1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
|
<pre>Network Working Group H. Prafullchandra
Request for Comments: 2875 Critical Path Inc
Category: Standards Track J. Schaad
July 2000
<span class="h1">Diffie-Hellman Proof-of-Possession Algorithms</span>
Status of this Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2000). All Rights Reserved.
Abstract
This document describes two methods for producing an integrity check
value from a Diffie-Hellman key pair. This behavior is needed for
such operations as creating the signature of a PKCS #10 certification
request. These algorithms are designed to provide a proof-of-
possession rather than general purpose signing.
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
PKCS #10 [<a href="./rfc2314" title=""PKCS #10: Certification Request Syntax v1.5"">RFC2314</a>] defines a syntax for certification requests. It
assumes that the public key being requested for certification
corresponds to an algorithm that is capable of signing/encrypting.
Diffie-Hellman (DH) is a key agreement algorithm and as such cannot
be directly used for signing or encryption.
This document describes two new proof-of-possession algorithms using
the Diffie-Hellman key agreement process to provide a shared secret
as the basis of an integrity check value. In the first algorithm,
the value is constructed for a specific recipient/verifier by using a
public key of that verifier. In the second algorithm, the value is
constructed for arbitrary verifiers.
<span class="grey">Prafullchandra & Schaad Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc2875">RFC 2875</a> Diffie-Hellman Proof-of-Possession Algorithms July 2000</span>
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Terminology</span>
The following definitions will be used in this document
DH certificate = a certificate whose SubjectPublicKey is a DH public
value and is signed with any signature algorithm (e.g. RSA or DSA).
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Static DH Proof-of-Possession Process</span>
The steps for creating a DH POP are:
1. An entity (E) chooses the group parameters for a DH key
agreement.
This is done simply by selecting the group parameters from a
certificate for the recipient of the POP process.
A certificate with the correct group parameters has to be
available. Let these common DH parameters be g and p; and let
this DH key-pair be known as the Recipient key pair (Rpub and
Rpriv).
Rpub = g^x mod p (where x=Rpriv, the private DH value and
^ denotes exponentiation)
2. The entity generates a DH public/private key-pair using the
parameters from step 1.
For an entity E:
Epriv = DH private value = y
Epub = DH public value = g^y mod p
3. The POP computation process will then consist of:
a) The value to be signed is obtained. (For a <a href="./rfc2314">RFC2314</a> object, the
value is the DER encoded certificationRequestInfo field
represented as an octet string.) This will be the `text'
referred to in [<a href="./rfc2104" title=""HMAC: Keyed- Hashing for Message Authentication"">RFC2104</a>], the data to which HMAC-SHA1 is
applied.
b) A shared DH secret is computed, as follows,
shared secret = ZZ = g^xy mod p
<span class="grey">Prafullchandra & Schaad Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc2875">RFC 2875</a> Diffie-Hellman Proof-of-Possession Algorithms July 2000</span>
[This is done by the entity E as Rpub^y and by the Recipient
as Epub^x, where Rpub is retrieved from the Recipient's DH
certificate (or is the one that was locally generated by the
Entity) and Epub is retrieved from the actual certification
request.]
c) A temporary key K is derived from the shared secret ZZ as
follows:
K = SHA1(LeadingInfo | ZZ | TrailingInfo),
where "|" means concatenation.
LeadingInfo ::= Subject Distinguished Name from certificate
TrailingInfo ::= Issuer Distinguished Name from certificate
d) Compute HMAC-SHA1 over the data `text' as per [<a href="./rfc2104" title=""HMAC: Keyed- Hashing for Message Authentication"">RFC2104</a>] as:
SHA1(K XOR opad, SHA1(K XOR ipad, text))
where,
opad (outer pad) = the byte 0x36 repeated 64 times and
ipad (inner pad) = the byte 0x5C repeated 64 times.
Namely,
(1) Append zeros to the end of K to create a 64 byte string
(e.g., if K is of length 16 bytes it will be appended
with 48 zero bytes 0x00).
(2) XOR (bitwise exclusive-OR) the 64 byte string computed
in step (1) with ipad.
(3) Append the data stream `text' to the 64 byte string
resulting from step (2).
(4) Apply SHA1 to the stream generated in step (3).
(5) XOR (bitwise exclusive-OR) the 64 byte string computed
in step (1) with opad.
(6) Append the SHA1 result from step (4) to the 64 byte
string resulting from step (5).
(7) Apply SHA1 to the stream generated in step (6) and
output the result.
Sample code is also provided in [<a href="./rfc2104" title=""HMAC: Keyed- Hashing for Message Authentication"">RFC2104</a>].
e) The output of (d) is encoded as a BIT STRING (the Signature
value).
<span class="grey">Prafullchandra & Schaad Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc2875">RFC 2875</a> Diffie-Hellman Proof-of-Possession Algorithms July 2000</span>
The POP verification process requires the Recipient to carry out
steps (a) through (d) and then simply compare the result of step (d)
with what it received as the signature component. If they match then
the following can be concluded:
a) The Entity possesses the private key corresponding to the
public key in the certification request because it needed the
private key to calculate the shared secret; and
b) Only the Recipient that the entity sent the request to could
actually verify the request because they would require their
own private key to compute the same shared secret. In the case
where the recipient is a Certification Authority, this
protects the Entity from rogue CAs.
ASN Encoding
The ASN.1 structures associated with the static Diffie-Hellman POP
algorithm are:
id-dhPop-static-HMAC-SHA1 OBJECT IDENTIFIER ::= { id-pkix
id-alg(6) 3}
DhPopStatic ::= SEQUENCE {
issuerAndSerial IssuerAndSerialNumber OPTIONAL,
hashValue MessageDigest
}
issuerAndSerial is the issuer name and serial number of the
certificate from which the public key was obtained. The
issuerAndSerial field is omitted if the public key did not come
from a certificate.
hashValue contains the result of the SHA-1 HMAC operation in step
3d.
DhPopStatic is encoded as a BIT STRING and is the signature value
(i.e. encodes the above sequence instead of the raw output from 3d).
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Discrete Logarithm Signature</span>
The use of a single set of parameters for an entire public key
infrastructure allows all keys in the group to be attacked together.
For this reason we need to create a proof of possession for Diffie-
Hellman keys that does not require the use of a common set of
parameters.
<span class="grey">Prafullchandra & Schaad Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc2875">RFC 2875</a> Diffie-Hellman Proof-of-Possession Algorithms July 2000</span>
This POP is based on the Digital Signature Algorithm, but we have
removed the restrictions imposed by the [<a href="#ref-FIPS-186" title=""Digital Signature Standard"">FIPS-186</a>] standard. The use
of this method does impose some additional restrictions on the set of
keys that may be used, however if the key generation algorithm
documented in [<a href="#ref-DH-X9.42" title=""Diffie-Hellman Key Agreement Method"">DH-X9.42</a>] is used the required restrictions are met.
The additional restrictions are the requirement for the existence of
a q parameter. Adding the q parameter is generally accepted as a good
practice as it allows for checking of small group attacks.
The following definitions are used in the rest of this section:
p is a large prime
g = h(p-1)/q mod p ,
where h is any integer 1 < h < p-1 such that h(p-1) mod q > 1
(g has order q mod p)
q is a large prime
j is a large integer such that p = qj + 1
x is a randomly or pseudo-randomly generated integer with
1 < x < q
y = g^x mod p
Note: These definitions match the ones in [<a href="#ref-DH-X9.42" title=""Diffie-Hellman Key Agreement Method"">DH-X9.42</a>].
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a> Expanding the Digest Value</span>
Besides the addition of a q parameter, [<a href="#ref-FIPS-186" title=""Digital Signature Standard"">FIPS-186</a>] also imposes size
restrictions on the parameters. The length of q must be 160-bits
(matching output of the SHA-1 digest algorithm) and length of p must
be 1024-bits. The size restriction on p is eliminated in this
document, but the size restriction on q is replaced with the
requirement that q must be at least 160-bits. (The size restriction
on q is identical with that in [<a href="#ref-DH-X9.42" title=""Diffie-Hellman Key Agreement Method"">DH-X9.42</a>].)
Given that there is not a random length-hashing algorithm, a hash
value of the message will need to be derived such that the hash is in
the range from 0 to q-1. If the length of q is greater than 160-bits
then a method must be provided to expand the hash length.
The method for expanding the digest value used in this section does
not add any additional security beyond the 160-bits provided by SHA-
1. The value being signed is increased mainly to enhance the
difficulty of reversing the signature process.
<span class="grey">Prafullchandra & Schaad Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc2875">RFC 2875</a> Diffie-Hellman Proof-of-Possession Algorithms July 2000</span>
This algorithm produces m the value to be signed.
Let L = the size of q (i.e. 2^L <= q < 2^(L+1)). Let M be the
original message to be signed.
1. Compute d = SHA-1(M), the SHA-1 digest of the original message.
2. If L == 160 then m = d.
3. If L > 160 then follow steps (a) through (d) below.
a) Set n = L / 160, where / represents integer division,
consequently, if L = 200, n = 1.
b) Set m = d, the initial computed digest value.
c) For i = 0 to n - 1
m = m | SHA(m), where "|" means concatenation.
d) m = LEFTMOST(m, L-1), where LEFTMOST returns the L-1 left most
bits of m.
Thus the final result of the process meets the criteria that 0 <= m <
q.
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a> Signature Computation Algorithm</span>
The signature algorithm produces the pair of values (r, s), which is
the signature. The signature is computed as follows:
Given m, the value to be signed, as well as the parameters defined
earlier in <a href="#section-5">section 5</a>.
1. Generate a random or pseudorandom integer k, such that 0 < k^-1 <
q.
2. Compute r = (g^k mod p) mod q.
3. If r is zero, repeat from step 1.
4. Compute s = (k^-1 (m + xr)) mod q.
5. If s is zero, repeat from step 1.
<span class="h3"><a class="selflink" id="section-4.3" href="#section-4.3">4.3</a> Signature Verification Algorithm</span>
The signature verification process is far more complicated than is
normal for the Digital Signature Algorithm, as some assumptions about
the validity of parameters cannot be taken for granted.
<span class="grey">Prafullchandra & Schaad Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc2875">RFC 2875</a> Diffie-Hellman Proof-of-Possession Algorithms July 2000</span>
Given a message m to be validated, the signature value pair (r, s)
and the parameters for the key.
1. Perform a strong verification that p is a prime number.
2. Perform a strong verification that q is a prime number.
3. Verify that q is a factor of p-1, if any of the above checks fail
then the signature cannot be verified and must be considered a
failure.
4. Verify that r and s are in the range [1, q-1].
5. Compute w = (s^-1) mod q.
6. Compute u1 = m*w mod q.
7. Compute u2 = r*w mod q.
8. Compute v = ((g^u1 * y^u2) mod p) mod q.
9. Compare v and r, if they are the same then the signature verified
correctly.
<span class="h3"><a class="selflink" id="section-4.4" href="#section-4.4">4.4</a> ASN Encoding</span>
The signature is encoded using
id-alg-dhPOP OBJECT IDENTIFIER ::= {id-pkix id-alg(6) 4}
The parameters for id-alg-dhPOP are encoded as DomainParameters
(imported from [<a href="#ref-PROFILE" title=""Internet X.509 Public Key Infrastructure: Certificate and CRL Profile"">PROFILE</a>]). The parameters may be omitted in the
signature, as they must exist in the associated key request.
The signature value pair r and s are encoded using Dss-Sig-Value
(imported from [<a href="#ref-PROFILE" title=""Internet X.509 Public Key Infrastructure: Certificate and CRL Profile"">PROFILE</a>]).
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Security Considerations</span>
In the static DH POP algorithm, an appropriate value can be produced
by either party. Thus this algorithm only provides integrity and not
origination service. The Discrete Logarithm algorithm provides both
integrity checking and origination checking.
<span class="grey">Prafullchandra & Schaad Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc2875">RFC 2875</a> Diffie-Hellman Proof-of-Possession Algorithms July 2000</span>
All the security in this system is provided by the secrecy of the
private keying material. If either sender or recipient private keys
are disclosed, all messages sent or received using that key are
compromised. Similarly, loss of the private key results in an
inability to read messages sent using that key.
Selection of parameters can be of paramount importance. In the
selection of parameters one must take into account the
community/group of entities that one wishes to be able to communicate
with. In choosing a set of parameters one must also be sure to avoid
small groups. [<a href="#ref-FIPS-186" title=""Digital Signature Standard"">FIPS-186</a>] Appendixes 2 and 3 contain information on
the selection of parameters. The practices outlined in this document
will lead to better selection of parameters.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. References</span>
[<a id="ref-FIPS-186">FIPS-186</a>] Federal Information Processing Standards Publication
(FIPS PUB) 186, "Digital Signature Standard", 1994 May
19.
[<a id="ref-RFC2314">RFC2314</a>] Kaliski, B., "PKCS #10: Certification Request Syntax
v1.5", <a href="./rfc2314">RFC 2314</a>, October 1997.
[<a id="ref-RFC2104">RFC2104</a>] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
Hashing for Message Authentication", <a href="./rfc2104">RFC 2104</a>, February
1997.
[<a id="ref-PROFILE">PROFILE</a>] Housley, R., Ford, W., Polk, W., and D. Solo, "Internet
X.509 Public Key Infrastructure: Certificate and CRL
Profile", <a href="./rfc2459">RFC 2459</a>, January 1999.
[<a id="ref-DH-X9.42">DH-X9.42</a>] Rescorla, E., "Diffie-Hellman Key Agreement Method", <a href="./rfc2631">RFC</a>
<a href="./rfc2631">2631</a>, June 1999.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Authors' Addresses</span>
Hemma Prafullchandra
Critical Path Inc.
5150 El Camino Real, #A-32
Los Altos, CA 94022
Phone: (640) 694-6812
EMail: hemma@cp.net
Jim Schaad
EMail: jimsch@exmsft.com
<span class="grey">Prafullchandra & Schaad Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc2875">RFC 2875</a> Diffie-Hellman Proof-of-Possession Algorithms July 2000</span>
<span class="h2"><a class="selflink" id="appendix-A" href="#appendix-A">Appendix A</a>. ASN.1 Module</span>
DH-Sign DEFINITIONS IMPLICIT TAGS ::=
BEGIN
--EXPORTS ALL
-- The types and values defined in this module are exported for use
-- in the other ASN.1 modules. Other applications may use them
-- for their own purposes.
IMPORTS
IssuerAndSerialNumber, MessageDigest
FROM CryptographicMessageSyntax { iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
modules(0) cms(1) }
Dss-Sig-Value, DomainParameters
FROM PKIX1Explicit88 {iso(1) identified-organization(3) dod(6)
internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
id-pkix1-explicit-88(1)};
id-dh-sig-hmac-sha1 OBJECT IDENTIFIER ::= {id-pkix id-alg(6) 3}
DhSigStatic ::= SEQUENCE {
IssuerAndSerial IssuerAndSerialNumber OPTIONAL,
hashValue MessageDigest
}
id-alg-dh-pop OBJECT IDENTIFIER ::= {id-pkix id-alg(6) 4}
END
<span class="grey">Prafullchandra & Schaad Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc2875">RFC 2875</a> Diffie-Hellman Proof-of-Possession Algorithms July 2000</span>
<span class="h2"><a class="selflink" id="appendix-B" href="#appendix-B">Appendix B</a>. Example of Static DH Proof-of-Possession</span>
The following example follows the steps described earlier in <a href="#section-3">section</a>
<a href="#section-3">3</a>.
Step 1: Establishing common Diffie-Hellman parameters. Assume the
parameters are as in the DER encoded certificate. The certificate
contains a DH public key signed by a CA with a DSA signing key.
0 30 939: SEQUENCE {
4 30 872: SEQUENCE {
8 A0 3: [0] {
10 02 1: INTEGER 2
: }
13 02 6: INTEGER
: 00 DA 39 B6 E2 CB
21 30 11: SEQUENCE {
23 06 7: OBJECT IDENTIFIER dsaWithSha1 (1 2 840 10040 4 3)
32 05 0: NULL
: }
34 30 72: SEQUENCE {
36 31 11: SET {
38 30 9: SEQUENCE {
40 06 3: OBJECT IDENTIFIER countryName (2 5 4 6)
45 13 2: PrintableString 'US'
: }
: }
49 31 17: SET {
51 30 15: SEQUENCE {
53 06 3: OBJECT IDENTIFIER organizationName (2 5 4 10)
58 13 8: PrintableString 'XETI Inc'
: }
: }
68 31 16: SET {
70 30 14: SEQUENCE {
72 06 3: OBJECT IDENTIFIER organizationalUnitName (2 5 4
11)
77 13 7: PrintableString 'Testing'
: }
: }
86 31 20: SET {
88 30 18: SEQUENCE {
90 06 3: OBJECT IDENTIFIER commonName (2 5 4 3)
95 13 11: PrintableString 'Root DSA CA'
: }
: }
: }
<span class="h2"><a class="selflink" id="section-108" href="#section-108">108</a> 30 </span>30: SEQUENCE {
<span class="grey">Prafullchandra & Schaad Standards Track [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc2875">RFC 2875</a> Diffie-Hellman Proof-of-Possession Algorithms July 2000</span>
<span class="h2"><a class="selflink" id="section-110" href="#section-110">110</a> 17 </span>13: UTCTime '990914010557Z'
<span class="h2"><a class="selflink" id="section-125" href="#section-125">125</a> 17 </span>13: UTCTime '991113010557Z'
: }
<span class="h2"><a class="selflink" id="section-140" href="#section-140">140</a> 30 </span>70: SEQUENCE {
<span class="h2"><a class="selflink" id="section-142" href="#section-142">142</a> 31 </span>11: SET {
<span class="h2"><a class="selflink" id="section-144" href="#section-144">144</a> 30 </span> 9: SEQUENCE {
<span class="h2"><a class="selflink" id="section-146" href="#section-146">146</a> 06 </span> 3: OBJECT IDENTIFIER countryName (2 5 4 6)
<span class="h2"><a class="selflink" id="section-151" href="#section-151">151</a> 13 </span> 2: PrintableString 'US'
: }
: }
<span class="h2"><a class="selflink" id="section-155" href="#section-155">155</a> 31 </span>17: SET {
<span class="h2"><a class="selflink" id="section-157" href="#section-157">157</a> 30 </span>15: SEQUENCE {
<span class="h2"><a class="selflink" id="section-159" href="#section-159">159</a> 06 </span> 3: OBJECT IDENTIFIER organizationName (2 5 4 10)
<span class="h2"><a class="selflink" id="section-164" href="#section-164">164</a> 13 </span> 8: PrintableString 'XETI Inc'
: }
: }
<span class="h2"><a class="selflink" id="section-174" href="#section-174">174</a> 31 </span>16: SET {
<span class="h2"><a class="selflink" id="section-176" href="#section-176">176</a> 30 </span>14: SEQUENCE {
<span class="h2"><a class="selflink" id="section-178" href="#section-178">178</a> 06 </span> 3: OBJECT IDENTIFIER organizationalUnitName (2 5 4
11)
<span class="h2"><a class="selflink" id="section-183" href="#section-183">183</a> 13 </span> 7: PrintableString 'Testing'
: }
: }
<span class="h2"><a class="selflink" id="section-192" href="#section-192">192</a> 31 </span>18: SET {
<span class="h2"><a class="selflink" id="section-194" href="#section-194">194</a> 30 </span>16: SEQUENCE {
<span class="h2"><a class="selflink" id="section-196" href="#section-196">196</a> 06 </span> 3: OBJECT IDENTIFIER commonName (2 5 4 3)
<span class="h2"><a class="selflink" id="section-201" href="#section-201">201</a> 13 </span> 9: PrintableString 'DH TestCA'
: }
: }
: }
<span class="h2"><a class="selflink" id="section-212" href="#section-212">212</a> 30 577: </span> SEQUENCE {
<span class="h2"><a class="selflink" id="section-216" href="#section-216">216</a> 30 438: </span> SEQUENCE {
<span class="h2"><a class="selflink" id="section-220" href="#section-220">220</a> 06 </span> 7: OBJECT IDENTIFIER dhPublicKey (1 2 840 10046 2 1)
<span class="h2"><a class="selflink" id="section-229" href="#section-229">229</a> 30 425: </span> SEQUENCE {
<span class="h2"><a class="selflink" id="section-233" href="#section-233">233</a> 02 129: </span> INTEGER
: 00 94 84 E0 45 6C 7F 69 51 62 3E 56 80 7C 68 E7
: C5 A9 9E 9E 74 74 94 ED 90 8C 1D C4 E1 4A 14 82
: F5 D2 94 0C 19 E3 B9 10 BB 11 B9 E5 A5 FB 8E 21
: 51 63 02 86 AA 06 B8 21 36 B6 7F 36 DF D1 D6 68
: 5B 79 7C 1D 5A 14 75 1F 6A 93 75 93 CE BB 97 72
: 8A F0 0F 23 9D 47 F6 D4 B3 C7 F0 F4 E6 F6 2B C2
: 32 E1 89 67 BE 7E 06 AE F8 D0 01 6B 8B 2A F5 02
: D7 B6 A8 63 94 83 B0 1B 31 7D 52 1A DE E5 03 85
: 27
<span class="h2"><a class="selflink" id="section-365" href="#section-365">365</a> 02 128: </span> INTEGER
: 26 A6 32 2C 5A 2B D4 33 2B 5C DC 06 87 53 3F 90
: 06 61 50 38 3E D2 B9 7D 81 1C 12 10 C5 0C 53 D4
: 64 D1 8E 30 07 08 8C DD 3F 0A 2F 2C D6 1B 7F 57
<span class="grey">Prafullchandra & Schaad Standards Track [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc2875">RFC 2875</a> Diffie-Hellman Proof-of-Possession Algorithms July 2000</span>
: 86 D0 DA BB 6E 36 2A 18 E8 D3 BC 70 31 7A 48 B6
: 4E 18 6E DD 1F 22 06 EB 3F EA D4 41 69 D9 9B DE
: 47 95 7A 72 91 D2 09 7F 49 5C 3B 03 33 51 C8 F1
: 39 9A FF 04 D5 6E 7E 94 3D 03 B8 F6 31 15 26 48
: 95 A8 5C DE 47 88 B4 69 3A 00 A7 86 9E DA D1 CD
<span class="h2"><a class="selflink" id="section-496" href="#section-496">496</a> 02 </span>33: INTEGER
: 00 E8 72 FA 96 F0 11 40 F5 F2 DC FD 3B 5D 78 94
: B1 85 01 E5 69 37 21 F7 25 B9 BA 71 4A FC 60 30
: FB
<span class="h2"><a class="selflink" id="section-531" href="#section-531">531</a> 02 </span>97: INTEGER
: 00 A3 91 01 C0 A8 6E A4 4D A0 56 FC 6C FE 1F A7
: B0 CD 0F 94 87 0C 25 BE 97 76 8D EB E5 A4 09 5D
: AB 83 CD 80 0B 35 67 7F 0C 8E A7 31 98 32 85 39
: 40 9D 11 98 D8 DE B8 7F 86 9B AF 8D 67 3D B6 76
: B4 61 2F 21 E1 4B 0E 68 FF 53 3E 87 DD D8 71 56
: 68 47 DC F7 20 63 4B 3C 5F 78 71 83 E6 70 9E E2
: 92
<span class="h2"><a class="selflink" id="section-630" href="#section-630">630</a> 30 </span>26: SEQUENCE {
<span class="h2"><a class="selflink" id="section-632" href="#section-632">632</a> 03 </span>21: BIT STRING 0 unused bits
: 1C D5 3A 0D 17 82 6D 0A 81 75 81 46 10 8E 3E DB
: 09 E4 98 34
<span class="h2"><a class="selflink" id="section-655" href="#section-655">655</a> 02 </span> 1: INTEGER 55
: }
: }
: }
<span class="h2"><a class="selflink" id="section-658" href="#section-658">658</a> 03 132: </span> BIT STRING 0 unused bits
: 02 81 80 5F CF 39 AD 62 CF 49 8E D1 CE 66 E2 B1
: E6 A7 01 4D 05 C2 77 C8 92 52 42 A9 05 A4 DB E0
: 46 79 50 A3 FC 99 3D 3D A6 9B A9 AD BC 62 1C 69
: B7 11 A1 C0 2A F1 85 28 F7 68 FE D6 8F 31 56 22
: 4D 0A 11 6E 72 3A 02 AF 0E 27 AA F9 ED CE 05 EF
: D8 59 92 C0 18 D7 69 6E BD 70 B6 21 D1 77 39 21
: E1 AF 7A 3A CF 20 0A B4 2C 69 5F CF 79 67 20 31
: 4D F2 C6 ED 23 BF C4 BB 1E D1 71 40 2C 07 D6 F0
: 8F C5 1A
: }
<span class="h2"><a class="selflink" id="section-793" href="#section-793">793</a> A3 </span>85: [3] {
<span class="h2"><a class="selflink" id="section-795" href="#section-795">795</a> 30 </span>83: SEQUENCE {
<span class="h2"><a class="selflink" id="section-797" href="#section-797">797</a> 30 </span>29: SEQUENCE {
<span class="h2"><a class="selflink" id="section-799" href="#section-799">799</a> 06 </span> 3: OBJECT IDENTIFIER subjectKeyIdentifier (2 5 29
14)
<span class="h2"><a class="selflink" id="section-804" href="#section-804">804</a> 04 </span>22: OCTET STRING
: 04 14 80 DF 59 88 BF EB 17 E1 AD 5E C6 40 A3 42
: E5 AC D3 B4 88 78
: }
<span class="h2"><a class="selflink" id="section-828" href="#section-828">828</a> 30 </span>34: SEQUENCE {
<span class="h2"><a class="selflink" id="section-830" href="#section-830">830</a> 06 </span> 3: OBJECT IDENTIFIER authorityKeyIdentifier (2 5 29
35)
<span class="grey">Prafullchandra & Schaad Standards Track [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc2875">RFC 2875</a> Diffie-Hellman Proof-of-Possession Algorithms July 2000</span>
<span class="h2"><a class="selflink" id="section-835" href="#section-835">835</a> 01 </span> 1: BOOLEAN TRUE
<span class="h2"><a class="selflink" id="section-838" href="#section-838">838</a> 04 </span>24: OCTET STRING
: 30 16 80 14 6A 23 37 55 B9 FD 81 EA E8 4E D3 C9
: B7 09 E5 7B 06 E3 68 AA
: }
<span class="h2"><a class="selflink" id="section-864" href="#section-864">864</a> 30 </span>14: SEQUENCE {
<span class="h2"><a class="selflink" id="section-866" href="#section-866">866</a> 06 </span> 3: OBJECT IDENTIFIER keyUsage (2 5 29 15)
<span class="h2"><a class="selflink" id="section-871" href="#section-871">871</a> 01 </span> 1: BOOLEAN TRUE
<span class="h2"><a class="selflink" id="section-874" href="#section-874">874</a> 04 </span> 4: OCTET STRING
: 03 02 03 08
: }
: }
: }
: }
<span class="h2"><a class="selflink" id="section-880" href="#section-880">880</a> 30 </span>11: SEQUENCE {
<span class="h2"><a class="selflink" id="section-882" href="#section-882">882</a> 06 </span> 7: OBJECT IDENTIFIER dsaWithSha1 (1 2 840 10040 4 3)
<span class="h2"><a class="selflink" id="section-891" href="#section-891">891</a> 05 </span> 0: NULL
: }
<span class="h2"><a class="selflink" id="section-893" href="#section-893">893</a> 03 </span>48: BIT STRING 0 unused bits
: 30 2D 02 14 7C 6D D2 CA 1E 32 D1 30 2E 29 66 BC
: 06 8B 60 C7 61 16 3B CA 02 15 00 8A 18 DD C1 83
: 58 29 A2 8A 67 64 03 92 AB 02 CE 00 B5 94 6A
: }
Step 2. End Entity/User generates a Diffie-Hellman key-pair using the
parameters from the CA certificate.
EE DH public key: SunJCE Diffie-Hellman Public Key:
Y: 13 63 A1 85 04 8C 46 A8 88 EB F4 5E A8 93 74 AE
FD AE 9E 96 27 12 65 C4 4C 07 06 3E 18 FE 94 B8
A8 79 48 BD 2E 34 B6 47 CA 04 30 A1 EC 33 FD 1A
0B 2D 9E 50 C9 78 0F AE 6A EC B5 6B 6A BE B2 5C
DA B2 9F 78 2C B9 77 E2 79 2B 25 BF 2E 0B 59 4A
93 4B F8 B3 EC 81 34 AE 97 47 52 E0 A8 29 98 EC
D1 B0 CA 2B 6F 7A 8B DB 4E 8D A5 15 7E 7E AF 33
62 09 9E 0F 11 44 8C C1 8D A2 11 9E 53 EF B2 E8
EE DH private key:
X: 32 CC BD B4 B7 7C 44 26 BB 3C 83 42 6E 7D 1B 00
86 35 09 71 07 A0 A4 76 B8 DB 5F EC 00 CE 6F C3
Step 3. Compute K and the signature.
LeadingInfo: DER encoded Subject/Requestor DN (as in the generated
Certificate Signing Request)
<span class="grey">Prafullchandra & Schaad Standards Track [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc2875">RFC 2875</a> Diffie-Hellman Proof-of-Possession Algorithms July 2000</span>
30 4E 31 0B 30 09 06 03 55 04 06 13 02 55 53 31
11 30 0F 06 03 55 04 0A 13 08 58 45 54 49 20 49
6E 63 31 10 30 0E 06 03 55 04 0B 13 07 54 65 73
74 69 6E 67 31 1A 30 18 06 03 55 04 03 13 11 50
4B 49 58 20 45 78 61 6D 70 6C 65 20 55 73 65 72
TrailingInfo: DER encoded Issuer/Recipient DN (from the certificate
described in step 1)
30 46 31 0B 30 09 06 03 55 04 06 13 02 55 53 31
11 30 0F 06 03 55 04 0A 13 08 58 45 54 49 20 49
6E 63 31 10 30 0E 06 03 55 04 0B 13 07 54 65 73
74 69 6E 67 31 12 30 10 06 03 55 04 03 13 09 44
48 20 54 65 73 74 43 41
K:
F4 D7 BB 6C C7 2D 21 7F 1C 38 F7 DA 74 2D 51 AD
14 40 66 75
TBS: the text for computing the SHA-1 HMAC.
30 82 02 98 02 01 00 30 4E 31 0B 30 09 06 03 55
04 06 13 02 55 53 31 11 30 0F 06 03 55 04 0A 13
08 58 45 54 49 20 49 6E 63 31 10 30 0E 06 03 55
04 0B 13 07 54 65 73 74 69 6E 67 31 1A 30 18 06
03 55 04 03 13 11 50 4B 49 58 20 45 78 61 6D 70
6C 65 20 55 73 65 72 30 82 02 41 30 82 01 B6 06
07 2A 86 48 CE 3E 02 01 30 82 01 A9 02 81 81 00
94 84 E0 45 6C 7F 69 51 62 3E 56 80 7C 68 E7 C5
A9 9E 9E 74 74 94 ED 90 8C 1D C4 E1 4A 14 82 F5
D2 94 0C 19 E3 B9 10 BB 11 B9 E5 A5 FB 8E 21 51
63 02 86 AA 06 B8 21 36 B6 7F 36 DF D1 D6 68 5B
79 7C 1D 5A 14 75 1F 6A 93 75 93 CE BB 97 72 8A
F0 0F 23 9D 47 F6 D4 B3 C7 F0 F4 E6 F6 2B C2 32
E1 89 67 BE 7E 06 AE F8 D0 01 6B 8B 2A F5 02 D7
B6 A8 63 94 83 B0 1B 31 7D 52 1A DE E5 03 85 27
02 81 80 26 A6 32 2C 5A 2B D4 33 2B 5C DC 06 87
53 3F 90 06 61 50 38 3E D2 B9 7D 81 1C 12 10 C5
0C 53 D4 64 D1 8E 30 07 08 8C DD 3F 0A 2F 2C D6
1B 7F 57 86 D0 DA BB 6E 36 2A 18 E8 D3 BC 70 31
7A 48 B6 4E 18 6E DD 1F 22 06 EB 3F EA D4 41 69
D9 9B DE 47 95 7A 72 91 D2 09 7F 49 5C 3B 03 33
51 C8 F1 39 9A FF 04 D5 6E 7E 94 3D 03 B8 F6 31
15 26 48 95 A8 5C DE 47 88 B4 69 3A 00 A7 86 9E
DA D1 CD 02 21 00 E8 72 FA 96 F0 11 40 F5 F2 DC
FD 3B 5D 78 94 B1 85 01 E5 69 37 21 F7 25 B9 BA
71 4A FC 60 30 FB 02 61 00 A3 91 01 C0 A8 6E A4
4D A0 56 FC 6C FE 1F A7 B0 CD 0F 94 87 0C 25 BE
<span class="grey">Prafullchandra & Schaad Standards Track [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc2875">RFC 2875</a> Diffie-Hellman Proof-of-Possession Algorithms July 2000</span>
97 76 8D EB E5 A4 09 5D AB 83 CD 80 0B 35 67 7F
0C 8E A7 31 98 32 85 39 40 9D 11 98 D8 DE B8 7F
86 9B AF 8D 67 3D B6 76 B4 61 2F 21 E1 4B 0E 68
FF 53 3E 87 DD D8 71 56 68 47 DC F7 20 63 4B 3C
5F 78 71 83 E6 70 9E E2 92 30 1A 03 15 00 1C D5
3A 0D 17 82 6D 0A 81 75 81 46 10 8E 3E DB 09 E4
98 34 02 01 37 03 81 84 00 02 81 80 13 63 A1 85
04 8C 46 A8 88 EB F4 5E A8 93 74 AE FD AE 9E 96
27 12 65 C4 4C 07 06 3E 18 FE 94 B8 A8 79 48 BD
2E 34 B6 47 CA 04 30 A1 EC 33 FD 1A 0B 2D 9E 50
C9 78 0F AE 6A EC B5 6B 6A BE B2 5C DA B2 9F 78
2C B9 77 E2 79 2B 25 BF 2E 0B 59 4A 93 4B F8 B3
EC 81 34 AE 97 47 52 E0 A8 29 98 EC D1 B0 CA 2B
6F 7A 8B DB 4E 8D A5 15 7E 7E AF 33 62 09 9E 0F
11 44 8C C1 8D A2 11 9E 53 EF B2 E8
Certification Request:
0 30 793: SEQUENCE {
4 30 664: SEQUENCE {
8 02 1: INTEGER 0
11 30 78: SEQUENCE {
13 31 11: SET {
15 30 9: SEQUENCE {
17 06 3: OBJECT IDENTIFIER countryName (2 5 4 6)
22 13 2: PrintableString 'US'
: }
: }
26 31 17: SET {
28 30 15: SEQUENCE {
30 06 3: OBJECT IDENTIFIER organizationName (2 5 4 10)
35 13 8: PrintableString 'XETI Inc'
: }
: }
45 31 16: SET {
47 30 14: SEQUENCE {
49 06 3: OBJECT IDENTIFIER organizationalUnitName (2 5 4
11)
54 13 7: PrintableString 'Testing'
: }
: }
63 31 26: SET {
65 30 24: SEQUENCE {
67 06 3: OBJECT IDENTIFIER commonName (2 5 4 3)
72 13 17: PrintableString 'PKIX Example User'
: }
: }
<span class="grey">Prafullchandra & Schaad Standards Track [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc2875">RFC 2875</a> Diffie-Hellman Proof-of-Possession Algorithms July 2000</span>
: }
91 30 577: SEQUENCE {
95 30 438: SEQUENCE {
99 06 7: OBJECT IDENTIFIER dhPublicKey (1 2 840 10046 2 1)
<span class="h2"><a class="selflink" id="section-108" href="#section-108">108</a> 30 425: </span> SEQUENCE {
<span class="h2"><a class="selflink" id="section-112" href="#section-112">112</a> 02 129: </span> INTEGER
: 00 94 84 E0 45 6C 7F 69 51 62 3E 56 80 7C 68 E7
: C5 A9 9E 9E 74 74 94 ED 90 8C 1D C4 E1 4A 14 82
: F5 D2 94 0C 19 E3 B9 10 BB 11 B9 E5 A5 FB 8E 21
: 51 63 02 86 AA 06 B8 21 36 B6 7F 36 DF D1 D6 68
: 5B 79 7C 1D 5A 14 75 1F 6A 93 75 93 CE BB 97 72
: 8A F0 0F 23 9D 47 F6 D4 B3 C7 F0 F4 E6 F6 2B C2
: 32 E1 89 67 BE 7E 06 AE F8 D0 01 6B 8B 2A F5 02
: D7 B6 A8 63 94 83 B0 1B 31 7D 52 1A DE E5 03 85
: 27
<span class="h2"><a class="selflink" id="section-244" href="#section-244">244</a> 02 128: </span> INTEGER
: 26 A6 32 2C 5A 2B D4 33 2B 5C DC 06 87 53 3F 90
: 06 61 50 38 3E D2 B9 7D 81 1C 12 10 C5 0C 53 D4
: 64 D1 8E 30 07 08 8C DD 3F 0A 2F 2C D6 1B 7F 57
: 86 D0 DA BB 6E 36 2A 18 E8 D3 BC 70 31 7A 48 B6
: 4E 18 6E DD 1F 22 06 EB 3F EA D4 41 69 D9 9B DE
: 47 95 7A 72 91 D2 09 7F 49 5C 3B 03 33 51 C8 F1
: 39 9A FF 04 D5 6E 7E 94 3D 03 B8 F6 31 15 26 48
: 95 A8 5C DE 47 88 B4 69 3A 00 A7 86 9E DA D1 CD
<span class="h2"><a class="selflink" id="section-375" href="#section-375">375</a> 02 </span>33: INTEGER
: 00 E8 72 FA 96 F0 11 40 F5 F2 DC FD 3B 5D 78 94
: B1 85 01 E5 69 37 21 F7 25 B9 BA 71 4A FC 60 30
: FB
<span class="h2"><a class="selflink" id="section-410" href="#section-410">410</a> 02 </span>97: INTEGER
: 00 A3 91 01 C0 A8 6E A4 4D A0 56 FC 6C FE 1F A7
: B0 CD 0F 94 87 0C 25 BE 97 76 8D EB E5 A4 09 5D
: AB 83 CD 80 0B 35 67 7F 0C 8E A7 31 98 32 85 39
: 40 9D 11 98 D8 DE B8 7F 86 9B AF 8D 67 3D B6 76
: B4 61 2F 21 E1 4B 0E 68 FF 53 3E 87 DD D8 71 56
: 68 47 DC F7 20 63 4B 3C 5F 78 71 83 E6 70 9E E2
: 92
<span class="h2"><a class="selflink" id="section-509" href="#section-509">509</a> 30 </span>26: SEQUENCE {
<span class="h2"><a class="selflink" id="section-511" href="#section-511">511</a> 03 </span>21: BIT STRING 0 unused bits
: 1C D5 3A 0D 17 82 6D 0A 81 75 81 46 10 8E 3E
DB
: 09 E4 98 34
<span class="h2"><a class="selflink" id="section-534" href="#section-534">534</a> 02 </span> 1: INTEGER 55
: }
: }
: }
<span class="h2"><a class="selflink" id="section-537" href="#section-537">537</a> 03 132: </span> BIT STRING 0 unused bits
: 02 81 80 13 63 A1 85 04 8C 46 A8 88 EB F4 5E A8
: 93 74 AE FD AE 9E 96 27 12 65 C4 4C 07 06 3E 18
<span class="grey">Prafullchandra & Schaad Standards Track [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc2875">RFC 2875</a> Diffie-Hellman Proof-of-Possession Algorithms July 2000</span>
: FE 94 B8 A8 79 48 BD 2E 34 B6 47 CA 04 30 A1 EC
: 33 FD 1A 0B 2D 9E 50 C9 78 0F AE 6A EC B5 6B 6A
: BE B2 5C DA B2 9F 78 2C B9 77 E2 79 2B 25 BF 2E
: 0B 59 4A 93 4B F8 B3 EC 81 34 AE 97 47 52 E0 A8
: 29 98 EC D1 B0 CA 2B 6F 7A 8B DB 4E 8D A5 15 7E
: 7E AF 33 62 09 9E 0F 11 44 8C C1 8D A2 11 9E 53
: EF B2 E8
: }
: }
<span class="h2"><a class="selflink" id="section-672" href="#section-672">672</a> 30 </span>12: SEQUENCE {
<span class="h2"><a class="selflink" id="section-674" href="#section-674">674</a> 06 </span> 8: OBJECT IDENTIFIER dh-sig-hmac-sha1 (1 3 6 1 5 5 7 6 3)
<span class="h2"><a class="selflink" id="section-684" href="#section-684">684</a> 05 </span> 0: NULL
: }
<span class="h2"><a class="selflink" id="section-686" href="#section-686">686</a> 03 109: </span> BIT STRING 0 unused bits
: 30 6A 30 52 30 48 31 0B 30 09 06 03 55 04 06 13
: 02 55 53 31 11 30 0F 06 03 55 04 0A 13 08 58 45
: 54 49 20 49 6E 63 31 10 30 0E 06 03 55 04 0B 13
: 07 54 65 73 74 69 6E 67 31 14 30 12 06 03 55 04
: 03 13 0B 52 6F 6F 74 20 44 53 41 20 43 41 02 06
: 00 DA 39 B6 E2 CB 04 14 1B 17 AD 4E 65 86 1A 6C
: 7C 85 FA F7 95 DE 48 93 C5 9D C5 24
: }
Signature verification requires CAs private key, the CA certificate
and the generated Certification Request.
CA DH private key:
x: 3E 5D AD FD E5 F4 6B 1B 61 5E 18 F9 0B 84 74 a7
52 1E D6 92 BC 34 94 56 F3 0C BE DA 67 7A DD 7D
<span class="grey">Prafullchandra & Schaad Standards Track [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc2875">RFC 2875</a> Diffie-Hellman Proof-of-Possession Algorithms July 2000</span>
<span class="h2"><a class="selflink" id="appendix-C" href="#appendix-C">Appendix C</a>. Example of Discrete Log Signature</span>
Step 1. Generate a Diffie-Hellman Key with length of q being 256-
bits.
p:
94 84 E0 45 6C 7F 69 51 62 3E 56 80 7C 68 E7 C5
A9 9E 9E 74 74 94 ED 90 8C 1D C4 E1 4A 14 82 F5
D2 94 0C 19 E3 B9 10 BB 11 B9 E5 A5 FB 8E 21 51
63 02 86 AA 06 B8 21 36 B6 7F 36 DF D1 D6 68 5B
79 7C 1D 5A 14 75 1F 6A 93 75 93 CE BB 97 72 8A
F0 0F 23 9D 47 F6 D4 B3 C7 F0 F4 E6 F6 2B C2 32
E1 89 67 BE 7E 06 AE F8 D0 01 6B 8B 2A F5 02 D7
B6 A8 63 94 83 B0 1B 31 7D 52 1A DE E5 03 85 27
q:
E8 72 FA 96 F0 11 40 F5 F2 DC FD 3B 5D 78 94 B1
85 01 E5 69 37 21 F7 25 B9 BA 71 4A FC 60 30 FB
g:
26 A6 32 2C 5A 2B D4 33 2B 5C DC 06 87 53 3F 90
06 61 50 38 3E D2 B9 7D 81 1C 12 10 C5 0C 53 D4
64 D1 8E 30 07 08 8C DD 3F 0A 2F 2C D6 1B 7F 57
86 D0 DA BB 6E 36 2A 18 E8 D3 BC 70 31 7A 48 B6
4E 18 6E DD 1F 22 06 EB 3F EA D4 41 69 D9 9B DE
47 95 7A 72 91 D2 09 7F 49 5C 3B 03 33 51 C8 F1
39 9A FF 04 D5 6E 7E 94 3D 03 B8 F6 31 15 26 48
95 A8 5C DE 47 88 B4 69 3A 00 A7 86 9E DA D1 CD
j:
A3 91 01 C0 A8 6E A4 4D A0 56 FC 6C FE 1F A7 B0
CD 0F 94 87 0C 25 BE 97 76 8D EB E5 A4 09 5D AB
83 CD 80 0B 35 67 7F 0C 8E A7 31 98 32 85 39 40
9D 11 98 D8 DE B8 7F 86 9B AF 8D 67 3D B6 76 B4
61 2F 21 E1 4B 0E 68 FF 53 3E 87 DD D8 71 56 68
47 DC F7 20 63 4B 3C 5F 78 71 83 E6 70 9E E2 92
y:
5F CF 39 AD 62 CF 49 8E D1 CE 66 E2 B1 E6 A7 01
4D 05 C2 77 C8 92 52 42 A9 05 A4 DB E0 46 79 50
A3 FC 99 3D 3D A6 9B A9 AD BC 62 1C 69 B7 11 A1
C0 2A F1 85 28 F7 68 FE D6 8F 31 56 22 4D 0A 11
6E 72 3A 02 AF 0E 27 AA F9 ED CE 05 EF D8 59 92
C0 18 D7 69 6E BD 70 B6 21 D1 77 39 21 E1 AF 7A
3A CF 20 0A B4 2C 69 5F CF 79 67 20 31 4D F2 C6
ED 23 BF C4 BB 1E D1 71 40 2C 07 D6 F0 8F C5 1A
seed:
<span class="grey">Prafullchandra & Schaad Standards Track [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc2875">RFC 2875</a> Diffie-Hellman Proof-of-Possession Algorithms July 2000</span>
1C D5 3A 0D 17 82 6D 0A 81 75 81 46 10 8E 3E DB
09 E4 98 34
C:
00000037
x:
3E 5D AD FD E5 F4 6B 1B 61 5E 18 F9 0B 84 74 a7
52 1E D6 92 BC 34 94 56 F3 0C BE DA 67 7A DD 7D
Step 2. Form the value to be signed and hash with SHA1. The result
of the hash for this example is:
5f a2 69 b6 4b 22 91 22 6f 4c fe 68 ec 2b d1 c6
d4 21 e5 2c
Step 3. The hash value needs to be expanded since |q| = 256. This
is done by hashing the hash with SHA1 and appending it to the
original hash. The value after this step is:
5f a2 69 b6 4b 22 91 22 6f 4c fe 68 ec 2b d1 c6
d4 21 e5 2c 64 92 8b c9 5e 34 59 70 bd 62 40 ad
6f 26 3b f7 1c a3 b2 cb
Next the first 255 bits of this value are taken to be the resulting
"hash" value. Note in this case a shift of one bit right is done
since the result is to be treated as an integer:
2f d1 34 db 25 91 48 91 37 a6 7f 34 76 15 e8 e3
6a 10 f2 96 32 49 45 e4 af 1a 2c b8 5e b1 20 56
Step 4. The signature value is computed. In this case you get the
values
R:
A1 B5 B4 90 01 34 6B A0 31 6A 73 F5 7D F6 5C 14
43 52 D2 10 BF 86 58 87 F7 BC 6E 5A 77 FF C3 4B
S:
59 40 45 BC 6F 0D DC FF 9D 55 40 1E C4 9E 51 3D
66 EF B2 FF 06 40 9A 39 68 75 81 F7 EC 9E BE A1
The encoded signature values is then:
30 45 02 21 00 A1 B5 B4 90 01 34 6B A0 31 6A 73
F5 7D F6 5C 14 43 52 D2 10 BF 86 58 87 F7 BC 6E
5A 77 FF C3 4B 02 20 59 40 45 BC 6F 0D DC FF 9D
55 40 1E C4 9E 51 3D 66 EF B2 FF 06 40 9A 39 68
75 81 F7 EC 9E BE A1
<span class="grey">Prafullchandra & Schaad Standards Track [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc2875">RFC 2875</a> Diffie-Hellman Proof-of-Possession Algorithms July 2000</span>
Result:
30 82 02 c2 30 82 02 67 02 01 00 30 1b 31 19 30
17 06 03 55 04 03 13 10 49 45 54 46 20 50 4b 49
58 20 53 41 4d 50 4c 45 30 82 02 41 30 82 01 b6
06 07 2a 86 48 ce 3e 02 01 30 82 01 a9 02 81 81
00 94 84 e0 45 6c 7f 69 51 62 3e 56 80 7c 68 e7
c5 a9 9e 9e 74 74 94 ed 90 8c 1d c4 e1 4a 14 82
f5 d2 94 0c 19 e3 b9 10 bb 11 b9 e5 a5 fb 8e 21
51 63 02 86 aa 06 b8 21 36 b6 7f 36 df d1 d6 68
5b 79 7c 1d 5a 14 75 1f 6a 93 75 93 ce bb 97 72
8a f0 0f 23 9d 47 f6 d4 b3 c7 f0 f4 e6 f6 2b c2
32 e1 89 67 be 7e 06 ae f8 d0 01 6b 8b 2a f5 02
d7 b6 a8 63 94 83 b0 1b 31 7d 52 1a de e5 03 85
27 02 81 80 26 a6 32 2c 5a 2b d4 33 2b 5c dc 06
87 53 3f 90 06 61 50 38 3e d2 b9 7d 81 1c 12 10
c5 0c 53 d4 64 d1 8e 30 07 08 8c dd 3f 0a 2f 2c
d6 1b 7f 57 86 d0 da bb 6e 36 2a 18 e8 d3 bc 70
31 7a 48 b6 4e 18 6e dd 1f 22 06 eb 3f ea d4 41
69 d9 9b de 47 95 7a 72 91 d2 09 7f 49 5c 3b 03
33 51 c8 f1 39 9a ff 04 d5 6e 7e 94 3d 03 b8 f6
31 15 26 48 95 a8 5c de 47 88 b4 69 3a 00 a7 86
9e da d1 cd 02 21 00 e8 72 fa 96 f0 11 40 f5 f2
dc fd 3b 5d 78 94 b1 85 01 e5 69 37 21 f7 25 b9
ba 71 4a fc 60 30 fb 02 61 00 a3 91 01 c0 a8 6e
a4 4d a0 56 fc 6c fe 1f a7 b0 cd 0f 94 87 0c 25
be 97 76 8d eb e5 a4 09 5d ab 83 cd 80 0b 35 67
7f 0c 8e a7 31 98 32 85 39 40 9d 11 98 d8 de b8
7f 86 9b af 8d 67 3d b6 76 b4 61 2f 21 e1 4b 0e
68 ff 53 3e 87 dd d8 71 56 68 47 dc f7 20 63 4b
3c 5f 78 71 83 e6 70 9e e2 92 30 1a 03 15 00 1c
d5 3a 0d 17 82 6d 0a 81 75 81 46 10 8e 3e db 09
e4 98 34 02 01 37 03 81 84 00 02 81 80 5f cf 39
ad 62 cf 49 8e d1 ce 66 e2 b1 e6 a7 01 4d 05 c2
77 c8 92 52 42 a9 05 a4 db e0 46 79 50 a3 fc 99
3d 3d a6 9b a9 ad bc 62 1c 69 b7 11 a1 c0 2a f1
85 28 f7 68 fe d6 8f 31 56 22 4d 0a 11 6e 72 3a
02 af 0e 27 aa f9 ed ce 05 ef d8 59 92 c0 18 d7
69 6e bd 70 b6 21 d1 77 39 21 e1 af 7a 3a cf 20
0a b4 2c 69 5f cf 79 67 20 31 4d f2 c6 ed 23 bf
c4 bb 1e d1 71 40 2c 07 d6 f0 8f c5 1a a0 00 30
0c 06 08 2b 06 01 05 05 07 06 04 05 00 03 47 00
30 44 02 20 54 d9 43 8d 0f 9d 42 03 d6 09 aa a1
9a 3c 17 09 ae bd ee b3 d1 a0 00 db 7d 8c b8 e4
56 e6 57 7b 02 20 44 89 b1 04 f5 40 2b 5f e7 9c
f9 a4 97 50 0d ad c3 7a a4 2b b2 2d 5d 79 fb 38
8a b4 df bb 88 bc
<span class="grey">Prafullchandra & Schaad Standards Track [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc2875">RFC 2875</a> Diffie-Hellman Proof-of-Possession Algorithms July 2000</span>
Decoded Version of result:
0 30 707: SEQUENCE {
4 30 615: SEQUENCE {
8 02 1: INTEGER 0
11 30 27: SEQUENCE {
13 31 25: SET {
15 30 23: SEQUENCE {
17 06 3: OBJECT IDENTIFIER commonName (2 5 4 3)
22 13 16: PrintableString 'IETF PKIX SAMPLE'
: }
: }
: }
40 30 577: SEQUENCE {
44 30 438: SEQUENCE {
48 06 7: OBJECT IDENTIFIER dhPublicNumber (1 2 840 10046 2
1)
57 30 425: SEQUENCE {
61 02 129: INTEGER
: 00 94 84 E0 45 6C 7F 69 51 62 3E 56 80 7C 68 E7
: C5 A9 9E 9E 74 74 94 ED 90 8C 1D C4 E1 4A 14 82
: F5 D2 94 0C 19 E3 B9 10 BB 11 B9 E5 A5 FB 8E 21
: 51 63 02 86 AA 06 B8 21 36 B6 7F 36 DF D1 D6 68
: 5B 79 7C 1D 5A 14 75 1F 6A 93 75 93 CE BB 97 72
: 8A F0 0F 23 9D 47 F6 D4 B3 C7 F0 F4 E6 F6 2B C2
: 32 E1 89 67 BE 7E 06 AE F8 D0 01 6B 8B 2A F5 02
: D7 B6 A8 63 94 83 B0 1B 31 7D 52 1A DE E5 03 85
: 27
<span class="h2"><a class="selflink" id="section-193" href="#section-193">193</a> 02 </span>128: INTEGER
: 26 A6 32 2C 5A 2B D4 33 2B 5C DC 06 87 53 3F 90
: 06 61 50 38 3E D2 B9 7D 81 1C 12 10 C5 0C 53 D4
: 64 D1 8E 30 07 08 8C DD 3F 0A 2F 2C D6 1B 7F 57
: 86 D0 DA BB 6E 36 2A 18 E8 D3 BC 70 31 7A 48 B6
: 4E 18 6E DD 1F 22 06 EB 3F EA D4 41 69 D9 9B DE
: 47 95 7A 72 91 D2 09 7F 49 5C 3B 03 33 51 C8 F1
: 39 9A FF 04 D5 6E 7E 94 3D 03 B8 F6 31 15 26 48
: 95 A8 5C DE 47 88 B4 69 3A 00 A7 86 9E DA D1 CD
<span class="h2"><a class="selflink" id="section-324" href="#section-324">324</a> 02 </span> 33: INTEGER
: 00 E8 72 FA 96 F0 11 40 F5 F2 DC FD 3B 5D 78 94
: B1 85 01 E5 69 37 21 F7 25 B9 BA 71 4A FC 60 30
: FB
<span class="h2"><a class="selflink" id="section-359" href="#section-359">359</a> 02 </span> 97: INTEGER
: 00 A3 91 01 C0 A8 6E A4 4D A0 56 FC 6C FE 1F A7
: B0 CD 0F 94 87 0C 25 BE 97 76 8D EB E5 A4 09 5D
: AB 83 CD 80 0B 35 67 7F 0C 8E A7 31 98 32 85 39
: 40 9D 11 98 D8 DE B8 7F 86 9B AF 8D 67 3D B6 76
: B4 61 2F 21 E1 4B 0E 68 FF 53 3E 87 DD D8 71 56
: 68 47 DC F7 20 63 4B 3C 5F 78 71 83 E6 70 9E E2
<span class="grey">Prafullchandra & Schaad Standards Track [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc2875">RFC 2875</a> Diffie-Hellman Proof-of-Possession Algorithms July 2000</span>
: 92
<span class="h2"><a class="selflink" id="section-458" href="#section-458">458</a> 30 </span> 26: SEQUENCE {
<span class="h2"><a class="selflink" id="section-460" href="#section-460">460</a> 03 </span> 21: BIT STRING 0 unused bits
: 1C D5 3A 0D 17 82 6D 0A 81 75 81 46 10 8E 3E DB
: 09 E4 98 34
<span class="h2"><a class="selflink" id="section-483" href="#section-483">483</a> 02 </span> 1: INTEGER 55
: }
: }
: }
<span class="h2"><a class="selflink" id="section-486" href="#section-486">486</a> 03 </span>132: BIT STRING 0 unused bits
: 02 81 80 5F CF 39 AD 62 CF 49 8E D1 CE 66 E2 B1
: E6 A7 01 4D 05 C2 77 C8 92 52 42 A9 05 A4 DB E0
: 46 79 50 A3 FC 99 3D 3D A6 9B A9 AD BC 62 1C 69
: B7 11 A1 C0 2A F1 85 28 F7 68 FE D6 8F 31 56 22
: 4D 0A 11 6E 72 3A 02 AF 0E 27 AA F9 ED CE 05 EF
: D8 59 92 C0 18 D7 69 6E BD 70 B6 21 D1 77 39 21
: E1 AF 7A 3A CF 20 0A B4 2C 69 5F CF 79 67 20 31
: 4D F2 C6 ED 23 BF C4 BB 1E D1 71 40 2C 07 D6 F0
: 8F C5 1A
: }
<span class="h2"><a class="selflink" id="section-621" href="#section-621">621</a> A0 </span> 0: [0]
: }
<span class="h2"><a class="selflink" id="section-623" href="#section-623">623</a> 30 </span> 12: SEQUENCE {
<span class="h2"><a class="selflink" id="section-625" href="#section-625">625</a> 06 </span> 8: OBJECT IDENTIFIER '1 3 6 1 5 5 7 6 4'
<span class="h2"><a class="selflink" id="section-635" href="#section-635">635</a> 05 </span> 0: NULL
: }
<span class="h2"><a class="selflink" id="section-637" href="#section-637">637</a> 03 </span> 72: BIT STRING 0 unused bits
: 30 45 02 21 00 A1 B5 B4 90 01 34 6B A0 31 6A 73
: F5 7D F6 5C 14 43 52 D2 10 BF 86 58 87 F7 BC 6E
: 5A 77 FF C3 4B 02 20 59 40 45 BC 6F 0D DC FF 9D
: 55 40 1E C4 9E 51 3D 66 EF B2 FF 06 40 9A 39 68
: 75 81 F7 EC 9E BE A1
: }
<span class="grey">Prafullchandra & Schaad Standards Track [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc2875">RFC 2875</a> Diffie-Hellman Proof-of-Possession Algorithms July 2000</span>
Full Copyright Statement
Copyright (C) The Internet Society (2000). All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.
The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.
This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Prafullchandra & Schaad Standards Track [Page 23]
</pre>
|