1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
|
<pre>Network Working Group R. Housley
Request for Comments: 2951 T. Horting
Category: Informational P. Yee
SPYRUS
September 2000
<span class="h1">TELNET Authentication Using KEA and SKIPJACK</span>
Status of this Memo
This memo provides information for the Internet community. It does
not specify an Internet standard of any kind. Distribution of this
memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2000). All Rights Reserved.
Abstract
This document defines a method to authenticate TELNET using the Key
Exchange Algorithm (KEA), and encryption of the TELNET stream using
SKIPJACK. Two encryption modes are specified; one provides data
integrity and the other does not. The method relies on the TELNET
Authentication Option.
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Command Names and Codes</span>
AUTHENTICATION 37
Authentication Commands:
IS 0
SEND 1
REPLY 2
NAME 3
Authentication Types:
KEA_SJ 12
KEA_SJ_INTEG 13
Modifiers:
AUTH_WHO_MASK 1
AUTH_CLIENT_TO_SERVER 0
AUTH_SERVER_TO CLIENT 1
<span class="grey">Housley, et al. Informational [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc2951">RFC 2951</a> TELNET Authentication Using KEA & SKIPJACK September 2000</span>
AUTH_HOW_MASK 2
AUTH_HOW_ONE_WAY 0
AUTH_HOW_MUTUAL 2
ENCRYPT_MASK 20
ENCRYPT_OFF 0
ENCRYPT_USING_TELOPT 4
ENCRYPT_AFTER_EXCHANGE 16
ENCRYPT_RESERVED 20
INI_CRED_FWD_MASK 8
INI_CRED_FWD_OFF 0
INI_CRED_FWD_ON 8
Sub-option Commands:
KEA_CERTA_RA 1
KEA_CERTB_RB_IVB_NONCEB 2
KEA_IVA_RESPONSEB_NONCEA 3
KEA_RESPONSEA 4
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. TELNET Security Extensions</span>
TELNET, as a protocol, has no concept of security. Without
negotiated options, it merely passes characters back and forth
between the NVTs represented by the two TELNET processes. In its
most common usage as a protocol for remote terminal access (TCP port
23), TELNET normally connects to a server that requires user-level
authentication through a user name and password in the clear. The
server does not authenticate itself to the user.
The TELNET Authentication Option provides for:
* User authentication -- replacing or augmenting the normal host
password mechanism;
* Server authentication -- normally done in conjunction with user
authentication;
* Session parameter negotiation -- in particular, encryption key
and attributes;
* Session protection -- primarily encryption of the data and
embedded command stream, but the encryption algorithm may also
provide data integrity.
In order to support these security services, the two TELNET entities
must first negotiate their willingness to support the TELNET
Authentication Option. Upon agreeing to support this option, the
parties are then able to perform sub-option negotiations to determine
<span class="grey">Housley, et al. Informational [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc2951">RFC 2951</a> TELNET Authentication Using KEA & SKIPJACK September 2000</span>
the authentication protocol to be used, and possibly the remote user
name to be used for authorization checking. Encryption is negotiated
along with the type of the authentication.
Authentication and parameter negotiation occur within an unbounded
series of exchanges. The server proposes a preference-ordered list
of authentication types (mechanisms) that it supports. In addition
to listing the mechanisms it supports, the server qualifies each
mechanism with a modifier that specifies whether encryption of data
is desired. The client selects one mechanism from the list and
responds to the server indicating its choice and the first set of
authentication data needed for the selected authentication type. The
client may ignore a request to encrypt data and so indicate, but the
server may also terminate the connection if the client refuses
encryption. The server and the client then proceed through whatever
number of iterations is required to arrive at the requested
authentication.
Encryption is started immediately after the Authentication Option is
completed.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Use of Key Exchange Algorithm (KEA)</span>
This paper specifies the method in which KEA is used to achieve
TELNET Authentication. KEA (in conjunction with SKIPJACK) [<a href="#ref-4" title=""SKIPJACK and KEA Algorithm Specification"">4</a>]
provides authentication and confidentiality. Integrity may also be
provided.
TELNET entities may use KEA to provide mutual authentication and
support for the setup of data encryption keys. A simple token format
and set of exchanges delivers these services.
NonceA and NonceB used in this exchange are 64-bit bit strings. The
client generates NonceA, and the server generates NonceB. The nonce
value is selected randomly. The nonce is sent in a big endian form.
The encryption of the nonce will be done with the same mechanism that
the session will use, detailed in the next section.
Ra and Rb used in this exchange are 1024 bit strings and are defined
by the KEA Algorithm [<a href="#ref-4" title=""SKIPJACK and KEA Algorithm Specification"">4</a>].
The IVa and IVb are 24 byte Initialization Vectors. They are
composed of "THIS IS NOT LEAF" followed by 8 random bytes.
<span class="grey">Housley, et al. Informational [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc2951">RFC 2951</a> TELNET Authentication Using KEA & SKIPJACK September 2000</span>
CertA is the client's certificate. CertB is the server's
certificate. Both certificates are X.509 certificates [<a href="#ref-6" title=""Internet X.509 Public Key Infrastructure: X.509 Certificate and CRL Profile"">6</a>] that
contain KEA public keys [<a href="#ref-7" title=""Internet X.509 Public Key Infrastructure - Representation of Key Exchange Algorithm (KEA) Keys in Internet X.509 Public Key Infrastructure Certificates"">7</a>]. The client must validate the server's
certificate before using the KEA public key it contains. Likewise,
the server must validate the client's certificate before using the
KEA public key it contains.
On completing these exchanges, the parties have a common SKIPJACK
key. Mutual authentication is provided by verification of the
certificates used to establish the SKIPJACK encryption key and
successful use of the derived SKIPJACK session key. To protect
against active attacks, encryption will take place after successful
authentication. There will be no way to turn off encryption and
safely turn it back on; repeating the entire authentication is the
only safe way to restart it. If the user does not want to use
encryption, he may disable encryption after the session is
established.
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. SKIPJACK Modes</span>
There are two distinct modes for encrypting TELNET streams; one
provides integrity and the other does not. Because TELNET is
normally operated in a character-by-character mode, the SKIPJACK with
stream integrity mechanism requires the transmission of 4 bytes for
every TELNET data byte. However, a simplified mode SKIPJACK without
integrity mechanism will only require the transmission of one byte
for every TELNET data byte.
The cryptographic mode for SKIPJACK with stream integrity is Cipher
Feedback on 32 bits of data (CFB-32) and the mode of SKIPJACK is
Cipher Feedback on 8 bits of data (CFB-8).
<span class="h4"><a class="selflink" id="section-3.1.1" href="#section-3.1.1">3.1.1</a>. SKIPJACK without stream integrity</span>
The first and least complicated mode uses SKIPJACK CFB-8. This mode
provides no stream integrity.
For SKIPJACK without stream integrity, the two-octet authentication
type pair is KEA_SJ AUTH_CLIENT_TO_SERVER | AUTH_HOW_MUTUAL |
ENCRYPT_AFTER_EXCHANGE | INI_CRED_FWD_OFF. This indicates that the
SKIPJACK without integrity mechanism will be used for mutual
authentication and TELNET stream encryption. Figure 1 illustrates
the authentication mechanism of KEA followed by SKIPJACK without
stream integrity.
<span class="grey">Housley, et al. Informational [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc2951">RFC 2951</a> TELNET Authentication Using KEA & SKIPJACK September 2000</span>
---------------------------------------------------------------------
Client (Party A) Server (Party B)
<-- IAC DO AUTHENTICATION
IAC WILL AUTHENTICATION -->
<-- IAC SB AUTHENTICATION SEND
<list of authentication options>
IAC SE
IAC SB AUTHENTICATION
NAME <user name> -->
IAC SB AUTHENTICATION IS
KEA_SJ
AUTH_CLIENT_TO_SERVER |
AUTH_HOW_MUTUAL |
ENCRYPT_AFTER_EXCHANGE |
INI_CRED_FWD_OFF
KEA_CERTA_RA
CertA||Ra IAC SE -->
<-- IAC SB AUTHENTICATION REPLY
KEA_SJ
AUTH_CLIENT_TO_SERVER |
AUTH_HOW_MUTUAL |
ENCRYPT_AFTER_EXCHANGE |
INI_CRED_FWD_OFF
IVA_RESPONSEB_NONCEA
KEA_CERTB_RB_IVB_NONCEB
CertB||Rb||IVb||
Encrypt( NonceB )
IAC SE
IAC SB AUTHENTICATION IS
KEA_SJ
AUTH_CLIENT_TO_SERVER |
AUTH_HOW_MUTUAL |
ENCRYPT_AFTER_EXCHANGE |
INI_CRED_FWD_OFF
KEA_IVA_RESPONSEB_NONCEA
IVa||Encrypt( (NonceB XOR 0x0C12)||NonceA )
IAC SE -->
<span class="grey">Housley, et al. Informational [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc2951">RFC 2951</a> TELNET Authentication Using KEA & SKIPJACK September 2000</span>
Client (Party A) Server (Party B)
<client begins encryption>
<-- IAC SB AUTHENTICATION REPLY
KEA_SJ
AUTH_CLIENT_TO_SERVER |
AUTH_HOW_MUTUAL |
ENCRYPT_AFTER_EXCHANGE |
INI_CRED_FWD_OFF
KEA_RESPONSEA
Encrypt( NonceA XOR 0x0C12 )
IAC SE
<server begins encryption>
---------------------------------------------------------------------
Figure 1.
<span class="h4"><a class="selflink" id="section-3.1.2" href="#section-3.1.2">3.1.2</a>. SKIPJACK with stream integrity</span>
SKIPJACK with stream integrity is more complicated. It uses the
SHA-1 [<a href="#ref-3">3</a>] one-way hash function to provide integrity of the
encryption stream as follows:
Set H0 to be the SHA-1 hash of a zero-length string.
Cn is the nth character in the TELNET stream.
Hn = SHA-1( Hn-1||Cn ), where Hn is the hash value
associated with the nth character in the stream.
ICVn is set to the three most significant bytes of Hn.
Transmit Encrypt( Cn||ICVn ).
The ciphertext that is transmitted is the SKIPJACK CFB-32 encryption
of ( Cn||ICVn ). The receiving end of the TELNET link reverses the
process, first decrypting the ciphertext, separating Cn and ICVn,
recalculating Hn, recalculating ICVn, and then comparing the received
ICVn with the recalculated ICVn. Integrity is indicated if the
comparison succeeds, and Cn can then be processed normally as part of
the TELNET stream. Failure of the comparison indicates some loss of
integrity, whether due to active manipulation or loss of
cryptographic synchronization. In either case, the only recourse is
to drop the TELNET connection and start over.
For SKIPJACK with stream integrity, the two-octet authentication type
pair is KEA_SJ_INTEG AUTH_CLIENT_TO_SERVER | AUTH_HOW_MUTUAL |
ENCRYPT_AFTER_EXCHANGE | INI_CRED_FWD_OFF. This indicates that the
KEA SKIPJACK with integrity mechanism will be used for mutual
authentication and TELNET stream encryption. Figure 2 illustrates
the authentication mechanism of KEA SKIPJACK with stream integrity.
<span class="grey">Housley, et al. Informational [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc2951">RFC 2951</a> TELNET Authentication Using KEA & SKIPJACK September 2000</span>
---------------------------------------------------------------------
Client (Party A) Server (Party B)
<-- IAC DO AUTHENTICATION
IAC WILL AUTHENTICATION -->
<-- IAC SB AUTHENTICATION SEND
<list of authentication options>
IAC SE
IAC SB AUTHENTICATION
NAME <user name> -->
IAC SB AUTHENTICATION IS
KEA_SJ_INTEG
AUTH_CLIENT_TO_SERVER |
AUTH_HOW_MUTUAL |
ENCRYPT_AFTER_EXCHANGE |
INI_CRED_FWD_OFF
KEA_CERTA_RA
CertA||Ra IAC SE -->
<-- IAC SB AUTHENTICATION REPLY
KEA_SJ_INTEG
AUTH_CLIENT_TO_SERVER |
AUTH_HOW_MUTUAL |
ENCRYPT_AFTER_EXCHANGE |
INI_CRED_FWD_OFF
IVA_RESPONSEB_NONCEA
KEA_CERTB_RB_IVB_NONCEB
CertB||Rb||IVb||
Encrypt( NonceB )
IAC SE
IAC SB AUTHENTICATION IS
KEA_SJ_INTEG
AUTH_CLIENT_TO_SERVER |
AUTH_HOW_MUTUAL |
ENCRYPT_AFTER_EXCHANGE |
INI_CRED_FWD_OFF
KEA_IVA_RESPONSEB_NONCEA
IVa||Encrypt( (NonceB XOR 0x0D12)||NonceA )
IAC SE -->
<span class="grey">Housley, et al. Informational [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc2951">RFC 2951</a> TELNET Authentication Using KEA & SKIPJACK September 2000</span>
Client (Party A) Server (Party B)
<client begins encryption>
<-- IAC SB AUTHENTICATION REPLY
KEA_SJ_INTEG
AUTH_CLIENT_TO_SERVER |
AUTH_HOW_MUTUAL |
ENCRYPT_AFTER_EXCHANGE |
INI_CRED_FWD_OFF
KEA_RESPONSEA
Encrypt( NonceA XOR 0x0D12 )
IAC SE
<server begins encryption>
---------------------------------------------------------------------
Figure 2
<span class="h3"><a class="selflink" id="section-4.0" href="#section-4.0">4.0</a>. Security Considerations</span>
This entire memo is about security mechanisms. For KEA to provide
the authentication discussed, the implementation must protect the
private key from disclosure. Likewise, the SKIPJACK keys must be
protected from disclosure.
Implementations must randomly generate KEA private keys,
initialization vectors (IVs), and nonces. The use of inadequate
pseudo-random number generators (PRNGs) to generate cryptographic
keys can result in little or no security. An attacker may find it
much easier to reproduce the PRNG environment that produced the keys,
searching the resulting small set of possibilities, rather than brute
force searching the whole key space. The generation of quality
random numbers is difficult. <a href="./rfc1750">RFC 1750</a> [<a href="#ref-8" title=""Randomness Recommendations for Security"">8</a>] offers important guidance
in this area, and Appendix 3 of FIPS Pub 186 [9] provides one quality
PRNG technique.
By linking the enabling of encryption as a side effect of successful
authentication, protection is provided against an active attacker.
If encryption were enabled as a separate negotiation, it would
provide a window of vulnerability from when the authentication
completes, up to and including the negotiation to turn on encryption.
The only safe way to restart encryption, if it is turned off, is to
repeat the entire authentication process.
<span class="grey">Housley, et al. Informational [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc2951">RFC 2951</a> TELNET Authentication Using KEA & SKIPJACK September 2000</span>
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. IANA Considerations</span>
The authentication types KEA_SJ and KEA_SJ_INTEG and their associated
suboption values are registered with IANA. Any suboption values used
to extend the protocol as described in this document must be
registered with IANA before use. IANA is instructed not to issue new
suboption values without submission of documentation of their use.
<span class="h3"><a class="selflink" id="section-6.0" href="#section-6.0">6.0</a>. Acknowledgements</span>
We would like to thank William Nace for support during implementation
of this specification.
<span class="h3"><a class="selflink" id="section-7.0" href="#section-7.0">7.0</a>. References</span>
[<a id="ref-1">1</a>] Postel, J. and J. Reynolds, "TELNET Protocol Specification", ASTD
8, <a href="./rfc854">RFC 854</a>, May 1983.
[<a id="ref-2">2</a>] Ts'o, T. and J. Altman, "Telnet Authentication Option", <a href="./rfc2941">RFC 2941</a>,
September 2000.
[<a id="ref-3">3</a>] Secure Hash Standard. FIPS Pub 180-1. April 17, 1995.
[<a id="ref-4">4</a>] "SKIPJACK and KEA Algorithm Specification", Version 2.0, May 29,
1998. Available from <a href="http://csrc.nist.gov/encryption/skipjack-kea.htm">http://csrc.nist.gov/encryption/skipjack-</a>
<a href="http://csrc.nist.gov/encryption/skipjack-kea.htm">kea.htm</a>
[<a id="ref-5">5</a>] Postel, J. and J. Reynolds, "TELNET Option Specifications", STD
8, <a href="./rfc855">RFC 855</a>, May 1983.
[<a id="ref-6">6</a>] Housley, R., Ford, W., Polk, W. and D. Solo, "Internet X.509
Public Key Infrastructure: X.509 Certificate and CRL Profile",
<a href="./rfc2459">RFC 2459</a>, January 1999.
[<a id="ref-7">7</a>] Housley, R. and W. Polk, "Internet X.509 Public Key
Infrastructure - Representation of Key Exchange Algorithm (KEA)
Keys in Internet X.509 Public Key Infrastructure Certificates",
<a href="./rfc2528">RFC 2528</a>, March 1999.
[<a id="ref-8">8</a>] Eastlake, D., Crocker, S. and J. Schiller, "Randomness
Recommendations for Security", <a href="./rfc1750">RFC 1750</a>, December 1994.
[9) National Institute of Standards and Technology. FIPS Pub 186:
Digital Signature Standard. 19 May 1994.
<span class="grey">Housley, et al. Informational [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc2951">RFC 2951</a> TELNET Authentication Using KEA & SKIPJACK September 2000</span>
<span class="h3"><a class="selflink" id="section-8.0" href="#section-8.0">8.0</a>. Authors' Addresses</span>
Russell Housley
SPYRUS
381 Elden Street, Suite 1120
Herndon, VA 20170
USA
EMail: housley@spyrus.com
Todd Horting
SPYRUS
381 Elden Street, Suite 1120
Herndon, VA 20170
USA
EMail: thorting@spyrus.com
Peter Yee
SPYRUS
5303 Betsy Ross Drive
Santa Clara, CA 95054
USA
EMail: yee@spyrus.com
<span class="grey">Housley, et al. Informational [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc2951">RFC 2951</a> TELNET Authentication Using KEA & SKIPJACK September 2000</span>
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. Full Copyright Statement</span>
Copyright (C) The Internet Society (2000). All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.
The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.
This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Housley, et al. Informational [Page 11]
</pre>
|