1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
|
<pre>Network Working Group H. Lu, Editor
Request for Comments: 2995 I. Faynberg
Category: Informational J. Voelker
M. Weissman
W. Zhang
Lucent Technologies
S. Rhim
J. Hwang
Korea Telecom
S. Ago
S. Moeenuddin
S. Hadvani
NEC
S. Nyckelgard
Telia
J. Yoakum
L. Robart
Nortel Networks
November 2000
<span class="h1">Pre-SPIRITS Implementations of PSTN-initiated Services</span>
Status of this Memo
This memo provides information for the Internet community. It does
not specify an Internet standard of any kind. Distribution of this
memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2000). All Rights Reserved.
Abstract
This document contains information relevant to the work underway in
The Services in the PSTN/IN Requesting InTernet Services (SPIRITS)
Working Group. It describes four existing implementations of
SPIRITS-like services from Korea Telecom, Lucent Technologies, NEC,
and Telia in cooperation with Nortel Networks. SPIRITS-like services
are those originating in the Public Switched Telephone Network (PSTN)
and necessitating the interactions of the Internet and PSTN.
<span class="grey">Lu, et al. Informational [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc2995">RFC 2995</a> Pre-SPIRITS Implementations November 2000</span>
Surveying the implementations, we can make the following
observations:
o The ICW service plays the role of a benchmark service. All
four implementations can support ICW, with three specifically
designed for it.
o Session Initiation Protocol (SIP) is used in most of the
implementations as the base communications protocol between the
PSTN and Internet. (NEC's implementation is the only exception
that uses a proprietary protocol. Nevertheless, NEC has a plan
to support SIP together with the extensions for SPIRITS
services.)
o All implementations use IN-based solutions for the PSTN part.
It is clear that not all pre-SPIRITS implementations inter-operate
with each other. It is also clear that not all SIP-based
implementations inter-operate with each other given that they do not
support the same version of SIP. It is a task of the SPIRITS Working
Group to define the inter-networking interfaces that will support
interoperation of the future implementations of SPIRITS services.
Table of Contents
<a href="#section-1">1</a>. Introduction ................................................ <a href="#page-3">3</a>
<a href="#section-2">2</a>. Service Description of Internet Call Waiting ................ <a href="#page-4">4</a>
<a href="#section-3">3</a>. Korea Telecom's ICW Implementation .......................... <a href="#page-5">5</a>
<a href="#section-3.1">3.1</a>. Overview .................................................. <a href="#page-5">5</a>
<a href="#section-3.2">3.2</a>. Network Architecture ...................................... <a href="#page-6">6</a>
<a href="#section-3.3">3.3</a>. Network Entities .......................................... <a href="#page-7">7</a>
<a href="#section-3.3.1">3.3.1</a>. SSP ..................................................... <a href="#page-7">7</a>
<a href="#section-3.3.2">3.3.2</a>. SCP ..................................................... <a href="#page-7">7</a>
<a href="#section-3.3.3">3.3.3</a>. IP ...................................................... <a href="#page-7">7</a>
<a href="#section-3.3.4">3.3.4</a>. ICW Server System ....................................... <a href="#page-7">7</a>
<a href="#section-3.3.5">3.3.5</a>. ICW Client System ....................................... <a href="#page-8">8</a>
<a href="#section-3.3.6">3.3.6</a>. Firewall ................................................ <a href="#page-9">9</a>
<a href="#section-3.4">3.4</a>. Network Interfaces ........................................ <a href="#page-9">9</a>
<a href="#section-3.5">3.5</a>. Protocols ................................................. <a href="#page-9">9</a>
<a href="#section-3.5.1">3.5.1</a>. Intelligent Network Application Part Protocol (INAP) .... <a href="#page-9">9</a>
<a href="#section-3.5.2">3.5.2</a>. PINT Protocol ........................................... <a href="#page-9">9</a>
<a href="#section-3.6">3.6</a>. Example Scenarios ........................................ <a href="#page-11">11</a>
<a href="#section-3.6.1">3.6.1</a>. ICW Service Subscription ................................ <a href="#page-11">11</a>
<a href="#section-3.6.2">3.6.2</a>. ICW Client Installation ................................. <a href="#page-11">11</a>
<a href="#section-3.6.3">3.6.3</a>. ICW Service Activation .................................. <a href="#page-12">12</a>
<a href="#section-3.6.4">3.6.4</a>. Incoming Call Notification .............................. <a href="#page-14">14</a>
<a href="#section-3.6.5">3.6.5</a>. Incoming Call Processing ................................ <a href="#page-15">15</a>
<a href="#section-3.6.5.1">3.6.5.1</a>. Accept the Call ....................................... <a href="#page-16">16</a>
<span class="grey">Lu, et al. Informational [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc2995">RFC 2995</a> Pre-SPIRITS Implementations November 2000</span>
<a href="#section-3.6.5.2">3.6.5.2</a>. Forward the Call to Another Number .................... <a href="#page-18">18</a>
<a href="#section-3.6.6">3.6.6</a>. ICW service De-activation ............................... <a href="#page-20">20</a>
<a href="#section-4">4</a>. The Lucent Technologies Online Communications Center ........ <a href="#page-21">21</a>
<a href="#section-4.1">4.1</a> Overview ................................................... <a href="#page-21">21</a>
<a href="#section-4.2">4.2</a>. Architecture .............................................. <a href="#page-22">22</a>
<a href="#section-4.3">4.3</a>. Protocol and Operations Considerations .................... <a href="#page-25">25</a>
<a href="#section-5">5</a>. NEC's Implementation ........................................ <a href="#page-28">28</a>
<a href="#section-5.1">5.1</a>. Overview .................................................. <a href="#page-28">28</a>
<a href="#section-5.2">5.2</a>. Architecture and Overall Call Flow ........................ <a href="#page-29">29</a>
<a href="#section-5.3">5.3</a>. Interfaces and Protocols .................................. <a href="#page-31">31</a>
<a href="#section-5.3.1">5.3.1</a>. SCP (SPIRITS Client)-SPIRITS Server Interface ........... <a href="#page-31">31</a>
<a href="#section-5.3.1.1">5.3.1.1</a>. Connecting to SPIRITS Services ........................ <a href="#page-31">31</a>
<a href="#section-5.3.1.2">5.3.1.2</a>. Message Types ......................................... <a href="#page-31">31</a>
<a href="#section-5.3.1.2.1">5.3.1.2.1</a> Connection Management Message Type ................... <a href="#page-31">31</a>
<a href="#section-5.3.1.2.2">5.3.1.2.2</a>. Data Message Type ................................... <a href="#page-33">33</a>
<a href="#section-5.3.2">5.3.2</a>. SPIRITS Server-ICW Client Application Interface ......... <a href="#page-34">34</a>
5.3.3. Secure Reliable Hybrid Datagram Session Protocol
(SRHDSP) for Use .............................................. <a href="#page-35">35</a>
<a href="#section-5.3.3.1">5.3.3.1</a>. Overview .............................................. <a href="#page-35">35</a>
<a href="#section-5.3.3.2">5.3.3.2</a>. Session Initiation .................................... <a href="#page-35">35</a>
<a href="#section-5.3.3.3">5.3.3.3</a>. Secure Reliable Datagram Transport .................... <a href="#page-36">36</a>
<a href="#section-5.3.3.4">5.3.3.4</a>. Session closure ....................................... <a href="#page-36">36</a>
<a href="#section-6">6</a>. Telia/Nortel's Implementation ............................... <a href="#page-36">36</a>
<a href="#section-6.1">6.1</a>. Overview .................................................. <a href="#page-36">36</a>
<a href="#section-6.2">6.2</a>. Architecture and Protocols ................................ <a href="#page-37">37</a>
<a href="#section-6.3">6.3</a>. Security .................................................. <a href="#page-39">39</a>
<a href="#section-7">7</a>. Security Considerations ..................................... <a href="#page-40">40</a>
<a href="#section-8">8</a>. Conclusion .................................................. <a href="#page-40">40</a>
<a href="#section-9">9</a>. References .................................................. <a href="#page-41">41</a>
<a href="#section-10">10</a>. Authors' Addresses ......................................... <a href="#page-41">41</a>
<a href="#section-11">11</a>. Full Copyright Statement ................................... <a href="#page-44">44</a>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
This document contains information relevant to the work underway in
The Services in the PSTN/IN Requesting InTernet Services (SPIRITS)
Working Group. It describes four existing implementations of
SPIRITS-like services from Korea Telecom, Lucent Technologies, NEC,
and Telia in cooperation with Nortel Networks. SPIRITS-like services
are those originating in the Public Switched Telephone Network (PSTN)
and necessitating the interactions of the Internet and PSTN.
Invariably supported by the implementations examined in this document
is the Internet Call Waiting (ICW) service. With ICW, service
subscribers, while using their telephone lines for Internet access,
can be notified of incoming voice calls and specify how to handle the
calls over the same telephone lines.
<span class="grey">Lu, et al. Informational [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc2995">RFC 2995</a> Pre-SPIRITS Implementations November 2000</span>
The document first gives a detailed description of the ICW service.
Then it proceeds to discuss each of the four implementations. The
final sections of the document contains security considerations, the
conclusion and references.
It is important to note that even though the term "SPIRITS server" is
used throughout the document, it has no universal meaning. Its
connotation depends on the context and varies from implementation to
implementation.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Service Description of Internet Call Waiting</span>
Internet call waiting is the single service that is specifically
supported by all the implementations in question. In a nutshell, the
service enables a subscriber engaged in an Internet dial-up session
to
o be notified of an incoming call to the very same telephone line
that is being used for the Internet connection;
o specify the desirable treatment of the call; and
o have the call handled as specified.
The details of the ICW service lie in the ways that a waiting call
can be treated, which vary from implementation to implementation. In
this section, we describe the features that are supported by at least
one of the implementations. They are as follows:
o Incoming Call Notification - The subscriber is notified of an
incoming call over the Internet, without having any effect on the
telephone line that is being used by the modem. When a call comes
in, the subscriber is presented with a pop-up dialog box on the
PC. The dialog box may display any combination of the calling
party number, calling party name, and calling time. Note that the
display of the calling party name (or number) requires the
availability of the caller name (or number) delivery feature.
o Online Incoming Call Disposition - Once informed of the incoming
call, the subscriber has various options (indicated in the pop-up
window) for handling the call. Possible options are:
+ Accepting the call over the PSTN line, thus terminating the
Internet (modem) connection
+ Accepting the call over the Internet using Voice over IP (VoIP)
+ Rejecting the call
<span class="grey">Lu, et al. Informational [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc2995">RFC 2995</a> Pre-SPIRITS Implementations November 2000</span>
+ Playing a pre-recorded message to the calling party and
disconnecting the call
+ Forwarding the call to voice mail
+ Forwarding the call to another number
+ Rejecting (or Forwarding) on no Response - If the subscriber fails
to respond within a certain period time after the dialog box has
been displayed, the incoming call can be either rejected or
handled based on the treatment pre-defined by the subscriber.
o Automatic Incoming Call Disposition - Incoming calls are
automatically handled based on dispositions pre-defined by the
subscriber without his or her real-time intervention. The
subscriber can pre-define the default disposition (e.g., re-
directed to voice mail) for general calls as well as customized
dispositions for calls from specific numbers. In the latter case,
the subscriber selects a particular disposition for each
originating number and stores this information in a profile. When
a call comes in, the subscriber won't be presented the call but
can examine the treatment and outcome of the call from the caller
log (as described in the call logging bullet). Naturally, this
feature also allows the subscriber to specify the desired
treatment for calls originating from private or unpublished
numbers.
o Multiple Call Handling - Multiple calls can arrive during call
disposition processing. With multiple call handling, the
subscriber is notified of the multiple calls one by one.
o Call Logging - A detailed log of the incoming calls processed
during the ICW service is kept. Typical information recorded in
the log include the incoming call date and time, calling party
number, calling party name, and call disposition.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Korea Telecom's ICW Implementation</span>
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. Overview</span>
Korea Telecom's ICW implementation supports most of the features
described in <a href="#section-2">Section 2</a>. (The major exception is the feature of
receiving the incoming call over the Internet using voice over IP.)
In addition, the Korea Telecom implementation supports flexible
activation and de-activation of the ICW service:
<span class="grey">Lu, et al. Informational [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc2995">RFC 2995</a> Pre-SPIRITS Implementations November 2000</span>
o Automatic Activation/De-activation - When Internet dial-up
connection is set up, the ICW service is activated or de-activated
automatically.
o Manual Activation/De-activation - The subscriber can de-activate
the ICW service manually when call notification is not desired
during the Internet dial-up session and activate it when needed.
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. Network Architecture</span>
Figure 1 depicts the network architecture of the Korea Telecom ICW
service. The Service Switching Point (SSP), Service Control Point
(SCP), and Intelligent Peripheral (IP) are legacy PSTN IN elements
based on IN CS-1. In contrast, both the ICW Server System and the
ICW Client System are new network elements that are installed in the
Internet domain to support of the ICW service.
+---------------------------+ | +--------------+
|+--------+propr-+---------+| PINT | |(Proxy Server)| PINT
||(ICW SL)|ietary|(UAC/UAS)||--- -||-----| ICW |----+
||SCF/SDF |------| SCGF || firewall |Server System | |
|+--------+ i/f +---------+| | +------------- + |
| SCP | | |
+------+--------------+-----+ | |
|INAP |INAP | firewall=====
| | | |
+---+---+ +---+---+ |
| IP | | SSP | |
+-------+ +---+---+ +-------------+
| +---+ | (UAC/UAS) |
+---+---+ || || | ICW |
|---------| LEX |-------------- + + |Client System|
+---+ +-------+ +++++----+-------------+
|| || (callee)
+ + ICW Subscriber's Phone and PC
+++++
(caller)
INAP : Intelligent Network Application Protocol
PINT : PSTN/Internet Interworking Protocol
SL : Service Logic
UAS : User Agent Server
UAC : User Agent Client
Figure 1: Network Architecture of the Korea Telecom ICW Service
<span class="grey">Lu, et al. Informational [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc2995">RFC 2995</a> Pre-SPIRITS Implementations November 2000</span>
<span class="h3"><a class="selflink" id="section-3.3" href="#section-3.3">3.3</a>. Network Entities</span>
<span class="h4"><a class="selflink" id="section-3.3.1" href="#section-3.3.1">3.3.1</a>. SSP</span>
The SSP performs the Service Switching Function (SSF) and Call
Control Function (CCF). When detecting that the called party is busy
(T_Busy), the SSP sends a query to the SCP and processes the call
under the control of the SCP.
<span class="h4"><a class="selflink" id="section-3.3.2" href="#section-3.3.2">3.3.2</a>. SCP</span>
The SCP performs the Service Control Function (SCF) and Service Data
Function (SDF). It, when queried, instructs the SSP to process the
call based on the service logic. In the case of the ICW service, the
service logic ultimately governs the notification of a waiting call
to an online ICW subscriber and the disposition of the call. In
addition, the SCP performs the Service Control Gateway Function
(SCGF) for protocol inter-working between the PSTN/IN and Internet.
It translates the SIP message from the ICW Server to the service
control interface message and vise versa. The SCGF is an IP end
point and behaves as a UAS (User Agent server) or UAC (User Agent
client).
<span class="h4"><a class="selflink" id="section-3.3.3" href="#section-3.3.3">3.3.3</a>. IP</span>
The IP contains Service Resource Function (SRF). It, when necessary,
plays announcements to the calling party during the ICW service
before/after receiving the response from the ICW subscriber and
records the calling party number or voice message from the calling
party when the call is forwarded to the Voice Mail System (VMS).
<span class="h4"><a class="selflink" id="section-3.3.4" href="#section-3.3.4">3.3.4</a>. ICW Server System</span>
The ICW Server system serves as a SIP proxy or a redirect server for
message routing between the ICW Client and SCGF. The ICW Server is
also responsible for managing the ICW Clients that are connected to
it. When an ICW Client (subscriber) sends a registration request for
the ICW service, the ICW Server relays that request to the SCP, waits
for the result of authorization from the SCP, and registers the
authorized subscriber in its data base. In addition, the ICW Server
monitors the connection status of the registered ICW Clients. As
soon as a client deactivates the ICW service or terminates the
Internet connection, the ICW Server detects the status change and
deactivates the ICW service for the client. Finally, the ICW Server
manages profiles for each ICW subscribers as well as logs all the
call processing results.
<span class="grey">Lu, et al. Informational [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc2995">RFC 2995</a> Pre-SPIRITS Implementations November 2000</span>
<span class="h4"><a class="selflink" id="section-3.3.5" href="#section-3.3.5">3.3.5</a>. ICW Client System</span>
The ICW Client System is an application program running on the
subscriber's PC. Launched as soon as the subscriber powers on the
PC, it monitors the Internet connection status of the PC (or
subscriber). Upon the subscriber's connection to the Internet, the
ICW Client sends a REGISTRATION request to the SCGF via the ICW
Server and then eventually to the SCP. In this capacity, the ICW
Client acts as a UAC to the SCGF, which acts as a UAS. Thereafter it
notifies the ICW Server periodically of the connection status of the
subscriber.
The ICW Client is also responsible for popping up a dialog box on the
subscriber's PC to announce an incoming call. The dialog box
displays the number and name of calling party, calling time, and the
call processing options (including Accept, Reject, Forward to another
number or VMS). After the subscriber selects the option, the ICW
Client sends it to the SCP. In this capacity, the ICW Client acts as
a UAS.
Depending on the pre-defined ICW Service Profile, the ICW Client may
screen the incoming call before notifying the subscriber.
The ICW Client manages the ICW Service Profile, which contains the
following fields:
o Subscriber Information (including, Name, Directory Number,
Password)
o Service Status (Activation/De-activation)
o Automatic Call Processing Method
+ Call Processing Method on No Answer (Reject/Forward/VMS) - The
call is automatically handled by the method if the subscriber
doesn't respond after a pre-defined period of time.
+ Do Not Disturb Mode (On/Off) - When this is set on, the subscriber
won't be notified of the incoming calls.
+ Call Processing Method on Do Not Disturb (Reject/Forward/VMS)
+ Call Processing List by Calling Party Numbers
(Accept/Reject/Forward/VMS) - Calls originated from a number on
the list are handled by the associated call processing method.
o The ICW Client records the call processing method and the result
for each incoming call in a log file on the subscriber's PC. The
<span class="grey">Lu, et al. Informational [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc2995">RFC 2995</a> Pre-SPIRITS Implementations November 2000</span>
call record in the call log contains the following information:
- Calling Time
- Calling Party Number
- Calling Party Name (optional)
- Call Processing Method (Accept/Reject/Forward/Forward to VMS)
- Result (Success/Fail)
<span class="h4"><a class="selflink" id="section-3.3.6" href="#section-3.3.6">3.3.6</a>. Firewall</span>
Packet Filtering Firewall Systems are between the ICW server and
clients as well as between the SCGF and ICW server for accessing the
Korea Telecom IN Nodes.
<span class="h3"><a class="selflink" id="section-3.4" href="#section-3.4">3.4</a>. Network Interfaces</span>
o The SCF-SDF, SCF-SSF, and SCF-SRF interfaces are the same as
existing PSTN IN Interfaces based on the KT INAP CS-1.
o The SCGF-SCF interface relays requests either from the IN or the
Internet and is implemented based on the internal API of the SCP.
o The SCGF-ICW Server and ICW Server-ICW Client interfaces are
implemented based on the PINT Service Protocol V.1. We adopted
UAS-Proxy-UAC relationships as shown in Figure 2.
+---------+ +-------------+ +---------+
|(UAC/UAS)|PINT 1.0| (Proxy) |PINT 1.0|(UAC/UAS)|
| |--------| ICW |--------| ICW |
| SCGF | | Server | | Client |
+---------+ +-------------+ +---------+
Figure 2: PINT Protocol Architecture
<span class="h3"><a class="selflink" id="section-3.5" href="#section-3.5">3.5</a>. Protocols</span>
<span class="h4"><a class="selflink" id="section-3.5.1" href="#section-3.5.1">3.5.1</a>. Intelligent Network Application Part Protocol (INAP)</span>
The SCP, SSP, and IP support the KT INAP V1.0, which is based on
ITU-T INAP CS-1 with the incorporation of two INAP CS-2 messages [PRM
(PromptAndReceiveMessage) and EM (EraseMessage)] for recording the
voice message.
<span class="h4"><a class="selflink" id="section-3.5.2" href="#section-3.5.2">3.5.2</a>. PINT Protocol</span>
The ICW service uses the PINT Service Protocol 1.0 [<a href="#ref-1" title=""The PINT Service Protocol: Extensions to SIP and SDP for IP Access to Telephone Call Services"">1</a>] for
communications between the SCP and the ICW Server System, and between
the ICW Server System and the ICW Client System. Developed in the
<span class="grey">Lu, et al. Informational [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc2995">RFC 2995</a> Pre-SPIRITS Implementations November 2000</span>
IETF PINT Working Group for invoking telephone services from an IP
network, the PINT Service Protocol 1.0 specifies a set of
enhancements to SIP 2.0 and SDP.
Summarized below are the elements of the PINT Service Protocol 1.0
relevant to the Korea Telecom ICW implementation:
o REGISTER
The REGISTER method is used to inform the SCP of the connection
status of an ICW subscriber. With this method, the ICW Client
sends to the ICW Server the IP address (of the PC) and phone
number of the subscriber when the subscriber is first connected to
the Internet. The ICW server relays the information to the SCP,
which updates the data base (if the subscriber is authorized), and
in the end sends a registration acknowledgment to the ICW Server
and then the Client. After the subscriber is connected to the
Internet, the ICW Client sends a REGISTER request to the ICW
Server periodically at a pre-defined interval (e.g., 20 seconds)
to indicate its connection status. The request is not relayed to
the SCP. The ICW Server only checks if it is from the authorized
subscriber. Finally, when the subscriber terminates the Internet
connection, the Client sends the last REGISTER request to the SCP
via the ICW Server. If the REGISTER request does not arrive
during the pre-defined interval, the ICW Server can also detect
the change of the connection status of the ICW Client.
o INVITE
The SCP uses the INVITE method to notify the ICW Client, via the
ICW Server, of an incoming call.
o ACK
Both the SCP and the ICW Server use the ACK method to confirm the
receipt of the final responses to their requests.
o BYE
The BYE method terminates a service session. In addition to this
original usage, we use the value (success or failure) of the
Subject header to indicate the result of the desired disposition
of an incoming call in the PSTN.
<span class="grey">Lu, et al. Informational [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc2995">RFC 2995</a> Pre-SPIRITS Implementations November 2000</span>
o CANCEL
When the calling party releases the call before the called party
responds, the SCP sends a CANCEL request to the ICW Client to
cancel the INVITE request that it sent previously.
o OPTION
This method is not used in the KT implementation.
o Responses
The SCP responds to a REGISTER request with one of the status
codes and associated comments below:
. 100 Trying: Trying
. 200 OK: Registered
The ICW Client responds to an INVITE request with one of the
status codes and associated comments below:
. 100 Trying: Trying
. 200 OK: Accept the Call
. 303 see other: Forward the Call to Another Number
. 380 alternative service: Forward the Call to the VMS
. 603 decline: Reject the Call
<span class="h3"><a class="selflink" id="section-3.6" href="#section-3.6">3.6</a>. Example Scenarios</span>
<span class="h4"><a class="selflink" id="section-3.6.1" href="#section-3.6.1">3.6.1</a>. ICW Service Subscription</span>
Access to the Korea Telecom ICW service is by subscription. Here
Korea Telecom serves as both the PSTN operator and IN-based ICW
service provider. Note that the subscription data need to be loaded
onto the relevant SSPs, including the local ones that may not be
operated by Korea Telecom.
<span class="h4"><a class="selflink" id="section-3.6.2" href="#section-3.6.2">3.6.2</a>. ICW Client Installation</span>
An ICW subscriber should install the ICW Client program in his or her
PC. The ICW Client is automatically activated to run as a daemon
process when the subscriber's PC is turned on. The Client monitors
the Internet connection status of the subscriber.
<span class="grey">Lu, et al. Informational [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc2995">RFC 2995</a> Pre-SPIRITS Implementations November 2000</span>
<span class="h4"><a class="selflink" id="section-3.6.3" href="#section-3.6.3">3.6.3</a>. ICW Service Activation</span>
When the subscriber initiates the Internet connection or activates
the ICW service manually, the ICW service is activated. That is done
by sending a REGISTER request with the directory number and IP
address from the ICW Client to the SCP through the ICW Server.
ICW Subscriber ICW Server SCGF SCF/SDF SSF/CCF Calling
ICW Client party
(DN1/IP1) (IP2) (IP3) (DN2)
| | | | | |
0A | | | | |
0BREG(DN1,IP1)| | | | |
1 |----------->|REG(DN1,IP1)| | | |
2 | |----------->| | | |
| | 2A | | |
| | |reg(DN1,IP1)| | |
3 | | |-.-.-.-.-.->| | |
| | | 3A | |
| | | reg ok 3B | |
4 | | |<-.-.-.-.-.-| | |
| | 200 OK 4A | | |
5 | |<-----------| | | |
| 200 OK 5A | | | |
6 |<-----------| | | | |
6A | | | | |
| | | | | |
-----> PINT Protocol -.-.-> SCP Internal API
--.--> INAP Protocol +++++> ISUP Protocol
=====> Bearer
Figure 3: ICW Service Activation
As depicted in Figure 3, the relevant information flows are as
follows:
(0A) The ICW subscriber dials the ISP access number and establishes a
PPP connection.
(0B) The ICW Client detects the PPP connection.
1. The ICW Client sends a registration request to the ICW Server in
order to register the IP address-DN relationship for the dial-up
connection.
2. The ICW Server relays registration request to the SCGF.
<span class="grey">Lu, et al. Informational [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc2995">RFC 2995</a> Pre-SPIRITS Implementations November 2000</span>
2A. The SCGF translates the user registration information from the
SIP message to the SCP internal API message.
3. The SCGF relays the user registration message to the SCF/SDF.
3A. The SCF/SDF authorizes the subscriber with the directory number
based on the user registration information.
3B. The SCF/SDF stores the IP address of the ICW Client and sets the
status to "Internet on-line."
4. The SCF/SDF sends the result of registration to the SCF/SCGF.
4A. The SCGF translates the user registration response of the SCP
internal API message to the PINT message.
5. The SCGF relays the user registration response to the ICW Server.
5A. The ICW Server records the user registration information and the
Internet on-line status for the subscriber in the data base.
6. The ICW Server sends the user registration response to the ICW
Client.
6A. The ICW Client notifies the subscriber that the registration is
completed successfully and the ICW service is in the active state.
<span class="grey">Lu, et al. Informational [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc2995">RFC 2995</a> Pre-SPIRITS Implementations November 2000</span>
<span class="h4"><a class="selflink" id="section-3.5.4" href="#section-3.5.4">3.5.4</a>. Incoming Call Notification</span>
When a calling party makes a call to the ICW subscriber, the SCP
notifies the ICW Client of the incoming call and waits for the
subscriber's response.
ICW Subscriber ICW Server SCGF SCF/SDF SSF/CCF Calling
ICW Client party
(DN1/IP1) (IP2) (IP3) (DN2)
| | | | | |
| | | | setup(DN1,DN2)|
1 | | | | |<+++++++++++|
| | | | 1A |
| | | IDP(T-busy,DN1)| |
2 | | | |<--.--.--.--| |
| | | 2A | |
| | | 2B | |
| | | 2C | |
| | noti(DN1,IP1,DN2)| | |
3 | | |<-.-.-.-.-.-| | |
| | 3A | | |
| INV(DN1,IP1,DN2)| | | |
4 | |<-----------| | | |
| 4A | | | |
| | 100 Trying | | | |
5 | |----------->| | | |
INV(DN1,IP1,DN2)| | | | |
6 |<-----------| | | | |
6A | | | | |
| 100 Trying | | | | |
7 |----------->| | | | |
| | | | | |
-----> PINT Protocol -.-.-> SCP Internal API
--.--> INAP Protocol +++++> ISUP Protocol
=====> Bearer
Figure 4: Incoming Call Notification
As depicted in Figure 4, the relevant information flows are as
follows:
1. The calling party at DN2 (a telephone user) makes a call to the
ICW subscriber (PC user) at DN1. The connection is set up using the
existing ISDN signaling.
1A. The SSF/CCF detects that the callee (the ICW subscriber) is busy.
<span class="grey">Lu, et al. Informational [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc2995">RFC 2995</a> Pre-SPIRITS Implementations November 2000</span>
2. The SSF/CCF sends InitialDP (T_Busy) to the SCF/SDF.
2A. The SCF/SDF determines whether the user at DN1 is PSTN on-line or
Internet on-line. (The SCF/SDF executes the KT Telephone Mail
Service logic in the PSTN on-line case and the ICW service Logic in
the Internet on-line case.)
2B. The SCF/SDF retrieves the IP address corresponding to DN1.
2C. The SCF/SDF may play an announcement to the calling party, while
waiting for the response of the called party.
3. The SCF sends an incoming call notification to the SCGF.
3A. The SCGF translates the incoming call notification from the SCP
internal format to the PINT format.
4. The SCGF relays the notification to the ICW Server.
4A. The ICW Server double-checks the subscriber's status using the
ICW subscribers profile in its own data base.
5. The ICW Server sends trying message to the SCGF.
6. The ICW Server relays the notification to the ICW Client.
6A. The ICW Client consults the ICW service profile to see if there
is a pre-defined call disposition for the incoming call. If so, then
the procedure for automatic call processing is performed.
6B. If there is no pre-defined call disposition for the incoming
call, the subscriber is notified of the call via a pop-up dialog box.
7. The ICW Client sends trying message to the ICW Server.
<span class="h4"><a class="selflink" id="section-3.6.5" href="#section-3.6.5">3.6.5</a>. Incoming Call Processing</span>
The incoming call can be accepted, rejected, forwarded to another
number, or forwarded to the VMS depending on the on-the-fly or pre-
defined choice of the subscriber. This section describes the
information flows for the cases of "Accept the call" and "Forward the
call to another number."
<span class="grey">Lu, et al. Informational [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc2995">RFC 2995</a> Pre-SPIRITS Implementations November 2000</span>
<span class="h5"><a class="selflink" id="section-3.5.5.1" href="#section-3.5.5.1">3.5.5.1</a>. Accept the Call</span>
ICW Subscriber ICW Server SCGF SCF/SDF SSF/CCF Calling
ICW Client party
(DN1/IP1) (IP2) (IP3) (DN2)
| | | | | |
0A 200 OK | | | | |
1 |----------->| | | | |
1A | | | | |
1B | 200 OK | | | |
2 | |----------->| | | |
| | ACK 2A | | |
3 | |<-----------| | | |
| | |Accept(DN1,IP1,DN2) | |
4 | | |-.-.-.-.-.->| | |
| | | |Connect(DN1,DN2) |
5 | | | |--.--.--.-->| |
| | | Setup(DN1,DN2)| |
6 |<++++++++++++++++++++++++++++++++++++++++++++++++++| |
|<==============================6A==============================>|
| | | | ERB | |
7 | | | |<--.--.--.--| |
| | | ok | | |
8 | | |<-.-.-.-.-.-| | |
| | 8A | | |
| | BYE | | | |
9 | |<-----------| | | |
| 9A | | | |
| | | | | |
-----> PINT Protocol -.-.-> SCP Internal API
--.--> INAP Protocol +++++> ISUP Protocol
=====> Bearer
Figure 5: Incoming Call Processing - Accept the Call
As depicted in Figure 5, the relevant information flows are as
follows:
0A. The ICW subscriber chooses to "Accept" the incoming call.
1. The ICW Client sends the "Accept" indication to the ICW Server.
1A. The ICW Client records the subscriber's selection for the
incoming call in the call log.
<span class="grey">Lu, et al. Informational [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc2995">RFC 2995</a> Pre-SPIRITS Implementations November 2000</span>
1B. The ICW Client terminates the subscriber's Internet connection.
2. The ICW Server sends an "Accept" message to the SCGF.
2A. The SCGF translates the "Accept" message to an SCP internal API
message.
3. The SCGF sends an "ACK" message to the ICW Server.
4. The SCGF sends the "Accept" message to the SCF.
5. The SCF instructs the SSF/CCF to route the call to DN1.
6. The SSF/CCF initiates the connection setup to DN1.
6A. The bearer connection between the calling party (DN2) and the ICW
subscriber(DN1) is set up.
7. The connection result is returned to the SCF through ERB.
8. The SCF sends a call completion message to the SCGF.
8A. The SCGF translates the call completion message to a PINT
message.
9. The SCGF sends a "BYE" message to the ICW Server.
9A. The ICW Server records the call completion result in the log
file.
<span class="grey">Lu, et al. Informational [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc2995">RFC 2995</a> Pre-SPIRITS Implementations November 2000</span>
<span class="h5"><a class="selflink" id="section-3.5.5.2" href="#section-3.5.5.2">3.5.5.2</a>. Forward the Call to Another Number</span>
ICW Subscriber ICW Server SCGF SCF/SDF SSF/CCF Calling Another
ICW Client party Phone
(DN1/IP1) (IP2) (IP3) (DN2) (DN3)
| | | | | | |
0A | | | | | |
|303 SeeOther | | | | |
1 |--------->| | | | | |
1A ACK | | | | | |
2 |<---------|303 SeeOther | | | |
3 | |--------->| | | | |
| | ACK 3A | | | |
4 | |<---------|Connect(DN2,DN3) | | |
5 | | |-.-.-.-.->| | | |
| | | |Connect(DN2,DN3) | |
6 | | | |.--.--.-->| | |
| | | | |Setup(DN2,DN3) |
7 | | | | ++++++++++++++++++++>|
8 | | | | ERB | |<===5A==>|
| | | |<--.--.--.| | |
| | | ok | | | |
9 | | |<-.-.-.-.-| | | |
| | BYE 9A | | | |
10 | |<---------| | | | |
| BYE 10A | | | | |
11 |<---------| | | | | |
11A | | | | | |
| | | | | | |
-----> PINT Protocol -.-.-> SCP Internal API
--.--> INAP Protocol +++++> ISUP Protocol
=====> Bearer
Figure 6: Incoming Call Processing - Forward the Call to Another
As depicted in Figure 6, the relevant information flows are as
follows:
0A. The ICW subscriber chooses to "Forward to another number (DN3)"
for the incoming call.
1. The ICW Client sends the "Forward to another number" indication to
the ICW Server.
1A. The ICW Client records the subscriber's selection for the
incoming call in the call log.
<span class="grey">Lu, et al. Informational [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc2995">RFC 2995</a> Pre-SPIRITS Implementations November 2000</span>
2. The ICW Server sends an "ACK" message to the ICW Client.
3. The ICW Server relays the "Forward to another number" message to
the SCGF.
3A. The SCGF translates the "Forward to another number" message to an
SCP internal API message.
4. The SCGF sends an "ACK" message to the ICW Server.
5. The SCGF sends the "Forward to another number" message to the SCF.
6. The SCF instructs the SSF/CCF to route the call to DN3.
7. The SSF/CCF initiates the connection setup to DN3.
7A. The bearer connection between the calling party (DN2) and the new
termination number (DN3) is set up.
8. The connection result is returned to the SCF through ERB.
9. The SCF sends a call completion message to the SCGF.
9A. The SCGF translates the call completion message to a PINT
message.
10. The SCGF sends the call completion message to the ICW Server.
10A. The ICW Server records the call completion result in the log
file.
11. The ICW Server sends the success of "Forwarding to another
number" to the ICW Client.
11A. The ICW Client records the call completion result in the log
file.
<span class="grey">Lu, et al. Informational [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc2995">RFC 2995</a> Pre-SPIRITS Implementations November 2000</span>
<span class="h4"><a class="selflink" id="section-3.6.6" href="#section-3.6.6">3.6.6</a>. ICW service De-activation</span>
The SCP de-activates the ICW service for a subscriber either upon the
termination of the subscriber's Internet connection or upon the
subscriber's manual request. In this section, we illustrate the
former scenario.
ICW Subscriber ICW Server SCGF SCF/SDF SSF/CCF Calling
ICW Client party
(DN1/IP1) (IP2) (IP3) (DN2)
| | | | | |
0A | | | | |
| 0B | | | |
| |Unreg(DN1,IP1) | | |
1 | |----------->| | | |
| | 1A | | |
| | |Unreg(DN1,IP1) | |
2 | | |-.-.-.-.-.->| | |
| | | 2A | |
| | | ok 2B | |
3 | | |<-.-.-.-.-.-| | |
| | 3A | | |
| | 200 OK | | | |
4 | |<-----------| | | |
| 4A | | | |
| | | | | |
-----> PINT Protocol -.-.-> SCP Internal API
--.--> INAP Protocol +++++> ISUP Protocol
=====> Bearer
Figure 7: ICW Service De-activation
As depicted in Figure 7, the relevant information flows are as
follows:
0A. The ICW subscriber terminates the Internet connection.
0B. The ICW Server determines that the Internet connection has been
terminated when it does not receive the periodic on-line notification
from the ICW Client.
1. The ICW Server sends an un-register message to the SCGF.
1A. The SCGF translates the un-register message to an SCP internal
API message.
<span class="grey">Lu, et al. Informational [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc2995">RFC 2995</a> Pre-SPIRITS Implementations November 2000</span>
2. The SCGF sends the un-register message to the SCF.
2A. The SCF/SDF authorizes the subscriber with the directory number
based on the un-registration information.
2B. The SCF/SDF records the Internet off-line status for that ICW
Client.
3. The SCF/SDF sends a user un-registration response to the SCF/SCGF.
3B. The SCGF translates the user un-registration response to a PINT
message.
4. The SCGF relays the user un-registration response to the ICW
Server.
4A. The ICW Server records the Internet off-line status for the ICW
Client (subscriber) in the data base.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. The Lucent Technologies Online Communications Center</span>
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a> Overview</span>
The Lucent Technologies Online Communications Center (OCC) is an
Intelligent Network (IN)-based platform that supports the Internet
call waiting service. Its basic components are the OCC Server and
OCC Client, which are described in detail in the Architecture
section. The OCC Server interacts with the PSTN entities over the
secure intranet via plain-text Session Initiation Protocol (SIP)
messages [<a href="#ref-2" title=""SIP: Session Initiation Protocol"">2</a>]. With the PC Client, the OCC Server interacts via
encrypted SIP messages.
The OCC Server run-time environment effectively consists of two
multi-threaded processes responsible for Call Registration and Call
Notification services, respectively.
OCC call registration services are initiated from an end-user's PC
(or Internet appliance). With those, a subscriber registers his or
her end-points and activates the notification services. (The
registration services are not, strictly speaking, SPIRITS services
but rather have a flavor of PINT services.)
All OCC call notification services are PSTN-initiated. One common
feature of these services is that of informing the user of the
incoming telephone call via the Internet, without having any effect
on the line already used by the modem. (A typical call waiting tone
would interrupt the Internet connection, and it is a standard
practice to disable the "old" PSTN call waiting service for the
<span class="grey">Lu, et al. Informational [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc2995">RFC 2995</a> Pre-SPIRITS Implementations November 2000</span>
duration of the call in support of the Internet connection between
the end-user and the ISP.)
When a call comes in, the user is presented with a pop-up dialog box,
which displays the caller's number (if available), name (again, if
available), as well as the time of the call. If the called party
does not initiate an action within a specified period of time the
call is rejected.
As far as the disposition of the call is concerned, OCC supports all
the features described in <a href="#section-2">Section 2</a>.
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. Architecture</span>
+------------+
| Compact | +-------------+
| Service | | Service |
+-----| Node (CSN) | | Management |
| | OCC Server | | System (SMS)|
| | OCC CSN SPA| +-------------+
| +-------:--|-+ |
| | +-------------[ IP INTRANET ]---------+
===== firewall : |
| | |
| +-------+ +-------+
| |Central|-..-..-..-..-..-..-..-..-..-..-|Service|
| +-%-|Office |-..-..-: |Control|
| | +---|---+ | |Point |
| % | : | (SCP) |
| | +--|---+ +-------+ +----------+ |OCC SCP|
| % | PC | | VoIP | | VoIP | | SPA |
| | |OCC Cl| |Gateway| |Gatekeeper| +-------+
| % +------+ +---|---+ +-----|----+
| | ===== firewall =====
| % | |
| | +---------------|---+ |
| +-%-| |----------+
+----------| I N T E R N E T |
| |
+-------------------+
Figure 8: The Lucent OCC Physical Architecture
Figure 8 depicts the joint PSTN/Internet physical architecture
relevant to the OCC operation. The Compact Service Node (CSN) and
SCP are Lucent's implementations of the ITU-T IN Recommendations (in
particular, the Recommendation Q.1205 where these entities are
defined) augmented by the requirements of Bellcore's Advanced
<span class="grey">Lu, et al. Informational [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc2995">RFC 2995</a> Pre-SPIRITS Implementations November 2000</span>
Intelligent Network (AIN) Release 1.0) and equipped with other
features. The Central Office (CO) may be any switch supporting the
Integrated Services Digital Network (ISDN) Primary Rate Interface
(PRI) and the call forwarding feature that would allow it to
interwork with the CSN. Alternatively, in order to interwork with
the SCP, it needs to be an IN Service Switching Point (SSP). In the
latter case, the central office is connected to the SCP via the
signaling system No. 7 (SS7) and INAP at the application layer.
The Service Management System (SMS) is responsible for provisioning
of the SCPs, CSNs, and central offices. In particular, for IN
support of the Internet Call Waiting, it must provision the Central
Office to direct a terminating attempt query to the subsystem number
corresponding to the OCC SCP SPA based on the Termination Attempt
Trigger (TAT). In addition, the Subscriber Directory Number (DN),
Personal Identification Number (PIN) and Language ID are provisioned
for each subscriber into the OCC Subscriber entry of the SCP Real
Time Data Base (RTDB). Figure 9 shows the structure of an RTDB
entry.
+-------------------------------------------------------+
|DN | PIN | IP Address | Session Key | CNF | Language ID|
+-------------------------------------------------------+
Field Descriptions:
(DN) Directory Number - the subscriber's telephone number
(PIN) Personal Identification Number - the subscriber's password
IP Address - Internet Protocol Address of the subscriber
(CNF) Call Notification In Progress Flag (boolean) - the flag
indicating if an attempt to notify the subscriber of a call is
currently in progress
Session Key - unique identifier for the current registration session
of the subscriber
Language ID - language identifier for the subscriber
Figure 9: Structure of the RTDB Subscriber Record
The Central Office, SMS, CSN, and SCP are the only PSTN elements of
the architecture. The other elements are VoIP Gateway and Gatekeeper
defined in the ITU-T Recommendation H.323, whose roles are to
establish and provide the part of the voice path over IP. The
Central Office is explicitly connected to the VoIP Gateway via the
<span class="grey">Lu, et al. Informational [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc2995">RFC 2995</a> Pre-SPIRITS Implementations November 2000</span>
ISDN PRI connection. In this architecture, CSN, VoIP Gateway, and
VoIP Gatekeeper are the only entities connected to the Internet, with
each respective connection protected by a firewall. The CSN and SCP
are interconnected via a secure IP Intranet. There may be more than
one CSN or SCP (or both) (and the SCPs come in mated pairs
interconnected by X.25, anyway) in a network, but these details are
not essential to the level of description chosen for this document.
However, we note that load balancing and adaptation to failures by
the use of alternative nodes is incorporated into the architecture.
When someone attempts to call the subscriber, the central office
serving that subscriber interrupts normal termination processing and
notifies the SCP which, in turn, can check whether that subscriber
has registered that he (or she) is logged onto the Internet.
Exploiting the standardized layering of service logic that
characterizes the intelligent network, the central office will do
this without requiring the installation or development of any central
office software specific to OCC. The central office is simply
provisioned to query the SCP when there is a termination attempt
(i.e., TAT) directed to the subscriber's directory number. (Note
that the Central Office has no bearer circuit connection to the SCP,
only a signaling one over SS7).
TCP/IP communication between the SCP and CSN utilizes a secure
intranet. The subscriber, of course, is assumed to have access only
to the Internet.
The intelligent network entities, the SCP and CSN, do have OCC
related software. The OCC server is implemented on the CSN. In
addition, one service package application (SPA) is installed on the
SCP. Another SPA is located in the CSN and is needed only when the
subscriber elects to accept an incoming call using voice over IP.
The OCC Server is a collection of Java servers on the CSN whose
responsibilities include:
o Listening for incoming Call Notification (TCP/IP) messages from
the SCP SPA.
o De-multiplexing/multiplexing incoming Call Notification messages
sent from the SCP SPA.
o Relaying messages between the OCC Client and the SCP SPA.
o Listening for and authentication of OCC Client requests for
service registration.
<span class="grey">Lu, et al. Informational [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc2995">RFC 2995</a> Pre-SPIRITS Implementations November 2000</span>
o Handling encryption/decryption of messages exchanged with the OCC
Client, and generating session-specific encryption/decryption
keys.
The OCC Client is a collection of software components that run on the
Subscriber's PC. Its components include the SIP User Agent Server
(which handles the exchange of SIP messages with the OCC Server and
invokes the Call Notification pop-up window) and a daemon process
that monitors the Point-to-Point Protocol (PPP) actions and is
responsible for starting and stopping the SIP User Agent Server.
<span class="h3"><a class="selflink" id="section-4.3" href="#section-4.3">4.3</a>. Protocol and Operations Considerations</span>
The OCC Server uses distinct TCP/IP ports configured on the CSN to
o Listen for incoming SIP REGISTER messages (in support of
registration service) sent from the OCC Client.
o Listen for incoming SIP INVITE messages (in support of call
notification service) sent from the SCP.
During call notification, the SCP SPA is the client and thus is
started after the OCC Server has been started. The SCP SPA and OCC
Server exchange SIP messages over TCP/IP (via the Secure Intranet)
using a "nailed-up" connection which is initiated by the SCP SPA.
This connection is initiated at the time the SCP SPA receives the
very first SIP REGISTER request from the OCC Server, and must prevail
for as long as the SPA is in the in-service state. The SCP SPA also
supports restarting the connection after any failure condition.
The OCC Server supports multithreading. For each Call
Notification/Call Disposition event, a separate thread is used to
handle the call. This model supports multi-threading on a "per
message" basis where every start message (SIP INVITE) received from
the SCP SPA uses a separate thread of control to handle the call.
Subsequent messages containing the same session Call-ID (which
includes the SPA's instance known as "call_index" and the SCP
hostname) as the original start message is routed to the same thread
that previously handled the respective initiating message.
The OCC Server dynamically opens a new TCP/IP socket with the OCC
Client for each Call Notification/Call Disposition session. This
socket connection uses the IP address and a pre-configured port on
the PC running the OCC Client software.
For session registration, the OCC Server dynamically opens TCP/IP
sessions with the SCP SPA. The SCP SPA listens at a pre-configured
port to incoming SIP REGISTER messages sent by OCC Clients via the
<span class="grey">Lu, et al. Informational [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc2995">RFC 2995</a> Pre-SPIRITS Implementations November 2000</span>
OCC Server. To exchange SIP messages with the OCC Server, the OCC
Client dynamically opens a TCP/IP socket connection with the OCC
Server using a pre-configured port number on the CSN and the CSN's IP
address.
For the VoIP Scenario, the CSN SPA, acting as a client, dynamically
opens TCP/IP sessions with the SCP that handled the initial TAT
query. As soon as the CSN SPA has successfully made the correlation
and connected the two incoming call legs pertaining to a VoIP call
back, the SIP 180 RINGING message will be sent back to the SCP SPA
running on the actual SCP that instructed the SSP to forward the
Caller to the CSN. This SIP message, which contains the VoIP Call
Back DN dialed by one of the bridged call legs, is an indication to
the SCP SPA that the VoIP Call Back DN is freed up.
A typical subscription scenario works like as follows:
1. Each VoIP Gateway is provisioned with a list of authorized VoIP
Call Back DNs, each terminating on a particular CSN. These
special DNs are used when an on-line subscriber elects to receive
an incoming call via VoIP. In particular, they assist in routing
an outgoing call from the subscriber's NetMeeting to the
particular CSN to which the SCP is (roughly concurrently)
forwarding the incoming call. (These two calls are joined in the
CSN to connect the incoming call to the subscriber's Netmeeting
client.) Furthermore, these special DNs permits that CSN to
associate, and hence bridge, the correct pair of call legs to join
the party calling the subscriber to the call from the subscriber's
NetMeeting client.
2. The subscriber calls a PSTN service provider and signs up for the
service.
3. An active Terminating Attempt Trigger (TAT) is assigned to the
subscriber's DN at the subscriber's central office.
4. The PSTN service provider uses the SMS to create a record for the
subscriber and provision the Subscriber DN and PIN in the OCC RTDB
table in the SCP.
5. The subscriber is provided with the OCC Client software, a PIN and
a file containing the OCC Server IP Addresses.
Finally, we describe the particular scenario of the OCC Call
Disposition that involves voice over IP, which proceeds as follows:
1. The OCC subscriber clicks on "Accept VoIP".
<span class="grey">Lu, et al. Informational [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc2995">RFC 2995</a> Pre-SPIRITS Implementations November 2000</span>
2. The OCC Client sends a "SIP 380 Alternative Service" message to
the OCC Server. This message includes a reference to the Call
Back DN which will ultimately be used by the CSN to associate the
call leg (soon to be initiated by the subscriber's NetMeeting)
connecting to the subscriber (via the VoIP gateway) with the PSTN
call leg connecting to the calling party.
3. The OCC Server closes the TCP/IP session with the OCC Client and
sends to the SCP SPA the "SIP 380 Alternative Service" message
which includes the Call Back DN.
4. The SCP SPA instructs the Central Office to forward the call
incoming to the subscriber to the CSN. This instruction includes
the Call Back DN.
5. The SSP forwards the Caller to the CSN referencing the Call Back
DN. Note that the Call Back DN, originally assigned to the OCC
client by the SCP when the subscriber was alerted to the presence
of an incoming call attempt, flowed next to the OCC server when
the client elected to receive the call via VoIP, then to the SCP,
then to the central office in association with a SCP command to
forward the incoming call to the CSN, then to the OCC server on
the CSN in association with that forwarded call.
6. Meanwhile, the OCC Client extracts 1) the VoIP Call Back DN from
the SIP INVITE message received during Call Notification and 2)
the H323UID and H323PIN values from its properties file and
updates the 'netmtg.cnf' file.
7. The NetMeeting application is launched and sets up a connection
with the VoIP Gateway.
8. Once a connection is established between NetMeeting and the VoIP
Gateway, NetMeeting initiates a phone call - passing to the VoIP
Gateway the Call Back DN as the destination DN.
9. The VoIP Gateway consults the VoIP Gatekeeper and authenticates
the NetMeeting call by verifying the H323UID and H323PIN values,
and by ensuring the called DN (i.e., Call Back DN) is authorized
for use.
10. After passing the authentication step, the VoIP Gateway dials
(via PSTN) the Call Back DN and gets connected to the CSN. The
CSN notes that it was reached by the particular Call Back DN.
11. The CSN bridges the Calling and Called parties together by
matching on the basis of the Call Back DN.
<span class="grey">Lu, et al. Informational [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc2995">RFC 2995</a> Pre-SPIRITS Implementations November 2000</span>
12. The CSN notifies the SCP (SIP 180 Ringing) of status and
references the Call Back DN so that the SCP can reuse it for
other calls.
13. If the central office supports that two B-channel transfer
(Lucent, Nortel, and perhaps other central office vender's do),
an optimization is possible. The CSN can have the central office
rearrange the topology of the newly connected call in such a way
that it flows only through the central office and no longer
through the CSN.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. NEC's Implementation</span>
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. Overview</span>
The NEC implementation of the ICW service is based on IN. Via a
SPIRITS server and an ICW client, incoming calls will be presented to
the user via a pop-up screen dialogue box. This dialogue box informs
the user of the call arrival time and the calling party's number and
name (if available). The arrival of the call is also indicated with
an accompanied audible indication.
The pop-up dialogue box offers the user various call management
options. Selecting a call management option allows the user to
answer the call, forward it to another destination or to voice mail,
or ignore it.
The user will be able to customize their service through various
service set-up options. All calls presented to the user during an
Internet session will be recorded in a call log.
Other features include Multiple call arrival management with which
each new call arrival will generate its own pop-up dialogue box and
audible indication.
<span class="grey">Lu, et al. Informational [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc2995">RFC 2995</a> Pre-SPIRITS Implementations November 2000</span>
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. Architecture and Overall Call Flow</span>
Figure 10 depicts the NEC ICW system.
====================================
|| I n t e r n e t ||
|| ||
====================================
/ | \
: (p1) : : (p2)
/ | \
+-------+ +------------+ +-----+
|SPIRITS| | ISP | | W3S |
|Server | | ISP | | W3S |
+-------+ +------------+ +-----+
: :
Internet | :
PSTN/IN |(p0) :
: :
| ============:======
+------+ (p3) || +-----+ : ||
| SCP |-..-..-..-| SSP | : ||
+------+ || +-----+ : ||
|| (p4)| : ||
+-------+ || : : ||
| ICW | (p1)+-----+ || | : ||
|Client |.....| M/D |............+------+ ||
+-------+ (p2)+-----+ || | CO | ||
--------------------| |-------
/ || +------+ || \
/--\ / || P S T N || \ /--\
()/\() / =================== \ ()/\()
_/__\___/ \______/__\_
ICW Subscriber Calling Party
Legend:
ISP : Internet Service Provider
W3S : WWW Server
SCP : Service Control Point(acts as SPIRITS Client)
SSP : Service Switching Point
CO : Central Office
M/D : Modem
Traffic:
--- : PSTN Voice Traffic
... : PPP(IP traffic)
-..-: Signaling Traffic
<span class="grey">Lu, et al. Informational [Page 29]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-30" ></span>
<span class="grey"><a href="./rfc2995">RFC 2995</a> Pre-SPIRITS Implementations November 2000</span>
Interfaces:
p0 : SPIRITS Server-SCP(SPIRITS Client) interface
p1 : SPIRITS Server-ICW Client interface
p2 : ICW Client-W3S interface
(Web access through HTTP)
p3 : SCP-SSP interface(INAP)
p4 : SSP-CO interface(ISUP)
Figure 10: the NEC ICW system
The description below provides the necessary steps to initiate the
ICW service on a CO line, and how the ICW service is applied to an
incoming call based on the above architecture:
1. The CO line is primed for the ICW service when the customer
connects to their ISP by inserting a special activation code
(e.g., *54) prefix in front of the ISP Directory Number.
2. The ICW service is activated when the user opens a secured
session from an ICW client to the SPIRITS server. Once a session
is open, the SPIRITS server will know the relationship between the
line and the PC (i.e., it will know the Directory Number of the
user's Internet line and the user's IP Address).
3. When a call arrives at a busy Internet line, the SSP will trigger
the ICW service. The SCP which acts as the SPIRITS client will
inform the SPIRITS server that a call is terminating to a busy
Internet line. The message will include the Caller ID and Calling
Line Identify Restriction (CLIR) Status of the calling party, and
DN of the busy line.
4. The SPIRITS server will verify that if an ICW session has been
established for the busy line. If so, the SPIRITS server will
communicate with the user's ICW client application. The user will
receive a real-time pop-up dialogue box including the Calling Name
and Number of the Calling Party if available. The user will then
select one of the following call management options:
- Answer the call (the Internet connection will be automatically
dropped and the phone will ring)
- Send the call to Voice Mail
- Forward the call to another destination
- Ignore the call
5. When the Internet user has made a selection, the ICW client
application will transmit this to the SPIRITS server. The SPIRITS
server will instruct the PSTN via the SCP how to handle the call.
<span class="grey">Lu, et al. Informational [Page 30]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-31" ></span>
<span class="grey"><a href="./rfc2995">RFC 2995</a> Pre-SPIRITS Implementations November 2000</span>
<span class="h3"><a class="selflink" id="section-5.3" href="#section-5.3">5.3</a>. Interfaces and Protocols</span>
<span class="h4"><a class="selflink" id="section-5.3.1" href="#section-5.3.1">5.3.1</a>. SCP (SPIRITS Client)-SPIRITS Server Interface</span>
<span class="h5"><a class="selflink" id="section-5.3.1.1" href="#section-5.3.1.1">5.3.1.1</a>. Connecting to SPIRITS Services</span>
The physical connection between the SCP and the SPIRITS server will
be via a LAN/WAN. The logical connection will use the UDP/IP
communications as defined in <a href="./rfc768">RFC 768</a> and <a href="./rfc1122">RFC 1122</a>.
If a socket connection is not currently established, the SCP will
periodically try to open a connection. The SCP routing tables will
be configured so that all available connections to a SPIRITS server
are used.
<span class="h5"><a class="selflink" id="section-5.3.1.2" href="#section-5.3.1.2">5.3.1.2</a>. Message Types</span>
Two different types of message are used between the SCP and the
SPIRITS server: "Connection Management Message Type" and the "Data
Message Type". These messages will carry the remote operation
messages which are based on ITU-T Q.1228 SCF-SCF interface with some
NEC proprietary extensions.
NEC also has a plan to support SIP/SDP-based protocols for the SPIR-
ITS client-server interface in the near future.
<span class="h6"><a class="selflink" id="section-5.3.1.2.1" href="#section-5.3.1.2.1">5.3.1.2.1</a> Connection Management Message Type</span>
Connection management messages are to support functions related to
the opening and closing of connections and monitoring connections to
ensure reliable communications are maintained between the SCP and a
SPIRITS server. The SCP is responsible for establishing a connection
to a SPIRITS server. A connection can be closed by either the SCP or
the SPIRITS server.
The "Connection Management Message Type" includes the following
operations:
- scfBind - scfUnbind - activitytest
Opening a Connection
If a connection is not open to an SPIRITS server, the SCP will
periodically try to open a connection until it is opened. If after a
pre-determined number of attempts the connection is not opened, the
socket connection will be released and then re-established and then
the attempt to open the connection will be repeated.
<span class="grey">Lu, et al. Informational [Page 31]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-32" ></span>
<span class="grey"><a href="./rfc2995">RFC 2995</a> Pre-SPIRITS Implementations November 2000</span>
The sequence for opening a connection is:
1. SCP will transmit a scfBind invokation message to the SPIRITS
server. This message also carries the version information and
activity test interval.
2. The SPIRITS server, upon receiving an invokation of the scfBind
from a particular SCP, will reset all the data concerning the
connection and then responds with either a return result containing
the Web Server Identification number or a return error with a reason.
3. When the SCP receives a return result, if the ID number does not
match the number configured in the SCP, then a scfUnbind will be sent
indicating the wrong ID number. If the SCP receives nothing or a
return error is received, then the scfBind will be retried after a
pre-determined period of time.
4. Once the SCP has received a return result, the SCP will send
Handling Information Request or Activity Test.
Upon receiving an invokation of activityTest, the SPIRITS server
should reply with a return result of activityTest. If the SPIRITS
server does not receive any invokation messages of Handling
Information Request or Activity Test from the SCP for four times the
Activity Test Interval value in milliseconds, the SPIRITS server
should then close the connection.
To close a connection an invokation of the scfUnbind is sent by
either the SCP or SPIRITS server to the remote end. When an
invokation message of the scfUnbind is received, the receiving end
should terminate the connection.
scfBind
The scfBind operation is used to open the connection between the SCP
and the SPIRITS server. The SCP will send the SPIRITS server an
invokation of the scfBind to establish an association. If the
SPIRITS server is ready to handle the request then it should respond
with a return result.
The return result of scfBind contains the identifier of the SPIRITS
server. If the SCP receives the return result where the
identification of the SPIRITS server does not match that registered
against the SPIRITS server, then the SCP will send an invokation of
the scfUnbind indicating an incorrect identifier was received.
If the SPIRITS server is not ready to handle the request or cannot
handle the version, then it should respond with a return error.
<span class="grey">Lu, et al. Informational [Page 32]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-33" ></span>
<span class="grey"><a href="./rfc2995">RFC 2995</a> Pre-SPIRITS Implementations November 2000</span>
scfUnbind
The scfUnbind operation is used to close the connection between the
SCP and the SPIRITS server. Either the SCP or the SPIRITS server can
invoke this operation.
Upon receiving an invokation message the receiving end should
terminate the connection.
activityTest
If the SCP has not sent a Data Message for the time period specified
by the "Activity Test Interval", it will send an invokation message
of activityTest. When the SPIRITS server receives such an
invokation, it will reply with a return result message of
activityTest.
Its contents should be retained by the SPIRITS server. They are to
be echoed back in the return result so that the message reply time
can be calculated.
<span class="h6"><a class="selflink" id="section-5.3.1.2.2" href="#section-5.3.1.2.2">5.3.1.2.2</a>. Data Message Type</span>
SCPs use the following operations, which are sent to the SPIRITS
server via a Data-Message-Type message, to request execution of some
service procedure or notification of an event that takes place at the
SCPs:
o handlingInformationRequest
The handlingInformationRequest message will request a SPIRITS
server the execution of some service procedure.
o handlingInformationResult
The handlingInformationResult message will show the SCP the result
of the execution, which was carried out by the SPIRITS server.
o confirmedNotificationProvided
The confirmedNotificationProvided message will indicate to the
SPIRITS server of an event, which takes place at the SCP. If the
confirmedNotificationProvided indicating 'caller abandon' is
received, the SPIRITS server will inform the client of the caller
abandon and send the SCP a return result for the
confirmedNotificationProvided.
<span class="grey">Lu, et al. Informational [Page 33]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-34" ></span>
<span class="grey"><a href="./rfc2995">RFC 2995</a> Pre-SPIRITS Implementations November 2000</span>
The invoked operation has always a response which is either a
return result of the operation or an invokation of another
operation.
If a Data Message is not replied to within a pre-determined time
out period then the message will be resent a number of specified
times. Once the number of times has been exceeded, if another node
exists, the message will be sent to another node if it is
available. If all available SPIRITS servers have been queried then
Message Time out will be returned to the calling process.
If an invokation of the handlingInformationResult is received with
the cause=63 (Service not available), the
handlingInformationRequest will be sent to another node if it is
available. If all available SPIRITS severs have been queried then
cause=63 will be returned to the calling process.
<span class="h4"><a class="selflink" id="section-5.3.2" href="#section-5.3.2">5.3.2</a>. SPIRITS Server-ICW Client Application Interface</span>
The following is a list of the application messages that are sent via
the secure protocol (refer to <a href="#section-5.3.3">section 5.3.3</a>):
o VersionInfo (ICW client -> SPIRITS server)
Indicate the current version of ICW client software. The SPIRITS
server uses this information to determine if the client software is
out of date.
o VersionInfoAck (SPIRITS server -> ICW client)
If the VersionInfo message from an ICW client indicates to a
SPIRITS server that it is an out of date version, the URL
information is returned within the VersionInfoAck message for use
in downloading the newer version. If the client software is up to
date, the message simply indicates so and does not include any URL
information.
o CallArrival (SPIRITS server -> ICW client)
Sent by the server to tell the client someone has called the DN.
o CallID
An identifier for this call. Unique in the domain of this
client/server session.
<span class="grey">Lu, et al. Informational [Page 34]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-35" ></span>
<span class="grey"><a href="./rfc2995">RFC 2995</a> Pre-SPIRITS Implementations November 2000</span>
o CallingNumber
o CallingName
The name of the calling party is sent to the Client Application
from the SPIRITS server. When available, the name is sent as a
15-character string. If the name is unavailable it is sent as
"Name Unavailable". If the calling party has CLIR set, it is sent
as empty (" ").
o CallConnect (ICW client -> SPIRITS server)
If a corresponding CallConnect is not received within a certain
period after sending a CallArrival, the SPIRITS server will behave
as though a CallConnect, Handling=Ignore had been received.
o CallLost (SPIRITS server -> ICW client)
Sent by server to cancel a CallArrival before a CallConnect is
received by the server.
<span class="h4"><a class="selflink" id="section-5.3.3" href="#section-5.3.3">5.3.3</a>. Secure Reliable Hybrid Datagram Session Protocol (SRHDSP) for Use</span>
<span class="h4"> Between ICW Client Application and SPIRITS Server</span>
<span class="h5"><a class="selflink" id="section-5.3.3.1" href="#section-5.3.3.1">5.3.3.1</a>. Overview</span>
In principle the solution involves session initiation over SSL
(meeting requirements for standards based security) after which the
SSL session is closed, thereby reducing the number of simultaneous
TCP/IP sessions. The rest of the session is communicated over
UDP/IP, secured using keys and other parameters exchanged securely
during the SSL session.
<span class="h5"><a class="selflink" id="section-5.3.3.2" href="#section-5.3.3.2">5.3.3.2</a>. Session Initiation</span>
The ICW client initiates an SRHDSP session, by reserving a UDP/IP
port, and opening an SSL session with the service (e.g., ICW) on the
service's well known SSL/TCP port. After establishing the SSL
Session, the ICW client sends the server its IP address, the reserved
UDP port number, and the set of supported symmetric key algorithms.
The server responds with a symmetric key algorithm chosen from the
set, the server's UDP port for further communication, heartbeat
period, and the value to use for the sequencing window.
<span class="grey">Lu, et al. Informational [Page 35]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-36" ></span>
<span class="grey"><a href="./rfc2995">RFC 2995</a> Pre-SPIRITS Implementations November 2000</span>
The client then generates a symmetric key using the selected
algorithm and transmits this to the server. The SSL session is then
closed and the SRHDSP session is considered open.
<span class="h5"><a class="selflink" id="section-5.3.3.3" href="#section-5.3.3.3">5.3.3.3</a>. Secure Reliable Datagram Transport</span>
Application, and subsequent session management messages use symmetric
signaling. That is, the signaling is the same whether the client is
sending a message or the server is sending a message.
The message packets are transmitted securely. The protocol corrects
for lost, duplicated and out of sequence packets.
<span class="h5"><a class="selflink" id="section-5.3.3.4" href="#section-5.3.3.4">5.3.3.4</a>. Session closure</span>
The client or server may close the session.
A session is closed using a Close message including the next sequence
number, and encrypted with the agreed key.
The receiver, on processing (as opposed to receiving) a Close
message, should set a timer, when the timer expires all details of
the session should be forgotten. The timer is to allow for
retransmission of the close if the Ack gets lost, we still need to be
able to decrypt the subsequent retransmission and re-acknowledgment.
If any message other than a close is received after a close is
processed, it is ignored.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Telia/Nortel's Implementation</span>
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. Overview</span>
The system implemented by Telia in cooperation with Nortel Networks
is designed to support services that execute before the end-to-end
media sessions are established. These services include, for example:
- call transfer and number portability for redirecting calls
- call waiting and call offering for announcing a pending call
- call screening and don't disturb for filtering incoming calls
- automatic call distribution and 800-services for selecting
termination point
The Telia/Nortel system aims to allow service providers to develop
the services mentioned above. Presently, prototypes for online
incoming call disposition and automatic incoming call disposition
(described in <a href="#section-2">Section 2</a>) have been developed to prove the concept.
<span class="grey">Lu, et al. Informational [Page 36]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-37" ></span>
<span class="grey"><a href="./rfc2995">RFC 2995</a> Pre-SPIRITS Implementations November 2000</span>
In the Telia/Nortel architecture, services run on top of SIP Redirect
Servers. The distributed nature of SIP enables these servers to be
hosted, for example, by an enterprise server, a Service Provider's
server cluster, a user's desktop PC, or even by a hand-held cordless
device.
The SIP Redirect Server receives a SIP INVITE message for each call
regardless of which network the call is being set up in. The server
MAY apply any kind of service logic in order to decide on how to
respond to the invitation. Service logic may interact with the user
to allow the user to specify how to handle a call such as described
in <a href="#section-2">Section 2</a>. This, however, is not the focus of the Telia/Nortel
system.
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>. Architecture and Protocols</span>
The general idea behind the architecture is to create services as if
all communication was based on IP and all clients and servers were
SIP enabled. This of cause is not true in existing
telecommunications networks. Hence, a new type of network element,
the Service Control Gateways (SCG) hides the true situation from the
services.
SCGs convert network-specific call control signaling to SIP messages
and vice versa. A SCG behaves as a regular SIP User Agent (UA)
towards the services and as a network-specific service control node
in the network where the call is being set up. For example, when
connecting to a GSM network, the SCG can play the role of an SCP or a
MAP or an ISUP proxy. The specific role depends on what service
triggers are being used in the GSM network.
SCGs handle protocol conversions but not address translation, such as
telephone number to SIP URL, which is handled by a regular SIP Server
to keep the SCG as simple as possible.
Consider a service example of number portability. A conventional
number portability implementation in a mobile Circuit Switched
Network (CSN) uses INAP messages to carry number queries to a
network-internal data base application. Here, a SCG and a high-
performance SIP Redirect Server, referred to as the Number Server
(NS), have replaced the data base typically located in an SCP. (See
Figure 11.)
<span class="grey">Lu, et al. Informational [Page 37]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-38" ></span>
<span class="grey"><a href="./rfc2995">RFC 2995</a> Pre-SPIRITS Implementations November 2000</span>
+-----------+ INAP +-----+ SIP +--------------------------+
| CSN node |--------| SCG |-------| NS (SIP Redirect Server) |
+-----------+ +-----+ +--------------------------+
Figure 11: An Architecture for Number Portability
The INAP IDP message that carries the number query is converted to a
SIP INVITE message by the SCG and is then forwarded to the NS (SIP
Redirect Server).
If the called number is not registered, then the NS will return "404
Not Found". The SCG interprets this as "non ported number" and
returns a CON message to the CSN network, making it connect the call
to the called number.
If the number is ported and hence registered, then the NS will return
"301 Moved Permanently" with a TEL URL (routing number) in the
contact field. The SCG then returns a CON message to the CSN
network, making it connect the call to the number that was conveyed
in the contact field.
The solution above enables the same Number Server to provide Number
Portability to multiple networks by means of using multiple SCGs.
If we make the SIP server in the number portability example operate
in proxy mode for selected numbers, then it will become a kind of
service router, able to relay number queries to any SIP-Redirect-
Server-based service anywhere, provided there is an IP connection to
the host in concern. Figure 12 shows the arrangement.
+------+ INAP +-----+ SIP +----------------+ SIP +----------+
| CSN |------| SCG |-----| NS |-----| Service |
| node | | | |(redirect/proxy)| |(redirect)|
+------+ +-----+ +----------------+ +----------+
Figure 12: SIP-Based Service Router
Suppose that we connect a value-added service, such as a Personal
Call Filtering service hosted by a user's desktop PC, to a certain
telephone number. The INAP IDP message is converted to a SIP INVITE
message by the SCG and is then forwarded to the NS, just as in the
previous example. However, in this case, the number is registered
with a reference to a SIP URL. This makes the Number Server proxy
the SIP INVITE message to the registered URL, which is the address of
the service.
<span class="grey">Lu, et al. Informational [Page 38]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-39" ></span>
<span class="grey"><a href="./rfc2995">RFC 2995</a> Pre-SPIRITS Implementations November 2000</span>
The service responds as a SIP Redirect Server and the Personal Call
Filtering service logic determines the response. The NS sends the
response back to the SCG which converts the response to an
appropriate INAP message. The response from the service is typically
"302 Moved Temporarily" with a telephone number in the Contact field.
If the response is 301 or 302, as the examples above suggest, then a
telephone number is carried in the contact field. If the user can be
reached via several different addresses, then all of them SHOULD be
added to the response by means of multiple contact fields. The SCG
then selects an address that is valid for the node or application
that issued the number query.
As illustrated by the service examples, the Telia/Nortel system aims
to allow the introduction of multi-network services without requiring
multi-protocol support. The services hence operate in the same way
regardless of in which network the call is made and common IP
services can be shared across heterogeneous networks.
+-----------+ +-------+ SIP +----+ ...... SIP +-----------+
| Network 1 |---| SCG 1 |-----| |---: :-----| Service A |
+-----------+ +-------+ | | : : +-----------+
| | : :
+-----------+ +-------+ SIP | | : : SIP +-----------+
| Network 2 |---| SCG 2 |-----| NS |---: :-----| Service B |
+-----------+ +-------+ | | : Any : +-----------+
| | : IP :
+-----------+ +-------+ SIP | | : net- : SIP +-----------+
| Network n |---| SCG n |-----| |---: work :-----| Service C |
+-----------+ +-------+ +----+ : : +-----------+
: :
+--------+ SIP : : SIP +-----------+
| SIP UA |-----------------------------: :-----| Service x |
+--------+ '......' +-----------+
Figure 13: Interconnecting Heterogeneous Networks via SIP
<span class="h3"><a class="selflink" id="section-6.3" href="#section-6.3">6.3</a>. Security</span>
The Telia/Nortel architecture uses security mechanisms available to
ordinary SIP services, implemented as they would be in a pure SIP
network. The architecture described here does not impose any
additional security considerations.
General security issues that must be considered include
interconnection of two different networks. SCGs must therefore
include mechanisms that prevent destructive service control signaling
from one network to the other. For example, a firewall-type
<span class="grey">Lu, et al. Informational [Page 39]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-40" ></span>
<span class="grey"><a href="./rfc2995">RFC 2995</a> Pre-SPIRITS Implementations November 2000</span>
mechanism that can block a denial-of- service attack from an Internet
user toward the PSTN.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Security Considerations</span>
Overall, the SPIRITS security requirements are essentially the same
as those for PINT [<a href="#ref-3" title=""Toward the PSTN/Internet Inter-Networking-- Pre-PINT Implementations"">3</a>, 4], which include, for example:
+ Protection of the PSTN from attacks from the Internet.
+ Peer entity authentication to allow a communicating entity to
prove its identity to another in the network.
+ Authorization and access control to verify if a network entity
is allowed to use a network resource.
+ Confidentiality to avoid disclosure of information (e.g., the
end user profile information and data) without the permission of
its owner.
+ Non-repudiation to account for all operations in case of doubt
or dispute.
As seen in the previous sections, most implementations examined in
this document have employed means (e.g., firewalls and encryption) to
meet these requirements. The means are, however, different from
implementation to implementation.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Conclusion</span>
This document has provided information relevant to the development of
inter-networking interfaces between the PSTN and Internet for
supporting SPIRITS services. Specifically, it described four
existing implementations of SPIRITS-like services. Surveying these
implementations, we can make the following observations:
o The ICW service plays the role of a benchmark service. All four
implementations can support ICW, with three specifically designed
for it.
o SIP is used in most of the implementations as the based
communications protocol between the PSTN and Internet. (NEC's
implementation is the only exception that uses a proprietary
protocol. Nevertheless, NEC has a plan to support SIP together
with the extensions for SPIRITS services.)
o All implementations use IN-based solutions for the PSTN part.
<span class="grey">Lu, et al. Informational [Page 40]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-41" ></span>
<span class="grey"><a href="./rfc2995">RFC 2995</a> Pre-SPIRITS Implementations November 2000</span>
It is clear that not all pre-SPIRITS implementations inter-operate
with each other. It is also clear that not all SIP-based
implementations inter-operate with each other given that they do not
support the same version of SIP. It is a task of the SPIRITS Working
Group to define the inter-networking interfaces that will support
inter-operation of the future implementations of SPIRITS services.
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. References</span>
[<a id="ref-1">1</a>] Petrack, S. and L. Conroy, "The PINT Service Protocol: Extensions
to SIP and SDP for IP Access to Telephone Call Services", <a href="./rfc2848">RFC</a>
<a href="./rfc2848">2848</a>, June 2000.
[<a id="ref-2">2</a>] Handley, H., Schulzrinne, H., Schooler, E. and J. Rosenberg,
"SIP: Session Initiation Protocol", <a href="./rfc2543">RFC 2543</a>, March 1999.
[<a id="ref-3">3</a>] Lu, H. (Ed.), Krishnaswamy, M., Conroy, L., Bellovin, S., Burg,
F., DeSimone, A., Tewani, F., Davidson, D., Schulzrinne, H. and
K. Vishwanathan, "Toward the PSTN/Internet Inter-Networking--
Pre-PINT Implementations", <a href="./rfc2458">RFC 2458</a>, November 1998.
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. Authors' Addresses</span>
Igor Faynberg
Lucent Technologies
Room 4L-334
101 Crawfords Corner Road
Holmdel, NJ, USA 07733-3030
Phone: +1 732 949 0137
EMail: faynberg@lucent.com
Hui-Lan Lu
Lucent Technologies
Room 4L-317
101 Crawfords Corner Road
Holmdel, NJ, USA 07733-3030
Phone: +1 732 949 0321
EMail: huilanlu@lucent.com
<span class="grey">Lu, et al. Informational [Page 41]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-42" ></span>
<span class="grey"><a href="./rfc2995">RFC 2995</a> Pre-SPIRITS Implementations November 2000</span>
John Voelker
Lucent Technologies
Room 1A-417
263 Shuman Blvd PO Box 3050
Naperville, IL, USA 60566-7050
Phone: +1 630 713 5538
EMail: jvoelker@lucent.com
Mark Weissman
Lucent Technologies
Room NE406B
200 Lucent Lane
Cary, NC, USA 27511-6035
Phone: +1 919 463 3258
EMail: maw1@lucent.com
Weizhong Zhang
Lucent Technologies
Room 01-A5-17
2000 Regency Parkway
Cary, NC, USA 27511-8506
Phone: +1 919 380-6638
EMail: wzz@lucent.com
Sung-Yurn Rhim
Korea Telecom
17 Woomyun-dong
Seocho-gu, Seoul, Korea
Phone: +82 2 526 6172
EMail: syrhim@kt.co.kr
Jinkyung Hwang
Korea Telecom
17 Woomyun-dong
Seocho-gu, Seoul, Korea
Phone: +82 2 526 6830
EMail: jkhwang@kt.co.kr
<span class="grey">Lu, et al. Informational [Page 42]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-43" ></span>
<span class="grey"><a href="./rfc2995">RFC 2995</a> Pre-SPIRITS Implementations November 2000</span>
Shinji. Ago
NEC Corporation
1131, Hinode, Abiko,
Chiba, 270-1198, Japan
Phone: +81 471 85 7412
EMail: ago@ssf.abk.nec.co.jp
S. Moeenuddin
NEC America, Inc
1525 Walnut Hill Lane,
Irving, TX, USA 75038
Phone: +1 972 518 5102
EMail: moeen@asl.dl.nec.com
S. Hadvani
NEC America, Inc
1525 Walnut Hill Lane,
Irving, TX, USA 75038
Phone: +1 972 518 3628
EMail: hadvani@asl.dl.nec.com
Soren Nyckelgard
Telia Research
Chalmers Teknikpark
41288 Gothenburg
Sweden
EMail: soren.m.nyckelgard@telia.se
John Yoakum
Nortel Networks
507 Airport Blvd, Suite 115,
Morrisville, NC, USA 27560
EMail: yoakum@nortelnetworks.com
Lewis Robart
Nortel Networks
P.O. Box 402
Ogdensburg, NY, USA 13669
EMail: robart@nortelnetworks.com
<span class="grey">Lu, et al. Informational [Page 43]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-44" ></span>
<span class="grey"><a href="./rfc2995">RFC 2995</a> Pre-SPIRITS Implementations November 2000</span>
<span class="h2"><a class="selflink" id="section-11" href="#section-11">11</a>. Full Copyright Statement</span>
Copyright (C) The Internet Society (2000). All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.
The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.
This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Lu, et al. Informational [Page 44]
</pre>
|