supplying checksum) then
body.cksum := checksum;
endif
get system_time;
body.ctime, body.cusec := system_time;
if (selecting sub-session key) then
select sub-session key;
body.subkey := sub-session key;
endif
if (using sequence numbers) then
select initial sequence number;
body.seq-number := initial sequence;
endif
<span class="grey">Kohl & Neuman [Page 104]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-105" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
<span class="h3"><a class="selflink" id="appendix-A.9" href="#appendix-A.9">A.9</a>. KRB_AP_REQ generation</span>
obtain ticket and session_key from cache;
packet.pvno := protocol version; /* 5 */
packet.msg-type := message type; /* KRB_AP_REQ */
if (desired(MUTUAL_AUTHENTICATION)) then
set packet.ap-options.MUTUAL-REQUIRED;
else
reset packet.ap-options.MUTUAL-REQUIRED;
endif
if (using session key for ticket) then
set packet.ap-options.USE-SESSION-KEY;
else
reset packet.ap-options.USE-SESSION-KEY;
endif
packet.ticket := ticket; /* ticket */
generate authenticator;
encode authenticator into OCTET STRING;
encrypt OCTET STRING into packet.authenticator
using session_key;
<span class="h3"><a class="selflink" id="appendix-A.10" href="#appendix-A.10">A.10</a>. KRB_AP_REQ verification</span>
receive packet;
if (packet.pvno != 5) then
either process using other protocol spec
or error_out(KRB_AP_ERR_BADVERSION);
endif
if (packet.msg-type != KRB_AP_REQ) then
error_out(KRB_AP_ERR_MSG_TYPE);
endif
if (packet.ticket.tkt_vno != 5) then
either process using other protocol spec
or error_out(KRB_AP_ERR_BADVERSION);
endif
if (packet.ap_options.USE-SESSION-KEY is set) then
retrieve session key from ticket-granting ticket for
packet.ticket.{sname,srealm,enc-part.etype};
else
retrieve service key for
packet.ticket.{sname,srealm,enc-part.etype,enc-part.skvno};
endif
if (no_key_available) then
if (cannot_find_specified_skvno) then
error_out(KRB_AP_ERR_BADKEYVER);
else
error_out(KRB_AP_ERR_NOKEY);
endif
<span class="grey">Kohl & Neuman [Page 105]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-106" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
endif
decrypt packet.ticket.enc-part into decr_ticket
using retrieved key;
if (decryption_error()) then
error_out(KRB_AP_ERR_BAD_INTEGRITY);
endif
decrypt packet.authenticator into decr_authenticator
using decr_ticket.key;
if (decryption_error()) then
error_out(KRB_AP_ERR_BAD_INTEGRITY);
endif
if (decr_authenticator.{cname,crealm} !=
decr_ticket.{cname,crealm}) then
error_out(KRB_AP_ERR_BADMATCH);
endif
if (decr_ticket.caddr is present) then
if (sender_address(packet) is not in decr_ticket.caddr)
then error_out(KRB_AP_ERR_BADADDR);
endif
elseif (application requires addresses) then
error_out(KRB_AP_ERR_BADADDR);
endif
if (not in_clock_skew(decr_authenticator.ctime,
decr_authenticator.cusec)) then
error_out(KRB_AP_ERR_SKEW);
endif
if (repeated(decr_authenticator.{ctime,cusec,cname,crealm}))
then error_out(KRB_AP_ERR_REPEAT);
endif
save_identifier(decr_authenticator.{ctime,cusec,cname,crealm});
get system_time;
if ((decr_ticket.starttime-system_time > CLOCK_SKEW) or
(decr_ticket.flags.INVALID is set)) then
/* it hasn't yet become valid */
error_out(KRB_AP_ERR_TKT_NYV);
endif
if (system_time-decr_ticket.endtime > CLOCK_SKEW) then
error_out(KRB_AP_ERR_TKT_EXPIRED);
endif
/* caller must check decr_ticket.flags for any pertinent */
/* details */
return(OK, decr_ticket, packet.ap_options.MUTUAL-REQUIRED);
<span class="h3"><a class="selflink" id="appendix-A.11" href="#appendix-A.11">A.11</a>. KRB_AP_REP generation</span>
packet.pvno := protocol version; /* 5 */
packet.msg-type := message type; /* KRB_AP_REP */
body.ctime := packet.ctime;
body.cusec := packet.cusec;
<span class="grey">Kohl & Neuman [Page 106]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-107" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
if (selecting sub-session key) then
select sub-session key;
body.subkey := sub-session key;
endif
if (using sequence numbers) then
select initial sequence number;
body.seq-number := initial sequence;
endif
encode body into OCTET STRING;
select encryption type;
encrypt OCTET STRING into packet.enc-part;
<span class="h3"><a class="selflink" id="appendix-A.12" href="#appendix-A.12">A.12</a>. KRB_AP_REP verification</span>
receive packet;
if (packet.pvno != 5) then
either process using other protocol spec
or error_out(KRB_AP_ERR_BADVERSION);
endif
if (packet.msg-type != KRB_AP_REP) then
error_out(KRB_AP_ERR_MSG_TYPE);
endif
cleartext := decrypt(packet.enc-part)
using ticket's session key;
if (decryption_error()) then
error_out(KRB_AP_ERR_BAD_INTEGRITY);
endif
if (cleartext.ctime != authenticator.ctime) then
error_out(KRB_AP_ERR_MUT_FAIL);
endif
if (cleartext.cusec != authenticator.cusec) then
error_out(KRB_AP_ERR_MUT_FAIL);
endif
if (cleartext.subkey is present) then
save cleartext.subkey for future use;
endif
if (cleartext.seq-number is present) then
save cleartext.seq-number for future verifications;
endif
return(AUTHENTICATION_SUCCEEDED);
<span class="h3"><a class="selflink" id="appendix-A.13" href="#appendix-A.13">A.13</a>. KRB_SAFE generation</span>
collect user data in buffer;
/* assemble packet: */
packet.pvno := protocol version; /* 5 */
packet.msg-type := message type; /* KRB_SAFE */
<span class="grey">Kohl & Neuman [Page 107]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-108" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
body.user-data := buffer; /* DATA */
if (using timestamp) then
get system_time;
body.timestamp, body.usec := system_time;
endif
if (using sequence numbers) then
body.seq-number := sequence number;
endif
body.s-address := sender host addresses;
if (only one recipient) then
body.r-address := recipient host address;
endif
checksum.cksumtype := checksum type;
compute checksum over body;
checksum.checksum := checksum value; /* checksum.checksum */
packet.cksum := checksum;
packet.safe-body := body;
<span class="h3"><a class="selflink" id="appendix-A.14" href="#appendix-A.14">A.14</a>. KRB_SAFE verification</span>
receive packet;
if (packet.pvno != 5) then
either process using other protocol spec
or error_out(KRB_AP_ERR_BADVERSION);
endif
if (packet.msg-type != KRB_SAFE) then
error_out(KRB_AP_ERR_MSG_TYPE);
endif
if (packet.checksum.cksumtype is not both collision-proof
and keyed) then
error_out(KRB_AP_ERR_INAPP_CKSUM);
endif
if (safe_priv_common_checks_ok(packet)) then
set computed_checksum := checksum(packet.body);
if (computed_checksum != packet.checksum) then
error_out(KRB_AP_ERR_MODIFIED);
endif
return (packet, PACKET_IS_GENUINE);
else
return common_checks_error;
endif
<span class="h3"><a class="selflink" id="appendix-A.15" href="#appendix-A.15">A.15</a>. KRB_SAFE and KRB_PRIV common checks</span>
if (packet.s-address != O/S_sender(packet)) then
/* O/S report of sender not who claims to have sent it */
error_out(KRB_AP_ERR_BADADDR);
endif
if ((packet.r-address is present) and
(packet.r-address != local_host_address)) then
<span class="grey">Kohl & Neuman [Page 108]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-109" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
/* was not sent to proper place */
error_out(KRB_AP_ERR_BADADDR);
endif
if (((packet.timestamp is present) and
(not in_clock_skew(packet.timestamp,packet.usec))) or
(packet.timestamp is not present and timestamp expected))
then error_out(KRB_AP_ERR_SKEW);
endif
if (repeated(packet.timestamp,packet.usec,packet.s-address))
then error_out(KRB_AP_ERR_REPEAT);
endif
if (((packet.seq-number is present) and
((not in_sequence(packet.seq-number)))) or
(packet.seq-number is not present and sequence expected))
then error_out(KRB_AP_ERR_BADORDER);
endif
if (packet.timestamp not present and
packet.seq-number not present) then
error_out(KRB_AP_ERR_MODIFIED);
endif
save_identifier(packet.{timestamp,usec,s-address},
sender_principal(packet));
return PACKET_IS_OK;
<span class="h3"><a class="selflink" id="appendix-A.16" href="#appendix-A.16">A.16</a>. KRB_PRIV generation</span>
collect user data in buffer;
/* assemble packet: */
packet.pvno := protocol version; /* 5 */
packet.msg-type := message type; /* KRB_PRIV */
packet.enc-part.etype := encryption type;
body.user-data := buffer;
if (using timestamp) then
get system_time;
body.timestamp, body.usec := system_time;
endif
if (using sequence numbers) then
body.seq-number := sequence number;
endif
body.s-address := sender host addresses;
if (only one recipient) then
body.r-address := recipient host address;
endif
<span class="grey">Kohl & Neuman [Page 109]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-110" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
encode body into OCTET STRING;
select encryption type;
encrypt OCTET STRING into packet.enc-part.cipher;
<span class="h3"><a class="selflink" id="appendix-A.17" href="#appendix-A.17">A.17</a>. KRB_PRIV verification</span>
receive packet;
if (packet.pvno != 5) then
either process using other protocol spec
or error_out(KRB_AP_ERR_BADVERSION);
endif
if (packet.msg-type != KRB_PRIV) then
error_out(KRB_AP_ERR_MSG_TYPE);
endif
cleartext := decrypt(packet.enc-part) using negotiated key;
if (decryption_error()) then
error_out(KRB_AP_ERR_BAD_INTEGRITY);
endif
if (safe_priv_common_checks_ok(cleartext)) then
return(cleartext.DATA, PACKET_IS_GENUINE_AND_UNMODIFIED);
else
return common_checks_error;
endif
<span class="h3"><a class="selflink" id="appendix-A.18" href="#appendix-A.18">A.18</a>. KRB_CRED generation</span>
invoke KRB_TGS; /* obtain tickets to be provided to peer */
/* assemble packet: */
packet.pvno := protocol version; /* 5 */
packet.msg-type := message type; /* KRB_CRED */
for (tickets[n] in tickets to be forwarded) do
packet.tickets[n] = tickets[n].ticket;
done
packet.enc-part.etype := encryption type;
for (ticket[n] in tickets to be forwarded) do
body.ticket-info[n].key = tickets[n].session;
body.ticket-info[n].prealm = tickets[n].crealm;
body.ticket-info[n].pname = tickets[n].cname;
body.ticket-info[n].flags = tickets[n].flags;
body.ticket-info[n].authtime = tickets[n].authtime;
body.ticket-info[n].starttime = tickets[n].starttime;
body.ticket-info[n].endtime = tickets[n].endtime;
body.ticket-info[n].renew-till = tickets[n].renew-till;
<span class="grey">Kohl & Neuman [Page 110]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-111" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
body.ticket-info[n].srealm = tickets[n].srealm;
body.ticket-info[n].sname = tickets[n].sname;
body.ticket-info[n].caddr = tickets[n].caddr;
done
get system_time;
body.timestamp, body.usec := system_time;
if (using nonce) then
body.nonce := nonce;
endif
if (using s-address) then
body.s-address := sender host addresses;
endif
if (limited recipients) then
body.r-address := recipient host address;
endif
encode body into OCTET STRING;
select encryption type;
encrypt OCTET STRING into packet.enc-part.cipher
using negotiated encryption key;
<span class="h3"><a class="selflink" id="appendix-A.19" href="#appendix-A.19">A.19</a>. KRB_CRED verification</span>
receive packet;
if (packet.pvno != 5) then
either process using other protocol spec
or error_out(KRB_AP_ERR_BADVERSION);
endif
if (packet.msg-type != KRB_CRED) then
error_out(KRB_AP_ERR_MSG_TYPE);
endif
cleartext := decrypt(packet.enc-part) using negotiated key;
if (decryption_error()) then
error_out(KRB_AP_ERR_BAD_INTEGRITY);
endif
if ((packet.r-address is present or required) and
(packet.s-address != O/S_sender(packet)) then
/* O/S report of sender not who claims to have sent it */
error_out(KRB_AP_ERR_BADADDR);
endif
if ((packet.r-address is present) and
(packet.r-address != local_host_address)) then
/* was not sent to proper place */
error_out(KRB_AP_ERR_BADADDR);
<span class="grey">Kohl & Neuman [Page 111]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-112" ></span>
<span class="grey"><a href="./rfc1510">RFC 1510</a> Kerberos September 1993</span>
endif
if (not in_clock_skew(packet.timestamp,packet.usec)) then
error_out(KRB_AP_ERR_SKEW);
endif
if (repeated(packet.timestamp,packet.usec,packet.s-address))
then error_out(KRB_AP_ERR_REPEAT);
endif
if (packet.nonce is required or present) and
(packet.nonce != expected-nonce) then
error_out(KRB_AP_ERR_MODIFIED);
endif
for (ticket[n] in tickets that were forwarded) do
save_for_later(ticket[n],key[n],principal[n],
server[n],times[n],flags[n]);
return
<span class="h3"><a class="selflink" id="appendix-A.20" href="#appendix-A.20">A.20</a>. KRB_ERROR generation</span>
/* assemble packet: */
packet.pvno := protocol version; /* 5 */
packet.msg-type := message type; /* KRB_ERROR */
get system_time;
packet.stime, packet.susec := system_time;
packet.realm, packet.sname := server name;
if (client time available) then
packet.ctime, packet.cusec := client_time;
endif
packet.error-code := error code;
if (client name available) then
packet.cname, packet.crealm := client name;
endif
if (error text available) then
packet.e-text := error text;
endif
if (error data available) then
packet.e-data := error data;
endif
Kohl & Neuman [Page 112]
</pre>
|