1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
|
<pre>Network Working Group N. Brownlee
Request for Comments: 2722 The University of Auckland
Obsoletes: <a href="./rfc2063">2063</a> C. Mills
Category: Informational GTE Laboratories, Inc
G. Ruth
GTE Internetworking
October 1999
<span class="h1">Traffic Flow Measurement: Architecture</span>
Status of this Memo
This memo provides information for the Internet community. It does
not specify an Internet standard of any kind. Distribution of this
memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (1999). All Rights Reserved.
Abstract
This document provides a general framework for describing network
traffic flows, presents an architecture for traffic flow measurement
and reporting, discusses how this relates to an overall network
traffic flow architecture and indicates how it can be used within the
Internet.
Table of Contents
1 Statement of Purpose and Scope 3
<a href="#section-1.1">1.1</a> Introduction . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-3">3</a>
2 Traffic Flow Measurement Architecture 5
<a href="#section-2.1">2.1</a> Meters and Traffic Flows . . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-2.2">2.2</a> Interaction Between METER and METER READER . . . . . . . . <a href="#page-7">7</a>
<a href="#section-2.3">2.3</a> Interaction Between MANAGER and METER . . . . . . . . . . <a href="#page-7">7</a>
<a href="#section-2.4">2.4</a> Interaction Between MANAGER and METER READER . . . . . . . <a href="#page-8">8</a>
<a href="#section-2.5">2.5</a> Multiple METERs or METER READERs . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-2.6">2.6</a> Interaction Between MANAGERs (MANAGER - MANAGER) . . . . . <a href="#page-10">10</a>
<a href="#section-2.7">2.7</a> METER READERs and APPLICATIONs . . . . . . . . . . . . . . <a href="#page-10">10</a>
3 Traffic Flows and Reporting Granularity 10
<a href="#section-3.1">3.1</a> Flows and their Attributes . . . . . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-3.2">3.2</a> Granularity of Flow Measurements . . . . . . . . . . . . . <a href="#page-13">13</a>
3.3 Rolling Counters, Timestamps, Report-in-One-Bucket-Only . 15
<span class="grey">Brownlee, et al. Informational [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc2722">RFC 2722</a> Traffic Flow Measurement: Architecture October 1999</span>
4 Meters 17
<a href="#section-4.1">4.1</a> Meter Structure . . . . . . . . . . . . . . . . . . . . . <a href="#page-17">17</a>
<a href="#section-4.2">4.2</a> Flow Table . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-19">19</a>
<a href="#section-4.3">4.3</a> Packet Handling, Packet Matching . . . . . . . . . . . . . <a href="#page-20">20</a>
<a href="#section-4.4">4.4</a> Rules and Rule Sets . . . . . . . . . . . . . . . . . . . <a href="#page-23">23</a>
<a href="#section-4.5">4.5</a> Maintaining the Flow Table . . . . . . . . . . . . . . . . <a href="#page-28">28</a>
<a href="#section-4.6">4.6</a> Handling Increasing Traffic Levels . . . . . . . . . . . . <a href="#page-29">29</a>
5 Meter Readers 30
<a href="#section-5.1">5.1</a> Identifying Flows in Flow Records . . . . . . . . . . . . <a href="#page-30">30</a>
<a href="#section-5.2">5.2</a> Usage Records, Flow Data Files . . . . . . . . . . . . . . <a href="#page-30">30</a>
<a href="#section-5.3">5.3</a> Meter to Meter Reader: Usage Record Transmission . . . . <a href="#page-31">31</a>
6 Managers 32
<a href="#section-6.1">6.1</a> Between Manager and Meter: Control Functions . . . . . . <a href="#page-32">32</a>
<a href="#section-6.2">6.2</a> Between Manager and Meter Reader: Control Functions . . . <a href="#page-33">33</a>
<a href="#section-6.3">6.3</a> Exception Conditions . . . . . . . . . . . . . . . . . . . <a href="#page-35">35</a>
<a href="#section-6.4">6.4</a> Standard Rule Sets . . . . . . . . . . . . . . . . . . . . <a href="#page-36">36</a>
7 Security Considerations 36
<a href="#section-7.1">7.1</a> Threat Analysis . . . . . . . . . . . . . . . . . . . . . <a href="#page-36">36</a>
<a href="#section-7.2">7.2</a> Countermeasures . . . . . . . . . . . . . . . . . . . . . <a href="#page-37">37</a>
8 IANA Considerations 39
<a href="#section-8.1">8.1</a> PME Opcodes . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-39">39</a>
<a href="#section-8.2">8.2</a> RTFM Attributes . . . . . . . . . . . . . . . . . . . . . <a href="#page-39">39</a>
9 APPENDICES 41
<a href="#appendix-A">Appendix A</a>: Network Characterisation . . . . . . . . . . . . . <a href="#page-41">41</a>
<a href="#appendix-B">Appendix B</a>: Recommended Traffic Flow Measurement Capabilities . 42
<a href="#appendix-C">Appendix C</a>: List of Defined Flow Attributes . . . . . . . . . . <a href="#page-43">43</a>
<a href="#appendix-D">Appendix D</a>: List of Meter Control Variables . . . . . . . . . . <a href="#page-44">44</a>
<a href="#appendix-E">Appendix E</a>: Changes Introduced Since <a href="./rfc2063">RFC 2063</a> . . . . . . . . . <a href="#page-45">45</a>
<a href="#section-10">10</a> Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-45">45</a>
<a href="#section-11">11</a> References . . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-46">46</a>
<a href="#section-12">12</a> Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . <a href="#page-47">47</a>
<a href="#section-13">13</a> Full Copyright Statement . . . . . . . . . . . . . . . . . . . <a href="#page-48">48</a>
<span class="grey">Brownlee, et al. Informational [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc2722">RFC 2722</a> Traffic Flow Measurement: Architecture October 1999</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a> Statement of Purpose and Scope</span>
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a> Introduction</span>
This document describes an architecture for traffic flow measurement
and reporting for data networks which has the following
characteristics:
- The traffic flow model can be consistently applied to any
protocol, using address attributes in any combination at the
'adjacent' (see below), network and transport layers of the
networking stack.
- Traffic flow attributes are defined in such a way that they are
valid for multiple networking protocol stacks, and that traffic
flow measurement implementations are useful in multi-protocol
environments.
- Users may specify their traffic flow measurement requirements by
writing 'rule sets', allowing them to collect the flow data they
need while ignoring other traffic.
- The data reduction effort to produce requested traffic flow
information is placed as near as possible to the network
measurement point. This minimises the volume of data to be
obtained (and transmitted across the network for storage), and
reduces the amount of processing required in traffic flow
analysis applications.
'Adjacent' (as used above) is a layer-neutral term for the next layer
down in a particular instantiation of protocol layering. Although
'adjacent' will usually imply the link layer (MAC addresses), it does
not implicitly advocate or dismiss any particular form of tunnelling
or layering.
The architecture specifies common metrics for measuring traffic
flows. By using the same metrics, traffic flow data can be exchanged
and compared across multiple platforms. Such data is useful for:
- Understanding the behaviour of existing networks,
- Planning for network development and expansion,
- Quantification of network performance,
- Verifying the quality of network service, and
- Attribution of network usage to users.
<span class="grey">Brownlee, et al. Informational [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc2722">RFC 2722</a> Traffic Flow Measurement: Architecture October 1999</span>
The traffic flow measurement architecture is deliberately structured
using address attributes which are defined in a consistent way at the
Adjacent, Network and Transport layers of the networking stack,
allowing specific implementations of the architecture to be used
effectively in multi-protocol environments. Within this document the
term 'usage data' is used as a generic term for the data obtained
using the traffic flow measurement architecture.
In principle one might define address attributes for higher layers,
but it would be very difficult to do this in a general way. However,
if an RTFM traffic meter were implemented within an application
server (where it had direct access to application-specific usage
information), it would be possible to use the rest of the RTFM
architecture to collect application-specific information. Use of the
same model for both network- and application-level measurement in
this way could simplify the development of generic analysis
applications which process and/or correlate both traffic and usage
information. Experimental work in this area is described in the RTFM
'New Attributes' document [<a href="#ref-RTFM-NEW" title=""RTFM: New Attributes for Traffic Flow Measurment"">RTFM-NEW</a>].
This document is not a protocol specification. It specifies and
structures the information that a traffic flow measurement system
needs to collect, describes requirements that such a system must
meet, and outlines tradeoffs which may be made by an implementor.
For performance reasons, it may be desirable to use traffic
information gathered through traffic flow measurement in lieu of
network statistics obtained in other ways. Although the
quantification of network performance is not the primary purpose of
this architecture, the measured traffic flow data may be used as an
indication of network performance.
A cost recovery structure decides "who pays for what." The major
issue here is how to construct a tariff (who gets billed, how much,
for which things, based on what information, etc). Tariff issues
include fairness, predictability (how well can subscribers forecast
their network charges), practicality (of gathering the data and
administering the tariff), incentives (e.g. encouraging off-peak
use), and cost recovery goals (100% recovery, subsidisation, profit
making). Issues such as these are not covered here.
Background information explaining why this approach was selected is
provided by the 'Internet Accounting Background' RFC [<a href="#ref-ACT-BKG" title=""Internet Accounting Background"">ACT-BKG</a>].
<span class="grey">Brownlee, et al. Informational [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc2722">RFC 2722</a> Traffic Flow Measurement: Architecture October 1999</span>
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a> Traffic Flow Measurement Architecture</span>
A traffic flow measurement system is used by Network Operations
personnel to aid in managing and developing a network. It provides a
tool for measuring and understanding the network's traffic flows.
This information is useful for many purposes, as mentioned in <a href="#section-1">section</a>
<a href="#section-1">1</a> (above).
The following sections outline a model for traffic flow measurement,
which draws from working drafts of the OSI accounting model [OSI-
ACT].
<span class="h3"><a class="selflink" id="section-2.1" href="#section-2.1">2.1</a> Meters and Traffic Flows</span>
At the heart of the traffic measurement model are network entities
called traffic METERS. Meters observe packets as they pass by a
single point on their way through the network and classify them into
certain groups. For each such group a meter will accumulate certain
attributes, for example the numbers of packets and bytes observed for
the group. These METERED TRAFFIC GROUPS may correspond to a user, a
host system, a network, a group of networks, a particular transport
address (e.g. an IP port number), any combination of the above, etc,
depending on the meter's configuration.
We assume that routers or traffic monitors throughout a network are
instrumented with meters to measure traffic. Issues surrounding the
choice of meter placement are discussed in the 'Internet Accounting
Background' RFC [<a href="#ref-ACT-BKG" title=""Internet Accounting Background"">ACT-BKG</a>]. An important aspect of meters is that they
provide a way of succinctly aggregating traffic information.
For the purpose of traffic flow measurement we define the concept of
a TRAFFIC FLOW, which is like an artificial logical equivalent to a
call or connection. A flow is a portion of traffic, delimited by a
start and stop time, that belongs to one of the metered traffic
groups mentioned above. Attribute values (source/destination
addresses, packet counts, byte counts, etc.) associated with a flow
are aggregate quantities reflecting events which take place in the
DURATION between the start and stop times. The start time of a flow
is fixed for a given flow; the stop time may increase with the age of
the flow.
For connectionless network protocols such as IP there is by
definition no way to tell whether a packet with a particular
source/destination combination is part of a stream of packets or not
- each packet is completely independent. A traffic meter has, as
part of its configuration, a set of 'rules' which specify the flows
of interest, in terms of the values of their attributes. It derives
attribute values from each observed packet, and uses these to decide
<span class="grey">Brownlee, et al. Informational [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc2722">RFC 2722</a> Traffic Flow Measurement: Architecture October 1999</span>
which flow they belong to. Classifying packets into 'flows' in this
way provides an economical and practical way to measure network
traffic and subdivide it into well-defined groups.
Usage information which is not derivable from traffic flows may also
be of interest. For example, an application may wish to record
accesses to various different information resources or a host may
wish to record the username (subscriber id) for a particular network
session. Provision is made in the traffic flow architecture to do
this. In the future the measurement model may be extended to gather
such information from applications and hosts so as to provide values
for higher-layer flow attributes.
As well as FLOWS and METERS, the traffic flow measurement model
includes MANAGERS, METER READERS and ANALYSIS APPLICATIONS, which are
explained in following sections. The relationships between them are
shown by the diagram below. Numbers on the diagram refer to sections
in this document.
MANAGER
/ \
2.3 / \ 2.4
/ \
/ \ ANALYSIS
METER <-----> METER READER <-----> APPLICATION
2.2 2.7
- MANAGER: A traffic measurement manager is an application which
configures 'meter' entities and controls 'meter reader' entities.
It sends configuration commands to the meters, and supervises the
proper operation of each meter and meter reader. It may well be
convenient to combine the functions of meter reader and manager
within a single network entity.
- METER: Meters are placed at measurement points determined by
Network Operations personnel. Each meter selectively records
network activity as directed by its configuration settings. It
can also aggregate, transform and further process the recorded
activity before the data is stored. The processed and stored
results are called the 'usage data'.
- METER READER: A meter reader transports usage data from meters so
that it is available to analysis applications.
<span class="grey">Brownlee, et al. Informational [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc2722">RFC 2722</a> Traffic Flow Measurement: Architecture October 1999</span>
- ANALYSIS APPLICATION: An analysis application processes the
usage data so as to provide information and reports which are
useful for network engineering and management purposes. Examples
include:
- TRAFFIC FLOW MATRICES, showing the total flow rates for many
of the possible paths within an internet.
- FLOW RATE FREQUENCY DISTRIBUTIONS, summarizing flow rates
over a period of time.
- USAGE DATA showing the total traffic volumes sent and
received by particular hosts.
The operation of the traffic measurement system as a whole is best
understood by considering the interactions between its components.
These are described in the following sections.
<span class="h3"><a class="selflink" id="section-2.2" href="#section-2.2">2.2</a> Interaction Between METER and METER READER</span>
The information which travels along this path is the usage data
itself. A meter holds usage data in an array of flow data records
known as the FLOW TABLE. A meter reader may collect the data in any
suitable manner. For example it might upload a copy of the whole
flow table using a file transfer protocol, or read the records in the
current flow set one at a time using a suitable data transfer
protocol. Note that the meter reader need not read complete flow
data records, a subset of their attribute values may well be
sufficient.
A meter reader may collect usage data from one or more meters. Data
may be collected from the meters at any time. There is no
requirement for collections to be synchronized in any way.
<span class="h3"><a class="selflink" id="section-2.3" href="#section-2.3">2.3</a> Interaction Between MANAGER and METER</span>
A manager is responsible for configuring and controlling one or more
meters. Each meter's configuration includes information such as:
- Flow specifications, e.g. which traffic flows are to be measured,
how they are to be aggregated, and any data the meter is required
to compute for each flow being measured.
- Meter control parameters, e.g. the 'inactivity' time for flows
(if no packets belonging to a flow are seen for this time the
flow is considered to have ended, i.e. to have become idle).
<span class="grey">Brownlee, et al. Informational [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc2722">RFC 2722</a> Traffic Flow Measurement: Architecture October 1999</span>
- Sampling behaviour. Normally every packet will be observed. It
may sometimes be necessary to use sampling techniques so as to
observe only some of the packets (see following note).
A note about sampling: Current experience with the measurement
architecture shows that a carefully-designed and implemented meter
compresses the data sufficiently well that in normal LANs and WANs of
today sampling is seldom, if ever, needed. For this reason sampling
algorithms are not prescribed by the architecture. If sampling is
needed, e.g. for metering a very-high-speed network with fine-grained
flows, the sampling technique should be carefully chosen so as not to
bias the results. For a good introduction to this topic see the IPPM
Working Group's RFC "Framework for IP Performance Metrics" [IPPM-
FRM].
A meter may run several rule sets concurrently on behalf of one or
more managers, and any manager may download a set of flow
specifications (i.e. a 'rule set') to a meter. Control parameters
which apply to an individual rule set should be set by the manager
after it downloads that rule set.
One manager should be designated as the 'master' for a meter.
Parameters such as sampling behaviour, which affect the overall
operation of the meter, should only be set by the master manager.
<span class="h3"><a class="selflink" id="section-2.4" href="#section-2.4">2.4</a> Interaction Between MANAGER and METER READER</span>
A manager is responsible for configuring and controlling one or more
meter readers. A meter reader may only be controlled by a single
manager. A meter reader needs to know at least the following for
every meter it is collecting usage data from:
- The meter's unique identity, i.e. its network name or address.
- How often usage data is to be collected from the meter.
- Which flow records are to be collected (e.g. all flows, flows for
a particular rule set, flows which have been active since a given
time, etc.).
- Which attribute values are to be collected for the required flow
records (e.g. all attributes, or a small subset of them)
Since redundant reporting may be used in order to increase the
reliability of usage data, exchanges among multiple entities must be
considered as well. These are discussed below.
<span class="grey">Brownlee, et al. Informational [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc2722">RFC 2722</a> Traffic Flow Measurement: Architecture October 1999</span>
<span class="h3"><a class="selflink" id="section-2.5" href="#section-2.5">2.5</a> Multiple METERs or METER READERs</span>
-- METER READER A --
/ | \
/ | \
=====METER 1 METER 2=====METER 3 METER 4=====
\ | /
\ | /
-- METER READER B --
Several uniquely identified meters may report to one or more meter
readers. The diagram above gives an example of how multiple meters
and meter readers could be used.
In the diagram above meter 1 is read by meter reader A, and meter 4
is read by meter reader B. Meters 1 and 4 have no redundancy; if
either meter fails, usage data for their network segments will be
lost.
Meters 2 and 3, however, measure traffic on the same network segment.
One of them may fail leaving the other collecting the segment's usage
data. Meters 2 and 3 are read by meter reader A and by meter reader
B. If one meter reader fails, the other will continue collecting
usage data from both meters.
The architecture does not require multiple meter readers to be
synchronized. In the situation above meter readers A and B could
both collect usage data at the same intervals, but not necesarily at
the same times. Note that because collections are asynchronous it is
unlikely that usage records from two different meter readers will
agree exactly.
If identical usage records were required from a single meter, a
manager could achieve this using two identical copies of a ruleset in
that meter. Let's call them RS1 and RS2, and assume that RS1 is
running. When a collection is to be made the manager switches the
meter from RS1 to RS2, and directs the meter reader(s) to read flow
data for RS1 from the meter. For the next collection the manager
switches back to RS1, and so on. Note, however, that it is not
possible to get identical usage records from more than one meter,
since there is no way for a manager to switch rulesets in more than
one meter at the same time.
If there is only one meter reader and it fails, the meters continue
to run. When the meter reader is restarted it can collect all of the
accumulated flow data. Should this happen, time resolution will be
lost (because of the missed collections) but overall traffic flow
information will not. The only exception to this would occur if the
<span class="grey">Brownlee, et al. Informational [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc2722">RFC 2722</a> Traffic Flow Measurement: Architecture October 1999</span>
traffic volume was sufficient to 'roll over' counters for some flows
during the failure; this is addressed in the section on 'Rolling
Counters'.
<span class="h3"><a class="selflink" id="section-2.6" href="#section-2.6">2.6</a> Interaction Between MANAGERs (MANAGER - MANAGER)</span>
Synchronization between multiple management systems is the province
of network management protocols. This traffic flow measurement
architecture specifies only the network management controls necessary
to perform the traffic flow measurement function and does not address
the more global issues of simultaneous or interleaved (possibly
conflicting) commands from multiple network management stations or
the process of transferring control from one network management
station to another.
<span class="h3"><a class="selflink" id="section-2.7" href="#section-2.7">2.7</a> METER READERs and APPLICATIONs</span>
Once a collection of usage data has been assembled by a meter reader
it can be processed by an analysis application. Details of analysis
applications - such as the reports they produce and the data they
require - are outside the scope of this architecture.
It should be noted, however, that analysis applications will often
require considerable amounts of input data. An important part of
running a traffic flow measurement system is the storage and regular
reduction of flow data so as to produce daily, weekly or monthly
summary files for further analysis. Again, details of such data
handling are outside the scope of this architecture.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a> Traffic Flows and Reporting Granularity</span>
A flow was defined in <a href="#section-2.1">section 2.1</a> above in abstract terms as follows:
"A TRAFFIC FLOW is an artifical logical equivalent to a call or
connection, belonging to a (user-specieied) METERED TRAFFIC
GROUP."
In practical terms, a flow is a stream of packets observed by the
meter as they pass across a network between two end points (or from a
single end point), which have been summarized by a traffic meter for
analysis purposes.
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a> Flows and their Attributes</span>
Every traffic meter maintains a table of 'flow records' for flows
seen by the meter. A flow record holds the values of the ATTRIBUTES
of interest for its flow. These attributes might include:
<span class="grey">Brownlee, et al. Informational [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc2722">RFC 2722</a> Traffic Flow Measurement: Architecture October 1999</span>
- ADDRESSES for the flow's source and destination. These comprise
the protocol type, the source and destination addresses at
various network layers (extracted from the packet header), and
the number of the interface on which the packet was observed.
- First and last TIMES when packets were seen for this flow, i.e.
the 'creation' and 'last activity' times for the flow.
- COUNTS for 'forward' (source to destination) and 'backward'
(destination to source) components (e.g. packets and bytes) of
the flow's traffic. The specifying of 'source' and 'destination'
for flows is discussed in the section on packet matching below.
- OTHER attributes, e.g. the index of the flow's record in the flow
table and the rule set number for the rules which the meter was
running while the flow was observed. The values of these
attributes provide a way of distinguishing flows observed by a
meter at different times.
The attributes listed in this document (Appendix C) provide a basic
(i.e. useful minimum) set; IANA considerations for allocating new
attributes are set out in <a href="#section-8">section 8</a> below.
A flow's METERED TRAFFIC GROUP is specified by the values of its
ADDRESS attributes. For example, if a flow's address attributes were
specified as "source address = IP address 10.1.0.1, destination
address = IP address 26.1.0.1" then only IP packets from 10.1.0.1 to
26.1.0.1 and back would be counted in that flow. If a flow's address
attributes specified only that "source address = IP address
10.1.0.1," then all IP packets from and to 10.1.0.1 would be counted
in that flow.
The addresses specifying a flow's address attributes may include one
or more of the following types:
- The INTERFACE NUMBER for the flow, i.e. the interface on which
the meter measured the traffic. Together with a unique address
for the meter this uniquely identifies a particular physical-
level port.
- The ADJACENT ADDRESS, i.e. the address in the the next layer down
from the peer address in a particular instantiation of protocol
layering. Although 'adjacent' will usually imply the link layer,
it does not implicitly advocate or dismiss any particular form of
tunnelling or layering.
<span class="grey">Brownlee, et al. Informational [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc2722">RFC 2722</a> Traffic Flow Measurement: Architecture October 1999</span>
For example, if flow measurement is being performed using IP as
the network layer on an Ethernet LAN [<a href="#ref-802-3" title="2nd edition">802-3</a>], an adjacent address
will normally be a six-octet Media Access Control (MAC) address.
For a host connected to the same LAN segment as the meter the
adjacent address will be the MAC address of that host. For hosts
on other LAN segments it will be the MAC address of the adjacent
(upstream or downstream) router carrying the traffic flow.
- The PEER ADDRESS, which identifies the source or destination of
the packet for the network layer (n) at which traffic measurement
is being performed. The form of a peer address will depend on
the network-layer protocol in use, and the measurement network
layer (n).
- The TRANSPORT ADDRESS, which identifies the source or destination
port for the packet, i.e. its (n+1) layer address. For example,
if flow measurement is being performed at the IP layer a
transport address is a two-octet UDP or TCP port number.
The four definitions above specify addresses for each of the four
lowest layers of the OSI reference model, i.e. Physical layer, Link
layer, Network layer and Transport layer. A FLOW RECORD stores both
the VALUE for each of its addresses (as described above) and a MASK
specifying which bits of the address value are being used and which
are ignored. Note that if address bits are being ignored the meter
will set them to zero, however their actual values are undefined.
One of the key features of the traffic measurement architecture is
that attributes have essentially the same meaning for different
protocols, so that analysis applications can use the same reporting
formats for all protocols. This is straightforward for peer
addresses; although the form of addresses differs for the various
protocols, the meaning of a 'peer address' remains the same. It
becomes harder to maintain this correspondence at higher layers - for
example, at the Network layer IP, Novell IPX and AppleTalk all use
port numbers as a 'transport address', but CLNP and DECnet have no
notion of ports.
Reporting by adjacent intermediate sources and destinations or simply
by meter interface (most useful when the meter is embedded in a
router) supports hierarchical Internet reporting schemes as described
in the 'Internet Accounting Background' RFC [<a href="#ref-ACT-BKG" title=""Internet Accounting Background"">ACT-BKG</a>]. That is, it
allows backbone and regional networks to measure usage to just the
next lower level of granularity (i.e. to the regional and
stub/enterprise levels, respectively), with the final breakdown
according to end user (e.g. to source IP address) performed by the
stub/enterprise networks.
<span class="grey">Brownlee, et al. Informational [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc2722">RFC 2722</a> Traffic Flow Measurement: Architecture October 1999</span>
In cases where network addresses are dynamically allocated (e.g.
dial-in subscribers), further subscriber identification will be
necessary if flows are to ascribed to individual users. Provision is
made to further specify the metered traffic group through the use of
an optional SUBSCRIBER ID as part of the flow id. A subscriber ID
may be associated with a particular flow either through the current
rule set or by unspecified means within a meter. At this time a
subscriber ID is an arbitrary text string; later versions of the
architecture may specify details of its contents.
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a> Granularity of Flow Measurements</span>
GRANULARITY is the 'control knob' by which an application and/or the
meter can trade off the overhead associated with performing usage
reporting against its level of detail. A coarser granularity means a
greater level of aggregation; finer granularity means a greater level
of detail. Thus, the number of flows measured (and stored) at a
meter can be regulated by changing the granularity of their
attributes. Flows are like an adjustable pipe - many fine-
granularity streams can carry the data with each stream measured
individually, or data can be bundled in one coarse-granularity pipe.
Time granularity may be controlled by varying the reporting interval,
i.e. the time between meter readings.
Flow granularity is controlled by adjusting the level of detail for
the following:
- The metered traffic group (address attributes, discussed above).
- The categorisation of packets (other attributes, discussed
below).
- The lifetime/duration of flows (the reporting interval needs to
be short enough to measure them with sufficient precision).
The set of rules controlling the determination of each packet's
metered traffic group is known as the meter's CURRENT RULE SET. As
will be shown, the meter's current rule set forms an integral part of
the reported information, i.e. the recorded usage information cannot
be properly interpreted without a definition of the rules used to
collect that information.
Settings for these granularity factors may vary from meter to meter.
They are determined by the meter's current rule set, so they will
change if network Operations personnel reconfigure the meter to use a
new rule set. It is expected that the collection rules will change
rather infrequently; nonetheless, the rule set in effect at any time
<span class="grey">Brownlee, et al. Informational [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc2722">RFC 2722</a> Traffic Flow Measurement: Architecture October 1999</span>
must be identifiable via a RULE SET NUMBER. Granularity of metered
traffic groups is further specified by additional ATTRIBUTES. These
attributes include:
- Attributes which record information derived from other attribute
values. Six of these are defined (SourceClass, DestClass,
FlowClass, SourceKind, DestKind, FlowKind), and their meaning is
determined by the meter's rule set. For example, one could have
a subroutine in the rule set which determined whether a source or
destination peer address was a member of an arbitrary list of
networks, and set SourceClass/DestClass to one if the source/dest
peer address was in the list or to zero otherwise.
- Administratively specified attributes such as Quality of Service
and Priority, etc. These are not defined at this time.
Settings for these granularity factors may vary from meter to meter.
They are determined by the meter's current rule set, so they will
change if Network Operations personnel reconfigure the meter to use a
new rule set.
A rule set can aggregate groups of addresses in two ways. The
simplest is to use a mask in a single rule to test for an address
within a masked group. The other way is to use a sequence of rules
to test for an arbitrary group of (masked) address values, then use a
PushRuleTo rule to set a derived attribute (e.g. FlowKind) to
indicate the flow's group.
The LIFETIME of a flow is the time interval which began when the
meter observed the first packet belonging to the flow and ended when
it saw the last packet. Flow lifetimes are very variable, but many -
if not most - are rather short. A meter cannot measure lifetimes
directly; instead a meter reader collects usage data for flows which
have been active since the last collection, and an analysis
application may compare the data from each collection so as to
determine when each flow actually stopped.
The meter does, however, need to reclaim memory (i.e. records in the
flow table) being held by idle flows. The meter configuration
includes a variable called InactivityTimeout, which specifies the
minimum time a meter must wait before recovering the flow's record.
In addition, before recovering a flow record the meter should be sure
that the flow's data has been collected by all meter readers which
registered to collect it. These two wait conditions are desired
goals for the meter; they are not difficult to achieve in normal
usage, however the meter cannot guarantee to fulfil them absolutely.
<span class="grey">Brownlee, et al. Informational [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc2722">RFC 2722</a> Traffic Flow Measurement: Architecture October 1999</span>
These 'lifetime' issues are considered further in the section on
meter readers (below). A complete list of the attributes currently
defined is given in <a href="#appendix-C">Appendix C</a> later in this document.
<span class="h3"><a class="selflink" id="section-3.3" href="#section-3.3">3.3</a> Rolling Counters, Timestamps, Report-in-One-Bucket-Only</span>
Once a usage record is sent, the decision needs to be made whether to
clear any existing flow records or to maintain them and add to their
counts when recording subsequent traffic on the same flow. The
second method, called rolling counters, is recommended and has
several advantages. Its primary advantage is that it provides
greater reliability - the system can now often survive the loss of
some usage records, such as might occur if a meter reader failed and
later restarted. The next usage record will very often contain yet
another reading of many of the same flow buckets which were in the
lost usage record. The 'continuity' of data provided by rolling
counters can also supply information used for "sanity" checks on the
data itself, to guard against errors in calculations.
The use of rolling counters does introduce a new problem: how to
distinguish a follow-on flow record from a new flow record. Consider
the following example.
CONTINUING FLOW OLD FLOW, then NEW FLOW
start time = 1 start time = 1
Usage record N: flow count = 2000 flow count = 2000 (done)
start time = 1 start time = 5
Usage record N+1: flow count = 3000 new flow count = 1000
Total count: 3000 3000
In the continuing flow case, the same flow was reported when its
count was 2000, and again at 3000: the total count to date is 3000.
In the OLD/NEW case, the old flow had a count of 2000. Its record
was then stopped (perhaps because of temporary idleness), but then
more traffic with the same characteristics arrived so a new flow
record was started and it quickly reached a count of 1000. The total
flow count from both the old and new records is 3000.
The flow START TIMESTAMP attribute is sufficient to resolve this. In
the example above, the CONTINUING FLOW flow record in the second
usage record has an old FLOW START timestamp, while the NEW FLOW
contains a recent FLOW START timestamp. A flow which has sporadic
bursts of activity interspersed with long periods of inactivity will
produce a sequence of flow activity records, each with the same set
of address attributes, but with increasing FLOW START times.
<span class="grey">Brownlee, et al. Informational [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc2722">RFC 2722</a> Traffic Flow Measurement: Architecture October 1999</span>
Each packet is counted in at most one flow for each running ruleset,
so as to avoid multiple counting of a single packet. The record of a
single flow is informally called a "bucket." If multiple, sometimes
overlapping, records of usage information are required (aggregate,
individual, etc), the network manager should collect the counts in
sufficiently detailed granularity so that aggregate and combination
counts can be reconstructed in post-processing of the raw usage data.
Alternatively, multiple rulesets could be used to collect data at
different granularities.
For example, consider a meter from which it is required to record
both 'total packets coming in interface #1' and 'total packets
arriving from any interface sourced by IP address = a.b.c.d', using a
single rule set. Although a bucket can be declared for each case, it
is not clear how to handle a packet which satisfies both criteria.
It must only be counted once. By default it will be counted in the
first bucket for which it qualifies, and not in the other bucket.
Further, it is not possible to reconstruct this information by post-
processing. The solution in this case is to define not two, but
THREE buckets, each one collecting a unique combination of the two
criteria:
Bucket 1: Packets which came in interface 1,
AND were sourced by IP address a.b.c.d
Bucket 2: Packets which came in interface 1,
AND were NOT sourced by IP address a.b.c.d
Bucket 3: Packets which did NOT come in interface 1,
AND were sourced by IP address a.b.c.d
(Bucket 4: Packets which did NOT come in interface 1,
AND were NOT sourced by IP address a.b.c.d)
The desired information can now be reconstructed by post-processing.
"Total packets coming in interface 1" can be found by adding buckets
1 & 2, and "Total packets sourced by IP address a.b.c.d" can be found
by adding buckets 1 & 3. Note that in this case bucket 4 is not
explicitly required since its information is not of interest, but it
is supplied here in parentheses for completeness.
Alternatively, the above could be achieved by running two rule sets
(A and B), as follows:
Bucket 1: Packets which came in interface 1;
counted by rule set A.
<span class="grey">Brownlee, et al. Informational [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc2722">RFC 2722</a> Traffic Flow Measurement: Architecture October 1999</span>
Bucket 2: Packets which were sourced by IP address a.b.c.d;
counted by rule set B.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a> Meters</span>
A traffic flow meter is a device for collecting data about traffic
flows at a given point within a network; we will call this the
METERING POINT. The header of every packet passing the network
metering point is offered to the traffic meter program.
A meter could be implemented in various ways, including:
- A dedicated small host, connected to a broadcast LAN (so that it
can see all packets as they pass by) and running a traffic meter
program. The metering point is the LAN segment to which the
meter is attached.
- A multiprocessing system with one or more network interfaces,
with drivers enabling a traffic meter program to see packets. In
this case the system provides multiple metering points - traffic
flows on any subset of its network interfaces can be measured.
- A packet-forwarding device such as a router or switch. This is
similar to (b) except that every received packet should also be
forwarded, usually on a different interface.
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a> Meter Structure</span>
An outline of the meter's structure is given in the following
diagram:
Briefly, the meter works as follows:
- Incoming packet headers arrive at the top left of the diagram and
are passed to the PACKET PROCESSOR.
- The packet processor passes them to the Packet Matching Engine
(PME) where they are classified.
- The PME is a Virtual Machine running a pattern matching program
contained in the CURRENT RULE SET. It is invoked by the Packet
Processor, executes the rules in the current rule set as
described in <a href="#section-4.3">section 4.3</a> below, and returns instructions on what
to do with the packet.
- Some packets are classified as 'to be ignored'. They are
discarded by the Packet Processor.
<span class="grey">Brownlee, et al. Informational [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc2722">RFC 2722</a> Traffic Flow Measurement: Architecture October 1999</span>
- Other packets are matched by the PME, which returns a FLOW KEY
describing the flow to which the packet belongs.
- The flow key is used to locate the flow's entry in the FLOW
TABLE; a new entry is created when a flow is first seen. The
entry's data fields (e.g. packet and byte counters) are updated.
- A meter reader may collect data from the flow table at any time.
It may use the 'collect' index to locate the flows to be
collected within the flow table.
packet +------------------+
header | Current Rule Set |
| +--------+---------+
| |
| |
+-------*--------+ 'match key' +------*-------+
| Packet |---------------->| Packet |
| Processor | | Matching |
| |<----------------| Engine |
+--+----------+--+ 'flow key' +--------------+
| |
| |
Ignore * | Count (via 'flow key')
|
+--*--------------+
| 'Search' index |
+--------+--------+
|
+--------*--------+
| |
| Flow Table |
| |
+--------+--------+
|
+--------*--------+
| 'Collect' index |
+--------+--------+
|
*
Meter Reader
The discussion above assumes that a meter will only be running a
single rule set. A meter may, however, run several rule sets
concurrently. To do this the meter maintains a table of current
rulesets. The packet processor matches each packet against every
<span class="grey">Brownlee, et al. Informational [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc2722">RFC 2722</a> Traffic Flow Measurement: Architecture October 1999</span>
current ruleset, producing a single flow table containing flows from
all the rule sets. One way to implement this is to use the Rule Set
Number attribute in each flow as part of the flow key.
A packet may only be counted once in a rule set (as explained in
<a href="#section-3.3">section 3.3</a> above), but it may be counted in any of the current
rulesets. The overall effect of doing this is somewhat similar to
running several independent meters, one for each rule set.
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a> Flow Table</span>
Every traffic meter maintains 'flow table', i.e. a table of TRAFFIC
FLOW RECORDS for flows seen by the meter. Details of how the flow
table is maintained are given in <a href="#section-4.5">section 4.5</a> below. A flow record
contains attribute values for its flow, including:
- Addresses for the flow's source and destination. These include
addresses and masks for various network layers (extracted from
the packet header), and the identity of the interface on which
the packet was observed.
- First and last times when packets were seen for this flow.
- Counts for 'forward' (source to destination) and 'backward'
(destination to source) components of the flow's traffic.
- Other attributes, e.g. state of the flow record (discussed
below).
The state of a flow record may be:
- INACTIVE: The flow record is not being used by the meter.
- CURRENT: The record is in use and describes a flow which belongs
to the 'current flow set', i.e. the set of flows recently seen by
the meter.
- IDLE: The record is in use and the flow which it describes is
part of the current flow set. In addition, no packets belonging
to this flow have been seen for a period specified by the meter's
InactivityTime variable.
<span class="grey">Brownlee, et al. Informational [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc2722">RFC 2722</a> Traffic Flow Measurement: Architecture October 1999</span>
<span class="h3"><a class="selflink" id="section-4.3" href="#section-4.3">4.3</a> Packet Handling, Packet Matching</span>
Each packet header received by the traffic meter program is processed
as follows:
- Extract attribute values from the packet header and use them to
create a MATCH KEY for the packet.
- Match the packet's key against the current rule set, as explained
in detail below.
The rule set specifies whether the packet is to be counted or
ignored. If it is to be counted the matching process produces a FLOW
KEY for the flow to which the packet belongs. This flow key is used
to find the flow's record in the flow table; if a record does not yet
exist for this flow, a new flow record may be created. The data for
the matching flow record can then be updated.
For example, the rule set could specify that packets to or from any
host in IP network 130.216 are to be counted. It could also specify
that flow records are to be created for every pair of 24-bit (Class
C) subnets within network 130.216.
Each packet's match key is passed to the meter's PATTERN MATCHING
ENGINE (PME) for matching. The PME is a Virtual Machine which uses a
set of instructions called RULES, i.e. a RULE SET is a program for
the PME. A packet's match key contains source (S) and destination (D)
interface identities, address values and masks.
If measured flows were unidirectional, i.e. only counted packets
travelling in one direction, the matching process would be simple.
The PME would be called once to match the packet. Any flow key
produced by a successful match would be used to find the flow's
record in the flow table, and that flow's counters would be updated.
Flows are, however, bidirectional, reflecting the forward and reverse
packets of a protocol interchange or 'session'. Maintaining two sets
of counters in the meter's flow record makes the resulting flow data
much simpler to handle, since analysis programs do not have to gather
together the 'forward' and 'reverse' components of sessions.
Implementing bi-directional flows is, of course, more difficult for
the meter, since it must decide whether a packet is a 'forward'
packet or a 'reverse' one. To make this decision the meter will
often need to invoke the PME twice, once for each possible packet
direction.
<span class="grey">Brownlee, et al. Informational [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc2722">RFC 2722</a> Traffic Flow Measurement: Architecture October 1999</span>
The diagram below describes the algorithm used by the traffic meter
to process each packet. Flow through the diagram is from left to
right and top to bottom, i.e. from the top left corner to the bottom
right corner. S indicates the flow's source address (i.e. its set of
source address attribute values) from the packet header, and D
indicates its destination address.
There are several cases to consider. These are:
- The packet is recognised as one which is TO BE IGNORED.
- The packet would MATCH IN EITHER DIRECTION. One situation in
which this could happen would be a rule set which matches flows
within network X (Source = X, Dest = X) but specifies that flows
are to be created for each subnet within network X, say subnets y
and z. If, for example a packet is seen for y->z, the meter must
check that flow z->y is not already current before creating y->z.
- The packet MATCHES IN ONE DIRECTION ONLY. If its flow is already
current, its forward or reverse counters are incremented.
Otherwise it is added to the flow table and then counted.
Ignore
--- match(S->D) -------------------------------------------------+
| Suc | NoMatch |
| | Ignore |
| match(D->S) -----------------------------------------+
| | Suc | NoMatch |
| | | |
| | +-------------------------------------------+
| | |
| | Suc |
| current(D->S) ---------- count(D->S,r) --------------+
| | Fail |
| | |
| create(D->S) ----------- count(D->S,r) --------------+
| |
| Suc |
current(S->D) ------------------ count(S->D,f) --------------+
| Fail |
| Suc |
current(D->S) ------------------ count(D->S,r) --------------+
| Fail |
| |
create(S->D) ------------------- count(S->D,f) --------------+
|
*
<span class="grey">Brownlee, et al. Informational [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc2722">RFC 2722</a> Traffic Flow Measurement: Architecture October 1999</span>
The algorithm uses four functions, as follows:
match(A->B) implements the PME. It uses the meter's current rule set
to match the attribute values in the packet's match key. A->B
means that the assumed source address is A and destination address
B, i.e. that the packet was travelling from A to B. match()
returns one of three results:
'Ignore' means that the packet was matched but this flow is not to be
counted.
'NoMatch' means that the packet did not match. It might, however
match with its direction reversed, i.e. from B to A.
'Suc' means that the packet did match, i.e. it belongs to a flow
which is to be counted.
current(A->B) succeeds if the flow A-to-B is current - i.e. has a
record in the flow table whose state is Current - and fails
otherwise.
create(A->B) adds the flow A-to-B to the flow table, setting the
value for attributes - such as addresses - which remain constant,
and zeroing the flow's counters.
count(A->B,f) increments the 'forward' counters for flow A-to-B.
count(A->B,r) increments the 'reverse' counters for flow A-to-B.
'Forward' here means the counters for packets travelling from A to
B. Note that count(A->B,f) is identical to count(B->A,r).
When writing rule sets one must remember that the meter will normally
try to match each packet in the reverse direction if the forward
match does not succeed. It is particularly important that the rule
set does not contain inconsistencies which will upset this process.
Consider, for example, a rule set which counts packets from source
network A to destination network B, but which ignores packets from
source network B. This is an obvious example of an inconsistent rule
set, since packets from network B should be counted as reverse
packets for the A-to-B flow.
This problem could be avoided by devising a language for specifying
rule files and writing a compiler for it, thus making it much easier
to produce correct rule sets. An example of such a language is
described in the 'SRL' document [<a href="#ref-RTFM-SRL" title=""SRL: A Language for Describing Traffic Flows and Specifying Actions for Flow Groups"">RTFM-SRL</a>]. Another approach would be
to write a 'rule set consistency checker' program, which could detect
problems in hand-written rule sets.
<span class="grey">Brownlee, et al. Informational [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc2722">RFC 2722</a> Traffic Flow Measurement: Architecture October 1999</span>
Normally, the best way to avoid these problems is to write rule sets
which only classify flows in the forward direction, and rely on the
meter to handle reverse-travelling packets.
Occasionally there can be situations when a rule set needs to know
the direction in which a packet is being matched. Consider, for
example, a rule set which wants to save some attribute values (source
and destination addresses perhaps) for any 'unusual' packets. The
rule set will contain a sequence of tests for all the 'usual' source
addresses, follwed by a rule which will execute a 'NoMatch' action.
If the match fails in the S->D direction, the NoMatch action will
cause it to be retried. If it fails in the D->S direction, the
packet can be counted as an 'unusual' packet.
To count such an 'unusual' packet we need to know the matching
direction: the MatchingStoD attribute provides this. To use it, one
follows the source address tests with a rule which tests whether the
matching direction is S->D (MatchingStoD value is 1). If so, a
'NoMatch' action is executed. Otherwise, the packet has failed to
match in both directions; we can save whatever attribute values are
of interest and count the 'unusual' packet.
<span class="h3"><a class="selflink" id="section-4.4" href="#section-4.4">4.4</a> Rules and Rule Sets</span>
A rule set is an array of rules. Rule sets are held within a meter
as entries in an array of rule sets.
Rule set 1 (the first entry in the rule set table) is built-in to the
meter and cannot be changed. It is run when the meter is started up,
and provides a very coarse reporting granularity; it is mainly useful
for verifying that the meter is running, before a 'useful' rule set
is downloaded to it.
A meter also maintains an array of 'tasks', which specify what rule
sets the meter is running. Each task has a 'current' rule set (the
one which it normally uses), and a 'standby' rule set (which will be
used when the overall traffic level is unusually high). If a task is
instructed to use rule set 0, it will cease measuring; all packets
will be ignored until another (non-zero) rule set is made current.
Each rule in a rule set is an instruction for the Packet Matching
Engine, i.e. it is an instruction for a Virtual Machine. PME
instructions have five component fields, forming two logical groups
as follows:
+-------- test ---------+ +---- action -----+
attribute & mask = value: opcode, parameter;
<span class="grey">Brownlee, et al. Informational [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc2722">RFC 2722</a> Traffic Flow Measurement: Architecture October 1999</span>
The test group allows PME to test the value of an attribute. This is
done by ANDing the attribute value with the mask and comparing the
result with the value field. Note that there is no explicit
provision to test a range, although this can be done where the range
can be covered by a mask, e.g. attribute value less than 2048.
The PME maintains a Boolean indicator called the 'test indicator',
which determines whether or not a rule's test is performed. The test
indicator is initially set (true).
The action group specifies what action may be performed when the rule
is executed. Opcodes contain two flags: 'goto' and 'test', as
detailed in the table below. Execution begins with rule 1, the first
in the rule set. It proceeds as follows:
If the test indicator is true:
Perform the test, i.e. AND the attribute value with the
mask and compare it with the value.
If these are equal the test has succeeded; perform the
rule's action (below).
If the test fails execute the next rule in the rule set.
If there are no more rules in the rule set, return from the
match() function indicating NoMatch.
If the test indicator is false, or the test (above) succeeded:
Set the test indicator to this opcode's test flag value.
Determine the next rule to execute.
If the opcode has its goto flag set, its parameter value
specifies the number of the next rule.
Opcodes which don't have their goto flags set either
determine the next rule in special ways (Return),
or they terminate execution (Ignore, NoMatch, Count,
CountPkt).
Perform the action.
The PME maintains two 'history' data structures. The first, the
'return' stack, simply records the index (i.e. 1-origin rule number)
of each Gosub rule as it is executed; Return rules pop their Gosub
rule index. Note that when the Ignore, NoMatch, Count and CountPkt
actions are performed, PME execution is terminated regardless of
whether the PME is executing a subroutine ('return' stack is non-
empty) or not.
The second data structure, the 'pattern' queue, is used to save
information for later use in building a flow key. A flow key is
built by zeroing all its attribute values, then copying attribute
number, mask and value information from the pattern queue in the
order it was enqueued.
<span class="grey">Brownlee, et al. Informational [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc2722">RFC 2722</a> Traffic Flow Measurement: Architecture October 1999</span>
An attribute number identifies the attribute actually used in a test.
It will usually be the rule's attribute field, unless the attribute
is a 'meter variable'. Details of meter variables are given after
the table of opcode actions below.
The opcodes are:
opcode goto test
1 Ignore 0 -
2 NoMatch 0 -
3 Count 0 -
4 CountPkt 0 -
5 Return 0 0
6 Gosub 1 1
7 GosubAct 1 0
8 Assign 1 1
9 AssignAct 1 0
10 Goto 1 1
11 GotoAct 1 0
12 PushRuleTo 1 1
13 PushRuleToAct 1 0
14 PushPktTo 1 1
15 PushPktToAct 1 0
16 PopTo 1 1
17 PopToAct 1 0
The actions they perform are:
Ignore: Stop matching, return from the match() function
indicating that the packet is to be ignored.
NoMatch: Stop matching, return from the match() function
indicating failure.
Count: Stop matching. Save this rule's attribute number,
mask and value in the PME's pattern queue, then
construct a flow key for the flow to which this
packet belongs. Return from the match() function
indicating success. The meter will use the flow
key to search for the flow record for this
packet's flow.
CountPkt: As for Count, except that the masked value from
the packet header (as it would have been used in
the rule's test) is saved in the PME's pattern
queue instead of the rule's value.
<span class="grey">Brownlee, et al. Informational [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc2722">RFC 2722</a> Traffic Flow Measurement: Architecture October 1999</span>
Gosub: Call a rule-matching subroutine. Push the current
rule number on the PME's return stack, set the
test indicator then goto the specified rule.
GosubAct: Same as Gosub, except that the test indicator is
cleared before going to the specified rule.
Return: Return from a rule-matching subroutine. Pop the
number of the calling gosub rule from the PME's
'return' stack and add this rule's parameter value
to it to determine the 'target' rule. Clear the
test indicator then goto the target rule.
A subroutine call appears in a rule set as a Gosub
rule followed by a small group of following rules.
Since a Return action clears the test flag, the
action of one of these 'following' rules will be
executed; this allows the subroutine to return a
result (in addition to any information it may save
in the PME's pattern queue).
Assign: Set the attribute specified in this rule to the
parameter value specified for this rule. Set the
test indicator then goto the specified rule.
AssignAct: Same as Assign, except that the test indicator
is cleared before going to the specified rule.
Goto: Set the test indicator then goto the
specified rule.
GotoAct: Clear the test indicator then goto the specified
rule.
PushRuleTo: Save this rule's attribute number, mask and value
in the PME's pattern queue. Set the test
indicator then goto the specified rule.
PushRuleToAct: Same as PushRuleTo, except that the test indicator
is cleared before going to the specified rule.
PushRuleTo actions may be used to save the value
and mask used in a test, or (if the test is not
performed) to save an arbitrary value and mask.
<span class="grey">Brownlee, et al. Informational [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc2722">RFC 2722</a> Traffic Flow Measurement: Architecture October 1999</span>
PushPktTo: Save this rule's attribute number, mask, and the
masked value from the packet header (as it would
have been used in the rule's test), in the PME's
pattern queue. Set the test indicator then goto
the specified rule.
PushPktToAct: Same as PushPktTo, except that the test indicator
is cleared before going to the specified rule.
PushPktTo actions may be used to save a value from
the packet header using a specified mask. The
simplest way to program this is to use a zero value
for the PushPktTo rule's value field, and to
GoToAct to the PushPktTo rule (so that it's test is
not executed).
PopTo: Delete the most recent item from the pattern
queue, so as to remove the information saved by
an earlier 'push' action. Set the test indicator
then goto the specified rule.
PopToAct: Same as PopTo, except that the test indicator
is cleared before going to the specified rule.
As well as the attributes applying directly to packets (such as
SourcePeerAddress, DestTransAddress, etc.) the PME implements
several further attribtes. These are:
Null: Tests performed on the Null attribute always
succeed.
MatchingStoD: Indicates whether the PME is matching the packet
with its addresses in 'wire order' or with its
addresses reversed. MatchingStoD's value is 1 if
the addresses are in wire order (StoD), and zero
otherwise.
v1 .. v5: v1, v2, v3, v4 and v5 are 'meter variables'. They
provide a way to pass parameters into rule-
matching subroutines. Each may hold the number of
a normal attribute; its value is set by an Assign
action. When a meter variable appears as the
attribute of a rule, its value specifies the
actual attribute to be tested. For example, if v1
had been assigned SourcePeerAddress as its value,
a rule with v1 as its attribute would actually
test SourcePeerAddress.
<span class="grey">Brownlee, et al. Informational [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc2722">RFC 2722</a> Traffic Flow Measurement: Architecture October 1999</span>
SourceClass, DestClass, FlowClass,
SourceKind, DestKind, FlowKind:
These six attributes may be set by executing
PushRuleTo actions. They allow the PME to save
(in flow records) information which has been built
up during matching. Their values may be tested in
rules; this allows one to set them early in a rule
set, and test them later.
The opcodes detailed above (with their above 'goto' and 'test'
values) form a minimum set, but one which has proved very effective
in current meter implementations. From time to time it may be useful
to add further opcodes; IANA considerations for allocating these are
set out in <a href="#section-8">section 8</a> below.
<span class="h3"><a class="selflink" id="section-4.5" href="#section-4.5">4.5</a> Maintaining the Flow Table</span>
The flow table may be thought of as a 1-origin array of flow records.
(A particular implementation may, of course, use whatever data
structure is most suitable). When the meter starts up there are no
known flows; all the flow records are in the 'inactive' state.
Each time a packet is matched for a flow which is not in a current
flow set a flow record is created for it; the state of such a record
is
'current'. When selecting a record for the new flow the meter
searches the flow table for an 'inactive' record. If no inactive
records are available it will search for an 'idle' one instead. Note
that there is no particular significance in the ordering of records
within the flow table.
A meter's memory management routines should aim to minimise the time
spent finding flow records for new flows, so as to minimise the setup
overhead associated with each new flow.
Flow data may be collected by a 'meter reader' at any time. There is
no requirement for collections to be synchronized. The reader may
collect the data in any suitable manner, for example it could upload
a copy of the whole flow table using a file transfer protocol, or it
could read the records in the current flow set row by row using a
suitable data transfer protocol.
The meter keeps information about collections, in particular it
maintains ReaderLastTime variables which remember the time the last
collection was made by each reader. A second variable,
InactivityTime, specifies the minimum time the meter will wait before
considering that a flow is idle.
<span class="grey">Brownlee, et al. Informational [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc2722">RFC 2722</a> Traffic Flow Measurement: Architecture October 1999</span>
The meter must recover records used for idle flows, if only to
prevent it running out of flow records. Recovered flow records are
returned to the 'inactive' state. A variety of recovery strategies
are possible, including the following:
One possible recovery strategy is to recover idle flow records as
soon as possible after their data has been collected by all readers
which have registered to do so. To implement this the meter could
run a background process which scans the flow table looking for '
current' flows whose 'last packet' time is earlier than the meter's
LastCollectTime.
Another recovery strategy is to leave idle flows alone as long as
possible, which would be acceptable if one was only interested in
measuring total traffic volumes. It could be implemented by having
the meter search for collected idle flows only when it ran low on '
inactive' flow records.
One further factor a meter should consider before recovering a flow
is the number of meter readers which have collected the flow's data.
If there are multiple meter readers operating, each reader should
collect a flow's data before its memory is recovered.
Of course a meter reader may fail, so the meter cannot wait forever
for it. Instead the meter must keep a table of active meter readers,
with a timeout specified for each. If a meter reader fails to
collect flow data within its timeout interval, the meter should
delete that reader from the meter's active meter reader table.
<span class="h3"><a class="selflink" id="section-4.6" href="#section-4.6">4.6</a> Handling Increasing Traffic Levels</span>
Under normal conditions the meter reader specifies which set of usage
records it wants to collect, and the meter provides them. If,
however, memory usage rises above the high-water mark the meter
should switch to a STANDBY RULE SET so as to decrease the rate at
which new flows are created.
When the manager, usually as part of a regular poll, becomes aware
that the meter is using its standby rule set, it could decrease the
interval between collections. This would shorten the time that flows
sit in memory waiting to be collected, allowing the meter to free
flow memory faster.
The meter could also increase its efforts to recover flow memory so
as to reduce the number of idle flows in memory. When the situation
returns to normal, the manager may request the meter to switch back
to its normal rule set.
<span class="grey">Brownlee, et al. Informational [Page 29]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-30" ></span>
<span class="grey"><a href="./rfc2722">RFC 2722</a> Traffic Flow Measurement: Architecture October 1999</span>
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a> Meter Readers</span>
Usage data is accumulated by a meter (e.g. in a router) as memory
permits. It is collected at regular reporting intervals by meter
readers, as specified by a manager. The collected data is recorded
in stable storage as a FLOW DATA FILE, as a sequence of USAGE
RECORDS.
The following sections describe the contents of usage records and
flow data files. Note, however, that at this stage the details of
such records and files is not specified in the architecture.
Specifying a common format for them would be a worthwhile future
development.
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a> Identifying Flows in Flow Records</span>
Once a packet has been classified and is ready to be counted, an
appropriate flow data record must already exist in the flow table;
otherwise one must be created. The flow record has a flexible format
where unnecessary identification attributes may be omitted. The
determination of which attributes of the flow record to use, and of
what values to put in them, is specified by the current rule set.
Note that the combination of start time, rule set number and flow
subscript (row number in the flow table) provide a unique flow
identifier, regardless of the values of its other attributes.
The current rule set may specify additional information, e.g. a
computed attribute value such as FlowKind, which is to be placed in
the attribute section of the usage record. That is, if a particular
flow is matched by the rule set, then the corresponding flow record
should be marked not only with the qualifying identification
attributes, but also with the additional information. Using this
feature, several flows may each carry the same FlowKind value, so
that the resulting usage records can be used in post-processing or
between meter reader and meter as a criterion for collection.
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a> Usage Records, Flow Data Files</span>
The collected usage data will be stored in flow data files on the
meter reader, one file for each meter. As well as containing the
measured usage data, flow data files must contain information
uniquely identifiying the meter from which it was collected.
<span class="grey">Brownlee, et al. Informational [Page 30]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-31" ></span>
<span class="grey"><a href="./rfc2722">RFC 2722</a> Traffic Flow Measurement: Architecture October 1999</span>
A USAGE RECORD contains the descriptions of and values for one or
more flows. Quantities are counted in terms of number of packets and
number of bytes per flow. Other quantities, e.g. short-term flow
rates, may be added later; work on such extensions is described in
the RTFM 'New Attributes' document [<a href="#ref-RTFM-NEW" title=""RTFM: New Attributes for Traffic Flow Measurment"">RTFM-NEW</a>].
Each usage record contains the metered traffic group identifier of
the meter (a set of network addresses), a time stamp and a list of
reported flows (FLOW DATA RECORDS). A meter reader will build up a
file of usage records by regularly collecting flow data from a meter,
using this data to build usage records and concatenating them to the
tail of a file. Such a file is called a FLOW DATA FILE.
A usage record contains the following information in some form:
+-------------------------------------------------------------------+
| RECORD IDENTIFIERS: |
| Meter Id (& digital signature if required) |
| Timestamp |
| Collection Rules ID |
+-------------------------------------------------------------------+
| FLOW IDENTIFIERS: | COUNTERS |
| Address List | Packet Count |
| Subscriber ID (Optional) | Byte Count |
| Attributes (Optional) | Flow Start/Stop Time |
+-------------------------------------------------------------------+
<span class="h3"><a class="selflink" id="section-5.3" href="#section-5.3">5.3</a> Meter to Meter Reader: </span>Usage Record Transmission
The usage record contents are the raison d'etre of the system. The
accuracy, reliability, and security of transmission are the primary
concerns of the meter/meter reader exchange. Since errors may occur
on networks, and Internet packets may be dropped, some mechanism for
ensuring that the usage information is transmitted intact is needed.
Flow data is moved from meter to meter reader via a series of
protocol exchanges between them. This may be carried out in various
ways, moving individual attribute values, complete flows, or the
entire flow table (i.e. all the active and idle flows). One possible
method of achieving this transfer is to use SNMP; the 'Traffic Flow
Measurement: Meter MIB' RFC [<a href="#ref-RTFM-MIB" title=""Traffic Flow Measurement: Meter MIB"">RTFM-MIB</a>] gives details. Note that
this is simply one example; the transfer of flow data from meter to
meter reader is not specified in this document.
The reliability of the data transfer method under light, normal, and
extreme network loads should be understood before selecting among
collection methods.
<span class="grey">Brownlee, et al. Informational [Page 31]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-32" ></span>
<span class="grey"><a href="./rfc2722">RFC 2722</a> Traffic Flow Measurement: Architecture October 1999</span>
In normal operation the meter will be running a rule file which
provides the required degree of flow reporting granularity, and the
meter reader(s) will collect the flow data often enough to allow the
meter's garbage collection mechanism to maintain a stable level of
memory usage.
In the worst case traffic may increase to the point where the meter
is in danger of running completely out of flow memory. The meter
implementor must decide how to handle this, for example by switching
to a default (extremely coarse granularity) rule set, by sending a
trap message to the manager, or by attempting to dump flow data to
the meter reader.
Users of the Traffic Flow Measurement system should analyse their
requirements carefully and assess for themselves whether it is more
important to attempt to collect flow data at normal granularity
(increasing the collection frequency as needed to keep up with
traffic volumes), or to accept flow data with a coarser granularity.
Similarly, it may be acceptable to lose flow data for a short time in
return for being sure that the meter keeps running properly, i.e. is
not overwhelmed by rising traffic levels.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a> Managers</span>
A manager configures meters and controls meter readers. It does this
via the interactions described below.
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a> Between Manager and Meter: </span>Control Functions
- DOWNLOAD RULE SET: A meter may hold an array of rule sets. One
of these, the 'default' rule set, is built in to the meter and
cannot be changed; this is a diagnostic feature, ensuring that
when a meter starts up it will be running a known ruleset.
All other rule sets must be downloaded by the manager. A manager
may use any suitable protocol exchange to achieve this, for
example an FTP file transfer or a series of SNMP SETs, one for
each row of the rule set.
- SPECIFY METER TASK: Once the rule sets have been downloaded, the
manager must instruct the meter which rule sets will be the
'current' and 'standby' ones for each task the meter is to
perform.
- SET HIGH WATER MARK: A percentage of the flow table capacity,
used by the meter to determine when to switch to its standby rule
set (so as to increase the granularity of the flows and conserve
the meter's flow memory). Once this has happened, the manager
<span class="grey">Brownlee, et al. Informational [Page 32]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-33" ></span>
<span class="grey"><a href="./rfc2722">RFC 2722</a> Traffic Flow Measurement: Architecture October 1999</span>
may also change the polling frequency or the meter's control
parameters (so as to increase the rate at which the meter can
recover memory from idle flows). The meter has a separate high
water mark value for each task it is currently running.
If the high traffic levels persist, the meter's normal rule set
may have to be rewritten to permanently reduce the reporting
granularity.
- SET FLOW TERMINATION PARAMETERS: The meter should have the good
sense in situations where lack of resources may cause data loss
to purge flow records from its tables. Such records may include:
- Flows that have already been reported to all registered meter
readers, and show no activity since the last report,
- Oldest flows, or
- Flows with the smallest number of observed packets.
- SET INACTIVITY TIMEOUT: This is a time in seconds since the last
packet was seen for a flow. Flow records may be reclaimed if
they have been idle for at least this amount of time, and have
been collected in accordance with the current collection
criteria.
It might be useful if a manager could set the FLOW TERMINATION
PARAMETERS to different values for different tasks. Current meter
implementations have only single ('whole meter') values for these
parameters, and experience to date suggests that this provides an
adequate degree of control for the tasks.
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a> Between Manager and Meter Reader: </span>Control Functions
Because there are a number of parameters that must be set for traffic
flow measurement to function properly, and viable settings may change
as a result of network traffic characteristics, it is desirable to
have dynamic network management as opposed to static meter
configurations. Many of these operations have to do with space
tradeoffs - if memory at the meter is exhausted, either the
collection interval must be decreased or a coarser granularity of
aggregation must be used to reduce the number of active flows.
Increasing the collection interval effectively stores data in the
meter; usage data in transit is limited by the effective bandwidth of
the virtual link between the meter and the meter reader, and since
these limited network resources are usually also used to carry user
data (the purpose of the network), the level of traffic flow
measurement traffic should be kept to an affordable fraction of the
bandwidth. ("Affordable" is a policy decision made by the Network
<span class="grey">Brownlee, et al. Informational [Page 33]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-34" ></span>
<span class="grey"><a href="./rfc2722">RFC 2722</a> Traffic Flow Measurement: Architecture October 1999</span>
Operations personnel). At any rate, it must be understood that the
operations below do not represent the setting of independent
variables; on the contrary, each of the values set has a direct and
measurable effect on the behaviour of the other variables.
Network management operations follow:
- MANAGER and METER READER IDENTIFICATION: The manager should
ensure that meters are read by the correct set of meter readers,
and take steps to prevent unauthorised access to usage
information. The meter readers so identified should be prepared
to poll if necessary and accept data from the appropriate meters.
Alternate meter readers may be identified in case both the
primary manager and the primary meter reader are unavailable.
Similarly, alternate managers may be identified.
- REPORTING INTERVAL CONTROL: The usual reporting interval should
be selected to cope with normal traffic patterns. However, it
may be possible for a meter to exhaust its memory during traffic
spikes even with a correctly set reporting interval. Some
mechanism should be available for the meter to tell the manager
that it is in danger of exhausting its memory (by declaring a '
high water' condition), and for the manager to arbitrate (by
decreasing the polling interval, letting nature take its course,
or by telling the meter to ask for help sooner next time).
- GRANULARITY CONTROL: Granularity control is a catch-all for all
the parameters that can be tuned and traded to optimise the
system's ability to reliably measure and store information on all
the traffic (or as close to all the traffic as an administration
requires). Granularity:
- Controls the amount of address information identifying each
flow, and
- Determines the number of buckets into which user traffic
will be lumped together.
Since granularity is controlled by the meter's current rule set,
the manager can only change it by requesting the meter to switch
to a different rule set. The new rule set could be downloaded
when required, or it could have been downloaded as part of the
meter's initial configuration.
<span class="grey">Brownlee, et al. Informational [Page 34]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-35" ></span>
<span class="grey"><a href="./rfc2722">RFC 2722</a> Traffic Flow Measurement: Architecture October 1999</span>
- FLOW LIFETIME CONTROL: Flow termination parameters include
timeout parameters for obsoleting inactive flows and removing
them from tables, and maximum flow lifetimes. This is
intertwined with reporting interval and granularity, and must be
set in accordance with the other parameters.
<span class="h3"><a class="selflink" id="section-6.3" href="#section-6.3">6.3</a> Exception Conditions</span>
Exception conditions must be handled, particularly occasions when the
meter runs out of space for flow data. Since - to prevent an active
task from counting any packet twice - packets can only be counted in
a single flow, discarding records will result in the loss of
information. The mechanisms to deal with this are as follows:
- METER OUTAGES: In case of impending meter outages (controlled
restarts, etc.) the meter could send a trap to the manager. The
manager could then request one or more meter readers to pick up
the data from the meter.
Following an uncontrolled meter outage such as a power failure,
the meter could send a trap to the manager indicating that it has
restarted. The manager could then download the meter's correct
rule set and advise the meter reader(s) that the meter is running
again. Alternatively, the meter reader may discover from its
regular poll that a meter has failed and restarted. It could
then advise the manager of this, instead of relying on a trap
from the meter.
- METER READER OUTAGES: If the collection system is down or
isolated, the meter should try to inform the manager of its
failure to communicate with the collection system. Usage data is
maintained in the flows' rolling counters, and can be recovered
when the meter reader is restarted.
- MANAGER OUTAGES: If the manager fails for any reason, the meter
should continue measuring and the meter reader(s) should keep
gathering usage records.
- BUFFER PROBLEMS: The network manager may realise that there is a
'low memory' condition in the meter. This can usually be
attributed to the interaction between the following controls:
- The reporting interval is too infrequent, or
- The reporting granularity is too fine.
<span class="grey">Brownlee, et al. Informational [Page 35]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-36" ></span>
<span class="grey"><a href="./rfc2722">RFC 2722</a> Traffic Flow Measurement: Architecture October 1999</span>
Either of these may be exacerbated by low throughput or bandwidth
of circuits carrying the usage data. The manager may change any
of these parameters in response to the meter (or meter reader's)
plea for help.
<span class="h3"><a class="selflink" id="section-6.4" href="#section-6.4">6.4</a> Standard Rule Sets</span>
Although the rule table is a flexible tool, it can also become very
complex. It may be helpful to develop some rule sets for common
applications:
- PROTOCOL TYPE: The meter records packets by protocol type. This
will be the default rule table for Traffic Flow Meters.
- ADJACENT SYSTEMS: The meter records packets by the MAC address of
the Adjacent Systems (neighbouring originator or next-hop).
(Variants on this table are "report source" or "report sink"
only.) This strategy might be used by a regional or backbone
network which wants to know how much aggregate traffic flows to
or from its subscriber networks.
- END SYSTEMS: The meter records packets by the IP address pair
contained in the packet. (Variants on this table are "report
source" or "report sink" only.) This strategy might be used by
an End System network to get detailed host traffic matrix usage
data.
- TRANSPORT TYPE: The meter records packets by transport address;
for IP packets this provides usage information for the various IP
services.
- HYBRID SYSTEMS: Combinations of the above, e.g. for one interface
report End Systems, for another interface report Adjacent
Systems. This strategy might be used by an enterprise network to
learn detail about local usage and use an aggregate count for the
shared regional network.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a> Security Considerations</span>
<span class="h3"><a class="selflink" id="section-7.1" href="#section-7.1">7.1</a> Threat Analysis</span>
A traffic flow measurement system may be subject to the following
kinds of attacks:
- ATTEMPTS TO DISABLE A TRAFFIC METER: An attacker may attempt to
disrupt traffic measurement so as to prevent users being charged
for network usage. For example, a network probe sending packets
<span class="grey">Brownlee, et al. Informational [Page 36]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-37" ></span>
<span class="grey"><a href="./rfc2722">RFC 2722</a> Traffic Flow Measurement: Architecture October 1999</span>
to a large number of destination and transport addresses could
produce a sudden rise in the number of flows in a meter's flow
table, thus forcing it to use its coarser standby rule set.
- UNAUTHORIZED USE OF SYSTEM RESOURCES: An attacker may wish to
gain advantage or cause mischief (e.g. denial of service) by
subverting any of the system elements - meters, meter readers or
managers.
- UNAUTHORIZED DISCLOSURE OF DATA: Any data that is sensitive to
disclosure can be read through active or passive attacks unless
it is suitably protected. Usage data may or may not be of this
type. Control messages, traps, etc. are not likely to be
considered sensitive to disclosure.
- UNAUTHORIZED ALTERATION, REPLACEMENT OR DESTRUCTION OF DATA:
Similarly, any data whose integrity is sensitive can be altered,
replaced/injected or deleted through active or passive attacks
unless it is suitably protected. Attackers may modify message
streams to falsify usage data or interfere with the proper
operation of the traffic flow measurement system. Therefore, all
messages, both those containing usage data and those containing
control data, should be considered vulnerable to such attacks.
<span class="h3"><a class="selflink" id="section-7.2" href="#section-7.2">7.2</a> Countermeasures</span>
The following countermeasures are recommended to address the possible
threats enumerated above:
- ATTEMPTS TO DISABLE A TRAFFIC METER can't be completely
countered. In practice, flow data records from network security
attacks have proved very useful in determining what happened.
The most effective approach is first to configure the meter so
that it has three or more times as much flow memory as it needs
in normal operation, and second to collect the flow data fairly
frequently so as to minimise the time needed to recover flow
memory after such an attack.
- UNAUTHORIZED USE OF SYSTEM RESOURCES is countered through the use
of authentication and access control services.
- UNAUTHORIZED DISCLOSURE OF DATA is countered through the use of a
confidentiality (encryption) service.
- UNAUTHORIZED ALTERATION, REPLACEMENT OR DESTRUCTION OF DATA is
countered through the use of an integrity service.
<span class="grey">Brownlee, et al. Informational [Page 37]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-38" ></span>
<span class="grey"><a href="./rfc2722">RFC 2722</a> Traffic Flow Measurement: Architecture October 1999</span>
A Traffic Measurement system must address all of these concerns.
Since a high degree of protection is required, the use of strong
cryptographic methodologies is recommended. The security
requirements for communication between pairs of traffic measurmement
system elements are summarized in the table below. It is assumed
that meters do not communicate with other meters, and that meter
readers do not communicate directly with other meter readers (if
synchronization is required, it is handled by the manager, see
<a href="#section-2.5">Section 2.5</a>). Each entry in the table indicates which kinds of
security services are required. Basically, the requirements are as
follows:
Security Service Requirements for RTFM elements
+------------------------------------------------------------------+
| from\to | meter | meter reader | application | manager |
|---------+--------------+--------------+-------------+------------|
| meter | N/A | authent | N/A | authent |
| | | acc ctrl | | acc ctrl |
| | | integrity | | |
| | | confid ** | | |
|---------+--------------+--------------+-------------+------------|
| meter | authent | N/A | authent | authent |
| reader | acc ctrl | | acc ctrl | acc ctrl |
| | | | integrity | |
| | | | confid ** | |
|---------+--------------+--------------+-------------+------------|
| appl | N/A | authent | | |
| | | acc ctrl | ## | ## |
|---------+--------------+--------------+-------------+------------|
| manager | authent | authent | ## | authent |
| | acc ctrl | acc ctrl | | acc ctrl |
| | integrity | integrity | | integrity |
+------------------------------------------------------------------+
N/A = Not Applicable ** = optional ## = outside RTFM scope
- When any two elements intercommunicate they should mutually
authenticate themselves to one another. This is indicated by '
authent' in the table. Once authentication is complete, an
element should check that the requested type of access is
allowed; this is indicated on the table by 'acc ctrl'.
- Whenever there is a transfer of information its integrity should
be protected.
<span class="grey">Brownlee, et al. Informational [Page 38]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-39" ></span>
<span class="grey"><a href="./rfc2722">RFC 2722</a> Traffic Flow Measurement: Architecture October 1999</span>
- Whenever there is a transfer of usage data it should be possible
to ensure its confidentiality if it is deemed sensitive to
disclosure. This is indicated by 'confid' in the table.
Security protocols are not specified in this document. The system
elements' management and collection protocols are responsible for
providing sufficient data integrity, confidentiality, authentication
and access control services.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a> IANA Considerations</span>
The RTFM Architecture, as set out in this document, has two sets of
assigned numbers. Considerations for assigning them are discussed in
this section, using the example policies as set out in the
"Guidelines for IANA Considerations" document [<a href="#ref-IANA-RFC" title="">IANA-RFC</a>].
<span class="h3"><a class="selflink" id="section-8.1" href="#section-8.1">8.1</a> PME Opcodes</span>
The Pattern Matching Engine (PME) is a virtual machine, executing
RTFM rules as its instructions. The PME opcodes appear in the
'action' field of an RTFM rule. The current list of opcodes, and
their values for the PME's 'goto' and 'test' flags, are set out in
<a href="#section-4.4">section 4.4</a> above ("Rules and Rulesets).
The PME opcodes are pivotal to the RTFM architecture, since they must
be implemented in every RTFM meter. Any new opcodes must therefore
be allocated through an IETF Consensus action [<a href="#ref-IANA-RFC" title="">IANA-RFC</a>].
Opcodes are simply non-negative integers, but new opcodes should be
allocated sequentially so as to keep the total opcode range as small
as possible.
<span class="h3"><a class="selflink" id="section-8.2" href="#section-8.2">8.2</a> RTFM Attributes</span>
Attribute numbers in the range of 0-511 are globally unique and are
allocated according to an IETF Consensus action [<a href="#ref-IANA-RFC" title="">IANA-RFC</a>]. <a href="#appendix-C">Appendix</a>
<a href="#appendix-C">C</a> of this document allocates a basic (i.e. useful minimum) set of
attribtes; they are assigned numbers in the range 0 to 63. The RTFM
working group is working on an extended set of attributes, which will
have numbers in the range 64 to 127.
Vendor-specific attribute numbers are in the range 512-1023, and will
be allocated using the First Come FIrst Served policy [<a href="#ref-IANA-RFC" title="">IANA-RFC</a>].
Vendors requiring attribute numbers should submit a request to IANA
giving the attribute names: IANA will allocate them the next
available numbers.
<span class="grey">Brownlee, et al. Informational [Page 39]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-40" ></span>
<span class="grey"><a href="./rfc2722">RFC 2722</a> Traffic Flow Measurement: Architecture October 1999</span>
Attribute numbers 1024 and higher are Reserved for Private Use
[<a href="#ref-IANA-RFC" title="">IANA-RFC</a>]. Implementors wishing to experiment with further new
attributes should use attribute numbers in this range.
Attribute numbers are simply non-negative integers. When writing
specifications for attributes, implementors must give sufficient
detail for the new attributes to be easily added to the RTFM Meter
MIB [<a href="#ref-RTFM-MIB" title=""Traffic Flow Measurement: Meter MIB"">RTFM-MIB</a>]. In particular, they must indicate whether the new
attributes may be:
- tested in an IF statement
- saved by a SAVE statement or set by a STORE statement
- read from an RTFM meter
(IF, SAVE and STORE are statements in the SRL Ruleset Language
[<a href="#ref-RTFM-SRL" title=""SRL: A Language for Describing Traffic Flows and Specifying Actions for Flow Groups"">RTFM-SRL</a>]).
<span class="grey">Brownlee, et al. Informational [Page 40]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-41" ></span>
<span class="grey"><a href="./rfc2722">RFC 2722</a> Traffic Flow Measurement: Architecture October 1999</span>
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a> APPENDICES</span>
<span class="h3"><a class="selflink" id="section-9.1" href="#section-9.1">9.1</a> <a href="#appendix-A">Appendix A</a>: Network Characterisation</span>
Internet users have extraordinarily diverse requirements. Networks
differ in size, speed, throughput, and processing power, among other
factors. There is a range of traffic flow measurement capabilities
and requirements. For traffic flow measurement purposes, the
Internet may be viewed as a continuum which changes in character as
traffic passes through the following representative levels:
International |
Backbones/National ---------------
/ \
Regional/MidLevel ---------- ----------
/ \ \ / / \
Stub/Enterprise --- --- --- ---- ----
||| ||| ||| |||| ||||
End-Systems/Hosts xxx xxx xxx xxxx xxxx
Note that mesh architectures can also be built out of these
components, and that these are merely descriptive terms. The nature
of a single network may encompass any or all of the descriptions
below, although some networks can be clearly identified as a single
type.
BACKBONE networks are typically bulk carriers that connect other
networks. Individual hosts (with the exception of network management
devices and backbone service hosts) typically are not directly
connected to backbones.
REGIONAL networks are closely related to backbones, and differ only
in size, the number of networks connected via each port, and
geographical coverage. Regionals may have directly connected hosts,
acting as hybrid backbone/stub networks. A regional network is a
SUBSCRIBER to the backbone.
STUB/ENTERPRISE networks connect hosts and local area networks.
STUB/ENTERPRISE networks are SUBSCRIBERS to regional and backbone
networks.
END SYSTEMS, colloquially HOSTS, are SUBSCRIBERS to any of the above
networks.
Providing a uniform identification of the SUBSCRIBER in finer
granularity than that of end-system, (e.g. user/account), is beyond
the scope of the current architecture, although an optional attribute
in the traffic flow measurement record may carry system-specific
<span class="grey">Brownlee, et al. Informational [Page 41]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-42" ></span>
<span class="grey"><a href="./rfc2722">RFC 2722</a> Traffic Flow Measurement: Architecture October 1999</span>
'user identification' labels so that meters can implement proprietary
or non-standard schemes for the attribution of network traffic to
responsible parties.
<span class="h3"><a class="selflink" id="section-9.2" href="#section-9.2">9.2</a> <a href="#appendix-B">Appendix B</a>: Recommended Traffic Flow Measurement Capabilities</span>
Initial recommended traffic flow measurement conventions are outlined
here according to the following Internet building blocks. It is
important to understand what complexity reporting introduces at each
network level. Whereas the hierarchy is described top-down in the
previous section, reporting requirements are more easily addressed
bottom-up.
End-Systems
Stub Networks
Enterprise Networks
Regional Networks
Backbone Networks
END-SYSTEMS are currently responsible for allocating network usage to
end-users, if this capability is desired. From the Internet Protocol
perspective, end-systems are the finest granularity that can be
identified without protocol modifications. Even if a meter violated
protocol boundaries and tracked higher-level protocols, not all
packets could be correctly allocated by user, and the definition of
user itself varies widely from operating system to operating system
(e.g. how to trace network usage back to users from shared
processes).
STUB and ENTERPRISE networks will usually collect traffic data either
by end-system network address or network address pair if detailed
reporting is required in the local area network. If no local
reporting is required, they may record usage information in the exit
router to track external traffic only. (These are the only networks
which routinely use attributes to perform reporting at granularities
finer than end-system or intermediate-system network address.)
REGIONAL networks are intermediate networks. In some cases,
subscribers will be enterprise networks, in which case the
intermediate system network address is sufficient to identify the
regional's immediate subscriber. In other cases, individual hosts or
a disjoint group of hosts may constitute a subscriber. Then end-
system network address pairs need to be tracked for those
subscribers. When the source may be an aggregate entity (such as a
network, or adjacent router representing traffic from a world of
hosts beyond) and the destination is a singular entity (or vice
versa), the meter is said to be operating as a HYBRID system.
<span class="grey">Brownlee, et al. Informational [Page 42]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-43" ></span>
<span class="grey"><a href="./rfc2722">RFC 2722</a> Traffic Flow Measurement: Architecture October 1999</span>
At the regional level, if the overhead is tolerable it may be
advantageous to report usage both by intermediate system network
address (e.g. adjacent router address) and by end-system network
address or end-system network address pair.
BACKBONE networks are the highest level networks operating at higher
link speeds and traffic levels. The high volume of traffic will in
most cases preclude detailed traffic flow measurement. Backbone
networks will usually account for traffic by adjacent routers'
network addresses.
<span class="h3"><a class="selflink" id="section-9.3" href="#section-9.3">9.3</a> <a href="#appendix-C">Appendix C</a>: List of Defined Flow Attributes</span>
This Appendix provides a checklist of the attributes defined to date;
others will be added later as the Traffic Measurement Architecture is
further developed.
Note that this table gives only a very brief summary. The Meter MIB
[<a href="#ref-RTFM-MIB" title=""Traffic Flow Measurement: Meter MIB"">RTFM-MIB</a>] provides the definitive specification of attributes and
their allowed values. The MIB variables which represent flow
attributes have 'flowData' prepended to their names to indicate that
they belong to the MIB's flowData table.
0 Null
4 SourceInterface Integer Source Address
5 SourceAdjacentType Integer
6 SourceAdjacentAddress String
7 SourceAdjacentMask String
8 SourcePeerType Integer
9 SourcePeerAddress String
10 SourcePeerMask String
11 SourceTransType Integer
12 SourceTransAddress String
13 SourceTransMask String
14 DestInterface Integer Destination Address
15 DestAdjacentType Integer
16 DestAdjacentAddress String
17 DestAdjacentMask String
18 DestPeerType Integer
19 DestPeerAddress String
20 DestPeerMask String
21 DestTransType Integer
22 DestTransAddress String
23 DestTransMask String
<span class="grey">Brownlee, et al. Informational [Page 43]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-44" ></span>
<span class="grey"><a href="./rfc2722">RFC 2722</a> Traffic Flow Measurement: Architecture October 1999</span>
26 RuleSet Integer Meter attribute
27 ToOctets Integer Source-to-Dest counters
28 ToPDUs Integer
29 FromOctets Integer Dest-to-Source counters
30 FromPDUs Integer
31 FirstTime Timestamp Activity times
32 LastActiveTime Timestamp
33 SourceSubscriberID String Session attributes
34 DestSubscriberID String
35 SessionID String
36 SourceClass Integer 'Computed' attributes
37 DestClass Integer
38 FlowClass Integer
39 SourceKind Integer
40 DestKind Integer
41 FlowKind Integer
50 MatchingStoD Integer PME variable
51 v1 Integer Meter Variables
52 v2 Integer
53 v3 Integer
54 v4 Integer
55 v5 Integer
65
.. 'Extended' attributes (to be defined by the RTFM working group)
127
<span class="h3"><a class="selflink" id="section-9.4" href="#section-9.4">9.4</a> <a href="#appendix-D">Appendix D</a>: List of Meter Control Variables</span>
Meter variables:
Flood Mark Percentage
Inactivity Timeout (seconds) Integer
'per task' variables:
Current Rule Set Number Integer
Standby Rule Set Number Integer
High Water Mark Percentage
'per reader' variables:
Reader Last Time Timestamp
<span class="grey">Brownlee, et al. Informational [Page 44]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-45" ></span>
<span class="grey"><a href="./rfc2722">RFC 2722</a> Traffic Flow Measurement: Architecture October 1999</span>
<span class="h3"><a class="selflink" id="section-9.5" href="#section-9.5">9.5</a> <a href="#appendix-E">Appendix E</a>: Changes Introduced Since <a href="./rfc2063">RFC 2063</a></span>
The first version of the Traffic Flow Measurement Architecture was
published as <a href="./rfc2063">RFC 2063</a> in January 1997. The most significant changes
made since then are summarised below.
- A Traffic Meter can now run multiple rule sets concurrently.
This makes a meter much more useful, and required only minimal
changes to the architecture.
- 'NoMatch' replaces 'Fail' as an action. This name was agreed to
at the Working Group 1996 meeting in Montreal; it better
indicates that although a particular match has failed, it may be
tried again with the packet's addresses reversed.
- The 'MatchingStoD' attribute has been added. This is a Packet
Matching Engine (PME) attribute indicating that addresses are
being matched in StoD (i.e. 'wire') order. It can be used to
perform different actions when the match is retried, thereby
simplifying some kinds of rule sets. It was discussed and agreed
to at the San Jose meeting in 1996.
- Computed attributes (Class and Kind) may now be tested within a
rule set. This lifts an unneccessary earlier restriction.
- The list of attribute numbers has been extended to define ranges
for 'basic' attributes (in this document) and 'extended'
attributes (currently being developed by the RTFM Working Group).
- The 'Security Considerations' section has been completely
rewritten. It provides an evaluation of traffic measurement
security risks and their countermeasures.
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a> Acknowledgments</span>
An initial draft of this document was produced under the auspices
of the IETF's Internet Accounting Working Group with assistance
from SNMP, RMON and SAAG working groups. Particular thanks are
due to Stephen Stibler (IBM Research) for his patient and careful
comments during the preparation of this memo.
<span class="grey">Brownlee, et al. Informational [Page 45]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-46" ></span>
<span class="grey"><a href="./rfc2722">RFC 2722</a> Traffic Flow Measurement: Architecture October 1999</span>
<span class="h2"><a class="selflink" id="section-11" href="#section-11">11</a> References</span>
[<a id="ref-802-3">802-3</a>] IEEE 802.3/ISO 8802-3 Information Processing Systems -
Local Area Networks - Part 3: Carrier sense multiple
access with collision detection (CSMA/CD) access method
and physical layer specifications, 2nd edition, September
21, 1990.
[<a id="ref-ACT-BKG">ACT-BKG</a>] Mills, C., Hirsch, G. and G. Ruth, "Internet Accounting
Background", <a href="./rfc1272">RFC 1272</a>, November 1991.
[<a id="ref-IANA-RFC">IANA-RFC</a>] Alvestrand, H. and T. Narten, "Guidelines for Writing an
IANA Considerations Section in RFCs", <a href="https://www.rfc-editor.org/bcp/bcp26">BCP 26</a>, <a href="./rfc2434">RFC 2434</a>,
October 1998.
[<a id="ref-IPPM-FRM">IPPM-FRM</a>] Paxson, V., Almes, G., Mahdavi, J. and M. Mathis,
"Framework for IP Performance Metrics", <a href="./rfc2330">RFC 2330</a>, May
1998.
[<a id="ref-OSI-ACT">OSI-ACT</a>] International Standards Organisation (ISO), "Management
Framework", Part 4 of Information Processing Systems Open
Systems Interconnection Basic Reference Model, ISO 7498-4,
1994.
[<a id="ref-RTFM-MIB">RTFM-MIB</a>] Brownlee, N., "Traffic Flow Measurement: Meter MIB", <a href="./rfc2720">RFC</a>
<a href="./rfc2720">2720</a>, October 1999.
[<a id="ref-RTFM-NEW">RTFM-NEW</a>] Handelman, S., Stibler, S., Brownlee, N. and G. Ruth,
"RTFM: New Attributes for Traffic Flow Measurment", <a href="./rfc2724">RFC</a>
<a href="./rfc2724">2724</a>, October 1999.
[<a id="ref-RTFM-SRL">RTFM-SRL</a>] Brownlee, N., "SRL: A Language for Describing Traffic
Flows and Specifying Actions for Flow Groups", <a href="./rfc2723">RFC 2723</a>,
October 1999.
<span class="grey">Brownlee, et al. Informational [Page 46]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-47" ></span>
<span class="grey"><a href="./rfc2722">RFC 2722</a> Traffic Flow Measurement: Architecture October 1999</span>
<span class="h2"><a class="selflink" id="section-12" href="#section-12">12</a> Authors' Addresses</span>
Nevil Brownlee
Information Technology Systems & Services
The University of Auckland
Private Bag 92-019
Auckland, New Zealand
Phone: +64 9 373 7599 x8941
EMail: n.brownlee@auckland.ac.nz
Cyndi Mills
GTE Laboratories, Inc
40 Sylvan Rd.
Waltham, MA 02451, U.S.A.
Phone: +1 781 466 4278
EMail: cmills@gte.com
Greg Ruth
GTE Internetworking
3 Van de Graaff Drive
P.O. Box 3073
Burlington, MA 01803, U.S.A.
Phone: +1 781 262 4831
EMail: gruth@bbn.com
<span class="grey">Brownlee, et al. Informational [Page 47]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-48" ></span>
<span class="grey"><a href="./rfc2722">RFC 2722</a> Traffic Flow Measurement: Architecture October 1999</span>
<span class="h2"><a class="selflink" id="section-13" href="#section-13">13</a> Full Copyright Statement</span>
Copyright (C) The Internet Society (1999). All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.
The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.
This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Brownlee, et al. Informational [Page 48]
</pre>
|