1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
|
<pre>Network Working Group D. Ruffen
Request for Comments: 2643 T. Len
Category: Informational J. Yanacek
Cabletron Systems Incorporated
August 1999
<span class="h1">Cabletron's SecureFast VLAN Operational Model</span>
<span class="h1">Version 1.8</span>
Status of this Memo
This memo provides information for the Internet community. It does
not specify an Internet standard of any kind. Distribution of this
memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (1999). All Rights Reserved.
Abstract
Cabletron's SecureFast VLAN (SFVLAN) product implements a distributed
connection-oriented switching protocol that provides fast forwarding
of data packets at the MAC layer. The product uses the concept of
virtual LANs (VLANs) to determine the validity of call connection
requests and to scope the broadcast of certain flooded messages.
Table of Contents
<a href="#section-1">1</a>. Introduction............................................. <a href="#page-3">3</a>
<a href="#section-1.1">1.1</a> Data Conventions..................................... <a href="#page-3">3</a>
<a href="#section-1.2">1.2</a> Definitions of Commonly Used Terms................... <a href="#page-4">4</a>
<a href="#section-2">2</a>. SFVLAN Overview.......................................... <a href="#page-6">6</a>
<a href="#section-2.1">2.1</a> Features............................................. <a href="#page-7">7</a>
<a href="#section-2.2">2.2</a> VLAN Principles...................................... <a href="#page-8">8</a>
<a href="#section-2.2.1">2.2.1</a> Default, Base and Inherited VLANs.............. <a href="#page-8">8</a>
<a href="#section-2.2.2">2.2.2</a> VLAN Configuration Modes....................... <a href="#page-8">8</a>
<a href="#section-2.2.2.1">2.2.2.1</a> Endstations............................ <a href="#page-8">8</a>
<a href="#section-2.2.2.2">2.2.2.2</a> Ports.................................. <a href="#page-9">9</a>
<a href="#section-2.2.2.3">2.2.2.3</a> Order of Precedence.................... <a href="#page-9">9</a>
<a href="#section-2.2.3">2.2.3</a> Ports with Multiple VLAN Membership............ <a href="#page-10">10</a>
<a href="#section-2.3">2.3</a> Tag/Length/Value Method of Addressing................ <a href="#page-10">10</a>
<a href="#section-2.4">2.4</a> Architectural Overview............................... <a href="#page-11">11</a>
<a href="#section-3">3</a>. Base Services............................................ <a href="#page-13">13</a>
<a href="#section-4">4</a>. Call Processing.......................................... <a href="#page-14">14</a>
<a href="#section-4.1">4.1</a> Directory Service Center............................. <a href="#page-14">14</a>
<a href="#section-4.1.1">4.1.1</a> Local Add Server............................... <a href="#page-15">15</a>
<span class="grey">Ruffen, et al. Informational [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
<a href="#section-4.1.2">4.1.2</a> Inverse Resolve Server......................... <a href="#page-15">15</a>
<a href="#section-4.1.3">4.1.3</a> Local Delete Server............................ <a href="#page-18">18</a>
<a href="#section-4.2">4.2</a> Topology Service Center.............................. <a href="#page-18">18</a>
<a href="#section-4.2.1">4.2.1</a> Neighbor Discovery Server...................... <a href="#page-18">18</a>
<a href="#section-4.2.2">4.2.2</a> Spanning Tree Server........................... <a href="#page-18">18</a>
4.2.2.1 Creating and Maintaining
the Spanning Tree........... <a href="#page-19">19</a>
<a href="#section-4.2.2.2">4.2.2.2</a> Remote Blocking........................ <a href="#page-19">19</a>
<a href="#section-4.2.3">4.2.3</a> Link State Server.............................. <a href="#page-20">20</a>
<a href="#section-4.3">4.3</a> Resolve Service Center............................... <a href="#page-21">21</a>
<a href="#section-4.3.1">4.3.1</a> Table Server................................... <a href="#page-22">22</a>
<a href="#section-4.3.2">4.3.2</a> Local Server................................... <a href="#page-22">22</a>
<a href="#section-4.3.3">4.3.3</a> Subnet Server.................................. <a href="#page-22">22</a>
<a href="#section-4.3.4">4.3.4</a> Interswitch Resolve Server..................... <a href="#page-22">22</a>
<a href="#section-4.3.5">4.3.5</a> Unresolvable Server............................ <a href="#page-23">23</a>
<a href="#section-4.3.6">4.3.6</a> Block Server................................... <a href="#page-23">23</a>
<a href="#section-4.4">4.4</a> Policy Service Center................................ <a href="#page-24">24</a>
<a href="#section-4.4.1">4.4.1</a> Unicast Rules Server........................... <a href="#page-24">24</a>
<a href="#section-4.5">4.5</a> Connect Service Center............................... <a href="#page-25">25</a>
<a href="#section-4.5.1">4.5.1</a> Local Server................................... <a href="#page-25">25</a>
<a href="#section-4.5.2">4.5.2</a> Link State Server.............................. <a href="#page-25">25</a>
<a href="#section-4.5.3">4.5.3</a> Directory Server............................... <a href="#page-26">26</a>
<a href="#section-4.6">4.6</a> Filter Service Center................................ <a href="#page-26">26</a>
<a href="#section-4.7">4.7</a> Path Service Center.................................. <a href="#page-26">26</a>
<a href="#section-4.7.1">4.7.1</a> Link State Server.............................. <a href="#page-26">26</a>
<a href="#section-4.7.2">4.7.2</a> Spanning Tree Server........................... <a href="#page-27">27</a>
<a href="#section-4.8">4.8</a> Flood Service Center................................. <a href="#page-27">27</a>
<a href="#section-4.8.1">4.8.1</a> Tag-Based Flood Server......................... <a href="#page-27">27</a>
<a href="#section-5">5</a>. Monitoring Call Connections.............................. <a href="#page-27">27</a>
<a href="#section-5.1">5.1</a> Definitions.......................................... <a href="#page-27">27</a>
<a href="#section-5.2">5.2</a> Tapping a Connection................................. <a href="#page-28">28</a>
<a href="#section-5.2.1">5.2.1</a> Types of Tap Connections....................... <a href="#page-28">28</a>
5.2.2 Locating the Probe and Establishing
the Tap Connection.......... <a href="#page-29">29</a>
<a href="#section-5.2.3">5.2.3</a> Status Field................................... <a href="#page-30">30</a>
<a href="#section-5.3">5.3</a> Untapping a Connection............................... <a href="#page-31">31</a>
<a href="#section-6">6</a>. Interswitch Message Protocol (ISMP)...................... <a href="#page-32">32</a>
<a href="#section-6.1">6.1</a> General Packet Structure............................. <a href="#page-32">32</a>
<a href="#section-6.1.1">6.1.1</a> Frame Header................................... <a href="#page-32">32</a>
<a href="#section-6.1.2">6.1.2</a> ISMP Packet Header............................. <a href="#page-33">33</a>
<a href="#section-6.1.2.1">6.1.2.1</a> Version 2.............................. <a href="#page-33">33</a>
<a href="#section-6.1.2.2">6.1.2.2</a> Version 3.............................. <a href="#page-34">34</a>
<a href="#section-6.1.3">6.1.3</a> ISMP Message Body.............................. <a href="#page-35">35</a>
<a href="#section-6.2">6.2</a> Interswitch BPDU Message............................. <a href="#page-35">35</a>
<a href="#section-6.3">6.3</a> Interswitch Remote Blocking Message.................. <a href="#page-36">36</a>
<a href="#section-6.4">6.4</a> Interswitch Resolve Message.......................... <a href="#page-37">37</a>
<a href="#section-6.4.1">6.4.1</a> Prior to Version 1.8........................... <a href="#page-37">37</a>
<a href="#section-6.4.2">6.4.2</a> Version 1.8.................................... <a href="#page-41">41</a>
<span class="grey">Ruffen, et al. Informational [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
<a href="#section-6.5">6.5</a> Interswitch New User Message......................... <a href="#page-46">46</a>
<a href="#section-6.6">6.6</a> Interswitch Tag-Based Flood Message.................. <a href="#page-49">49</a>
<a href="#section-6.6.1">6.6.1</a> Prior to Version 1.8........................... <a href="#page-49">49</a>
<a href="#section-6.6.2">6.6.2</a> Version 1.8.................................... <a href="#page-52">52</a>
<a href="#section-6.7">6.7</a> Interswitch Tap/Untap Message........................ <a href="#page-55">55</a>
<a href="#section-7">7</a>. Security Considerations.................................. <a href="#page-58">58</a>
<a href="#section-8">8</a>. References............................................... <a href="#page-58">58</a>
<a href="#section-9">9</a>. Authors' Addresses....................................... <a href="#page-59">59</a>
<a href="#section-10">10</a>. Full Copyright Statement................................ <a href="#page-60">60</a>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
This memo is being distributed to members of the Internet community
in order to solicit reactions to the proposals contained herein.
While the specification discussed here may not be directly relevant
to the research problems of the Internet, it may be of interest to
researchers and implementers.
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a> Data Conventions</span>
The methods used in this memo to describe and picture data adhere to
the standards of Internet Protocol documentation [<a href="./rfc1700" title=""Assigned Numbers"">RFC1700</a>]. In
particular:
The convention in the documentation of Internet Protocols is to
express numbers in decimal and to picture data in "big-endian"
order. That is, fields are described left to right, with the most
significant octet on the left and the least significant octet on
the right.
The order of transmission of the header and data described in this
document is resolved to the octet level. Whenever a diagram shows
a group of octets, the order of transmission of those octets is
the normal order in which they are read in English.
Whenever an octet represents a numeric quantity the left most bit
in the diagram is the high order or most significant bit. That
is, the bit labeled 0 is the most significant bit.
<span class="grey">Ruffen, et al. Informational [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
Similarly, whenever a multi-octet field represents a numeric
quantity the left most bit of the whole field is the most
significant bit. When a multi-octet quantity is transmitted the
most significant octet is transmitted first.
<span class="h3"><a class="selflink" id="section-1.2" href="#section-1.2">1.2</a> Definitions of Commonly Used Terms</span>
This section contains a collection of definitions for terms that have
a specific meaning for the SFVLAN product and that are used
throughout the text.
Switch ID
A 10-octet value that uniquely identifies an SFVLAN switch within
the switch fabric. The value consists of the 6-octet base MAC
address of the switch, followed by 4 octets of zeroes.
Network link
The physical connection between two switches. A network link is
associated with a network interface (or port) of a switch.
Network port
An interface on a switch that attaches to another switch.
Access port
An interface on a switch that attaches to a user endstation.
Port ID
A 10-octet value that uniquely identifies an interface of a
switch. The value consists of the 6-octet base MAC address of the
switch, followed by the 4-octet local port number of the
interface.
Neighboring switches
Two switches attached to a common (network) link.
Call connection
A mapping of user traffic through a switch that correlates the
source and destination address pair specified within the packet to
an inport and outport pair on the switch.
<span class="grey">Ruffen, et al. Informational [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
Call connection path
A set of 0 to 7 network links over which user traffic travels
between the source and destination endstations. Call connection
paths are selected from a list of alternate equal cost paths
calculated by the VLS protocol [<a href="#ref-IDvlsp" title=""Cabletron's VLS Protocol Specification"">IDvlsp</a>], and are chosen to load
balance traffic across the fabric.
Ingress switch
The owner switch of the source endstation of a call connection.
That is, the source endstation is attached to one of the local
access ports of the switch.
Egress switch
The owner switch of the destination endstation of a call
connection. That is, the destination endstation is attached to
one of the local access ports of the switch.
Intermediate switches
Any switch along the call connection path on which user traffic
enters and leaves over network links. Note that the following
types of connections have no intermediate switches:
- Call connections between source and destination endstations
that are attached to the same switch -- that is, the ingress
switch is the same as the egress switch. Note also that the
path for this type of connection consists of 0 network links.
- Call connections where the ingress and egress switches are
physical neighbors connected by a single network link. The
path for this type of connection consists of a single network
link.
InterSwitch Message protocol (ISMP)
The protocol used for interswitch communication between SFVLAN
switches.
Undirected messages
Messages that are (potentially) sent to all SFVLAN switches in the
switch fabric -- that is, they are not directed to any particular
switch. ISMP messages with a message type of 5, 7 or 8 are
undirected messages.
<span class="grey">Ruffen, et al. Informational [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
Switch flood path
The path used to send undirected messages throughout the switch
fabric. The switch flood path is formed using a spanning tree
algorithm that provides a single path through the switch fabric
that guarantees loop-free delivery to every other SFVLAN switch in
the fabric.
Upstream Neighbor
That switch attached to the inport of the switch flood path --
that is, the switch from which undirected messages are received.
Note that each switch receiving an undirected message has, at
most, one upstream neighbor, and the originator of any undirected
ISMP message has no upstream neighbors.
Downstream Neighbors
Those switches attached to all outports of the switch flood path
except the port on which the undirected message was received.
Note that for each undirected message some number of switches have
no downstream neighbors.
Virtual LAN (VLAN) identifier
A VLAN is a logical grouping of ports and endstations such that
all ports and endstations in the VLAN appear to be on the same
physical (or extended) LAN segment even though they may be
geographically separated.
A VLAN identifier consists of a variable-length string of octets.
The first octet in the string contains the number of octets in the
remainder of the string -- the actual VLAN identifier value. A
VLAN identifier can be from 1 to 16 octets long.
VLAN policy
Each VLAN has an assigned policy value used to determine whether a
particular call connection can be established. SFVLAN recognizes
two policy values: Open and Secure.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. SFVLAN Overview</span>
Cabletron's SecureFast VLAN (SFVLAN) product implements a distributed
connection-oriented switching protocol that provides fast forwarding
of data packets at the MAC layer.
<span class="grey">Ruffen, et al. Informational [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
<span class="h3"><a class="selflink" id="section-2.1" href="#section-2.1">2.1</a> Features</span>
Within a connection-oriented switching network, user traffic is
routed through the switch fabric based on the source and destination
address (SA/DA) pair found in the arriving packet. For each SA/DA
pair encountered by a switch, a "connection" is programmed into the
switch hardware. This connection maps the SA/DA pair and the port on
which the packet was received to a specific outport over which the
packet is to be forwarded. Thus, once a connection has been
established, all packets with a particular SA/DA pair arriving on a
particular inport are automatically forwarded by the switch hardware
out the specified outport.
A distributed switching environment requires that each switch be
capable of processing all aspects of the call processing and
switching functionality. Thus, each switch must synchronize its
various databases with all other switches in the fabric or be capable
of querying other switches for information it does not have locally.
SFVLAN accomplishes the above objectives by providing the following
features:
- A virtual directory of the entire switch fabric.
- Call processing for IP, IPX and MAC protocols.
- Automatic call connection, based on VLAN policy.
- Automatic call rerouting around failed switches and links.
In addition, SFVLAN optimizes traffic flow across the switch fabric
by providing the following features:
- Broadcast interception and address resolution at the ingress port.
- Broadcast scoping, restricting the flooding of broadcast packets
to only those ports that belong to the same VLAN as the packet
source.
- A single loop-free path (spanning tree) used for the flooding of
undirected interswitch control messages. Only switches running
the SFVLAN switching protocol are included in this spanning tree
calculation -- that is, traditional bridges or routers configured
for bridging are not included.
- Interception of both service and route advertisements with
readvertisement sourced from the MAC address of the original
advertiser.
<span class="grey">Ruffen, et al. Informational [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
<span class="h3"><a class="selflink" id="section-2.2" href="#section-2.2">2.2</a> VLAN Principles</span>
Each SFVLAN switch port, along with its attached endstations, belongs
to one or more virtual LANs (VLANs). A VLAN is a logical grouping of
ports and endstations such that all ports and endstations in the VLAN
appear to be on the same physical (or extended) LAN segment even
though they may be geographically separated.
VLAN assignments are used to determine the validity of call
connection requests and to scope the broadcast of certain flooded
messages.
<span class="h4"><a class="selflink" id="section-2.2.1" href="#section-2.2.1">2.2.1</a> Default, Base and Inherited VLANs</span>
Each port is explicitly assigned to a default VLAN. At start-up, the
default VLAN to which all ports are assigned is the base VLAN -- a
permanent, non-deletable VLAN to which all ports belong at all times.
The network administrator can change the default VLAN of a port from
the base VLAN to any other unique VLAN by using a management
application known here as the VLAN Manager. A port's default VLAN is
persistent -- that is, it is preserved across a switch reset.
When an endstation attaches to a port for the first time, it inherits
the default VLAN of the port. Using the VLAN Manager, the network
administrator can reassign an endstation to another VLAN.
Note:
When all ports and all endstations belong to the base VLAN, the
switch fabric behaves like an 802.1D bridging system.
<span class="h4"><a class="selflink" id="section-2.2.2" href="#section-2.2.2">2.2.2</a> VLAN Configuration Modes</span>
For both ports and endstations, there are a variety of VLAN
configuration types, or modes.
<span class="h5"><a class="selflink" id="section-2.2.2.1" href="#section-2.2.2.1">2.2.2.1</a> Endstations</span>
For endstations, there are two VLAN configuration modes: inherited
and static.
- Inherited
An inherited endstation becomes a member of its port's default
VLAN.
<span class="grey">Ruffen, et al. Informational [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
- Static
A static port becomes a member of the VLAN to which it has been
assigned by the VLAN Manager.
The default configuration mode for an endstation is inherited.
<span class="h5"><a class="selflink" id="section-2.2.2.2" href="#section-2.2.2.2">2.2.2.2</a> Ports</span>
For ports, there are two VLAN configuration modes: normal and
locked.
- Normal
All inherited endstations on a normal port become members of the
port's default VLAN. All static endstations are members of the
VLAN to which they were mapped by the VLAN Manager.
If the VLAN Manager reassigns the default VLAN of a normal port,
the VLAN(s) for the attached endstations may or may not change,
depending on the VLAN configuration mode of each endstation. All
inherited endstations will become members of the new default VLAN.
All others will retain membership in their previously mapped
VLANs.
- Locked
All endstations attached to a locked port can be members only of
the port's default VLAN.
If the VLAN Manager reconfigures a normal port to be a locked
port, all endstations attached to the port become members of the
port's default VLAN, regardless of any previous VLAN membership.
The default configuration mode for ports is normal.
<span class="h5"><a class="selflink" id="section-2.2.2.3" href="#section-2.2.2.3">2.2.2.3</a> Order of Precedence</span>
On a normal port, static VLAN membership prevails over inherited
membership.
On a locked port, default VLAN membership prevails over any static
VLAN membership.
If a statically assigned endstation moves from a locked port back to
a normal port, the endstation's static VLAN membership must be
preserved.
<span class="grey">Ruffen, et al. Informational [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
<span class="h4"><a class="selflink" id="section-2.2.3" href="#section-2.2.3">2.2.3</a> Ports with Multiple VLAN Membership</span>
A port can belong to multiple VLANs, based on the VLAN membership of
its attached endstations.
For example, consider a port with three endstations, a default VLAN
of "blue" and the following endstation VLAN assignments:
- One of the endstations is statically assigned to VLAN "red."
- Another endstation is statically assigned to VLAN "green."
- The third endstation inherits the default VLAN of "blue."
In this instance, the port is explicitly a member of VLAN "blue." But
note that it is also implicitly a member of VLAN "red" and VLAN
"green." Any tag-based flooding (<a href="#section-4.8">Section 4.8</a>) directed to any one of
the three VLANs ("red," "green," or "blue") will be forwarded out the
port.
<span class="h3"><a class="selflink" id="section-2.3" href="#section-2.3">2.3</a> Tag/Length/Value Method of Addressing</span>
Within most computer networks, the concept of "address" is somewhat
elusive because different protocols can (and do) use different
addressing schemes and formats. For example, Ethernet (physical
layer) addresses are six octets long, while IP (network layer)
addresses are only four octets long.
To distinguish between the various protocol-specific forms of
addressing, many software modules within the SFVLAN product specify
addresses in a format known as Tag/Length/Value (TLV). This format
uses a variable-length construct as shown below:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Tag |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Value length | |
+-+-+-+-+-+-+-+-+ +
| Address value |
: :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Tag
This 4-octet field specifies the type of address contained in the
structure. The following address types are currently supported:
<span class="grey">Ruffen, et al. Informational [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
Tag name Value Address type
aoMacDx 1 DX ethernet dst/src/type
aoIpxSap 2 Sap
aoIpxRIP 3 RIP
aoInstYP 4 YP (YP name and version)
aoInstUDP 5 UDP (Port #)
aoIpxIpx 6 Ipx
aoInetIP 7 IP (Net address)
aoInetRPC 8 RPC (Program #)
aoInetRIP 9 INET RIP
aoMacDXMcast 10 Multicast unknown type
aoAtDDP 11 AppleTalk DDP
aoEmpty 12 (no address type specified)
aoVlan 13 VLAN identifier
aoHostName 14 Host name
aoNetBiosName 15 NetBIOS name
aoNBT 16 NetBIOS on TCP name
aoInetIPMask 17 IP Subnet Mask
aoIpxSap8022 18 Sap 8022 type service
aoIpxSapSnap 19 Sap Snap type service
aoIpxSapEnet 20 Sap Enet type service
aoDHCPXID 21 DHCP Transaction ID
aoIpMcastRx 22 IP class D receiver
aoIpMcastTx 23 IP class D sender
aoIpxRip8022 24 Ipx Rip 8022 type service
aoIpxRipSnap 25 Ipx Rip type service
aoIpxRipEnet 26 Ipx Rip Enet service
aoATM 27 ATM
aoATMELAN 28 ATM LAN Emulation Name
Value length
This 1-octet field contains the length of the value of the
address. The value here depends on the address type and actual
value.
Address value
This variable-length field contains the value of the address. The
length of this field is stored in the Value length field.
<span class="h3"><a class="selflink" id="section-2.4" href="#section-2.4">2.4</a> Architectural Overview</span>
The SFVLAN software executes in the switch CPU and consists of the
following elements as shown in Figure 1:
<span class="grey">Ruffen, et al. Informational [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
- The SFVLAN base services that handles traffic intercepted by the
switch hardware. The base services are described in <a href="#section-3">Section 3</a>.
+------------------------------------------------------+
| +-----+ |
| +------------+ | I | |
| | CALL TAP <--(8)--> N | |
| +------------+ | T | |
| | E | |
| +-----------+ +------------+ | R | |
| | PATH | | TOPOLOGY | | S | |
| | | | | | W | |
| | Lnk state <------> Lnk state <--(3)--> I | | Flood path
| | | | | | T <----(5,7,8)-->
| | Span tree <------> Span tree <--(4)--> C | |
| +--^--------+ | | | H | |
| | | Discovery <--(2)--> | |
| | +------------+ | M | |
| | | E | |
| +------^--+ +--------+ | S | |
| | CONNECT >---------+--> FILTER | | S | |
| +--^------+ | +--------+ | A | | specific
| | | | G | | netwrk lnks
| | +--------^-+ +-------+ | E <----(2,3,4)-->
| +-------< POLICY | | FLOOD >--(7)--> | |
| +------^---+ +-^-----+ | P | |
| | | | R | |
| +-----------+ +-^-----------V-+ | O | |
| | DIRECTORY <----> RESOLVE <------(5)--> T | |
| +-----^-----+ +---^-----------+ | O | |
| | | | C | |
| | +---------^-----------+ | O | |
| +----< Base Services | | L | |
| +-----^---------------+ +-----+ |
+------------------|-----------------------------------+
Switch CPU |
| Host control port
+-----O----------------+
| ^ no cnx |
Layer 2 | | |
---------->O-----+--------------->O----------->
SA/DA pr | known cnx |
+----------------------+
Switch hardware
Figure 1: SFVLAN Architectural Overview
<span class="grey">Ruffen, et al. Informational [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
- Eight call processing service centers that provide the essential
services required to process call connections. The call
processing service centers are described in <a href="#section-4">Section 4</a>.
- A Call Tap module that supports the monitoring of call
connections. The Call Tap module is described in <a href="#section-5">Section 5</a>.
- The InterSwitch Message Protocol (ISMP) that provides a consistent
method of encapsulating and transmitting control messages
exchanged between SFVLAN switches. (Note that ISMP is not a
discrete software module. Instead, its functionality is
distributed among those service centers and software modules that
need to communicate with other switches in the fabric.) The
Interswitch Message Protocol and the formats of the individual
interswitch messages are described in <a href="#section-6">Section 6</a>.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Base Services</span>
The SFVLAN base services act as the interface between the switch
hardware and the SFVLAN service centers running on the switch CPU.
This relationship is shown in Figure 2. This figure is a replication
of the bottom portion of Figure 1.
| Directory Resolve |
| ^ ^ |
| | | |
| | +---------^-----------+ |
| +----< Base Services | |
| +-----^---------------+ |
+-------------------|--------------------------+
Switch CPU |
| Host control port
+-----O----------------+
| ^ no cnx |
Layer 2 | | |
---------->O-----+--------------->O----------->
SA/DA pr | known cnx |
+----------------------+
Switch hardware
Figure 2: Base Services
<span class="grey">Ruffen, et al. Informational [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
During normal operation of the switch, data packets arriving at
any one of the local switch ports are examined in the switch
hardware. If the packet's source and destination address (SA/DA)
pair match a known connection, the hardware simply forwards the
packet out the outport specified by the connection.
If the SA/DA pair do not match any known connection, the hardware
diverts the packet to the host control port where it is picked up
by the SFVLAN base services. The base services generate a
structure known as a state box that tracks the progress of the
call connection request as the request moves through the call
processing service centers.
After creating the call's state box, the base services check to
determine if the call is a duplicate of a call already being
processed. If not, a request is issued to the Directory Service
Center (<a href="#section-4.1">Section 4.1</a>) to add the call's source address to the local
Node and Alias Tables. The base services then hand the call off to
the Resolve Service Center (<a href="#section-4.3">Section 4.3</a>) for further processing.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Call Processing</span>
Call connection processing is handled by a set of eight service
centers, each with one or more servers. The servers within a
service center are called in a particular sequence. Each server
records the results of its processing in the call connection
request state box and passes the state box to the next server in
the sequence.
In the sections that follow, servers are listed in the order in
which they are called.
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a> Directory Service Center</span>
The Directory Service Center is responsible for cataloging the MAC
addresses and alias information for both local and remote
endstations. The information is stored in two tables -- the Node
Table and the Alias Table.
- The Node Table contains the MAC addresses of endstations
attached to the local switch. It also contains a cache of
remote endstations detected by the Resolve Service Center
(<a href="#section-4.3">Section 4.3</a>). Every entry in the Node Table has one or more
corresponding entries in the Alias Table.
<span class="grey">Ruffen, et al. Informational [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
- The Alias Table contains protocol alias information for each
endstation. An endstation alias can be a network address (such
as an IP or IPX address), a VLAN identifier, or any other
protocol identifier. Since every endstation is a member of at
least one VLAN (the default VLAN for the port), there is always
at least one entry in the Alias Table for each entry in the
Node Table.
Note:
The Node and Alias Tables must remain synchronized.
That is, when an endstation's final alias is removed
from the Alias Table, the endstation entry is removed
from the Node Table.
Note that the total collection of all Node Tables and Alias Tables
across all switches is known as the "virtual" directory of the
switch fabric. The virtual directory contains address mappings of
all known endstations in the fabric.
<span class="h4"><a class="selflink" id="section-4.1.1" href="#section-4.1.1">4.1.1</a> Local Add Server</span>
The Directory Local Add server adds entries to the local Node or
Alias Tables. It is called by the base services (<a href="#section-3">Section 3</a>) to
add a local endstation and by the Interswitch Resolve (<a href="#section-4.3.4">Section</a>
<a href="#section-4.3.4">4.3.4</a>) server to add an endstation discovered on a remote switch.
<span class="h4"><a class="selflink" id="section-4.1.2" href="#section-4.1.2">4.1.2</a> Inverse Resolve Server</span>
The Directory Inverse Resolve server is invoked when a new
endstation has been discovered on the local switch (that is, when
the Local Add server was successful in adding the endstation).
The server provides two functions:
- It populates the Node and Alias Tables with local entries
during switch initialization.
- It processes a new endstation discovered after the fabric
topology has converged to a stable state.
In both instances, the processing is identical.
<span class="grey">Ruffen, et al. Informational [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
When a new endstation is detected on one of the switch's local
ports, the Inverse Resolve server sends an Interswitch New User
request message (<a href="#section-6.5">Section 6.5</a>) over the switch flood path to all
other switches in the fabric. The purpose of the Interswitch New
User request is two-fold:
- It informs the other switches of the new endstation address.
Any entries for that endstation in the local databases of other
switches should be dealt with appropriately.
- It requests information about any static VLAN(s) to which the
endstation has been assigned.
When a switch receives an Interswitch New User request message
from one of its upstream neighbors, it first forwards the message
to all its downstream neighbors. No actual processing or VLAN
resolution is attempted until the message reaches the end of the
switch flood path and begins its trip back along the return path.
This ensures that all switches in the fabric receive notification
of the new user and have synchronized their databases.
If a switch receives an Interswitch New User request message but
has no downstream neighbors, it does the following:
- If the endstation was previously connected to one of the
switch's local ports, the switch formulates an Interswitch New
User Response message by loading the VLAN identifier(s) of the
static VLAN(s) to which the endstation was assigned, along with
its own MAC address. (VLAN identifiers are stored in
Tag/Length/Value (TLV) format. See <a href="#section-2.3">Section 2.3</a>.) The switch
then sets the message status field to NewUserAck, and returns
the message to its upstream (requesting) neighbor.
Otherwise, the switch sets the status field to NewUserUnknown
and returns the message to its upstream neighbor.
- The switch then deletes the endstation from its local database,
as well as any entries associated with the endstation in its
connection table.
When a switch forwards an Interswitch New User request message to
its downstream neighbors, it keeps track of the number of requests
it has sent out and does not respond back to its upstream neighbor
until all requests have been responded to.
<span class="grey">Ruffen, et al. Informational [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
- As each response is received, the switch checks the status
field of the message. If the status is NewUserAck, the switch
retains the information in that response. When all requests
have been responded to, the switch returns the NewUserAck
response to its upstream neighbor.
- If all the Interswitch New User Request messages have been
responded to with a status of NewUserUnknown, the switch checks
to see if the endstation was previously connected to one of its
local ports. If so, the switch formulates an Interswitch New
User Response message by loading the VLAN identifier(s) of the
static VLAN(s) to which the endstation was assigned, along with
its own MAC address. The switch then sets the message status
field to NewUserAck, and returns the message to its upstream
(requesting) neighbor.
Otherwise, the switch sets the status field to NewUserUnknown
and returns the message to its upstream neighbor.
- The switch then deletes the endstation from its local database,
as well as any entries associated with the endstation in its
connection table.
When the originating switch has received responses to all the
Interswitch New User Request messages it has sent, it does the
following:
- If it has received a response message with a status of
NewUserAck, it loads the new VLAN information into its local
database.
- If all responses have been received with a status of
NewUserUnknown, the originating switch assumes that the
endstation was not previously connected anywhere in the network
and assigns it to a VLAN according to the VLAN membership rules
and order of precedence.
If any Interswitch New User Request message has not been responded
to within a certain predetermined time (currently 5 seconds), the
originating switch recalculates the switch flood path and resends
the Interswitch New User Request message.
<span class="grey">Ruffen, et al. Informational [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
<span class="h4"><a class="selflink" id="section-4.1.3" href="#section-4.1.3">4.1.3</a> Local Delete Server</span>
The Directory Local Delete server removes entries (both local and
remote) from the local Node and Alias Tables. It is invoked when
an endstation, previously known to be attached to one switch, has
been moved and discovered on another switch.
Note also that remote entries are cached and are purged from the
tables on a first-in/first-out basis as space is needed in the
cache.
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a> Topology Service Center</span>
The Topology Service Center is responsible for maintaining three
databases relating to the topology of the switch fabric:
- The topology table of SFVLAN switches that are physical
neighbors to the local switch.
- The spanning tree that defines the loop-free switch flood path
used for transmitting undirected interswitch messages.
- The directed graph that is used to calculate the best path(s)
for call connections.
<span class="h4"><a class="selflink" id="section-4.2.1" href="#section-4.2.1">4.2.1</a> Neighbor Discovery Server</span>
The Topology Neighbor Discovery server uses Interswitch Keepalive
messages to detect the switch's neighbors and establish the
topology of the switching fabric. Interswitch Keepalive messages
are exchanged in accordance with Cabletron's VlanHello protocol,
described in detail in [<a href="#ref-IDhello" title=""Cabletron's VlanHello Protocol Specification"">IDhello</a>].
<span class="h4"><a class="selflink" id="section-4.2.2" href="#section-4.2.2">4.2.2</a> Spanning Tree Server</span>
The Topology Spanning Tree server is invoked by the Topology
Neighbor Discovery server when a neighboring SFVLAN switch is
either discovered or lost -- that is, when the operational status
of a network link changes.
The Spanning Tree server exchanges interswitch messages with
neighboring SFVLAN switches to calculate the switch flood path
over which undirected interswitch messages are sent. There are
two parts to this process:
- Creating and maintaining the spanning tree
- Remote blocking
<span class="grey">Ruffen, et al. Informational [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
<span class="h5"><a class="selflink" id="section-4.2.2.1" href="#section-4.2.2.1">4.2.2.1</a> Creating and Maintaining the Spanning Tree</span>
In a network with redundant network links, a packet traveling between
switches can potentially be caught in an infinite loop -- an
intolerable situation in a networking environment. However, it is
possible to reduce a network topology to a single configuration
(known as a spanning tree) such that there is, at most, one path
between any two switches.
Within the SFVLAN product, the spanning tree is created and
maintained using the Spanning Tree Algorithm defined by the IEEE
802.1d standard.
Note:
A detailed discussion of this algorithm is beyond the scope of
this document. See [<a href="#ref-IEEE">IEEE</a>] for more information.
To implement the Spanning Tree Algorithm, SFVLAN switches exchange
Interswitch BPDU messages (<a href="#section-6.2">Section 6.2</a>) containing encapsulated
IEEE-compliant 802.2 Bridge Protocol Data Units (BPDUs). There are
two types of BPDUs:
- Configuration (CFG) BPDUs are exchanged during the switch
discovery process, following the receipt of an Interswitch
Keepalive message. They are used to create the initial the
spanning tree.
- Topology Change Notification (TCN) BPDUs are exchanged when
changes in the network topology are detected. They are used to
redefine the spanning tree to reflect the current topology.
See [<a href="#ref-IEEE">IEEE</a>] for detailed descriptions of these BPDUs.
<span class="h5"><a class="selflink" id="section-4.2.2.2" href="#section-4.2.2.2">4.2.2.2</a> Remote Blocking</span>
After the spanning tree has been computed, each network port on an
SFVLAN switch will be in one of two states:
- Forwarding. A port in the Forwarding state will be used to
transmit all ISMP messages.
<span class="grey">Ruffen, et al. Informational [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
- Blocking. A port in the Blocking state will not be used to
forward undirected ISMP messages. Blocking the rebroadcast of
these messages on selected ports prevents message duplication
arising from multiple paths that exist in the network topology.
Note that all other types of ISMP message will be transmitted.
Note:
The IEEE 802.1d standard specifies other port states used
during the initial creation of the spanning tree. These states
are not relevant to the discussion here.
Note that although a port in the Blocking state will not forward
undirected ISMP messages, it may still receive them. Any such
message received will ultimately be discarded, but at the cost of CPU
time necessary to process the packet.
To prevent the transmission of undirected messages to a port, the
port's owner switch can set remote blocking on the link by sending an
Interswitch Remote Blocking message (<a href="#section-6.3">Section 6.3</a>) out over the port.
This notifies the switch on the other end of the link that undirected
messages should not be sent over the link, regardless of the state of
the sending port.
Each SFVLAN switch sends an Interswitch Remote Blocking message out
over all its blocked network ports every 5 seconds. A flag within
the message indicates whether remote blocking should be turned on or
off over the link.
<span class="h4"><a class="selflink" id="section-4.2.3" href="#section-4.2.3">4.2.3</a> Link State Server</span>
The Topology Link State server is invoked by any process that detects
a change in the state of the network links of the local switch.
These changes include (but are not limited to) changes in operational
or administrative status of the link, path "cost" or bandwidth.
The Link State server runs Cabletron's Virtual LAN Link State (VLS)
protocol which exchanges interswitch messages with neighboring SFVLAN
switches to calculate the set of best paths between the local switch
and all other switches in the fabric. (The VLS protocol is described
in detail in [<a href="#ref-IDvlsp" title=""Cabletron's VLS Protocol Specification"">IDvlsp</a>].)
The Link State server also notifies the Connect Service Center
(<a href="#section-4.5">Section 4.5</a>) of any remote links that have failed, thereby
necessitating potential tear-down of current connections.
<span class="grey">Ruffen, et al. Informational [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
<span class="h3"><a class="selflink" id="section-4.3" href="#section-4.3">4.3</a> Resolve Service Center</span>
The Resolve Service Center is responsible for resolving the
destination address of broadcast data packets (such as an IP ARP
packet) to a unicast MAC address to be used in mapping the call
connection. To do this, the Resolve Service Center attempts to
resolve such broadcast packets directly at the access port of the
ingress switch.
Address resolution is accomplished as follows:
1) First, an attempt is made to resolve the address from the switch's
local databases by calling the following servers:
- The Table server attempts to resolve the address from the
Resolve Table (<a href="#section-4.3.1">Section 4.3.1</a>).
- Next, the Local server attempts to resolve the address from the
Node and Alias Tables (<a href="#section-4.3.2">Section 4.3.2</a>).
- If the address is not found in these tables but is an IP
address, the Resolve Subnet server (<a href="#section-4.3.3">Section 4.3.3</a>) is also
called.
2) If the address cannot be resolved locally, the Interswitch Resolve
server (<a href="#section-4.3.4">Section 4.3.4</a>) is called to access the "virtual directory"
by sending an Interswitch Resolve request message out over the
switch flood path.
3) If the address cannot be resolved either locally or via an
Interswitch Resolve message -- that is, the destination endstation
is unknown to any switch, perhaps because it has never transmitted
a packet to its switch -- the following steps are taken:
- The Unresolvable server (<a href="#section-4.3.5">Section 4.3.5</a>) is called to record the
unresolved packet.
- The Block server (<a href="#section-4.3.6">Section 4.3.6</a>) is called to determine whether
the address should be added to the Block Table.
- The Flood Service Center (<a href="#section-4.8">Section 4.8</a>) is called to broadcast
the packet to other SFVLAN switches using a tag-based flooding
mechanism.
<span class="grey">Ruffen, et al. Informational [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
<span class="h4"><a class="selflink" id="section-4.3.1" href="#section-4.3.1">4.3.1</a> Table Server</span>
The Resolve Table server maintains the Resolve Table which contains a
collection of addresses that might not be resolvable in the normal
fashion. This table typically contains such things as the addresses
of "quiet" devices that do not send data packets or special mappings
of IP addresses behind a router. Entries can be added to or deleted
from the Resolve Table via an external management application.
<span class="h4"><a class="selflink" id="section-4.3.2" href="#section-4.3.2">4.3.2</a> Local Server</span>
The Resolve Local server checks the Node and Alias Tables maintained
by the Directory Service Center (<a href="#section-4.1">Section 4.1</a>) to determine if it can
resolve the address.
<span class="h4"><a class="selflink" id="section-4.3.3" href="#section-4.3.3">4.3.3</a> Subnet Server</span>
If the address to be resolved is an IP address but cannot be resolved
via the standard processing described above, the Resolve Subnet
server applies the subnet mask to the IP address and then does a
lookup in the Resolve Table.
<span class="h4"><a class="selflink" id="section-4.3.4" href="#section-4.3.4">4.3.4</a> Interswitch Resolve Server</span>
If the address cannot be resolved locally, the Interswitch Resolve
server accesses the "virtual directory" by sending an Interswitch
Resolve request message (<a href="#section-6.4">Section 6.4</a>) out over the switch flood path.
The Interswitch Resolve request message contains the destination
address as it was received within the packet, along with a list of
requested addressing information.
When a switch receives an Interswitch Resolve request message from
one of its upstream neighbors, it checks to see if the destination
endstation is connected to one of its local access ports. If so, it
formulates an Interswitch Resolve response message by filling in the
requested address information, along with its own MAC address. It
then sets the message status field to ResolveAck, and returns the
message to its upstream (requesting) neighbor.
If the receiving switch cannot resolve the address, it forwards the
Interswitch Resolve request message to its downstream neighbors. If
the switch has no downstream neighbors, it sets the message status
field to Unknown, and returns the message to its upstream
(requesting) neighbor.
<span class="grey">Ruffen, et al. Informational [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
When a switch forwards an Interswitch Resolve request message to its
downstream neighbors, it keeps track of the number of requests it has
sent out and received back. It will only respond back to its
upstream (requesting) neighbor when one of the following conditions
occurs:
- It receives any response with a status of ResolveAck
- All downstream neighbors have responded with a status of Unknown
Any Interswitch Resolve request message that is not responded to
within a certain predetermined time (currently 5 seconds) is assumed
to have a response status of Unknown.
When the Interswitch Resolve server receives a successful Interswitch
Resolve response message, it records the resolved address information
in the remote cache of its local directory for use in resolving later
packets for the same endstation. Note that this process results in
each switch building its own unique copy of the virtual directory
containing only the endstation addresses in which it is interested.
<span class="h4"><a class="selflink" id="section-4.3.5" href="#section-4.3.5">4.3.5</a> Unresolvable Server</span>
The Unresolvable server is called when a packet destination address
cannot be resolved. The server records the packet in a table that
can then be examined to determine which endstations are generating
unresolvable traffic.
Also, if a particular destination is repeatedly seen to be
unresolvable, the server calls the Block server (<a href="#section-4.3.6">Section 4.3.6</a>) to
determine whether the address should be blocked.
<span class="h4"><a class="selflink" id="section-4.3.6" href="#section-4.3.6">4.3.6</a> Block Server</span>
The Resolve Block server is called when a particular destination has
been repeatedly seen to be unresolvable. This typically happens
when, unknown to the packet source, the destination endstation is
either not currently available or no longer exists.
If the Block server determines that the unresolved address has
exceeded a configurable request threshold, the address is added to
the server's Block Table. Interswitch Resolve request messages for
addresses listed in the Block Table are sent less frequently, thereby
reducing the amount of Interswitch Resolve traffic throughout the
fabric.
<span class="grey">Ruffen, et al. Informational [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
If an address listed in the Block Table is later successfully
resolved by and Interswitch Resolve request message, the address is
removed from the table.
<span class="h3"><a class="selflink" id="section-4.4" href="#section-4.4">4.4</a> Policy Service Center</span>
Once the destination address of the call packet has been resolved,
the Policy Service Center is called to determine the validity of the
requested call connection based on the VLAN policy of the source and
destination VLANs.
<span class="h4"><a class="selflink" id="section-4.4.1" href="#section-4.4.1">4.4.1</a> Unicast Rules Server</span>
The Policy Unicast Rules server recognizes two VLAN policy values:
Open or Secure. The default policy for all VLANs is Open.
The policy value is used as follows when determining the validity of
a requested call connection:
- If the VLAN policy of either the source or destination cannot be
determined, the Filter Service Center is called to establish a
filter (i.e., blocked) for the SA/DA pair.
- If the source and destination endstations belong to the same VLAN,
then the connection is permitted regardless of the VLAN policy.
- If the source and destination endstations belong to different
VLANs, but both VLANs are running with an Open policy, then the
connection is permitted, providing cut-through switching between
different VLAN(s).
- If the source and destination endstations belong to different
VLANs and one or both of the VLANs are running with a Secure
policy, then the Flood Service Center (<a href="#section-4.8">Section 4.8</a>) is called to
broadcast the packet to other SFVLAN switches having ports or
endstations that belong to the same VLAN as the packet source.
Note that if any of the VLANs to which the source or destination
belong has a Secure policy, then the policy used in the above
algorithm is Secure.
<span class="grey">Ruffen, et al. Informational [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
<span class="h3"><a class="selflink" id="section-4.5" href="#section-4.5">4.5</a> Connect Service Center</span>
Once the Policy Service Center (<a href="#section-4.4">Section 4.4</a>) has determined that a
requested call connection is valid, the Connect Service Center is
called to set up the connection. Note that connectivity between two
endstations within the fabric is established on a switch-by-switch
basis as the call progresses through the fabric toward its
destination. No synchronization is needed between switches to
establish an end-to-end connection.
The Connect Service Center maintains a Connection Table containing
information for all connections currently active on the switch's
local ports.
Connections are removed from the Connection Table when one of the
endstations is moved to a new switch (<a href="#section-4.1.2">Section 4.1.2</a>) or when the
Topology Link State server (<a href="#section-4.2.3">Section 4.2.3</a>) notifies the Connect
Service Center that a network link has failed. Otherwise,
connections are not automatically aged out or removed from the
Connection Table until a certain percentage threshold (HiMark) of
table capacity is reached and resources are needed. At that point,
some number of connections (typically 100) are aged out and removed
at one time.
<span class="h4"><a class="selflink" id="section-4.5.1" href="#section-4.5.1">4.5.1</a> Local Server</span>
If the destination endstation resides on the local switch, the
Connect Local server establishes a connection between the source and
destination ports. Note that if the source and destination both
reside on the same physical port, a filter connection is established
by calling the Filter Service Center (<a href="#section-4.6">Section 4.6</a>).
<span class="h4"><a class="selflink" id="section-4.5.2" href="#section-4.5.2">4.5.2</a> Link State Server</span>
The Connect Link State server is called if the destination endstation
of the proposed connection does not reside on the local switch.
The server executes a call to the Path Link State server (<a href="#section-4.7.1">Section</a>
<a href="#section-4.7.1">4.7.1</a>) which returns up to three "best" paths of equal cost from the
local switch to the destination switch. If more than one path is
returned, the server chooses a path that provides the best load
balancing of user traffic across the fabric.
<span class="grey">Ruffen, et al. Informational [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
<span class="h4"><a class="selflink" id="section-4.5.3" href="#section-4.5.3">4.5.3</a> Directory Server</span>
The Connect Directory server is called if the Connect Link State
server is unable to provide a path for some reason.
The server examines the local directory to determine on which switch
the destination endstation resides. If the port of access to the
destination switch is known, then a connection is established using
that port as the outport of the connection.
<span class="h3"><a class="selflink" id="section-4.6" href="#section-4.6">4.6</a> Filter Service Center</span>
The Filter Service Center is responsible for establishing filtered
connections. This service center is called by the Connect Local
server (<a href="#section-4.5.1">Section 4.5.1</a>) if the source and destination endstations
reside on the same physical port, and by the Policy Service Center
(<a href="#section-4.4">Section 4.4</a>) if the VLAN of either the source or destination is
indeterminate.
A filter connection is programmed in the switch hardware with no
specified outport. That is, the connection is programmed to discard
any traffic for that SA/DA pair.
<span class="h3"><a class="selflink" id="section-4.7" href="#section-4.7">4.7</a> Path Service Center</span>
The Path Service Center is responsible for determining the path from
a source to a destination.
<span class="h4"><a class="selflink" id="section-4.7.1" href="#section-4.7.1">4.7.1</a> Link State Server</span>
The Path Link State server is called by the Connect Link State server
(<a href="#section-4.5.2">Section 4.5.2</a>) to return up to three best paths of equal cost
between a source and destination pair of endstations. These best
paths are calculated by the Topology Link State server (<a href="#section-4.2.3">Section</a>
<a href="#section-4.2.3">4.2.3</a>).
The Path Link State server is also called by the Connect Service
Center to return a complete source-to-destination path consisting of
a list of individual switch port names. A switch port name consists
of the switch base MAC address and a port instance relative to the
switch.
<span class="grey">Ruffen, et al. Informational [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
<span class="h4"><a class="selflink" id="section-4.7.2" href="#section-4.7.2">4.7.2</a> Spanning Tree Server</span>
The Path Spanning Tree server is called by any server needing to
forward an undirected message out over the switch flood path. The
server returns a port mask indicating which local ports are currently
enabled as outports of the switch flood path. The switch flood path
is calculated by the Topology Spanning Tree server (<a href="#section-4.2.2">Section 4.2.2</a>).
<span class="h3"><a class="selflink" id="section-4.8" href="#section-4.8">4.8</a> Flood Service Center</span>
If the Resolve Service Center (<a href="#section-4.3">Section 4.3</a>) is unable to resolve the
destination address of a packet, it invokes the Flood Service Center
to broadcast the unresolved packet.
<span class="h4"><a class="selflink" id="section-4.8.1" href="#section-4.8.1">4.8.1</a> Tag-Based Flood Server</span>
The Tag-Based Flood server encapsulates the unresolved packet into an
Interswitch Tag-Based Flood message (<a href="#section-6.6">Section 6.6</a>), along with a list
of Virtual LAN identifiers specifying those VLANs to which the source
endstation belongs. The message is then sent out over the switch
flood path to all other switches in the fabric.
When a switch receives an Interswitch Tag-Based Flood message, it
examines the encapsulated header to determine the VLAN(s) to which
the packet should be sent. If any of the switch's local access ports
belong to one or more of the specified VLANs, the switch strips off
the tag-based header and forwards the original packet out the
appropriate access port(s).
The switch also forwards the entire encapsulated packet along the
switch flood path to its downstream neighboring switches, if any.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Monitoring Call Connections</span>
The SecureFast VLAN product permits monitoring of user traffic moving
between two endstations by establishing a call tap on the connection
between the two stations. Traffic can be monitored in one or both
directions along the connection path.
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a> Definitions</span>
In addition to the terms defined in <a href="#section-1.2">Section 1.2</a>, the following terms
are used in this description of the call tap process.
<span class="grey">Ruffen, et al. Informational [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
Originating Switch
The originating switch is the switch that requests the call tap.
Any switch along a call connection path may request a tap on that
call connection.
Probe
The tap probe is the device to receive a copy of the call
connection data. The probe is attached to a port on the probe
switch.
Probe Switch
The probe switch (also known as the terminating switch) is the
switch to which the probe is attached. The probe switch can be
anywhere in the topology.
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a> Tapping a Connection</span>
A request to tap a call connection between two endstations can
originate on any switch along the call connection path -- the ingress
switch, the egress switch, or any of the intermediate switches. The
call connection must have already been established before a call tap
request can be issued. The probe device can be attached to any
switch in the topology.
<span class="h4"><a class="selflink" id="section-5.2.1" href="#section-5.2.1">5.2.1</a> Types of Tap Connections</span>
A call tap is enabled by setting up an auxiliary tap connection
associated with the call being monitored. Since the tap must
originate on a switch somewhere along the call connection path, the
tap connection path will pass through one or more of the switches
along the call path. However, since the probe switch can be anywhere
in the switch fabric, the tap path and the call path may diverge at
some point.
Therefore, on each switch along the tap path, the tap connection is
established in one of three ways:
- The existing call connection is used with no modification.
When both the call path and tap path pass through the switch,
and the inport and outports of both connections are identical,
the switch uses the existing call connection to route the tap.
- The existing call connection is modified.
<span class="grey">Ruffen, et al. Informational [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
When both the call path and tap path pass through the switch,
but the call path outport is different from the tap path
outport, the switch enables an extra outport in either one or
both directions of the call connection, depending on the
direction of the tap. This happens under two conditions.
- If the switch is also the probe switch, an extra outport is
enabled to the probe.
- If the switch is the point at which the call path and the tap path
diverge, an extra outport is enabled to the downstream neighbor
on that leg of the switch flood path on which the probe switch
is located.
- A new connection is established.
If the call path does not pass through the switch (because the
tap path has diverged from the call path), a completely new
connection is established for the tap.
<span class="h4"><a class="selflink" id="section-5.2.2" href="#section-5.2.2">5.2.2</a> Locating the Probe and Establishing the Tap Connection</span>
To establish a call tap, the originating switch formats an
Interswitch Tap request message (<a href="#section-6.7">Section 6.7</a>) and sends it out over
the switch flood path to all other switches in the topology.
Note:
If the originating switch is also the probe switch, no
Interswitch Tap request message is necessary.
As the Interswitch Tap request message travels out along the switch
flood path, each switch receiving the message checks to see if it is
the probe switch and does the following:
- If the switch is the probe switch, it establishes the tap
connection by either setting up a new connection or modifying the
call connection, as appropriate (see <a href="#section-5.2.1">Section 5.2.1</a>). It then
reformats the Tap request message to be a Tap response message
with a status indicating that the probe has been found, and sends
the message back to its upstream neighbor.
- If the switch is not the probe switch, it forwards the Tap request
message to all its downstream neighbors (if any).
- If the switch is not the probe switch and has no downstream
neighbors, it reformats the Tap request message to be a Tap
response message with a status indicating that the probe is not
<span class="grey">Ruffen, et al. Informational [Page 29]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-30" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
located on that leg of the switch flood path. It then sends the
response message back to its upstream neighbor.
When a switch forwards an Interswitch Tap request message to its
downstream neighbors, it keeps track of the number of requests it
has sent out.
- If a response is received with a status indicating that the probe
switch is located somewhere downstream, the switch establishes the
appropriate type of tap connection (see <a href="#section-5.2.1">Section 5.2.1</a>). It then
formats a Tap response message with a status indicating that the
probe has been found and passes the message to its upstream
neighbor.
- If no responses are received with a status indicating that the
probe switch is located downstream, the switch formats a Tap
response message with a status indicating that the probe has not
been found and passes the message to its upstream neighbor.
<span class="h4"><a class="selflink" id="section-5.2.3" href="#section-5.2.3">5.2.3</a> Status Field</span>
The status field of the Interswitch Tap request/response message
contains information about the state of the tap. Some of these
status values are transient and are merely used to track the progress
of the tap request. Other status values are stored in the tap table
of each switch along the tap path for use when the tap is torn down.
The possible status values are as follows:
- StatusUnassigned. This is the initial status of the Interswitch
Tap request message.
- OutportDecisionUnknown. The tap request is still moving
downstream along the switch flood path. The probe switch had not
yet been found.
- ProbeNotFound. The probe switch is not located on this leg of the
switch flood path.
- DisableOutport. The probe switch is located on this leg of the
switch flood path, and the switch has had to either modify the
call connection or establish a new connection to implement the tap
(see <a href="#section-5.2.1">Section 5.2.1</a>). When the tap is torn down, the switch will
have to disable any additional outports that have been enabled for
the tap.
- KeepOutport. The probe switch is located on this leg of the
switch flood path, and the switch was able to route the tap over
the existing call path (see <a href="#section-5.2.1">Section 5.2.1</a>). Any ports used for
<span class="grey">Ruffen, et al. Informational [Page 30]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-31" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
the tap will remain enabled when the tap is torn down.
<span class="h3"><a class="selflink" id="section-5.3" href="#section-5.3">5.3</a> Untapping a Connection</span>
A request to untap a call connection must be issued on the tap
originating switch -- that is, the same switch that issued the tap
request.
To untap a call connection, the originating switch sends an
Interswitch Untap request message (<a href="#section-6.7">Section 6.7</a>) out over the switch
flood path to all other switches in the topology. The message is
sent over the switch flood path, rather than the tap connection path,
to ensure that all switches that know of the tap are properly
notified, even if the switch topology has changed since the tap was
established.
When a switch receives an Interswitch Untap request message, it
checks to see if it is handling a tap for the specified call
connection. If so, the switch disables the tap connection, as
follows:
- If a new connection was added for the tap, the connection is
deleted from the connection table.
- If additional outports were enabled on the call connection, they
are disabled.
The switch then forwards the Interswitch Untap request message to its
downstream neighbor (if any). If the switch has no downstream
neighbors, it formats an untap response and sends the message back to
its upstream neighbor.
When a switch forwards an Interswitch Untap request message to its
downstream neighbors, it keeps track of the number of requests it has
sent out and does not respond back to its upstream neighbor until all
untap requests have been responded to. Once all responses have been
received, the switch handles any final cleanup for the tap and then
sends a single Interswitch Untap response message to its upstream
neighbor.
<span class="grey">Ruffen, et al. Informational [Page 31]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-32" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Interswitch Message Protocol (ISMP)</span>
The InterSwitch Message protocol (ISMP) provides a consistent method
of encapsulating and transmitting messages exchanged between switches
to create and maintain the databases and provide other control
services and functionality required by the SFVLAN product.
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a> General Packet Structure</span>
ISMP packets are of variable length and have the following general
structure:
- Frame header
- ISMP packet header
- ISMP message body
Each of these packet segments is discussed separately in the
following subsections.
<span class="h4"><a class="selflink" id="section-6.1.1" href="#section-6.1.1">6.1.1</a> Frame Header</span>
ISMP packets are encapsulated within an IEEE 802-compliant frame
using a standard header as shown below:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
00 | |
+ Destination address +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
04 | | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Source address +
08 | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
12 | Type | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
16 | |
+ +
: :
Destination address
This 6-octet field contains the Media Access Control (MAC) address
of the multicast channel over which all switches in the fabric
receive ISMP packets. Except where otherwise noted, this field
<span class="grey">Ruffen, et al. Informational [Page 32]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-33" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
contains the multicast address of the control channel over which
all switches in the fabric receive ISMP packets -- a value of 01-
00-1D-00-00-00.
Source address
Except where otherwise noted, this 6-octet field contains the
physical (MAC) address of the switch originating the ISMP packet.
Type
This 2-octet field identifies the type of data carried within the
frame. Except where otherwise noted, the type field of ISMP
packets contains the value 0x81FD.
<span class="h4"><a class="selflink" id="section-6.1.2" href="#section-6.1.2">6.1.2</a> ISMP Packet Header</span>
There are two versions of the ISMP packet header in use by the
SecureFast VLAN product.
<span class="h5"><a class="selflink" id="section-6.1.2.1" href="#section-6.1.2.1">6.1.2.1</a> Version 2</span>
The version 2 ISMP packet header consists of 6 octets, as shown
below:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
00 |///////////////////////////////////////////////////////////////|
://////// Frame header /////////////////////////////////////////:
+//////// (14 octets) /////////+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
12 |///////////////////////////////| Version |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
16 | ISMP message type | Sequence number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
20 | |
+ +
: :
Frame header
This 14-octet field contains the frame header (<a href="#section-6.1.1">Section 6.1.1</a>).
<span class="grey">Ruffen, et al. Informational [Page 33]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-34" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
Version
This 2-octet field contains the version number of the InterSwitch
Message Protocol to which this ISMP packet adheres. This document
describes ISMP Version 2.0.
ISMP message type
This 2-octet field contains a value indicating which type of ISMP
message is contained within the message body. The following table
lists each ISMP message, along with its message type and the
section within this document that describes the message in detail:
Message Name Type Description
Interswitch Link State message 3 See note below
Interswitch BPDU message 4 <a href="#section-6.2">Section 6.2</a>
Interswitch Remote Blocking message 4 <a href="#section-6.3">Section 6.3</a>
Interswitch Resolve message 5 <a href="#section-6.4">Section 6.4</a>
Interswitch New User message 5 <a href="#section-6.5">Section 6.5</a>
Interswitch Tag-Based Flood message 7 <a href="#section-6.6">Section 6.6</a>
Interswitch Tap/Untap message 8 <a href="#section-6.7">Section 6.7</a>
Note:
The Link State messages used by the VLS Protocol are not
described in this document. For a detailed description of
these messages, see [<a href="#ref-IDvlsp" title=""Cabletron's VLS Protocol Specification"">IDvlsp</a>].
Sequence number
This 2-octet field contains an internally generated sequence
number used by the various protocol handlers for internal
synchronization of messages.
<span class="h5"><a class="selflink" id="section-6.1.2.2" href="#section-6.1.2.2">6.1.2.2</a> Version 3</span>
The version 3 ISMP packet header is used only by the Interswitch
Keepalive message. That message is not described in this document.
For a detailed description of the version 3 ISMP packet header, see
[<a href="#ref-IDhello" title=""Cabletron's VlanHello Protocol Specification"">IDhello</a>].
<span class="grey">Ruffen, et al. Informational [Page 34]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-35" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
<span class="h4"><a class="selflink" id="section-6.1.3" href="#section-6.1.3">6.1.3</a> ISMP Message Body</span>
The ISMP message body is a variable-length field containing the
actual data of the ISMP message. The length and content of this
field are determined by the value found in the message type field.
See the following sections for the exact format of each message type.
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a> Interswitch BPDU Message</span>
The Interswitch BPDU message consists of a variable number of octets,
as shown below:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
00 | |
+ Frame header / +
: ISMP packet header (type 4) :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
20 | Version | Opcode |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
24 | Message flags | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
28 | |
: BPDU packet :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Frame header/ISMP packet header
This 20-octet field contains the frame header and the ISMP packet
header.
Version
This 2-octet field contains the version number of the message
type. This document describes ISMP message type 4, version 1.
<span class="grey">Ruffen, et al. Informational [Page 35]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-36" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
Opcode
This 2-octet field contains the operation type of the message. For
an Interswitch BPDU message, the value should be 1.
Message flags
This 2-octet field is currently unused. It is reserved for future
use.
BPDU packet
This variable-length field contains an IEEE-compliant 802.2 Bridge
Protocol Data Unit. See [<a href="#ref-IEEE">IEEE</a>] for a detailed description of the
contents of this field.
<span class="h3"><a class="selflink" id="section-6.3" href="#section-6.3">6.3</a> Interswitch Remote Blocking Message</span>
The Interswitch Remote Blocking message consists of 30 octets, as
shown below:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
00 | |
+ Frame header / +
: ISMP packet header (type 4) :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
20 | Version | Opcode |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
24 | Message flags | Blocking flag ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
28 | ... Blocking flag |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Frame header/ISMP packet header
This 20-octet field contains the frame header and the ISMP packet
header.
Version
This 2-octet field contains the version number of the message
type. This document describes ISMP message type 4, version 1.
<span class="grey">Ruffen, et al. Informational [Page 36]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-37" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
Opcode
This 2-octet field contains the operation type of the message.
Valid values are as follows:
2 Enable/disable remote blocking
3 Acknowledge previously received Remote Blocking message
Message flags
This 2-octet field is currently unused. It is reserved for
future use.
Blocking flag
This 4-octet field contains a flag indicating the state of
remote blocking on the link over which the message was
received. A value of 1 indicates remote blocking is on and no
undirected ISMP messages should be sent over the link. A value
of 0 indicates remote blocking is off. This flag is irrelevant
if the operation type (Opcode) of the message has a value of 3.
<span class="h3"><a class="selflink" id="section-6.4" href="#section-6.4">6.4</a> Interswitch Resolve Message</span>
There are two versions of the Interswitch Resolve message used by the
SecureFast VLAN product.
<span class="h4"><a class="selflink" id="section-6.4.1" href="#section-6.4.1">6.4.1</a> Prior to Version 1.8</span>
The Interswitch Resolve message used by SFVLAN prior to version 1.8
consists of a variable number of octets, as shown below:
<span class="grey">Ruffen, et al. Informational [Page 37]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-38" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
00 | |
+ Frame header / +
: ISMP packet header (type 5) :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
20 | Version | Opcode |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
24 | Status | Call Tag |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
28 | |
+ Source MAC of packet +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
32 | | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Originating switch MAC +
36 | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
40 | |
+ Owner switch MAC +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
44 | | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
48 | |
: Known destination address :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
n | Count | |
+-+-+-+-+-+-+-+-+ +
n+4 | Resolve list |
: :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
n = 46 + length of known address TLV
In the following description of the message fields, the term
"originating" switch refers to the switch that issued the original
Interswitch Resolve request. The term "owner" switch refers to that
switch to which the destination endstation is attached. And the term
"responding" switch refers to either the "owner" switch or to a
switch at the end of the switch flood path that does not own the
endstation but issues an Interswitch Resolve response because it has
no downstream neighbors.
<span class="grey">Ruffen, et al. Informational [Page 38]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-39" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
With the exception of the resolve list (which has a different size
and format in a Resolve response message), all fields of an
Interswitch Resolve message are allocated by the originating switch,
and unless otherwise noted below, are written by the originating
switch.
Frame header/ISMP packet header
This 20-octet field contains the frame header and the ISMP packet
header.
Version
This 2-octet field contains the version number of the message
type. This document describes ISMP message type 5, version 1.
Opcode
This 2-octet field contains the operation code of the message.
Valid values are as follows:
1 The message is a Resolve request.
2 The message is a Resolve response.
3 (unused in Resolve messages)
4 (unused in Resolve messages)
The originating switch writes a value of 1 to this field, while
the responding switch writes a value of 2.
Status
This 2-octet field contains the status of a Resolve response
message. Valid values are as follows:
0 The Resolve request succeeded (ResolveAck).
1 (unused)
2 The Resolve request failed (Unknown).
This field is written by the responding switch.
Call tag
This 2-octet field contains the call tag of the endstation packet
for which this Resolve request is issued. The call tag is a 16-
bit value (generated by the originating switch) that uniquely
identifies the packet.
<span class="grey">Ruffen, et al. Informational [Page 39]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-40" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
Source MAC of packet
This 6-octet field contains the physical (MAC) address of the
endstation that originated the packet identified by the call tag.
Originating switch MAC
This 6-octet field contains the physical (MAC) address of the
switch that issued the original Resolve request.
Owner switch MAC
This 6-octet field contains the physical (MAC) address of the
switch to which the destination endstation is attached -- that is,
the switch that was able to resolve the requested addressing
information. This field is written by the owner switch.
If the status of the response is Unknown, this field is
irrelevant.
Known destination address
This variable-length field contains the known attribute of the
destination endstation address. This address is stored in
Tag/Length/Value format. (See <a href="#section-2.3">Section 2.3</a>.)
Count
This 1-octet field contains the number of address attributes
requested or returned. This is the number of items in the resolve
list.
Resolve list
This variable-length field contains a list of the address
attributes either requested by the originating switch or returned
by the owner switch. Note that in a Resolve request message, this
list contains only the tags of the requested address attributes
(see <a href="#section-2.3">Section 2.3</a>). On the other hand, a Resolve response message
with a status of ResolveAck contains the full TLV of each resolved
address attribute. The number of entries in the list is specified
in the count field.
In an Interswitch Resolve response message, this field is
irrelevant if the status of the response is Unknown.
<span class="grey">Ruffen, et al. Informational [Page 40]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-41" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
<span class="h4"><a class="selflink" id="section-6.4.2" href="#section-6.4.2">6.4.2</a> Version 1.8</span>
The Interswitch Resolve message used by SFVLAN version 1.8 consists
of a variable number of octets, as shown below:
<span class="grey">Ruffen, et al. Informational [Page 41]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-42" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
00 | |
+ Frame header / +
: ISMP packet header (type 5) :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
20 | Version | Opcode |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
24 | Status | Call Tag |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
28 | |
+ Source MAC of packet +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
32 | | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Originating switch MAC +
36 | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
40 | |
+ Owner switch MAC +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
44 | | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
48 | |
: Known destination address :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
n | Count | |
+-+-+-+-+-+-+-+-+ +
n+4 | Resolve list |
: :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
n1 | |
+ Actual dest switch MAC +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Downlink chassis MAC +
n1+8 | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
n1+12 | |
+ Actual chassis MAC +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
n1+20 | |
+ Domain name +
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
n = 46 + length of known address TLV
n1 = n + length of Resolve list
<span class="grey">Ruffen, et al. Informational [Page 42]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-43" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
In the following description of the message fields, the term
"originating" switch refers to the switch that issued the original
Interswitch Resolve request. The term "owner" switch refers to that
switch to which the destination endstation is attached. And the term
"responding" switch refers to either the "owner" switch or to a
switch at the end of the switch flood path that does not own the
endstation but issues an Interswitch Resolve response because it has
no downstream neighbors.
With the exception of the resolve list (which has a different size
and format in a Resolve response message) and the four fields
following the resolve list, all fields of an Interswitch Resolve
message are allocated by the originating switch, and unless otherwise
noted below, are written by the originating switch.
Frame header/ISMP packet header
This 20-octet field contains the frame header and the ISMP packet
header.
Version
This 2-octet field contains the version number of the message
type. This section describes version 3 of the Interswitch Resolve
message.
Opcode
This 2-octet field contains the operation code of the message.
Valid values are as follows:
1 The message is a Resolve request.
2 The message is a Resolve response.
3 (unused in Resolve messages)
4 (unused in Resolve messages)
The originating switch writes a value of 1 to this field, while
the responding switch writes a value of 2.
<span class="grey">Ruffen, et al. Informational [Page 43]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-44" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
Status
This 2-octet field contains the status of a Resolve response
message. Valid values are as follows:
0 The Resolve request succeeded (ResolveAck).
1 (unused)
2 The Resolve request failed (Unknown).
This field is written by the responding switch.
Call tag
This 2-octet field contains the call tag of the endstation packet
for which this Resolve request is issued. The call tag is a 16-
bit value (generated by the originating switch) that uniquely
identifies the packet.
Source MAC of packet
This 6-octet field contains the physical (MAC) address of the
endstation that originated the packet identified by the call tag.
Originating switch MAC
This 6-octet field contains the physical (MAC) address of the
switch that issued the original Resolve request.
Owner switch MAC
This 6-octet field contains the physical (MAC) address of the
switch to which the destination endstation is attached -- that is,
the switch that was able to resolve the requested addressing
information. This field is written by the owner switch.
If the status of the response is Unknown, this field is
irrelevant.
Known destination address
This variable-length field contains the known attribute of the
destination endstation address. This address is stored in
Tag/Length/Value format.
<span class="grey">Ruffen, et al. Informational [Page 44]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-45" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
Count
This 1-octet field contains the number of address attributes
requested or returned. This is the number of items in the resolve
list.
Resolve list
This variable-length field contains a list of the address
attributes either requested by the originating switch or returned
by the owner switch. Note that in a Resolve request message, this
list contains only the tags of the requested address attributes.
On the other hand, a Resolve response message with a status of
ResolveAck contains the full TLV of each resolved address
attribute. The number of entries in the list is specified in the
count field.
In an Interswitch Resolve response message, this field is
irrelevant if the status of the response is Unknown.
Actual destination switch MAC
This 6-octet field contains the physical (MAC) address of the
actual switch within the chassis to which the endstation is
attached. If the status of the response is Unknown, this field is
irrelevant.
Downlink chassis MAC
This 6-octet field contains the physical (MAC) address of the
downlink chassis. If the status of the response is Unknown, this
field is irrelevant.
Actual chassis MAC
This 6-octet field contains the physical (MAC) address of the
uplink chassis. If the status of the response is Unknown, this
field is irrelevant.
Domain name
This 16-octet field contains the ASCII name of the domain. If the
status of the response is Unknown, this field is irrelevant.
<span class="grey">Ruffen, et al. Informational [Page 45]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-46" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
<span class="h3"><a class="selflink" id="section-6.5" href="#section-6.5">6.5</a> Interswitch New User Message</span>
The Interswitch New User message consists of a variable number of
octets, as shown below:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
00 | |
+ Frame header / +
: ISMP packet header (type 5) :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
20 | Version | Opcode |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
24 | Status | Call Tag |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
28 | |
+ Source MAC of packet +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
32 | | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Originating switch MAC +
36 | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
40 | |
+ Previous owner switch MAC +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
44 | | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
48 | :
: MAC address of new user +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
70 | Count | |
+-+-+-+-+-+-+-+-+ +
74 | Resolve list |
: :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
In the following description of the message fields, the term
"originating" switch refers to the switch that issued the original
Interswitch New User request. The term "previous owner" switch
refers to that switch to which the endstation was previously
attached. And the term "responding" switch refers to either the
"previous owner" switch or to a switch at the end of the switch flood
path that did not own the endstation but issues an Interswitch New
User response because it has no downstream neighbors.
<span class="grey">Ruffen, et al. Informational [Page 46]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-47" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
With the exception of the resolve list, all fields of an Interswitch
New User message are allocated by the originating switch, and unless
otherwise noted below, are written by the originating switch.
Frame header/ISMP packet header
This 20-octet field contains the frame header and the ISMP packet
header.
Version
This 2-octet field contains the version number of the message
type. This document describes ISMP message type 5, version 1.
Opcode
This 2-octet field contains the operation code of the message.
Valid values are as follows:
1 (unused in a New User message)
2 (unused in a New User message)
3 The message is a New User request.
4 The message is a New User response.
The originating switch writes a value of 3 to this field, while
the responding switch writes a value of 4.
Status
This 2-octet field contains the status of a New User response
message. Valid values are as follows:
0 VLAN resolution successful (NewUserAck)
1 (unused)
2 VLAN resolution unsuccessful (NewUserUnknown)
This field is written by the responding switch.
Call tag
This 2-octet field contains the call tag of the endstation packet
for which this New User request is issued. The call tag is a 16-
bit value (generated by the originating switch) that uniquely
identifies the packet that caused the switch to identify the
endstation as a new user.
<span class="grey">Ruffen, et al. Informational [Page 47]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-48" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
Source MAC of packet
This 6-octet field contains the physical (MAC) address of the
endstation that originated the packet identified by the call tag.
Originating switch MAC
This 6-octet field contains the physical (MAC) address of the
switch that issued the original New User request.
Previous owner switch MAC
This 6-octet field contains the physical (MAC) address of the
switch to which the endstation was previously attached -- that is,
the switch that was able to resolve the VLAN information. This
field is written by the previous owner switch.
If the status of the response is Unknown, this field is
irrelevant.
MAC address of new user
This 24-octet field contains the physical (MAC) address of the new
user endstation, stored in Tag/Length/Value format.
Count
This 1-octet field contains the number of VLAN identifiers
returned. This is the number of items in the resolve list. This
field is written by the previous owner switch.
If the status of the response is Unknown, this field and the
resolve list are irrelevant.
Resolve list
This variable-length field contains a list of the VLAN identifiers
of all static VLANs to which the endstation belongs, stored in
Tag/Length/Value format (see <a href="#section-2.3">Section 2.3</a>). The number of entries
in the list is specified in the count field. This list is written
by the previous owner switch.
If the status of the response is Unknown, this field is
irrelevant.
<span class="grey">Ruffen, et al. Informational [Page 48]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-49" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
<span class="h3"><a class="selflink" id="section-6.6" href="#section-6.6">6.6</a> Interswitch Tag-Based Flood Message</span>
There are two versions of the Interswitch Tag-Based Flood message
used by the SecureFast VLAN product.
<span class="h4"><a class="selflink" id="section-6.6.1" href="#section-6.6.1">6.6.1</a> Prior to Version 1.8</span>
The Interswitch Tag-Based Flood message used by SFVLAN prior to
version 1.8 consists of a variable number of octets, as shown below:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
00 | |
+ Frame header / +
: ISMP packet header (type 7) :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
20 | Version | Opcode |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
24 | Status | Call Tag |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
28 | |
+ Source MAC of packet +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
32 | | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Originating switch MAC +
36 | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
40 | Count | |
+-+-+-+-+-+-+-+-+ +
44 | VLAN list |
: :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
n | |
+ +
: Original packet :
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
n = 41 + length of VLAN list
<span class="grey">Ruffen, et al. Informational [Page 49]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-50" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
Frame header/ISMP packet header
This 20-octet field contains the frame header and the ISMP packet
header.
Version
This 2-octet field contains the version number of the message
type. This document describes ISMP message type 7, version 1.
Opcode
This 2-octet field contains the operation code of the message. The
value here should be 1, indicating the message is a flood request.
Status
This 2-octet field is currently unused. It is reserved for future
use.
Call tag
This 2-octet field contains the call tag of the endstation packet
encapsulated within this tag-based flood message. The call tag is
a 16-bit value (generated by the originating switch) that uniquely
identifies the packet.
Source MAC of packet
This 6-octet field contains the physical (MAC) address of the
endstation that originated the packet identified by the call tag.
Originating switch MAC
This 6-octet field contains the physical (MAC) address of the
switch that issued the original tag-based flooded message.
Count
This 1-octet field contains the number of VLAN identifiers
included in the VLAN list.
VLAN list
This variable-length field contains a list of the VLAN identifiers
of all VLANs to which the source endstation belongs. Each entry
in this list has the following format:
<span class="grey">Ruffen, et al. Informational [Page 50]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-51" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Value length | |
+-+-+-+-+-+-+-+-+ +
| VLAN identifier value |
: :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The 1-octet value length field contains the length of the VLAN
identifier. VLAN identifiers can be from 1 to 16 characters long.
Original packet
This variable-length field contains the original packet as sent by
the source endstation.
<span class="grey">Ruffen, et al. Informational [Page 51]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-52" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
<span class="h4"><a class="selflink" id="section-6.6.2" href="#section-6.6.2">6.6.2</a> Version 1.8</span>
The Interswitch Tag-Based Flood message used by SFVLAN version 1.8
consists of a variable number of octets, as shown below:
Note:
SFVLAN version 1.8 also recognizes the Interswitch Tag-Based
Flood message as described in <a href="#section-6.6.1">Section 6.6.1</a>.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
00 | |
+ Frame header / +
: ISMP packet header (type 7) :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
20 | VLAN identifier | Version |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
24 | Opcode | Status |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
28 | Call tag | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Source MAC of packet +
32 | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
36 | |
+ Originating switch MAC +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
40 | | Count | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
44 | |
: VLAN list :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
n | |
+ +
: Original packet :
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
n = 41 + length of VLAN list
Frame header/ISMP packet header
This 20-octet field contains the frame header and the ISMP packet
header.
<span class="grey">Ruffen, et al. Informational [Page 52]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-53" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
- The frame header source address contains a value of 02-00-1D-
00-xx-yy, where xx-yy is a value set by the VLAN Manager
application to tag the frame header with the VLAN identifier.
This value ranges from 2 to 4095. For example, a value of 100
would be set as 00-64.
- The frame header type field contains a value of 0x81FF. Note
that this differs from all other ISMP messages.
VLAN identifier
This 2-octet field contains the VLAN identifier of the packet
source.
Version
This 2-octet field contains the version number of the message
type. This section describes version 2 of the Interswitch Tag-
Based Flood message.
Opcode
This 2-octet field contains the operation code of the message.
Valid values here are as follows:
1 The message is a flood request. The original packet is
complete within this message.
2 The message is a fragmented flood request. The first portion
of the original packet is contained in this message.
3 The message is a fragmented flood request. The second portion
of the original packet is contained in this message.
Status
This 2-octet field is currently unused. It is reserved for future
use.
Call tag
This 2-octet field contains the call tag of the endstation packet
encapsulated within this tag-based flood message. The call tag is
a 16-bit value (generated by the originating switch) that uniquely
identifies the packet.
<span class="grey">Ruffen, et al. Informational [Page 53]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-54" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
Source MAC of packet
This 6-octet field contains the physical (MAC) address of the
endstation that originated the packet identified by the call tag.
Originating switch MAC
This 6-octet field contains the physical (MAC) address of the
switch that issued the original tag-based flooded message.
Count
This 1-octet field contains the number of VLAN identifiers
included in the VLAN list.
VLAN list
This variable-length field contains a list of the VLAN identifiers
of all VLANs to which the source endstation belongs. Each entry
in this list has the following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Value length | |
+-+-+-+-+-+-+-+-+ +
| VLAN identifier value |
: :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The 1-octet value length field contains the length of the VLAN
identifier. VLAN identifiers can be from 1 to 16 characters long.
Original packet
This variable-length field contains the original packet as sent by
the source endstation.
<span class="grey">Ruffen, et al. Informational [Page 54]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-55" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
<span class="h3"><a class="selflink" id="section-6.7" href="#section-6.7">6.7</a> Interswitch Tap/Untap Message</span>
The Interswitch Tap/Untap message consists of a variable number of
octets, as shown below:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
00 | |
+ Frame header / +
: ISMP packet header (type 8) :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
20 | Version | Opcode |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
24 | Status | Error code |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
28 | Header type | Header length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
32 | Direction | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Probe switch MAC +
36 | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
40 | Probe port |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
44 | |
+ +
48 | (Reserved) |
+ +
52 | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
56 | |
+ +
| Header |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Frame header/ISMP packet header
This 20-octet field contains the frame header and the ISMP packet
header.
Version
This 2-octet field contains the version number of the message
type. This document describes ISMP message type 8, version 1.
<span class="grey">Ruffen, et al. Informational [Page 55]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-56" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
Opcode
tet field contains the operation type of the message. ues are as
follows:
1 The message is a Tap request.
2 The message is a Tap response.
3 The message is an Untap request.
4 The message is an Untap response.
Status
This 2-octet field contains the current status of the tap request.
Valid values are as follows:
1 Switch must disable outport on untap. (DisableOutport)
2 Switch must keep outports on untap. (KeepOutport)
3 Probe not found this leg of spanning tree. (ProbeNotFound)
4 Still searching for probe switch. (OutportDecisionUnknown)
5 Unassigned. (StatusUnassigned)
6 (reserved)
7 (reserved)
8 (reserved)
9 (reserved)
See <a href="#section-5.2.3">Section 5.2.3</a> for details on the use of this field.
Error code
This 2-octet field contains the response message error code of the
requested operation. Valid values are as follows:
1 Operation successful. (NoError)
2 No response heard from downstream neighbor. (Timeout)
3 Port does not exist on probe switch. (BadPort)
4 Message invalid. (InvalidMessage)
5 Version number invalid. (IncompatibleVersions)
Header type
This 2-octet field contains the type of information contained in
the header field. Currently, valid values are as follows:
1 (reserved) 2 Header contains destination and source endstation
MAC addresses.
<span class="grey">Ruffen, et al. Informational [Page 56]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-57" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
Header length
This 2-octet field contains the length of the header field.
Currently, this field always contains a value of 12.
Direction
This 2-octet field contains a value indicating the type of tap.
Valid values are as follows:
1 (reserved)
2 Tap is bi-directional and data should be captured flowing in
either direction over the connection.
3 Tap is uni-directional and data should be captured only when it
flows from the source to the destination.
Probe switch MAC
This 6-octet field contains the physical (MAC) address of the
switch to which the probe is attached.
Probe port
This 4-octet field contains the logical port number (on the probe
switch) to which the probe is attached.
Reserved
These 12 octets are reserved.
Header
This variable-length field contains the header that identifies the
connection being tapped. The length of the header is stored in
the length field.
Currently, this field is 12 octets long and contains the 6-octet
physical address of the connection's destination endstation,
followed by the 6-octet physical address of the connection's
source endstation, as shown below:
<span class="grey">Ruffen, et al. Informational [Page 57]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-58" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ Destination MAC address +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Source MAC address +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Security Considerations</span>
Requested call connections are established or denied based on the
VLAN policy of the source and destination addresses specified within
the packet. <a href="#section-4.4.1">Section 4.4.1</a> discusses this process in detail.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. References</span>
[<a id="ref-RFC1700">RFC1700</a>] Reynolds, J. and J. Postel, "Assigned Numbers", STD 2,
<a href="./rfc1700">RFC 1700</a>, October 1994.
[<a id="ref-IEEE">IEEE</a>] "IEEE Standard 802.1d -- 1990"
[<a id="ref-IDvlsp">IDvlsp</a>] Kane, L., "Cabletron's VLS Protocol Specification", <a href="./rfc2642">RFC</a>
<a href="./rfc2642">2642</a>, August 1999.
[<a id="ref-IDhello">IDhello</a>] Hamilton, D. and D. Ruffen, "Cabletron's VlanHello
Protocol Specification", <a href="./rfc2641">RFC 2641</a>, August 1999.
<span class="grey">Ruffen, et al. Informational [Page 58]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-59" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. Authors' Addresses</span>
Dave Ruffen
Cabletron Systems, Inc.
Post Office Box 5005
Rochester, NH 03866-5005
Phone: (603) 332-9400
EMail: ruffen@ctron.com
Ted Len
Cabletron Systems, Inc.
Post Office Box 5005
Rochester, NH 03866-5005
Phone: (603) 332-9400
EMail: len@ctron.com
Judy Yanacek
Cabletron Systems, Inc.
Post Office Box 5005
Rochester, NH 03866-5005
Phone: (603) 332-9400
EMail: jyanacek@ctron.com
<span class="grey">Ruffen, et al. Informational [Page 59]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-60" ></span>
<span class="grey"><a href="./rfc2643">RFC 2643</a> Cabletron's SecureFast VLAN Operational Model August 1999</span>
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. Full Copyright Statement</span>
Copyright (C) The Internet Society (1999). All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.
The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.
This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Ruffen, et al. Informational [Page 60]
</pre>
|