1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
|
<pre>Network Working Group L. Berger, Editor
Request for Comments: 3473 Movaz Networks
Category: Standards Track January 2003
<span class="h1">Generalized Multi-Protocol Label Switching (GMPLS) Signaling</span>
<span class="h1">Resource ReserVation Protocol-Traffic Engineering (RSVP-TE) Extensions</span>
Status of this Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2003). All Rights Reserved.
Abstract
This document describes extensions to Multi-Protocol Label Switching
(MPLS) Resource ReserVation Protocol - Traffic Engineering (RSVP-TE)
signaling required to support Generalized MPLS. Generalized MPLS
extends the MPLS control plane to encompass time-division (e.g.,
Synchronous Optical Network and Synchronous Digital Hierarchy,
SONET/SDH), wavelength (optical lambdas) and spatial switching (e.g.,
incoming port or fiber to outgoing port or fiber). This document
presents a RSVP-TE specific description of the extensions. A generic
functional description can be found in separate documents.
Table of Contents
<a href="#section-1">1</a>. Introduction .............................................. <a href="#page-2">2</a>
<a href="#section-2">2</a>. Label Related Formats .................................... <a href="#page-3">3</a>
<a href="#section-2.1">2.1</a> Generalized Label Request Object ........................ <a href="#page-3">3</a>
<a href="#section-2.2">2.2</a> Bandwidth Encoding ...................................... <a href="#page-4">4</a>
<a href="#section-2.3">2.3</a> Generalized Label Object ................................ <a href="#page-5">5</a>
<a href="#section-2.4">2.4</a> Waveband Switching ...................................... <a href="#page-5">5</a>
<a href="#section-2.5">2.5</a> Suggested Label ......................................... <a href="#page-6">6</a>
<a href="#section-2.6">2.6</a> Label Set ............................................... <a href="#page-7">7</a>
<a href="#section-3">3</a>. Bidirectional LSPs ........................................ <a href="#page-8">8</a>
<a href="#section-3.1">3.1</a> Procedures .............................................. <a href="#page-9">9</a>
<a href="#section-3.2">3.2</a> Contention Resolution ................................... <a href="#page-9">9</a>
<a href="#section-4">4</a>. Notification .............................................. <a href="#page-9">9</a>
<a href="#section-4.1">4.1</a> Acceptable Label Set Object ............................. <a href="#page-10">10</a>
<a href="#section-4.2">4.2</a> Notify Request Objects .................................. <a href="#page-10">10</a>
<span class="grey">Berger Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc3473">RFC 3473</a> GMPLS Signaling - RSVP-TE Extensions January 2003</span>
<a href="#section-4.3">4.3</a> Notify Message .......................................... <a href="#page-12">12</a>
<a href="#section-4.4">4.4</a> Removing State with a PathErr message ................... <a href="#page-14">14</a>
<a href="#section-5">5</a>. Explicit Label Control .................................... <a href="#page-15">15</a>
<a href="#section-5.1">5.1</a> Label ERO subobject ..................................... <a href="#page-15">15</a>
<a href="#section-5.2">5.2</a> Label RRO subobject ..................................... <a href="#page-16">16</a>
<a href="#section-6">6</a>. Protection Object ......................................... <a href="#page-17">17</a>
<a href="#section-6.1">6.1</a> Procedures .............................................. <a href="#page-18">18</a>
<a href="#section-7">7</a>. Administrative Status Information ......................... <a href="#page-18">18</a>
<a href="#section-7.1">7.1</a> Admin Status Object ..................................... <a href="#page-18">18</a>
<a href="#section-7.2">7.2</a> Path and Resv Message Procedures ........................ <a href="#page-18">18</a>
<a href="#section-7.3">7.3</a> Notify Message Procedures ............................... <a href="#page-20">20</a>
<a href="#section-8">8</a>. Control Channel Separation ................................ <a href="#page-21">21</a>
<a href="#section-8.1">8.1</a> Interface Identification ................................ <a href="#page-21">21</a>
<a href="#section-8.2">8.2</a> Errored Interface Identification ........................ <a href="#page-23">23</a>
<a href="#section-9">9</a>. Fault Handling ............................................ <a href="#page-25">25</a>
<a href="#section-9.1">9.1</a> Restart_Cap Object ...................................... <a href="#page-25">25</a>
<a href="#section-9.2">9.2</a> Processing of Restart_Cap Object ........................ <a href="#page-26">26</a>
9.3 Modification to Hello Processing to Support
State Recovery .......................................... <a href="#page-26">26</a>
<a href="#section-9.4">9.4</a> Control Channel Faults .................................. <a href="#page-27">27</a>
<a href="#section-9.5">9.5</a> Nodal Faults ............................................ <a href="#page-27">27</a>
<a href="#section-10">10</a>. RSVP Message Formats and Handling ......................... <a href="#page-30">30</a>
<a href="#section-10.1">10.1</a> RSVP Message Formats ................................... <a href="#page-30">30</a>
<a href="#section-10.2">10.2</a> Addressing Path and PathTear Messages ................. <a href="#page-32">32</a>
<a href="#section-11">11</a>. Acknowledgments ........................................... <a href="#page-32">32</a>
<a href="#section-12">12</a>. Security Considerations ................................... <a href="#page-33">33</a>
<a href="#section-13">13</a>. IANA Considerations ....................................... <a href="#page-34">34</a>
<a href="#section-13.1">13.1</a> IANA Assignments ....................................... <a href="#page-35">35</a>
<a href="#section-14">14</a>. Intellectual Property Considerations ...................... <a href="#page-36">36</a>
<a href="#section-15">15</a>. References ................................................ <a href="#page-37">37</a>
<a href="#section-15.1">15.1</a> Normative References ................................... <a href="#page-37">37</a>
<a href="#section-15.2">15.2</a> Informative References ................................. <a href="#page-38">38</a>
<a href="#section-16">16</a>. Contributors .............................................. <a href="#page-38">38</a>
<a href="#section-17">17</a>. Editor's Address .......................................... <a href="#page-41">41</a>
<a href="#section-18">18</a>. Full Copyright Statement .................................. <a href="#page-42">42</a>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
Generalized MPLS extends MPLS from supporting packet (PSC) interfaces
and switching to include support of three new classes of interfaces
and switching: Time-Division Multiplex (TDM), Lambda Switch (LSC) and
Fiber-Switch (FSC). A functional description of the extensions to
MPLS signaling needed to support the new classes of interfaces and
switching is provided in [<a href="./rfc3471" title=""Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description"">RFC3471</a>]. This document presents RSVP-TE
specific formats and mechanisms needed to support all four classes of
interfaces.
<span class="grey">Berger Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc3473">RFC 3473</a> GMPLS Signaling - RSVP-TE Extensions January 2003</span>
[<a id="ref-RFC3471">RFC3471</a>] should be viewed as a companion document to this document.
The format of this document parallels [<a href="./rfc3471" title=""Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description"">RFC3471</a>]. In addition to the
other features of Generalized MPLS, this document also defines RSVP-
TE specific features to support rapid failure notification, see
Sections <a href="#section-4.2">4.2</a> and <a href="#section-4.3">4.3</a>.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Label Related Formats</span>
This section defines formats for a generalized label request, a
generalized label, support for waveband switching, suggested label
and label sets.
<span class="h3"><a class="selflink" id="section-2.1" href="#section-2.1">2.1</a>. Generalized Label Request Object</span>
A Path message SHOULD contain as specific an LSP (Label Switched
Path) Encoding Type as possible to allow the maximum flexibility in
switching by transit LSRs. A Generalized Label Request object is set
by the ingress node, transparently passed by transit nodes, and used
by the egress node. The Switching Type field may also be updated
hop-by-hop.
The format of a Generalized Label Request object is:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Length | Class-Num (19)| C-Type (4) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LSP Enc. Type |Switching Type | G-PID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
See [<a href="./rfc3471" title=""Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description"">RFC3471</a>] for a description of parameters.
<span class="h4"><a class="selflink" id="section-2.1.1" href="#section-2.1.1">2.1.1</a>. Procedures</span>
A node processing a Path message containing a Generalized Label
Request must verify that the requested parameters can be satisfied by
the interface on which the incoming label is to be allocated, the
node itself, and by the interface on which the traffic will be
transmitted. The node may either directly support the LSP or it may
use a tunnel (FA), i.e., another class of switching. In either case,
each parameter must be checked.
<span class="grey">Berger Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc3473">RFC 3473</a> GMPLS Signaling - RSVP-TE Extensions January 2003</span>
Note that local node policy dictates when tunnels may be used and
when they may be created. Local policy may allow for tunnels to be
dynamically established or may be solely administratively controlled.
For more information on tunnels and processing of ER hops when using
tunnels see [<a href="#ref-MPLS-HIERARCHY" title=""LSP Hierarchy with MPLS TE"">MPLS-HIERARCHY</a>].
Transit and egress nodes MUST verify that the node itself and, where
appropriate, that the interface or tunnel on which the traffic will
be transmitted can support the requested LSP Encoding Type. If
encoding cannot be supported, the node MUST generate a PathErr
message, with a "Routing problem/Unsupported Encoding" indication.
Nodes MUST verify that the type indicated in the Switching Type
parameter is supported on the corresponding incoming interface. If
the type cannot be supported, the node MUST generate a PathErr
message with a "Routing problem/Switching Type" indication.
The G-PID parameter is normally only examined at the egress. If the
indicated G-PID cannot be supported then the egress MUST generate a
PathErr message, with a "Routing problem/Unsupported L3PID"
indication. In the case of PSC and when penultimate hop popping
(PHP) is requested, the penultimate hop also examines the (stored)
G-PID during the processing of the Resv message. In this case if the
G-PID is not supported, then the penultimate hop MUST generate a
ResvErr message with a "Routing problem/Unacceptable label value"
indication. The generated ResvErr message MAY include an Acceptable
Label Set, see <a href="#section-4.1">Section 4.1</a>.
When an error message is not generated, normal processing occurs. In
the transit case this will typically result in a Path message being
propagated. In the egress case and PHP special case this will
typically result in a Resv message being generated.
<span class="h3"><a class="selflink" id="section-2.2" href="#section-2.2">2.2</a>. Bandwidth Encoding</span>
Bandwidth encodings are carried in the SENDER_TSPEC and FLOWSPEC
objects. See [<a href="./rfc3471" title=""Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description"">RFC3471</a>] for a definition of values to be used for
specific signal types. These values are set in the Peak Data Rate
field of Int-Serv objects, see [<a href="./rfc2210" title=""The Use of RSVP with IETF Integrated Services"">RFC2210</a>]. Other bandwidth/service
related parameters in the object are ignored and carried
transparently.
<span class="grey">Berger Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc3473">RFC 3473</a> GMPLS Signaling - RSVP-TE Extensions January 2003</span>
<span class="h3"><a class="selflink" id="section-2.3" href="#section-2.3">2.3</a>. Generalized Label Object</span>
The format of a Generalized Label object is:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Length | Class-Num (16)| C-Type (2) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Label |
| ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
See [<a href="./rfc3471" title=""Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description"">RFC3471</a>] for a description of parameters and encoding of labels.
<span class="h4"><a class="selflink" id="section-2.3.1" href="#section-2.3.1">2.3.1</a>. Procedures</span>
The Generalized Label travels in the upstream direction in Resv
messages.
The presence of both a generalized and normal label object in a Resv
message is a protocol error and should treated as a malformed message
by the recipient.
The recipient of a Resv message containing a Generalized Label
verifies that the values passed are acceptable. If the label is
unacceptable then the recipient MUST generate a ResvErr message with
a "Routing problem/MPLS label allocation failure" indication.
<span class="h3"><a class="selflink" id="section-2.4" href="#section-2.4">2.4</a>. Waveband Switching Object</span>
Waveband switching uses the same format as the generalized label, see
<a href="#section-2.2">section 2.2</a>. Waveband Label uses C-Type (3),
In the context of waveband switching, the generalized label has the
following format:
<span class="grey">Berger Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc3473">RFC 3473</a> GMPLS Signaling - RSVP-TE Extensions January 2003</span>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Length | Class-Num (16)| C-Type (3) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Waveband Id |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Start Label |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| End Label |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
See [<a href="./rfc3471" title=""Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description"">RFC3471</a>] for a description of parameters.
<span class="h4"><a class="selflink" id="section-2.4.1" href="#section-2.4.1">2.4.1</a>. Procedures</span>
The procedures defined in <a href="#section-2.3.1">Section 2.3.1</a> apply to waveband switching.
This includes generating a ResvErr message with a "Routing
problem/MPLS label allocation failure" indication if any of the label
fields are unrecognized or unacceptable.
Additionally, when a waveband is switched to another waveband, it is
possible that the wavelengths within the waveband will be mirrored
about a center frequency. When this type of switching is employed,
the start and end label in the waveband label object MUST be flipped
before forwarding the label object with the new waveband Id. In this
manner an egress/ingress LSR which receives a waveband label which
has these values inverted, knows that it must also invert its egress
association to pick up the proper wavelengths.
This operation MUST be performed in both directions when a
bidirectional waveband tunnel is being established.
<span class="h3"><a class="selflink" id="section-2.5" href="#section-2.5">2.5</a>. Suggested Label Object</span>
The format of a Suggested_Label object is identical to a generalized
label. It is used in Path messages. A Suggested_Label object uses
Class-Number 129 (of form 10bbbbbb) and the C-Type of the label being
suggested.
Errors in received Suggested_Label objects MUST be ignored. This
includes any received inconsistent or unacceptable values.
Per [<a href="./rfc3471" title=""Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description"">RFC3471</a>], if a downstream node passes a label value that differs
from the suggested label upstream, the upstream LSR MUST either
reconfigure itself so that it uses the label specified by the
downstream node or generate a ResvErr message with a "Routing
<span class="grey">Berger Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc3473">RFC 3473</a> GMPLS Signaling - RSVP-TE Extensions January 2003</span>
problem/Unacceptable label value" indication. Furthermore, an
ingress node SHOULD NOT transmit data traffic using a suggested label
until the downstream node passes a corresponding label upstream.
<span class="h3"><a class="selflink" id="section-2.6" href="#section-2.6">2.6</a>. Label Set Object</span>
The Label_Set object uses Class-Number 36 (of form 0bbbbbbb) and the
C-Type of 1. It is used in Path messages.
The format of a Label_Set is:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Length | Class-Num (36)| C-Type (1) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Action | Reserved | Label Type |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Subchannel 1 |
| ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: : :
: : :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Subchannel N |
| ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Label Type: 14 bits
Indicates the type and format of the labels carried in the object.
Values match the C-Type of the appropriate RSVP_LABEL object.
Only the low order 8 bits are used in this field.
See [<a href="./rfc3471" title=""Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description"">RFC3471</a>] for a description of other parameters.
<span class="h4"><a class="selflink" id="section-2.6.1" href="#section-2.6.1">2.6.1</a>. Procedures</span>
A Label Set is defined via one or more Label_Set objects. Specific
labels/subchannels can be added to or excluded from a Label Set via
Action zero (0) and one (1) objects respectively. Ranges of
labels/subchannels can be added to or excluded from a Label Set via
Action two (2) and three (3) objects respectively. When the
Label_Set objects only list labels/subchannels to exclude, this
implies that all other labels are acceptable.
<span class="grey">Berger Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc3473">RFC 3473</a> GMPLS Signaling - RSVP-TE Extensions January 2003</span>
The absence of any Label_Set objects implies that all labels are
acceptable. A Label Set is included when a node wishes to restrict
the label(s) that may be used downstream.
On reception of a Path message, the receiving node will restrict its
choice of labels to one which is in the Label Set. Nodes capable of
performing label conversion may also remove the Label Set prior to
forwarding the Path message. If the node is unable to pick a label
from the Label Set or if there is a problem parsing the Label_Set
objects, then the request is terminated and a PathErr message with a
"Routing problem/Label Set" indication MUST be generated. It is a
local matter if the Label Set is stored for later selection on the
Resv or if the selection is made immediately for propagation in the
Resv.
On reception of a Path message, the Label Set represented in the
message is compared against the set of available labels at the
downstream interface and the resulting intersecting Label Set is
forwarded in a Path message. When the resulting Label Set is empty,
the Path must be terminated, and a PathErr message, and a "Routing
problem/Label Set" indication MUST be generated. Note that
intersection is based on the physical labels (actual wavelength/band
values) which may have different logical values on different links,
as a result it is the responsibility of the node to map these values
so that they have a consistent physical meaning, or to drop the
particular values from the set if no suitable logical label value
exists.
When processing a Resv message at an intermediate node, the label
propagated upstream MUST fall within the Label Set.
Note, on reception of a Resv message a node that is incapable of
performing label conversion has no other choice than to use the same
physical label (wavelength/band) as received in the Resv message. In
this case, the use and propagation of a Label Set will significantly
reduce the chances that this allocation will fail.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Bidirectional LSPs</span>
Bidirectional LSP setup is indicated by the presence of an Upstream
Label in the Path message. An Upstream_Label object has the same
format as the generalized label, see <a href="#section-2.3">Section 2.3</a>. The Upstream_Label
object uses Class-Number 35 (of form 0bbbbbbb) and the C-Type of the
label being used.
<span class="grey">Berger Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc3473">RFC 3473</a> GMPLS Signaling - RSVP-TE Extensions January 2003</span>
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. Procedures</span>
The process of establishing a bidirectional LSP follows the
establishment of a unidirectional LSP with some additions. To
support bidirectional LSPs an Upstream_Label object is added to the
Path message. The Upstream_Label object MUST indicate a label that
is valid for forwarding at the time the Path message is sent.
When a Path message containing an Upstream_Label object is received,
the receiver first verifies that the upstream label is acceptable.
If the label is not acceptable, the receiver MUST issue a PathErr
message with a "Routing problem/Unacceptable label value" indication.
The generated PathErr message MAY include an Acceptable Label Set,
see <a href="#section-4.1">Section 4.1</a>.
An intermediate node must also allocate a label on the outgoing
interface and establish internal data paths before filling in an
outgoing upstream label and propagating the Path message. If an
intermediate node is unable to allocate a label or internal
resources, then it MUST issue a PathErr message with a "Routing
problem/MPLS label allocation failure" indication.
Terminator nodes process Path messages as usual, with the exception
that the upstream label can immediately be used to transport data
traffic associated with the LSP upstream towards the initiator.
When a bidirectional LSP is removed, both upstream and downstream
labels are invalidated and it is no longer valid to send data using
the associated labels.
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. Contention Resolution</span>
There are two additional contention resolution related considerations
when controlling bidirectional LSP setup via RSVP-TE. The first is
that for the purposes of RSVP contention resolution, the node ID is
the IP address used in the RSVP_HOP object. The second is that a
neighbor's node ID might not be known when sending an initial Path
message. When this case occurs, a node should suggest a label chosen
at random from the available label space.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Notification</span>
This section covers several notification related extensions. The
first extension defines the Acceptable Label Set object to support
Notification on Label Error, per [<a href="./rfc3471" title=""Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description"">RFC3471</a>]. The second and third
extensions enable expedited notification of failures and other events
to nodes responsible for restoring failed LSPs. (The second
extension, the Notify Request object, identifies where event
<span class="grey">Berger Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc3473">RFC 3473</a> GMPLS Signaling - RSVP-TE Extensions January 2003</span>
notifications are to be sent. The third extension, the Notify
message, provides for general event notification.) The final
notification related extension allows for the removal of Path state
on handling of PathErr messages.
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. Acceptable Label Set Object</span>
Acceptable_Label_Set objects use a Class-Number 130 (of form
10bbbbbb). The remaining contents of the object, including C-Type,
have the identical format as the Label_Set object, see <a href="#section-2.6">Section 2.6</a>.
Acceptable_Label_Set objects may be carried in PathErr and ResvErr
messages. The procedures for defining an Acceptable Label Set follow
the procedures for defining a Label Set, see <a href="#section-2.6.1">Section 2.6.1</a>.
Specifically, an Acceptable Label Set is defined via one or more
Acceptable_Label_Set objects. Specific labels/subchannels can be
added to or excluded from an Acceptable Label Set via Action zero
(0) and one (1) objects respectively. Ranges of labels/subchannels
can be added to or excluded from an Acceptable Label Set via Action
two (2) and three (3) objects respectively. When the
Acceptable_Label_Set objects only list labels/subchannels to exclude,
this implies that all other labels are acceptable.
The inclusion of Acceptable_Label_Set objects is optional. If
included, the PathErr or ResvErr message SHOULD contain a "Routing
problem/Unacceptable label value" indication. The absence of
Acceptable_Label_Set objects does not have any specific meaning.
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. Notify Request Objects</span>
Notifications may be sent via the Notify message defined below. The
Notify Request object is used to request the generation of
notifications. Notifications, i.e., the sending of a Notify message,
may be requested in both the upstream and downstream directions.
<span class="h4"><a class="selflink" id="section-4.2.1" href="#section-4.2.1">4.2.1</a>. Required Information</span>
The Notify Request Object may be carried in Path or Resv Messages,
see <a href="#section-7">Section 7</a>. The Notify_Request Class-Number is 195 (of form
11bbbbbb). The format of a Notify Request is:
o IPv4 Notify Request Object
<span class="grey">Berger Standards Track [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc3473">RFC 3473</a> GMPLS Signaling - RSVP-TE Extensions January 2003</span>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Length | Class-Num (1) | C-Type (1) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IPv4 Notify Node Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
IPv4 Notify Node Address: 32 bits
The IP address of the node that should be notified when generating
an error message.
o IPv6 Notify Request Object
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Length | Class-Num (2) | C-Type (2) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| IPv6 Notify Node Address |
| |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
IPv6 Notify Node Address: 16 bytes
The IP address of the node that should be notified when generating
an error message.
If a message contains multiple Notify_Request objects, only the first
object is meaningful. Subsequent Notify_Request objects MAY be
ignored and SHOULD NOT be propagated.
<span class="h4"><a class="selflink" id="section-4.2.2" href="#section-4.2.2">4.2.2</a>. Procedures</span>
A Notify Request object may be inserted in Path or Resv messages to
indicate the address of a node that should be notified of an LSP
failure. As previously mentioned, notifications may be requested in
both the upstream and downstream directions. Upstream notification
is indicated via the inclusion of a Notify Request Object in the
corresponding Path message. Downstream notification is indicated via
the inclusion of a Notify Request Object in the corresponding Resv
message.
<span class="grey">Berger Standards Track [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc3473">RFC 3473</a> GMPLS Signaling - RSVP-TE Extensions January 2003</span>
A node receiving a message containing a Notify Request object SHOULD
store the Notify Node Address in the corresponding state block. If
the node is a transit node, it SHOULD also included a Notify Request
object in the outgoing Path or Resv message. The outgoing Notify
Node Address MAY be updated based on local policy.
Note that the inclusion of a Notify Request object does not guarantee
that a Notify message will be generated.
<span class="h3"><a class="selflink" id="section-4.3" href="#section-4.3">4.3</a>. Notify Message</span>
The Notify message provides a mechanism to inform non-adjacent nodes
of LSP related events. Notify messages are normally generated only
after a Notify Request object has been received. The Notify message
differs from the currently defined error messages (i.e., PathErr and
ResvErr messages) in that it can be "targeted" to a node other than
the immediate upstream or downstream neighbor and that it is a
generalized notification mechanism. The Notify message does not
replace existing error messages. The Notify message may be sent
either (a) normally, where non-target nodes just forward the Notify
message to the target node, similar to ResvConf processing in
[<a href="./rfc2205" title=""Resource ReserVation Protocol -- Version 1 Functional Specification"">RFC2205</a>]; or (b) encapsulated in a new IP header whose destination
is equal to the target IP address. Regardless of the transmission
mechanism, nodes receiving a Notify message not destined to the node
forward the message, unmodified, towards the target.
To support reliable delivery of the Notify message, an Ack Message
[<a href="./rfc2961" title=""RSVP Refresh Overhead Reduction Extensions"">RFC2961</a>] is used to acknowledge the receipt of a Notify Message.
See [<a href="./rfc2961" title=""RSVP Refresh Overhead Reduction Extensions"">RFC2961</a>] for details on reliable RSVP message delivery.
<span class="h4"><a class="selflink" id="section-4.3.1" href="#section-4.3.1">4.3.1</a>. Required Information</span>
The Notify message is a generalized notification message. The IP
destination address is set to the IP address of the intended
receiver. The Notify message is sent without the router alert
option. A single Notify message may contain notifications being
sent, with respect to each listed session, both upstream and
downstream.
The Notify message has a Message Type of 21. The Notify message
format is as follows:
<Notify message> ::= <Common Header> [<INTEGRITY>]
[ [<MESSAGE_ID_ACK> | <MESSAGE_ID_NACK>] ... ]
[ <MESSAGE_ID> ]
<ERROR_SPEC> <notify session list>
<span class="grey">Berger Standards Track [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc3473">RFC 3473</a> GMPLS Signaling - RSVP-TE Extensions January 2003</span>
<notify session list> ::= [ <notify session list> ]
<upstream notify session> |
<downstream notify session>
<upstream notify session> ::= <SESSION> [ <ADMIN_STATUS> ]
[<POLICY_DATA>...]
<sender descriptor>
<downstream notify session> ::= <SESSION> [<POLICY_DATA>...]
<flow descriptor list>
The ERROR_SPEC object specifies the error and includes the IP address
of either the node that detected the error or the link that has
failed. See ERROR_SPEC definition in [<a href="./rfc2205" title=""Resource ReserVation Protocol -- Version 1 Functional Specification"">RFC2205</a>]. The MESSAGE_ID and
related objects are defined in [<a href="./rfc2961" title=""RSVP Refresh Overhead Reduction Extensions"">RFC2961</a>] and are used when [<a href="./rfc2961" title=""RSVP Refresh Overhead Reduction Extensions"">RFC2961</a>]
is supported.
<span class="h4"><a class="selflink" id="section-4.3.2" href="#section-4.3.2">4.3.2</a>. Procedures</span>
Notify messages are most commonly generated at nodes that detect an
error that will trigger the generation of a PathErr or ResvErr
message. If a PathErr message is to be generated and a Notify
Request object has been received in the corresponding Path message,
then a Notify message destined to the recorded node SHOULD be
generated. If a ResvErr message is to be generated and a Notify
Request object has been received in the corresponding Resv message,
then a Notify message destined to the recorded node SHOULD be
generated. As previously mentioned, a single error may generate a
Notify message in both the upstream and downstream directions. Note
that a Notify message MUST NOT be generated unless an appropriate
Notify Request object has been received.
When generating Notify messages, a node SHOULD attempt to combine
notifications being sent to the same Notify Node and that share the
same ERROR_SPEC into a single Notify message. The means by which a
node determines which information may be combined is implementation
dependent. Implementations may use event, timer based or other
approaches. If using a timer based approach, the implementation
SHOULD allow the user to configure the interval over which
notifications are combined. When using a timer based approach, a
default "notification interval" of 1 ms SHOULD be used. Notify
messages SHOULD be delivered using the reliable message delivery
mechanisms defined in [<a href="./rfc2961" title=""RSVP Refresh Overhead Reduction Extensions"">RFC2961</a>].
Upon receiving a Notify message, the Notify Node SHOULD send a
corresponding Ack message.
<span class="grey">Berger Standards Track [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc3473">RFC 3473</a> GMPLS Signaling - RSVP-TE Extensions January 2003</span>
<span class="h3"><a class="selflink" id="section-4.4" href="#section-4.4">4.4</a>. Removing State with a PathErr message</span>
The PathErr message as defined in [<a href="./rfc2205" title=""Resource ReserVation Protocol -- Version 1 Functional Specification"">RFC2205</a>] is sent hop-by-hop to the
source of the associated Path message. Intermediate nodes may
inspect this message, but take no action upon it. In an environment
where Path messages are routed according to an IGP and that route may
change dynamically, this behavior is a fine design choice.
However, when RSVP is used with explicit routes, it is often the case
that errors can only be corrected at the source node or some other
node further upstream. In order to clean up resources, the source
must receive the PathErr and then either send a PathTear (or wait for
the messages to timeout). This causes idle resources to be held
longer than necessary and increases control message load. In a
situation where the control plane is attempting to recover from a
serious outage, both the message load and the delay in freeing
resources hamper the ability to rapidly reconverge.
The situation can be greatly improved by allowing state to be removed
by intermediate nodes on certain error conditions. To facilitate
this a new flag is defined in the ERROR_SPEC object. The two
currently defined ERROR_SPEC objects (IPv4 and IPv6 error spec
objects) each contain a one byte flag field. Within that field two
flags are defined. This specification defines a third flag, 0x04,
Path_State_Removed.
The semantics of the Path_State_Removed flag are simply that the node
forwarding the error message has removed the Path state associated
with the PathErr. By default, the Path_State_Removed flag is always
set to zero when generating or forwarding a PathErr message. A node
which encounters an error MAY set this flag if the error results in
the associated Path state being discarded. If the node setting the
flag is not the session endpoint, the node SHOULD generate a
corresponding PathTear. A node receiving a PathErr message
containing an ERROR_SPEC object with the Path_State_Removed flag set
MAY also remove the associated Path state. If the Path state is
removed the Path_State_Removed flag SHOULD be set in the outgoing
PathErr message. A node which does not remove the associated Path
state MUST NOT set the Path_State_Removed flag. A node that receives
an error with the Path_State_Removed flag set to zero MUST NOT set
this flag unless it also generates a corresponding PathTear message.
Note that the use of this flag does not result in any
interoperability incompatibilities.
<span class="grey">Berger Standards Track [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc3473">RFC 3473</a> GMPLS Signaling - RSVP-TE Extensions January 2003</span>
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Explicit Label Control</span>
The Label ERO (Explicit Route Object) and RRO (Record Route Object)
subobjects are defined to support Explicit Label Control. Note that
the Label RRO subobject was defined in [<a href="./rfc3209" title=""RSVP-TE: Extensions to RSVP for LSP Tunnels"">RFC3209</a>] and is being
extended to support bidirectional LSPs.
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. Label ERO subobject</span>
The Label ERO subobject is defined as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|L| Type | Length |U| Reserved | C-Type |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Label |
| ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
See [<a href="./rfc3471" title=""Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description"">RFC3471</a>] for a description of L, U and Label parameters.
Type
3 Label
Length
The Length contains the total length of the subobject in bytes,
including the Type and Length fields. The Length is always
divisible by 4.
C-Type
The C-Type of the included Label Object. Copied from the Label
Object.
<span class="h4"><a class="selflink" id="section-5.1.1" href="#section-5.1.1">5.1.1</a>. Procedures</span>
The Label subobject follows a subobject containing the IP address, or
the interface identifier [<a href="./rfc3477" title=""Signalling Unnumbered Links in Resource Reservation Protocol - Traffic Engineering (RSVP-TE)"">RFC3477</a>], associated with the link on which
it is to be used. Up to two label subobjects may be present, one for
the downstream label and one for the upstream label. The following
SHOULD result in "Bad EXPLICIT_ROUTE object" errors:
o If the first label subobject is not preceded by a subobject
containing an IP address, or an interface identifier [<a href="./rfc3477" title=""Signalling Unnumbered Links in Resource Reservation Protocol - Traffic Engineering (RSVP-TE)"">RFC3477</a>],
associated with an output link.
<span class="grey">Berger Standards Track [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc3473">RFC 3473</a> GMPLS Signaling - RSVP-TE Extensions January 2003</span>
o For a label subobject to follow a subobject that has the L-bit set
o On unidirectional LSP setup, for there to be a label subobject with
the U-bit set
o For there to be two label subobjects with the same U-bit values
To support the label subobject, a node must check to see if the
subobject following its associate address/interface is a label
subobject. If it is, one subobject is examined for unidirectional
LSPs and two subobjects for bidirectional LSPs. If the U-bit of the
subobject being examined is clear (0), then value of the label is
copied into a new Label_Set object. This Label_Set object MUST be
included on the corresponding outgoing Path message.
If the U-bit of the subobject being examined is set (1), then value
of the label is label to be used for upstream traffic associated with
the bidirectional LSP. If this label is not acceptable, a "Bad
EXPLICIT_ROUTE object" error SHOULD be generated. If the label is
acceptable, the label is copied into a new Upstream_Label object.
This Upstream_Label object MUST be included on the corresponding
outgoing Path message.
After processing, the label subobjects are removed from the ERO.
Note an implication of the above procedures is that the label
subobject should never be the first subobject in a newly received
message. If the label subobject is the the first subobject an a
received ERO, then it SHOULD be treated as a "Bad strict node" error.
Procedures by which an LSR at the head-end of an LSP obtains the
information needed to construct the Label subobject are outside the
scope of this document.
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. Label RRO subobject</span>
The Label RRO subobject is defined as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |U| Flags | C-Type |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Label |
| ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
See [<a href="./rfc3471" title=""Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description"">RFC3471</a>] for a description of U and Label parameters.
<span class="grey">Berger Standards Track [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc3473">RFC 3473</a> GMPLS Signaling - RSVP-TE Extensions January 2003</span>
Type
3 Label
Length
See [<a href="./rfc3209" title=""RSVP-TE: Extensions to RSVP for LSP Tunnels"">RFC3209</a>].
Flags
See [<a href="./rfc3209" title=""RSVP-TE: Extensions to RSVP for LSP Tunnels"">RFC3209</a>].
C-Type
The C-Type of the included Label Object. Copied from the Label
Object.
<span class="h4"><a class="selflink" id="section-5.2.1" href="#section-5.2.1">5.2.1</a>. Procedures</span>
Label RRO subobjects are included in RROs as described in [<a href="./rfc3209" title=""RSVP-TE: Extensions to RSVP for LSP Tunnels"">RFC3209</a>].
The only modification to usage and processing from [<a href="./rfc3209" title=""RSVP-TE: Extensions to RSVP for LSP Tunnels"">RFC3209</a>] is that
when labels are recorded for bidirectional LSPs, label ERO subobjects
for both downstream and upstream labels MUST be included.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Protection Object</span>
The use of the Protection Object is optional. The object is included
to indicate specific protection attributes of an LSP. The Protection
Object uses Class-Number 37 (of form 0bbbbbbb).
The format of the Protection Object is:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Length | Class-Num (37)| C-Type (1) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|S| Reserved | Link Flags|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
See [<a href="./rfc3471" title=""Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description"">RFC3471</a>] for a description of parameters.
<span class="grey">Berger Standards Track [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc3473">RFC 3473</a> GMPLS Signaling - RSVP-TE Extensions January 2003</span>
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. Procedures</span>
Transit nodes processing a Path message containing a Protection
Object MUST verify that the requested protection can be satisfied by
the outgoing interface or tunnel (FA). If it cannot, the node MUST
generate a PathErr message, with a "Routing problem/Unsupported Link
Protection" indication.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Administrative Status Information</span>
Administrative Status Information is carried in the Admin_Status
object. The object provides information related to the
administrative state of a particular LSP. The information is used in
two ways. In the first, the object is carried in Path and Resv
messages to indicate the administrative state of an LSP. In the
second, the object is carried in a Notification message to request
that the ingress node change the administrative state of an LSP.
<span class="h3"><a class="selflink" id="section-7.1" href="#section-7.1">7.1</a>. Admin Status Object</span>
The use of the Admin_Status Object is optional. It uses Class-Number
196 (of form 11bbbbbb).
The format of the Admin_Status Object is:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Length | Class-Num(196)| C-Type (1) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|R| Reserved |T|A|D|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
See [<a href="./rfc3471" title=""Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description"">RFC3471</a>] for a description of parameters.
<span class="h3"><a class="selflink" id="section-7.2" href="#section-7.2">7.2</a>. Path and Resv Message Procedures</span>
The Admin_Status object is used to notify each node along the path of
the status of the LSP. Status information is processed by each node
based on local policy and then propagated in the corresponding
outgoing messages. The object may be inserted in either Path or Resv
messages at the discretion of the ingress (for Path messages) or
egress (for Resv messages) nodes. The absence of the object is
equivalent to receiving an object containing values all set to zero
(0).
<span class="grey">Berger Standards Track [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc3473">RFC 3473</a> GMPLS Signaling - RSVP-TE Extensions January 2003</span>
Transit nodes receiving a non-refresh Path or Resv message containing
an Admin_Status object, update their local state, take any
appropriate local action based on the indicated status and then
propagate the received Admin_Status object in the corresponding
outgoing Path or Resv message. If the values of an Admin_Status
object received in a Resv message differs from the values received in
a Path message then, with one exception, no local action should be
taken but the values should still be propagated. The one case where
values received in the Resv message should result in local action is
when both the received R and D bits are set, i.e., are one (1).
Edge nodes receiving a non-refresh Path or Resv message containing an
Admin_Status object, also update their local state and take any
appropriate local action based on the indicated status. When an
Admin Status object is received with the R bit set, the receiving
edge node should reflect the received values in a corresponding
outgoing message. Specifically, if an egress node receives a Path
message with the R bit of the Admin_Status object set and the node
has previously issued a Resv message corresponding to the Path
message, the node SHOULD send an updated Resv message containing an
Admin_Status object with the same values set, with the exception of
the R bit, as received in the corresponding Path message.
Furthermore, the egress node SHOULD also ensure that subsequent Resv
messages sent by the node contain the same Admin Status Object.
Additionally, if an ingress node receives a Resv message with the R
bit of the Admin_Status object set, the node SHOULD send an updated
Path message containing an Admin_Status object with the same values
set, with the exception of the R bit, as received in the
corresponding Resv message. Furthermore, the ingress node SHOULD
also ensure that subsequent Path messages sent by the node contain
the same Admin Status Object.
<span class="h4"><a class="selflink" id="section-7.2.1" href="#section-7.2.1">7.2.1</a>. Deletion procedure</span>
In some circumstances, particularly optical networks, it is useful to
set the administrative status of an LSP before tearing it down. In
such circumstances the procedure SHOULD be followed when deleting an
LSP from the ingress:
1. The ingress node precedes an LSP deletion by inserting an Admin
Status Object in a Path message and setting the Reflect (R) and
Delete (D) bits.
2. Transit and egress nodes process the Admin Status Object as
described above. (Alternatively, the egress MAY respond with a
PathErr message with the Path_State_Removed flag set, see <a href="#section-4.4">section</a>
<a href="#section-4.4">4.4</a>.)
<span class="grey">Berger Standards Track [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc3473">RFC 3473</a> GMPLS Signaling - RSVP-TE Extensions January 2003</span>
3. Upon receiving the Admin Status Object with the Delete (D) bit set
in the Resv message, the ingress node sends a PathTear message
downstream to remove the LSP and normal RSVP processing takes
place.
In such circumstances the procedure SHOULD be followed when deleting
an LSP from the egress:
1. The egress node indicates its desire for deletion by inserting an
Admin Status Object in a Resv message and setting the Reflect (R)
and Delete (D) bits.
2. Transit nodes process the Admin Status Object as described above.
3. Upon receiving the Admin Status Object with the Delete (D) bit set
in the Resv message, the ingress node sends a PathTear message
downstream to remove the LSP and normal RSVP processing takes
place.
<span class="h4"><a class="selflink" id="section-7.2.2" href="#section-7.2.2">7.2.2</a>. Compatibility and Error Procedures</span>
It is possible that some nodes along an LSP will not support the
Admin Status Object. In the case of a non-supporting transit node,
the object will pass through the node unmodified and normal
processing can continue. In the case of a non-supporting egress
node, the Admin Status Object will not be reflected back in the Resv
Message. To support the case of a non-supporting egress node, the
ingress SHOULD only wait a configurable period of time for the
updated Admin Status Object in a Resv message. Once the period of
time has elapsed, the ingress node sends a PathTear message. By
default this period of time SHOULD be 30 seconds.
<span class="h3"><a class="selflink" id="section-7.3" href="#section-7.3">7.3</a>. Notify Message Procedures</span>
Intermediate and egress nodes may trigger the setting of
administrative status via the use of Notify messages. To accomplish
this, an intermediate or egress node generates a Notify message with
the corresponding upstream notify session information. The Admin
Status Object MUST be included in the session information, with the
appropriate bit or bits set. The Reflect (R) bit MUST NOT be set.
The Notify message may be, but is not required to be, encapsulated,
see <a href="#section-4.3">Section 4.3</a>.
An ingress node receiving a Notify message containing an Admin Status
Object with the Delete (D) bit set, SHOULD initiate the deletion
procedure described in the previous section. Other bits SHOULD be
propagated in an outgoing Path message as normal.
<span class="grey">Berger Standards Track [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc3473">RFC 3473</a> GMPLS Signaling - RSVP-TE Extensions January 2003</span>
<span class="h4"><a class="selflink" id="section-7.3.1" href="#section-7.3.1">7.3.1</a>. Compatibility and Error Procedures</span>
Some special processing is required in order to cover the case of
nodes that do not support the Admin Status Object and other error
conditions. Specifically, a node that sends a Notify message
containing an Admin Status Object with the Down (D) bit set MUST
verify that it receives a corresponding Path message with the Down
(D) bit set within a configurable period of time. By default this
period of time SHOULD be 30 seconds. If the node does not receive
such a Path message, it SHOULD send a PathTear message downstream and
either a ResvTear message or a PathErr message with the
Path_State_Removed flag set upstream.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Control Channel Separation</span>
This section provides the protocol specific formats and procedures to
required support a control channel not being in-band with a data
channel.
<span class="h3"><a class="selflink" id="section-8.1" href="#section-8.1">8.1</a>. Interface Identification</span>
The choice of the data interface to use is always made by the sender
of the Path message. The choice of the data interface is indicated by
the sender of the Path message by including the data channel's
interface identifier in the message using a new RSVP_HOP object sub-
type. For bidirectional LSPs, the sender chooses the data interface
in each direction. In all cases but bundling, the upstream interface
is implied by the downstream interface. For bundling, the path
sender explicitly identifies the component interface used in each
direction. The new RSVP_HOP object is used in Resv message to
indicate the downstream node's usage of the indicated interface(s).
<span class="grey">Berger Standards Track [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc3473">RFC 3473</a> GMPLS Signaling - RSVP-TE Extensions January 2003</span>
<span class="h4"><a class="selflink" id="section-8.1.1" href="#section-8.1.1">8.1.1</a>. IF_ID RSVP_HOP Objects</span>
The format of the IPv4 IF_ID RSVP_HOP Object is:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Length | Class-Num (3) | C-Type (3) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IPv4 Next/Previous Hop Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Logical Interface Handle |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
~ TLVs ~
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The format of the IPv6 IF_ID RSVP_HOP Object is:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Length | Class-Num (3) | C-Type (4) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| IPv6 Next/Previous Hop Address |
| |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Logical Interface Handle |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
~ TLVs ~
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
See [<a href="./rfc2205" title=""Resource ReserVation Protocol -- Version 1 Functional Specification"">RFC2205</a>] for a description of hop address and handle fields.
See [<a href="./rfc3471" title=""Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description"">RFC3471</a>] for a description of parameters and encoding of
TLVs.
<span class="grey">Berger Standards Track [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc3473">RFC 3473</a> GMPLS Signaling - RSVP-TE Extensions January 2003</span>
<span class="h4"><a class="selflink" id="section-8.1.2" href="#section-8.1.2">8.1.2</a>. Procedures</span>
An IF_ID RSVP_HOP object is used in place of previously defined
RSVP_HOP objects. It is used on links where there is not a one-to-
one association of a control channel to a data channel, see
[<a href="./rfc3471" title=""Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description"">RFC3471</a>]. The Hop Address and Logical Interface Handle fields are
used per standard RSVP [<a href="./rfc2205" title=""Resource ReserVation Protocol -- Version 1 Functional Specification"">RFC2205</a>].
TLVs are used to identify the data channel(s) associated with an LSP.
For a unidirectional LSP, a downstream data channel MUST be
indicated. For bidirectional LSPs, a common downstream and upstream
data channel is normally indicated. In the special case where a
bidirectional LSP that traverses a bundled link, it is possible to
specify a downstream data channel that differs from the upstream data
channel. Data channels are specified from the viewpoint of the
sender of the Path message. The IF_ID RSVP_HOP object SHOULD NOT be
used when no TLVs are needed.
A node receiving one or more TLVs in a Path message saves their
values and returns them in the HOP objects of subsequent Resv
messages sent to the node that originated the TLVs.
Note, the node originating an IF_ID object MUST ensure that the
selected outgoing interface, as specified in the IF_ID object, is
consistent with an ERO. A node that receives an IF_ID object SHOULD
check whether the information carried in this object is consistent
with the information carried in a received ERO, and if not it MUST
send a PathErr Message with the error code "Routing Error" and error
value of "Bad Explicit Route Object" toward the sender. This check
CANNOT be performed when the initial ERO subobject is not the
incoming interface.
<span class="h3"><a class="selflink" id="section-8.2" href="#section-8.2">8.2</a>. Errored Interface Identification</span>
There are cases where it is useful to indicate a specific interface
associated with an error. To support these cases the IF_ID
ERROR_SPEC Objects are defined.
<span class="grey">Berger Standards Track [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc3473">RFC 3473</a> GMPLS Signaling - RSVP-TE Extensions January 2003</span>
<span class="h4"><a class="selflink" id="section-8.2.1" href="#section-8.2.1">8.2.1</a>. IF_ID ERROR_SPEC Objects</span>
The format of the IPv4 IF_ID ERROR_SPEC Object is:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Length | Class-Num (6) | C-Type (3) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IPv4 Error Node Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Flags | Error Code | Error Value |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
~ TLVs ~
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The format of the IPv6 IF_ID ERROR_SPEC Object is:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Length | Class-Num (6) | C-Type (4) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| IPv6 Error Node Address |
| |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Flags | Error Code | Error Value |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
~ TLVs ~
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
See [<a href="./rfc2205" title=""Resource ReserVation Protocol -- Version 1 Functional Specification"">RFC2205</a>] for a description of address, flags, error code and
error value fields. See [<a href="./rfc3471" title=""Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description"">RFC3471</a>] for a description of parameters
and encoding of TLVs.
<span class="h4"><a class="selflink" id="section-8.2.2" href="#section-8.2.2">8.2.2</a>. Procedures</span>
Nodes wishing to indicate that an error is related to a specific
interface SHOULD use the appropriate IF_ID ERROR_SPEC Object in the
corresponding PathErr or ResvErr message. IF_ID ERROR_SPEC Objects
SHOULD be generated and processed as any other ERROR_SPEC Object, see
[<a href="./rfc2205" title=""Resource ReserVation Protocol -- Version 1 Functional Specification"">RFC2205</a>].
<span class="grey">Berger Standards Track [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc3473">RFC 3473</a> GMPLS Signaling - RSVP-TE Extensions January 2003</span>
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. Fault Handling</span>
The handling of two types of control communication faults is
described in this section. The first, referred to as nodal faults,
relates to the case where a node losses its control state (e.g.,
after a restart) but does not loose its data forwarding state. In
the second, referred to as control channel faults, relates to the
case where control communication is lost between two nodes. The
handling of both faults is supported by the Restart_Cap object
defined below and require the use of Hello messages.
Note, the Restart_Cap object MUST NOT be sent when there is no
mechanism to detect data channel failures independent of control
channel failures.
Please note this section is derived from [<a href="#ref-PAN-RESTART" title=""Graceful Restart Mechanism for RSVP-TE"">PAN-RESTART</a>].
<span class="h3"><a class="selflink" id="section-9.1" href="#section-9.1">9.1</a>. Restart_Cap Object</span>
The Restart_Cap Object is carried in Hello messages.
The format of the Restart_Cap Object is:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Length | Class-Num(131)| C-Type (1) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Restart Time |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Recovery Time |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Restart Time: 32 bits
Restart Time is measured in milliseconds. Restart Time SHOULD be
set to the sum of the time it takes the sender of the object to
restart its RSVP-TE component (to the point where it can exchange
RSVP Hello with its neighbors) and the communication channel that
is used for RSVP communication. A value of 0xffffffff indicates
that the restart of the sender's control plane may occur over an
indeterminate interval and that the operation of its data plane is
unaffected by control plane failures. The method used to ensure
continued data plane operation is outside the scope of this
document.
<span class="grey">Berger Standards Track [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc3473">RFC 3473</a> GMPLS Signaling - RSVP-TE Extensions January 2003</span>
Recovery Time: 32 bits
The period of time, in milliseconds, that the sender desires for
the recipient to re-synchronize RSVP and MPLS forwarding state
with the sender after the re-establishment of Hello
synchronization. A value of zero (0) indicates that MPLS
forwarding state was not preserved across a particular reboot.
<span class="h3"><a class="selflink" id="section-9.2" href="#section-9.2">9.2</a>. Processing of Restart_Cap Object</span>
Nodes supporting state recovery advertise this capability by carrying
the Restart_Cap object in Hello messages. Such nodes MUST include
the Restart_Cap object in all Hello messages. (Note that this
includes Hello messages containing ACK objects.) Usage of the
special case Recovery Time values is described in greater detail
below.
When a node receives a Hello message with the Restart_Cap object, it
SHOULD record the values of the parameters received.
<span class="h3"><a class="selflink" id="section-9.3" href="#section-9.3">9.3</a>. Modification to Hello Processing to Support State Recovery</span>
When a node determines that RSVP communication with a neighbor has
been lost, and the node previously learned that the neighbor supports
state recovery, the node SHOULD wait at least the amount of time
indicated by the Restart Time indicated by the neighbor before
invoking procedures related to communication loss. A node MAY wait a
different amount of time based on local policy or configuration
information.
During this waiting period, all Hello messages MUST be sent with a
Dst_Instance value set to zero (0), and Src_Instance should be
unchanged. While waiting, the node SHOULD also preserve the RSVP and
MPLS forwarding state for (already) established LSPs that traverse
the link(s) between the node and the neighbor. In a sense with
respect to established LSPs the node behaves as if it continues to
receive periodic RSVP refresh messages from the neighbor. The node
MAY clear RSVP and forwarding state for the LSPs that are in the
process of being established when their refresh timers expire.
Refreshing of Resv and Path state SHOULD be suppressed during this
waiting period.
During this waiting period, the node MAY inform upstream nodes of the
communication loss via a PathErr and/or upstream Notify message with
"Control Channel Degraded State" indication. If such notification
has been sent, then upon restoration of the control channel the node
<span class="grey">Berger Standards Track [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc3473">RFC 3473</a> GMPLS Signaling - RSVP-TE Extensions January 2003</span>
MUST inform other nodes of the restoration via a PathErr and/or
upstream Notify message with "Control Channel Active State"
indication. (Specific error codes have been assigned by IANA.)
When a new Hello message is received from the neighbor, the node must
determine if the fault was limited to the control channel or was a
nodal fault. This determination is based on the Src_Instance
received from the neighbor. If the value is different than the value
that was received from the neighbor prior to the fault, then the
neighbor should be treated as if it has restarted. Otherwise, the
the fault was limited control channel. Procedures for handling each
case are described below.
<span class="h3"><a class="selflink" id="section-9.4" href="#section-9.4">9.4</a>. Control Channel Faults</span>
In the case of control channel faults, the node SHOULD refresh all
state shared with the neighbor. Summary Refreshes [<a href="./rfc2961" title=""RSVP Refresh Overhead Reduction Extensions"">RFC2961</a>] with the
ACK_Desired flag set SHOULD be used, if supported. Note that if a
large number of messages are need, some pacing should be applied.
All state SHOULD be refreshed within the Recovery time advertised by
the neighbor.
<span class="h3"><a class="selflink" id="section-9.5" href="#section-9.5">9.5</a>. Nodal Faults</span>
Recovering from nodal faults uses one new object and other existing
protocol messages and objects.
<span class="h4"><a class="selflink" id="section-9.5.1" href="#section-9.5.1">9.5.1</a>. Recovery Label</span>
The Recovery_Label object is used during the nodal fault recovery
process. The format of a Recovery_Label object is identical to a
generalized label. A Recovery_Label object uses Class-Number 34 (of
form 0bbbbbbb) and the C-Type of the label being suggested.
<span class="h4"><a class="selflink" id="section-9.5.2" href="#section-9.5.2">9.5.2</a>. Procedures for the Restarting node</span>
After a node restarts its control plane, a node that supports state
recovery SHOULD check whether it was able to preserve its MPLS
forwarding state. If no forwarding state from prior to the restart
was preserved, then the node MUST set the Recovery Time to 0 in the
Hello message the node sends to its neighbors.
If the forwarding state was preserved, then the node initiates the
state recovery process. The period during which a node is prepared
to support the recovery process is referred to as the Recovery
Period. The total duration of the Recovery Period is advertised by
the recovering node in the Recovery Time parameter of the Restart_Cap
object. The Recovery Time MUST be set to the duration of the
<span class="grey">Berger Standards Track [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc3473">RFC 3473</a> GMPLS Signaling - RSVP-TE Extensions January 2003</span>
Recovery Period in all Hello messages sent during the Recovery
Period. State that is not resynchronized during the Recovery Period
SHOULD be removed at the end of the Period.
Note that if during Hello synchronization the restarting node
determines that a neighbor does not support state recovery, and the
restarting node maintains its MPLS forwarding state on a per neighbor
basis, the restarting node should immediately consider the Recovery
Period with that neighbor completed. Forwarding state may be
considered to be maintained on a per neighbor basis when per
interface labels are used on point-to-point interfaces.
When a node receives a Path message during the Recovery Period, the
node first checks if it has an RSVP state associated with the
message. If the state is found, then the node handles this message
according to previously defined procedures.
If the RSVP state is not found, and the message does not carry a
Recovery_Label object, the node treats this as a setup for a new LSP,
and handles it according to previously defined procedures.
If the RSVP state is not found, and the message carries a
Recovery_Label object, the node searches its MPLS forwarding table
(the one that was preserved across the restart) for an entry whose
incoming interface matches the Path message and whose incoming label
is equal to the label carried in the Recovery_Label object.
If the MPLS forwarding table entry is not found, the node treats this
as a setup for a new LSP, and handles it according to previously
defined procedures.
If the MPLS forwarding table entry is found, the appropriate RSVP
state is created, the entry is bound to the LSP associated with the
message, and related forwarding state should be considered as valid
and refreshed. Normal Path message processing should also be
conducted. When sending the corresponding outgoing Path message the
node SHOULD include a Suggested_Label object with a label value
matching the outgoing label from the now restored forwarding entry.
The outgoing interface SHOULD also be selected based on the
forwarding entry. In the special case where a restarting node also
has a restating downstream neighbor, a Recovery_Label object should
be used instead of a Suggested_Label object.
Additionally, for bidirectional LSPs, the node extracts the label
from the UPSTREAM_LABEL object carried in the received Path message,
and searches its MPLS forwarding table for an entry whose outgoing
<span class="grey">Berger Standards Track [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc3473">RFC 3473</a> GMPLS Signaling - RSVP-TE Extensions January 2003</span>
label is equal to the label carried in the object (in the case of
link bundling, this may also involved first identifying the
appropriate incoming component link).
If the MPLS forwarding table entry is not found, the node treats this
as a setup for a new LSP, and handles it according to previously
defined procedures.
If the MPLS forwarding table entry is found, the entry is bound to
the LSP associated with the Path message, and the entry should be
considered to be re-synchronized. In addition, if the node is not
the tail-end of the LSP, the corresponding outgoing Path messages is
sent with the incoming label from that entry carried in the
UPSTREAM_LABEL object.
During the Recovery Period, Resv messages are processed normally with
two exceptions. In the case that a forwarding entry is recovered, no
new label or resource allocation is required while processing the
Resv message. The second exception is that ResvErr messages SHOULD
NOT be generated when a Resv message with no matching Path state is
received. In this case the Resv message SHOULD just be silently
discarded.
<span class="h4"><a class="selflink" id="section-9.5.3" href="#section-9.5.3">9.5.3</a>. Procedures for the Neighbor of a Restarting node</span>
The following specifies the procedures that apply when the node
reestablishes communication with the neighbor's control plane within
the Restart Time, the node determines (using the procedures defined
in <a href="./rfc3209#section-5">Section 5 of [RFC3209]</a>) that the neighbor's control plane has
restarted, and the neighbor was able to preserve its forwarding state
across the restart (as was indicated by a non-zero Recovery Time
carried in the Restart_Cap object of the RSVP Hello messages received
from the neighbor). Note, a Restart Time value of 0xffffffff
indicates an infinite Restart Time interval.
Upon detecting a restart with a neighbor that supports state
recovery, a node SHOULD refresh all Path state shared with that
neighbor. The outgoing Path messages MUST include a Recovery_Label
object containing a label value corresponding to the label value
received in the most recently received corresponding Resv message.
All Path state SHOULD be refreshed within approximately 1/2 of the
Recovery time advertised by the restarted neighbor. If there are
many LSP's going through the restarting node, the neighbor node
should avoid sending Path messages in a short time interval, as to
avoid unnecessary stressing the restarting node's CPU. Instead, it
should spread the messages across 1/2 the Recovery Time interval.
<span class="grey">Berger Standards Track [Page 29]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-30" ></span>
<span class="grey"><a href="./rfc3473">RFC 3473</a> GMPLS Signaling - RSVP-TE Extensions January 2003</span>
After detecting a restart of a neighbor that supports state recovery,
all Resv state shared with the restarting node MUST NOT be refreshed
until a corresponding Path message is received. This requires
suppression of normal Resv and Summary Refresh processing to the
neighbor during the Recovery Time advertised by the restarted
neighbor. As soon as a corresponding Path message is received a Resv
message SHOULD be generated and normal state processing SHOULD be
re-enabled.
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. RSVP Message Formats and Handling</span>
This message summarizes RSVP message formats and handling as modified
by GMPLS.
<span class="h3"><a class="selflink" id="section-10.1" href="#section-10.1">10.1</a>. RSVP Message Formats</span>
This section presents the RSVP message related formats as modified by
this document. Where they differ, formats for unidirectional LSPs
are presented separately from bidirectional LSPs. Unmodified formats
are not listed. Again, MESSAGE_ID and related objects are defined in
[<a href="./rfc2961" title=""RSVP Refresh Overhead Reduction Extensions"">RFC2961</a>].
The format of a Path message is as follows:
<Path Message> ::= <Common Header> [ <INTEGRITY> ]
[ [<MESSAGE_ID_ACK> | <MESSAGE_ID_NACK>] ... ]
[ <MESSAGE_ID> ]
<SESSION> <RSVP_HOP>
<TIME_VALUES>
[ <EXPLICIT_ROUTE> ]
<LABEL_REQUEST>
[ <PROTECTION> ]
[ <LABEL_SET> ... ]
[ <SESSION_ATTRIBUTE> ]
[ <NOTIFY_REQUEST> ]
[ <ADMIN_STATUS> ]
[ <POLICY_DATA> ... ]
<sender descriptor>
<span class="grey">Berger Standards Track [Page 30]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-31" ></span>
<span class="grey"><a href="./rfc3473">RFC 3473</a> GMPLS Signaling - RSVP-TE Extensions January 2003</span>
The format of the sender description for unidirectional LSPs is:
<sender descriptor> ::= <SENDER_TEMPLATE> <SENDER_TSPEC>
[ <ADSPEC> ]
[ <RECORD_ROUTE> ]
[ <SUGGESTED_LABEL> ]
[ <RECOVERY_LABEL> ]
The format of the sender description for bidirectional LSPs is:
<sender descriptor> ::= <SENDER_TEMPLATE> <SENDER_TSPEC>
[ <ADSPEC> ]
[ <RECORD_ROUTE> ]
[ <SUGGESTED_LABEL> ]
[ <RECOVERY_LABEL> ]
<UPSTREAM_LABEL>
The format of a PathErr message is as follows:
<PathErr Message> ::= <Common Header> [ <INTEGRITY> ]
[ [<MESSAGE_ID_ACK> | <MESSAGE_ID_NACK>] ... ]
[ <MESSAGE_ID> ]
<SESSION> <ERROR_SPEC>
[ <ACCEPTABLE_LABEL_SET> ... ]
[ <POLICY_DATA> ... ]
<sender descriptor>
The format of a Resv message is as follows:
<Resv Message> ::= <Common Header> [ <INTEGRITY> ]
[ [<MESSAGE_ID_ACK> | <MESSAGE_ID_NACK>] ... ]
[ <MESSAGE_ID> ]
<SESSION> <RSVP_HOP>
<TIME_VALUES>
[ <RESV_CONFIRM> ] [ <SCOPE> ]
[ <NOTIFY_REQUEST> ]
[ <ADMIN_STATUS> ]
[ <POLICY_DATA> ... ]
<STYLE> <flow descriptor list>
<flow descriptor list> is not modified by this document.
<span class="grey">Berger Standards Track [Page 31]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-32" ></span>
<span class="grey"><a href="./rfc3473">RFC 3473</a> GMPLS Signaling - RSVP-TE Extensions January 2003</span>
The format of a ResvErr message is as follows:
<ResvErr Message> ::= <Common Header> [ <INTEGRITY> ]
[ [<MESSAGE_ID_ACK> | <MESSAGE_ID_NACK>] ... ]
[ <MESSAGE_ID> ]
<SESSION> <RSVP_HOP>
<ERROR_SPEC> [ <SCOPE> ]
[ <ACCEPTABLE_LABEL_SET> ... ]
[ <POLICY_DATA> ... ]
<STYLE> <error flow descriptor>
The modified Hello message format is:
<Hello Message> ::= <Common Header> [ <INTEGRITY> ] <HELLO>
[ <RESTART_CAP> ]
<span class="h3"><a class="selflink" id="section-10.2" href="#section-10.2">10.2</a>. Addressing Path, PathTear and ResvConf Messages</span>
RSVP was designed to handle dynamic (non-explicit) path changes and
non RSVP hops along the path. To this end, the Path, PathTear and
ResvConf messages carry the destination address of the session in the
IP header. In generalized signaling, routes are usually explicitly
signaled. Further, hops that cannot allocate labels cannot exist in
the path of an LSP. A further difference with traditional RSVP is
that at times, an RSVP message may travel out of band with respect to
an LSP's data channel.
When a node is sending a Path, PathTear or ResvConf message to a node
that it knows to be adjacent at the data plane (i.e., along the path
of the LSP), it SHOULD address the message directly to an address
associated with the adjacent node's control plane. In this case the
router-alert option SHOULD not be included.
<span class="h2"><a class="selflink" id="section-11" href="#section-11">11</a>. Acknowledgments</span>
This document is the work of numerous authors and consists of a
composition of a number of previous documents in this area.
Valuable comments and input were received from a number of people,
including Igor Bryskin, Adrian Farrel and Dimitrios Pendarakis.
Portions of <a href="#section-4">Section 4</a> are based on suggestions and text proposed by
Adrian Farrel.
The security considerations section is based on text provided by
Steven Bellovin.
<span class="grey">Berger Standards Track [Page 32]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-33" ></span>
<span class="grey"><a href="./rfc3473">RFC 3473</a> GMPLS Signaling - RSVP-TE Extensions January 2003</span>
<span class="h2"><a class="selflink" id="section-12" href="#section-12">12</a>. Security Considerations</span>
RSVP message security is described in [<a href="./rfc2747" title=""RSVP Cryptographic Authentication"">RFC2747</a>] and provides message
integrity and node authentication. For hop-by-hop messages, this
document introduces no other new security considerations.
This document introduces the ability to send a Notify message in a
non-hop-by-hop fashion. This precludes RSVP's hop-by-hop integrity
and authentication model. In the case where RSVP is generating end-
to-end messages and the same level of security provided by [<a href="./rfc2747" title=""RSVP Cryptographic Authentication"">RFC2747</a>]
is desired, the standard IPSEC based integrity and authentication can
be used. Alternatively, the sending of no-hop-by-hop Notify messages
can be disabled.
When using IPSEC to provide message authentication, the following
apply:
Selectors
The selector is identified by RSVP messages exchanged between a
pair of non-adjacent nodes. The nodes are identified by the
source and destination IP address of the inner IP header used
on Notify messages.
Mode
In this application, transport mode is the proper choice. The
information being communicated is generally not confidential,
so encryption need not be used. Either AH [<a href="./rfc2402" title=""IP Authentication Header"">RFC2402</a>] or ESP
[<a href="./rfc2406" title=""IP Encapsulating Security Payload (ESP)"">RFC2406</a>] MAY be used; if ESP is used, the sender's IP address
MUST be checked against the IP address asserted in the key
management exchange.
Key Management
To permit replay detection, an automated key management system
SHOULD be used, most likely IKE [<a href="./rfc2409" title=""The Internet Key Exchange (IKE)"">RFC2409</a>]. Configured keys MAY
be used.
Security Policy
Messages MUST NOT be accepted except from nodes that are not
known to the recipient to be authorized to make such requests.
Identification
Shared keys mechanisms should be adequate for initial
deployments and smaller networks. For larger-scale
deployments, certificate-based IKE should be supported.
Whatever scheme is used, it must tie back to a source IP
address in some fashion.
<span class="grey">Berger Standards Track [Page 33]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-34" ></span>
<span class="grey"><a href="./rfc3473">RFC 3473</a> GMPLS Signaling - RSVP-TE Extensions January 2003</span>
Availability
Many routers and switches already support IPSEC. For cases
where IPSEC is unavailable and security is required, Notify
messages MUST be sent hop-by-hop.
<span class="h2"><a class="selflink" id="section-13" href="#section-13">13</a>. IANA Considerations</span>
IANA assigns values to RSVP protocol parameters. Within the current
document multiple objects are defined. Each of these objects contain
C-Types. This section defines the rules for the assignment of the
related C-Type values. This section uses the terminology of <a href="https://www.rfc-editor.org/bcp/bcp26">BCP 26</a>
"Guidelines for Writing an IANA Considerations Section in RFCs"
[<a href="#ref-BCP26" title="">BCP26</a>].
As per [<a href="./rfc2205" title=""Resource ReserVation Protocol -- Version 1 Functional Specification"">RFC2205</a>], C-Type is an 8-bit number that identifies the
function of an object. All possible values except zero are available
for assignment.
The assignment of C-Type values of the objects defined in this
document fall into three categories. The first category inherit C-
Types from the Label object, i.e., object class number 16 [<a href="./rfc3209" title=""RSVP-TE: Extensions to RSVP for LSP Tunnels"">RFC3209</a>].
IANA is requested to institute a policy whereby all C-Type values
assign for the Label object are also assigned for the following
objects:
o Suggested_Label (Class-Num 129)
o Upstream_Label (Class-Num 35)
o Recovery_Label (Class-Num 34)
The second category of objects follow independent policies.
Specifically, following the policies outlined in [<a href="#ref-BCP26" title="">BCP26</a>], C-Type
values in the range 0x00 - 0x3F are allocated through an IETF
Consensus action, values in the range 00x40 - 0x5F are allocated as
First Come First Served, and values in the range 0x60 - 0x7F are
reserved for Private Use. This policy applies to the following
objects.
o Label_Set (Class-Num 36)
o Notify_Request (Class-Num 195)
o Protection (Class-Num 37)
o Admin Status (Class-Num 196)
o Restart_Cap (Class-Num 131)
The assignment of C-Type values for the remaining object, the
Acceptable_Label_Set object, follows the assignment of C-Type values
of the Label_Set object. IANA will institute a policy whereby all
C-Type values assigned for the Label_Set object are also assigned for
the Acceptable_Label_Set object.
<span class="grey">Berger Standards Track [Page 34]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-35" ></span>
<span class="grey"><a href="./rfc3473">RFC 3473</a> GMPLS Signaling - RSVP-TE Extensions January 2003</span>
<span class="h3"><a class="selflink" id="section-13.1" href="#section-13.1">13.1</a>. IANA Assignments</span>
This section summarizes values used in this document that have been
assigned by IANA.
---------------------------------------------------------------------
Message Types
o Notify message (Message type = 21)
---------------------------------------------------------------------
Class Types
o RSVP_HOP (C-Num 3)
- IPv4 IF_ID RSVP_HOP (C-type = 3)
- IPv6 IF_ID RSVP_HOP (C-type = 4)
o ERROR_SPEC (C-Num 6)
- IPv4 IF_ID ERROR_SPEC (C-type = 3)
- IPv6 IF_ID ERROR_SPEC (C-type = 4)
o LABEL_REQUEST (Class-Num 19)
- Generalized_Label_Request (C-Type = 4)
o RSVP_LABEL (Class-Num = 16)
- Generalized_Label (C-Type = 2)
- Waveband_Switching_Label C-Type (C-Type = 3)
---------------------------------------------------------------------
New Class-Nums, C-Types inherited from Label object (same as CNum16)
o RECOVERY_LABEL Class-Num of form 0bbbbbbb (= 34)
o SUGGESTED_LABEL Class-Num of form 10bbbbbb (= 129)
o UPSTREAM_LABEL Class-Num of form 0bbbbbbb (= 35)
---------------------------------------------------------------------
New Class-Nums
o LABEL_SET Class-Num of form 0bbbbbbb (= 36)
- Type 1 (C-Type = 1)
o ACCEPTABLE_LABEL_SET Class-Num of form 10bbbbbb (= 130)
- Type 1 Acceptable_Label_Set (C-type from label_set cnum)
o NOTIFY_REQUEST Class-Num of form 11bbbbbb (= 195)
- IPv4 Notify Request (C-Type = 1)
- IPv6 Notify Request (C-Type = 2)
o PROTECTION Class-Num of form 0bbbbbbb (= 37)
- Type 1 (C-Type = 1)
<span class="grey">Berger Standards Track [Page 35]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-36" ></span>
<span class="grey"><a href="./rfc3473">RFC 3473</a> GMPLS Signaling - RSVP-TE Extensions January 2003</span>
o ADMIN STATUS Class-Num of form 11bbbbbb (= 196)
- Type 1 (C-Type = 1)
o RESTART_CAP Class-Num of form 10bbbbbb (= 131)
- Type 1 (C-Type = 1)
---------------------------------------------------------------------
ERO/RRO subobject types
o Label ERO subobject
Type 3 - Label
o Label RRO subobject
Type 3 - Label
---------------------------------------------------------------------
Error codes
o "Routing problem/Label Set" (value = 11)
o "Routing problem/Switching Type" (value = 12)
(duplicate code 13 dropped)
o "Routing problem/Unsupported Encoding" (value = 14)
o "Routing problem/Unsupported Link Protection" (value = 15)
o "Notify Error/Control Channel Active State" (value = 4)
o "Notify Error/Control Channel Degraded State" (value = 5)
---------------------------------------------------------------------
<span class="h2"><a class="selflink" id="section-14" href="#section-14">14</a>. Intellectual Property Considerations</span>
This section is taken from <a href="./rfc2026#section-10.4">Section 10.4 of [RFC2026]</a>.
The IETF takes no position regarding the validity or scope of any
intellectual property or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; neither does it represent that it
has made any effort to identify any such rights. Information on the
IETF's procedures with respect to rights in standards-track and
standards-related documentation can be found in <a href="https://www.rfc-editor.org/bcp/bcp11">BCP-11</a>. Copies of
claims of rights made available for publication and any assurances of
licenses to be made available, or the result of an attempt made to
obtain a general license or permission for the use of such
proprietary rights by implementors or users of this specification can
be obtained from the IETF Secretariat.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights which may cover technology that may be required to practice
this standard. Please address the information to the IETF Executive
Director.
<span class="grey">Berger Standards Track [Page 36]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-37" ></span>
<span class="grey"><a href="./rfc3473">RFC 3473</a> GMPLS Signaling - RSVP-TE Extensions January 2003</span>
<span class="h2"><a class="selflink" id="section-15" href="#section-15">15</a>. References</span>
<span class="h3"><a class="selflink" id="section-15.1" href="#section-15.1">15.1</a>. Normative References</span>
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
[<a id="ref-RFC2205">RFC2205</a>] Braden, R. (Ed.), Zhang, L., Berson, S., Herzog, S.
and S. Jamin, "Resource ReserVation Protocol --
Version 1 Functional Specification", <a href="./rfc2205">RFC 2205</a>,
September 1997.
[<a id="ref-RFC2210">RFC2210</a>] Wroclawski, J., "The Use of RSVP with IETF
Integrated Services", <a href="./rfc2210">RFC 2210</a>, September 1997.
[<a id="ref-RFC2402">RFC2402</a>] Kent, S. and R. Atkinson, "IP Authentication
Header", <a href="./rfc2401">RFC 2401</a>, November 1998.
[<a id="ref-RFC2406">RFC2406</a>] Kent, S. and R. Atkinson, "IP Encapsulating Security
Payload (ESP)", <a href="./rfc2401">RFC 2401</a>, November 1998.
[<a id="ref-RFC2409">RFC2409</a>] Harkins, D. and D. Carrel, "The Internet Key
Exchange (IKE)", <a href="./rfc2409">RFC 2409</a>, November 1998.
[<a id="ref-RFC2747">RFC2747</a>] Baker, F., Lindell, B. and M. Talwar, "RSVP
Cryptographic Authentication", <a href="./rfc2747">RFC 2747</a>, January
2000.
[<a id="ref-RFC2961">RFC2961</a>] Berger, L., Gan, D., Swallow, G., Pan, P., Tommasi,
F. and S. Molendini, "RSVP Refresh Overhead
Reduction Extensions", <a href="./rfc2961">RFC 2961</a>, April 2001.
[<a id="ref-RFC3209">RFC3209</a>] Awduche, D., Berger, L., Gan, D., Li, T.,
Srinivasan, V. and G. Swallow, "RSVP-TE: Extensions
to RSVP for LSP Tunnels", <a href="./rfc3209">RFC 3209</a>, December 2001.
[<a id="ref-RFC3471">RFC3471</a>] Berger, L., Editor, "Generalized Multi-Protocol
Label Switching (GMPLS) Signaling Functional
Description", <a href="./rfc3471">RFC 3471</a>, January 2003.
[<a id="ref-RFC3477">RFC3477</a>] Kompella, K. and Y. Rekhter, "Signalling Unnumbered
Links in Resource Reservation Protocol - Traffic
Engineering (RSVP-TE)", <a href="./rfc3477">RFC 3477</a>, January 2003.
<span class="grey">Berger Standards Track [Page 37]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-38" ></span>
<span class="grey"><a href="./rfc3473">RFC 3473</a> GMPLS Signaling - RSVP-TE Extensions January 2003</span>
<span class="h3"><a class="selflink" id="section-15.2" href="#section-15.2">15.2</a>. Informative References</span>
[<a id="ref-BCP26">BCP26</a>] Narten, T. and H. Alvestrand, "Guidelines for
Writing an IANA Considerations Section in RFCs", <a href="https://www.rfc-editor.org/bcp/bcp26">BCP</a>
<a href="https://www.rfc-editor.org/bcp/bcp26">26</a>, <a href="./rfc2434">RFC 2434</a>, October 1998.
[<a id="ref-MPLS-HIERARCHY">MPLS-HIERARCHY</a>] Kompella, K. and Y. Rekhter, "LSP Hierarchy with
MPLS TE", Work in Progress.
[<a id="ref-PAN-RESTART">PAN-RESTART</a>] Pan, P., et. al., "Graceful Restart Mechanism for
RSVP-TE", Work in Progress.
[<a id="ref-RFC2026">RFC2026</a>] Bradner, S., "The Internet Standards Process --
Revision 3", <a href="https://www.rfc-editor.org/bcp/bcp9">BCP 9</a>, <a href="./rfc2026">RFC 2026</a>, October 1996.
<span class="h2"><a class="selflink" id="section-16" href="#section-16">16</a>. Contributors</span>
Peter Ashwood-Smith
Nortel Networks Corp.
P.O. Box 3511 Station C,
Ottawa, ON K1Y 4H7
Canada
Phone: +1 613 763 4534
EMail: petera@nortelnetworks.com
Ayan Banerjee
Calient Networks
5853 Rue Ferrari
San Jose, CA 95138
Phone: +1 408 972-3645
EMail: abanerjee@calient.net
Lou Berger
Movaz Networks, Inc.
7926 Jones Branch Drive
Suite 615
McLean VA, 22102
Phone: +1 703 847-1801
EMail: lberger@movaz.com
<span class="grey">Berger Standards Track [Page 38]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-39" ></span>
<span class="grey"><a href="./rfc3473">RFC 3473</a> GMPLS Signaling - RSVP-TE Extensions January 2003</span>
Greg Bernstein
EMail: gregb@grotto-networking.com
John Drake
Calient Networks
5853 Rue Ferrari
San Jose, CA 95138
Phone: +1 408 972 3720
EMail: jdrake@calient.net
Yanhe Fan
Axiowave Networks, Inc.
200 Nickerson Road
Marlborough, MA 01752
Phone: + 1 774 348 4627
EMail: yfan@axiowave.com
Kireeti Kompella
Juniper Networks, Inc.
1194 N. Mathilda Ave.
Sunnyvale, CA 94089
EMail: kireeti@juniper.net
Jonathan P. Lang
EMail: jplang@ieee.org
Fong Liaw
Solas Research, LLC
EMail: fongliaw@yahoo.com
<span class="grey">Berger Standards Track [Page 39]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-40" ></span>
<span class="grey"><a href="./rfc3473">RFC 3473</a> GMPLS Signaling - RSVP-TE Extensions January 2003</span>
Eric Mannie
Independent Consultant
2 Avenue de la Folle Chanson
1050 Brussels
Belgium
EMail: eric_mannie@hotmail.com
Ping Pan
Ciena
10480 Ridgeview Court
Cupertino, CA 95014
Phone: 408-366-4700
EMail: ppan@ciena.com
Bala Rajagopalan
Tellium, Inc.
2 Crescent Place
P.O. Box 901
Oceanport, NJ 07757-0901
Phone: +1 732 923 4237
Fax: +1 732 923 9804
EMail: braja@tellium.com
Yakov Rekhter
Juniper Networks, Inc.
EMail: yakov@juniper.net
Debanjan Saha
EMail: debanjan@acm.org
<span class="grey">Berger Standards Track [Page 40]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-41" ></span>
<span class="grey"><a href="./rfc3473">RFC 3473</a> GMPLS Signaling - RSVP-TE Extensions January 2003</span>
Vishal Sharma
Metanoia, Inc.
1600 Villa Street, Unit 352
Mountain View, CA 94041-1174
Phone: +1 650-386-6723
EMail: v.sharma@ieee.org
George Swallow
Cisco Systems, Inc.
250 Apollo Drive
Chelmsford, MA 01824
Phone: +1 978 244 8143
EMail: swallow@cisco.com
Z. Bo Tang
EMail: botang01@yahoo.com
<span class="h2"><a class="selflink" id="section-17" href="#section-17">17</a>. Editor's Address</span>
Lou Berger
Movaz Networks, Inc.
7926 Jones Branch Drive
Suite 615
McLean VA, 22102
Phone: +1 703 847-1801
EMail: lberger@movaz.com
<span class="grey">Berger Standards Track [Page 41]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-42" ></span>
<span class="grey"><a href="./rfc3473">RFC 3473</a> GMPLS Signaling - RSVP-TE Extensions January 2003</span>
<span class="h2"><a class="selflink" id="section-18" href="#section-18">18</a>. Full Copyright Statement</span>
Copyright (C) The Internet Society (2003). All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.
The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.
This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Berger Standards Track [Page 42]
</pre>
|