1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
|
<pre>Network Working Group H. Kitamura
Request for Comments: 3089 NEC Corporation
Category: Informational April 2001
<span class="h1">A SOCKS-based IPv6/IPv4 Gateway Mechanism</span>
Status of this Memo
This memo provides information for the Internet community. It does
not specify an Internet standard of any kind. Distribution of this
memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2001). All Rights Reserved.
Abstract
This document describes a SOCKS-based IPv6/IPv4 gateway mechanism
that enables smooth heterogeneous communications between the IPv6
nodes and IPv4 nodes.
It is based on the SOCKS protocol [<a href="#ref-SOCKSv5" title=""SOCKS Protocol V5"">SOCKSv5</a>]. By applying the SOCKS
mechanism to the heterogeneous communications and relaying two
"terminated" IPv4 and IPv6 connections at the "application layer"
(the SOCKS server), the SOCKS-based IPv6/IPv4 gateway mechanism is
accomplished.
Since it is accomplished without introducing new protocols, it
provides the same communication environment that is provided by the
SOCKS mechanism. The same appearance is provided to the
heterogeneous communications. No conveniences or functionalities of
current communications are sacrificed.
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
The SOCKS-based IPv6/IPv4 gateway mechanism is based on a mechanism
that relays two "terminated" IPv4 and IPv6 connections at the
"application layer" (the SOCKS server); its characteristics are
inherited from those of the connection relay mechanism at the
application layer and those of the native SOCKS mechanism.
<span class="grey">Kitamura Informational [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc3089">RFC 3089</a> SOCKS-based IPv6/IPv4 Gateway Mechanism April 2001</span>
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Basic SOCKS-based Gateway Mechanism</span>
Figure 1 shows the basic SOCKS-based gateway mechanism.
Client C Gateway G Destination D
+-----------+ (Server)
|Application|
+-->+===========+ +-------------+ +-----------+
same-+ |*SOCKS Lib*| | *Gateway* | |Application|
API +-->+===========+ +=====---=====+ +-----------+
| Socket DNS| | Socket DNS | | Socket DNS|
+-----------+ +-------------+ +-----------+
| [ IPv X ] | |[IPvX]|(IPvY)| | ( IPv Y ) |
+-----------+ +-------------+ +-----------+
|Network I/F| | Network I/F | |Network I/F|
+-----+-----+ +---+-----+---+ +-----+-----+
| | | |
+============+ +------------+
socksified normal
connection connection
(ctrl)+data data only
Fig. 1 Basic SOCKS-based Gateway Mechanism
In this figure, the Client C initiates the communication to the
Destination D. Two new functional blocks are introduced and they
compose the mechanism.
One, *Socks Lib*, is introduced into the client side (Client C) (this
procedure is called "socksifying"). The *Socks Lib* is located
between the application layer and the socket layer, and can replace
applications' socket APIs and DNS name resolving APIs (e.g.,
gethostbyname(), getaddrinfo() etc.). There is a mapping table in it
for a "DNS name resolving delegation" feature (described below).
Each socksified application has its own *Socks Lib*.
The other, *Gateway*, is installed on the IPv6 and IPv4 dual stack
node (Gateway G). It is an enhanced SOCKS server that enables any
types of protocol combination relays between Client C (IPvX) and
Destination D (IPvY). When the *Socks Lib* invokes a relay, one
corresponding *Gateway* process (thread) is spawned from the parent
*Gateway* to take charge of the relay connection.
The following four types of combinations of IPvX and IPvY are
possible in the mechanism.
<span class="grey">Kitamura Informational [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc3089">RFC 3089</a> SOCKS-based IPv6/IPv4 Gateway Mechanism April 2001</span>
type C ------ G ------ D
[IPvX] (IPvY)
A IPv4 IPv4 homogeneous (normal SOCKS)
B IPv4 IPv6 * heterogeneous *
C IPv6 IPv4 * heterogeneous *
D IPv6 IPv6 homogeneous
Type A is supported by the normal SOCKS mechanism. Type B and C are
the main targets for the SOCKS-based IPv6/IPv4 gateway mechanism.
They provide heterogeneous communications. Type D can be supported
by the natural extension of the SOCKS mechanism, because it is a
homogeneous communication.
Since the *Socks Lib* communicates with the *Gateway* by using SOCKS
protocol [<a href="#ref-SOCKSv5" title=""SOCKS Protocol V5"">SOCKSv5</a>], the connection between them (the Client C and the
Gateway G) is a special connection and is called a "socksified
connection". It can transfer not only data but also control
information (e.g., the location information of Destination D).
The connection between the Gateway G and the Destination D is a
normal connection. It is not modified (socksified). A server
application that runs on Destination D does not notice the existence
of the Client C. It recognizes that the peer node of the connection
is the Gateway G (not Client C).
No new protocols are introduced to the SOCKS protocol [<a href="#ref-SOCKSv5" title=""SOCKS Protocol V5"">SOCKSv5</a>] to
accomplish the mechanism.
* Packet Size Adjustment
Since the length of the IPv6 header is different from that of the
IPv4 header, it is necessary to consider the packet size adjustment
in heterogeneous communications. If this is not taken into
consideration, the packet size may exceed the MTU of the network.
In the SOCKS-based IPv6/IPv4 gateway mechanism, it never exceeds
the MTU, because the mechanism is based on relaying two
"terminated" connections at the "application layer". The relayed
data is a simple data stream for the application, and the packet
size is naturally adjusted at each relayed connection side.
* Authenticated Relay
Since the SOCKS is originally designed for firewall systems and it
has various authentication methods, the relayed connections can be
authenticated by the native SOCKS authentication methods.
<span class="grey">Kitamura Informational [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc3089">RFC 3089</a> SOCKS-based IPv6/IPv4 Gateway Mechanism April 2001</span>
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. DNS Name Resolving Procedure</span>
In all communication applications, it is a necessary to obtain
destination IP address information to start a communication. It is,
however, theoretically impossible for the heterogeneous
communications to obtain correct information, because an existing
IPv4 application can not deal with an IPv6 address. It prepares only
a 4-byte address space to store an IP address information, and it can
not store an IPv6 address information into there. This is a critical
problem caused by differences in address length.
In order to solve the problem, a feature called "DNS name resolving
delegation" is used in the SOCKS-based IPv6/IPv4 gateway mechanism.
The feature involves the delegating of DNS name resolving actions at
the source node (Client C) to the relay server (Gateway G). Since
the relay server is an IPv4 and IPv6 dual stack node, DNS name
resolving queries for any address family types of destinations can be
made without causing any problems. Therefore, it is not necessary to
modify the existing DNS mechanism at all.
The feature supports not only the case in which a destination logical
host name (FQDN) information is given but also the case in which a
destination literal (numerical) IP address is given. The latter case
is supported in almost the same way as the former case. Since the
literal IPv6 address expression includes colons (":"), it is
identified as an FQDN (not a literal IPv4 address) for the IPv4
application.
The SOCKS protocol specification [<a href="#ref-SOCKSv5" title=""SOCKS Protocol V5"">SOCKSv5</a>] defines that IPv4 address,
IPv6 address, and DOMAINNAME (FQDN) information can be used in the
ATYP (address type) field of the SOCKS protocol format. In the "DNS
name resolving delegation" feature, the DOMAINNAME (FQDN) information
is used in the ATYP (address type) field. The FQDN information is
transferred from the Client C to the Gateway G to indicate the
Destination D.
In order to solve the formerly explained critical problem, an
appropriate "fake IP" address is introduced in the feature, and it is
used as a virtual destination IP address for a socksified
application. A mapping table is also introduced in the *Socks Lib*
(at the Client C) to manage mappings between "fake IP" and "FQDN". A
"fake IP" address is used as a key to look up the corresponding
"FQDN" information. The mapping table is local and independent of
other applications or their *Socks Lib*s.
<span class="grey">Kitamura Informational [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc3089">RFC 3089</a> SOCKS-based IPv6/IPv4 Gateway Mechanism April 2001</span>
The transparentness to applications is maintained in the feature.
Nothing special is required to execute it except socksifying the
applications. Since DNS name resolving APIs are replaced by the
*Socks Lib*, the "DNS name resolving delegation" is executed
internally merely by calling the DNS name resolving APIs in ordinal
methods.
The "DNS name resolving delegation" is accomplished only when FQDN
information is used in the ATYP (address type) field of the SOCKS
command. Therefore, it is mandatory to do so for heterogeneous
communications. The method of using FQDN information in the ATYP
field depends on the configuration setting and implementation of the
SOCKS protocol. In order to simplify the discussion, only the case
in which the FQDN information is used in the ATYP field is discussed
here.
The detailed internal procedure of the "DNS name resolving
delegation" and address mapping management related issues are
described as follows.
1. An application on the source node (Client C) tries to get the
IP address information of the destination node (Destination D) by
calling the DNS name resolving function (e.g., gethostbyname()).
At this time, the logical host name ("FQDN") information of the
Destination D is passed to the application's *Socks Lib* as an
argument of called APIs.
2. Since the *Socks Lib* has replaced such DNS name resolving APIs,
the real DNS name resolving APIs is not called here. The argued
"FQDN" information is merely registered into a mapping table in
*Socks Lib*, and a "fake IP" address is selected as information
that is replied to the application from a reserved special IP
address space that is never used in real communications (e.g.,
0.0.0.x). The address family type of the "fake IP" address must be
suitable for requests called by the applications. Namely, it must
belong to the same address family of the Client C, even if the
address family of the Destination D is different from it. After
the selected "fake IP" address is registered into the mapping
table as a pair with the "FQDN", it is replied to the application.
3. The application receives the "fake IP" address, and prepares a
"socket". The "fake IP" address information is used as an element
of the "socket". The application calls socket APIs (e.g.,
connect()) to start a communication. The "socket" is used as an
argument of the APIs.
<span class="grey">Kitamura Informational [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc3089">RFC 3089</a> SOCKS-based IPv6/IPv4 Gateway Mechanism April 2001</span>
4. Since the *Socks Lib* has replaced such socket APIs, the real
socket function is not called. The IP address information of the
argued socket is checked. If the address belongs to the special
address space for the fake address, the matched registered "FQDN"
information of the "fake IP" address is obtained from the mapping
table.
5. The "FQDN" information is transferred to the *Gateway* on the
relay server (Gateway G) by using the SOCKS command that is
matched to the called socket APIs. (e.g., for connect(), the
CONNECT command is used.)
6. Finally, the real DNS name resolving API (e.g., getaddrinfo()) is
called at the *Gateway*. At this time, the received "FQDN"
information via the SOCKS protocol is used as an argument of the
called APIs.
7. The *Gateway* obtains the "real IP" address from a DNS server,
and creates a "socket". The "real IP" address information is used
as an element of the "socket".
8. The *Gateway* calls socket APIs (e.g., connect()) to communicate
with the Destination D. The "socket" is used as an argument of the
APIs.
The problem with the feature is that failures of the DNS name
resolving process are detected incorrectly at the source node (Client
C). They are detected as connection-establishment failures.
(Restrictions on applicability of "fake IP" address, etc., are
described in <a href="#section-5">Section 5</a>.)
* Operations for Address Management (reservation, mapping etc.)
The SOCKS-based gateway mechanism does not require the reserving of a
wide global address space for the address mapping, and complex
address allocation and garbage-collection mechanisms are not
necessary.
Such address management operations are done at the *Socks Lib* by
using the fake IP address and the mapping table for the DNS name
resolving delegation. Since the mapping table is prepared in each
application, it is locally closed and independent of other
applications. Therefore, it is easy to manage the table, and it is
not necessary to reserve a wide global address space.
<span class="grey">Kitamura Informational [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc3089">RFC 3089</a> SOCKS-based IPv6/IPv4 Gateway Mechanism April 2001</span>
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Multiple Chained Relay Mechanism (Advanced usage)</span>
The SOCKS-based gateway mechanism has the flexibility to support
multiple chained relay topologies. With the mechanism, IPv4 and IPv6
mixed various communication topologies are accomplished.
Figure 2 shows the structure of the multiple chained relay mechanism.
Client C Gateway G1 Gateway G2 Destination D
+-----------+ (Server 1) (Server 2)
|Application|
+===========+ +-------------+ +-------------+ +-----------+
|*SOCKS Lib*| | *Gateway1* | | *Gateway2* | |Application|
+===========+ +=====---=====+ +=====---=====+ +-----------+
| Socket DNS| | Socket DNS | | Socket DNS | | Socket DNS|
+-----------+ +-------------+ +-------------+ +-----------+
| [ IPv X ] | |[IPvX]|(IPvY)| |(IPvY)|{IPvZ}| | { IPv Z } |
+-----------+ +-------------+ +-------------+ +-----------+
|Network I/F| | Network I/F | | Network I/F | |Network I/F|
+-----+-----+ +---+-----+---+ +---+-----+---+ +-----+-----+
| | | | | |
+============+ +==========+ +------------+
socksified socksified normal
connection connection connection
(ctrl)+data (ctrl)+data data only
Fig. 2 Multiple Chained Relay Mechanism
In this figure, the source node (Client C) initiates the
communication with the destination (Destination D). Underneath, the
connection is replaced with three connections, and they are relayed
at the two relay servers (Gateway G1 and G2). The *Gateway* includes
the same type of functions of *Socks Lib*. By enabling the *Socks
Lib* functions at the *Gateway1* on the first relay server (Gateway
G1), the multiple chained relay topology is accomplished.
There is no limitation on the number of relay operations between the
source node and the final destination node. It is possible to have
more than two intermediate relay servers. To simplify the
explanation, a twice-relayed topology is shown here.
Since the multiple chained relay is more complex than one-time relay
and causes complexity, it is recommended that the multiple chained
relay communication should be used only when it is necessary for some
reason (e.g., usable protocols or topologies are limited by routers
etc.).
<span class="grey">Kitamura Informational [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc3089">RFC 3089</a> SOCKS-based IPv6/IPv4 Gateway Mechanism April 2001</span>
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Applicability statement</span>
The SOCKS-based gateway mechanism requests socksification of
applications (install *Socks Lib*) to accomplish heterogeneous
communications. It is not necessary to modify (change source codes
and recompile them, etc.) the applications, because typical
socksification is done by changing the linking order of dynamic link
libraries (specifically, by linking the SOCKS dynamic link library
before the dynamic link libraries for normal socket and DNS name
resolving APIs).
The mechanism does not request modification of the DNS system,
because the DNS name resolving procedure at the Client C is delegated
to the dual stack node Gateway G.
Other than the socksification, the SOCKS-based gateway mechanism has
the following three types of constraints.
1. Essential constraints:
Constraints are caused by the address length difference between
IPv4 and IPv6.
Functions that request an IP address as one of the return values
(e.g., getpeername() and getsockname() etc.) can not provide the
correct IP address as a return value. However, a suitable port
value can be provided, because IPv4 and IPv6 use the same size
port space and an appropriate port information is transferred by
the SOCKS protocol.
2. Constraints of the SOCKS mechanism:
Since the current SOCKS system can not socksify all of the tricky
applications in which extraordinary manners are used to create
connections, the SOCKS-based gateway mechanism can not be applied
to them.
3. Constraints to deal with the fake address:
The fake address must be dealt with as a temporary value at the
application. It is used as a key value in the mapping table for
the "DNS name resolving delegation" feature. When the application
is finished and the mapping table disappears, the fake address
information must be also released.
Even if it is recorded permanently (e.g., recorded as a bookmark),
serious problems will not occur. The recorded fake address
information will merely become useless, because fake address
<span class="grey">Kitamura Informational [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc3089">RFC 3089</a> SOCKS-based IPv6/IPv4 Gateway Mechanism April 2001</span>
information is taken from a reserved special IP address space that
is never used in real communications (e.g., 0.0.0.x) and such a
information is useless for the normal communication applications.
Furthermore, such cases will be rare because most applications
usually record FQDN information (not fake IP address information)
to the bookmark, etc.
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a> Native SOCKS mechanism considerations</span>
The characteristics of the SOCKS-based IPv6/IPv4 gateway mechanism
are inherited from those of the native SOCKS mechanism. Therefore,
consideration issues of the native SOCKS mechanism are discussed in
this section.
The SOCKSv5 protocol is composed of three commands (CONNECT, BIND and
UDP ASSOCIATE). All of three commands can be applied in the SOCKS-
based IPv6/IPv4 gateway mechanism.
This document is described with assuming the usage of the CONNECT
command mainly, because the CONNECT command is the main and most
frequently used command in the SOCKS mechanism. Since the CONNECT
command does not have clear week points, we can use it freely without
considerations.
The other (BIND and UDP ASSOCIATE) commands have the following weak
points. So, we have to consider these points when we use the BIND or
UDP ASSOCIATE commands in the mechanism.
The BIND command is basically designed to support reverse-channel
rendezvous of the FTP type applications. So, general usages of the
BIND command may cause problems.
The UDP ASSOCIATE command is basically designed for simple UDP
applications (e.g., archie). It is not general enough to support a
large class of applications that use both TCP and UDP.
<span class="grey">Kitamura Informational [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc3089">RFC 3089</a> SOCKS-based IPv6/IPv4 Gateway Mechanism April 2001</span>
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Security Considerations</span>
Since the SOCKS-based IPv6/IPv4 gateway mechanism is based on SOCKSv5
protocol, the security feature of the mechanism matches that of
SOCKSv5. It is described in the Security Considerations section of
the SOCKS Protocol Version 5 [<a href="#ref-SOCKSv5" title=""SOCKS Protocol V5"">SOCKSv5</a>].
The mechanism is based on relaying two "terminated" connections at
the "application layer". The end-to-end security is maintained at
each of the relayed connections (i.e., between Client C and Gateway
G, and between Gateway G and Destination D). The mechanism does not
provide total end-to-end security relay between the original source
(Client C) and the final destination (Destination D).
<span class="grey">Kitamura Informational [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc3089">RFC 3089</a> SOCKS-based IPv6/IPv4 Gateway Mechanism April 2001</span>
<span class="h2"><a class="selflink" id="appendix-A" href="#appendix-A">Appendix A</a>. Implementations</span>
Currently, there are two independent implementations of the SOCKS-
based IPv6/IPv4 gateway mechanism. Both of them are open to the
public.
One is NEC's implementation. Its source codes are available at the
following URL.
<a href="http://www.socks.nec.com/">http://www.socks.nec.com/</a>
The other is Fujitsu Lab.'s implementation, which is called
"SOCKS64". Its source codes are available at the following URL.
<a href="ftp://ftp.kame.net/pub/kame/misc/socks64-">ftp://ftp.kame.net/pub/kame/misc/socks64-</a>...
References
[<a id="ref-SOCKSv5">SOCKSv5</a>] Leech, M., Ganis, M., Lee, Y., Kuris, R., Koblas, D. and
L. Jones, "SOCKS Protocol V5", <a href="./rfc1928">RFC 1928</a>, April 1996.
[<a id="ref-TRANSMECH">TRANSMECH</a>] Gilligan, R. and E. Nordmark, "Transition Mechanisms for
IPv6 Hosts and Routers", <a href="./rfc2893">RFC 2893</a>, August 2000.
[<a id="ref-IPv6">IPv6</a>] Deering, S. and R. Hinden, "Internet Protocol, Version 6
(IPv6) Specification", <a href="./rfc2460">RFC 2460</a>, December 1998.
[<a id="ref-INET99">INET99</a>] H. Kitamura, "Entering the IPv6 communication world by
the SOCKS-based IPv6/IPv4 Translator", in Proceedings of
INET99, July 1999.
Author's Address
Hiroshi Kitamura
NEC Corporation
Development Laboratories
(Igarashi Building 4F) 11-5, Shibaura 2-Chome,
Minato-Ku, Tokyo 108-8557, JAPAN
Phone: +81 (3) 5476-1071
Fax: +81 (3) 5476-1005
EMail: kitamura@da.jp.nec.com
<span class="grey">Kitamura Informational [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc3089">RFC 3089</a> SOCKS-based IPv6/IPv4 Gateway Mechanism April 2001</span>
Full Copyright Statement
Copyright (C) The Internet Society (2001). All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.
The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.
This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Kitamura Informational [Page 12]
</pre>
|