1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309
  
     | 
    
      <pre>Network Working Group                                         W. Stevens
Request for Comments: 3542                                     M. Thomas
Obsoletes: <a href="./rfc2292">2292</a>                                               Consultant
Category: Informational                                      E. Nordmark
                                                                     Sun
                                                               T. Jinmei
                                                                 Toshiba
                                                                May 2003
     <span class="h1">Advanced Sockets Application Program Interface (API) for IPv6</span>
Status of this Memo
   This memo provides information for the Internet community.  It does
   not specify an Internet standard of any kind.  Distribution of this
   memo is unlimited.
Copyright Notice
   Copyright (C) The Internet Society (2003).  All Rights Reserved.
Abstract
   This document provides sockets Application Program Interface (API) to
   support "advanced" IPv6 applications, as a supplement to a separate
   specification, <a href="./rfc3493">RFC 3493</a>.  The expected applications include Ping,
   Traceroute, routing daemons and the like, which typically use raw
   sockets to access IPv6 or ICMPv6 header fields.  This document
   proposes some portable interfaces for applications that use raw
   sockets under IPv6.  There are other features of IPv6 that some
   applications will need to access: interface identification
   (specifying the outgoing interface and determining the incoming
   interface), IPv6 extension headers, and path Maximum Transmission
   Unit (MTU) information.  This document provides API access to these
   features too.  Additionally, some extended interfaces to libraries
   for the "r" commands are defined.  The extension will provide better
   backward compatibility to existing implementations that are not
   IPv6-capable.
<span class="grey">Stevens, et al.              Informational                      [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
Table of Contents
   <a href="#section-1">1</a>.   Introduction ..............................................  <a href="#page-3">3</a>
   <a href="#section-2">2</a>.   Common Structures and Definitions .........................  <a href="#page-5">5</a>
        <a href="#section-2.1">2.1</a>  The ip6_hdr Structure ................................  <a href="#page-6">6</a>
             <a href="#section-2.1.1">2.1.1</a>  IPv6 Next Header Values .......................  <a href="#page-6">6</a>
             <a href="#section-2.1.2">2.1.2</a>  IPv6 Extension Headers ........................  <a href="#page-7">7</a>
             <a href="#section-2.1.3">2.1.3</a>  IPv6 Options ..................................  <a href="#page-8">8</a>
        <a href="#section-2.2">2.2</a>  The icmp6_hdr Structure .............................. <a href="#page-10">10</a>
             <a href="#section-2.2.1">2.2.1</a>  ICMPv6 Type and Code Values ................... <a href="#page-10">10</a>
             <a href="#section-2.2.2">2.2.2</a>  ICMPv6 Neighbor Discovery Definitions ......... <a href="#page-11">11</a>
             <a href="#section-2.2.3">2.2.3</a>  Multicast Listener Discovery Definitions ...... <a href="#page-14">14</a>
             <a href="#section-2.2.4">2.2.4</a>  ICMPv6 Router Renumbering Definitions ......... <a href="#page-14">14</a>
        <a href="#section-2.3">2.3</a>  Address Testing Macros ............................... <a href="#page-16">16</a>
        <a href="#section-2.4">2.4</a>  Protocols File ....................................... <a href="#page-16">16</a>
   <a href="#section-3">3</a>.   IPv6 Raw Sockets .......................................... <a href="#page-17">17</a>
        <a href="#section-3.1">3.1</a>  Checksums ............................................ <a href="#page-18">18</a>
        <a href="#section-3.2">3.2</a>  ICMPv6 Type Filtering ................................ <a href="#page-19">19</a>
        <a href="#section-3.3">3.3</a>  ICMPv6 Verification of Received Packets .............. <a href="#page-22">22</a>
   <a href="#section-4">4</a>.   Access to IPv6 and Extension Headers ...................... <a href="#page-22">22</a>
        <a href="#section-4.1">4.1</a>  TCP Implications ..................................... <a href="#page-24">24</a>
        <a href="#section-4.2">4.2</a>  UDP and Raw Socket Implications ...................... <a href="#page-25">25</a>
   <a href="#section-5">5</a>.   Extensions to Socket Ancillary Data ....................... <a href="#page-26">26</a>
        <a href="#section-5.1">5.1</a>  CMSG_NXTHDR .......................................... <a href="#page-26">26</a>
        <a href="#section-5.2">5.2</a>  CMSG_SPACE ........................................... <a href="#page-26">26</a>
        <a href="#section-5.3">5.3</a>  CMSG_LEN ............................................. <a href="#page-27">27</a>
   <a href="#section-6">6</a>.   Packet Information ........................................ <a href="#page-27">27</a>
        <a href="#section-6.1">6.1</a>  Specifying/Receiving the Interface ................... <a href="#page-28">28</a>
        <a href="#section-6.2">6.2</a>  Specifying/Receiving Source/Destination Address ...... <a href="#page-29">29</a>
        <a href="#section-6.3">6.3</a>  Specifying/Receiving the Hop Limit ................... <a href="#page-29">29</a>
        <a href="#section-6.4">6.4</a>  Specifying the Next Hop Address ...................... <a href="#page-30">30</a>
        <a href="#section-6.5">6.5</a>  Specifying/Receiving the Traffic Class value ......... <a href="#page-31">31</a>
        <a href="#section-6.6">6.6</a>  Additional Errors with sendmsg() and setsockopt() .... <a href="#page-32">32</a>
        <a href="#section-6.7">6.7</a>  Summary of Outgoing Interface Selection .............. <a href="#page-32">32</a>
   <a href="#section-7">7</a>.   Routing Header Option ..................................... <a href="#page-33">33</a>
        <a href="#section-7.1">7.1</a>  inet6_rth_space ...................................... <a href="#page-35">35</a>
        <a href="#section-7.2">7.2</a>  inet6_rth_init ....................................... <a href="#page-35">35</a>
        <a href="#section-7.3">7.3</a>  inet6_rth_add ........................................ <a href="#page-36">36</a>
        <a href="#section-7.4">7.4</a>  inet6_rth_reverse .................................... <a href="#page-36">36</a>
        <a href="#section-7.5">7.5</a>  inet6_rth_segments ................................... <a href="#page-36">36</a>
        <a href="#section-7.6">7.6</a>  inet6_rth_getaddr .................................... <a href="#page-36">36</a>
   <a href="#section-8">8</a>.   Hop-By-Hop Options ........................................ <a href="#page-37">37</a>
        <a href="#section-8.1">8.1</a>  Receiving Hop-by-Hop Options ......................... <a href="#page-38">38</a>
        <a href="#section-8.2">8.2</a>  Sending Hop-by-Hop Options ........................... <a href="#page-38">38</a>
   <a href="#section-9">9</a>.   Destination Options ....................................... <a href="#page-39">39</a>
        <a href="#section-9.1">9.1</a>  Receiving Destination Options ........................ <a href="#page-39">39</a>
        <a href="#section-9.2">9.2</a>  Sending Destination Options .......................... <a href="#page-39">39</a>
   <a href="#section-10">10</a>.  Hop-by-Hop and Destination Options Processing ............. <a href="#page-40">40</a>
<span class="grey">Stevens, et al.              Informational                      [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
        <a href="#section-10.1">10.1</a>  inet6_opt_init ...................................... <a href="#page-41">41</a>
        <a href="#section-10.2">10.2</a>  inet6_opt_append .................................... <a href="#page-41">41</a>
        <a href="#section-10.3">10.3</a>  inet6_opt_finish .................................... <a href="#page-42">42</a>
        <a href="#section-10.4">10.4</a>  inet6_opt_set_val ................................... <a href="#page-42">42</a>
        <a href="#section-10.5">10.5</a>  inet6_opt_next ...................................... <a href="#page-42">42</a>
        <a href="#section-10.6">10.6</a>  inet6_opt_find ...................................... <a href="#page-43">43</a>
        <a href="#section-10.7">10.7</a>  inet6_opt_get_val ................................... <a href="#page-43">43</a>
   <a href="#section-11">11</a>.  Additional Advanced API Functions ......................... <a href="#page-44">44</a>
        <a href="#section-11.1">11.1</a>  Sending with the Minimum MTU ........................ <a href="#page-44">44</a>
        <a href="#section-11.2">11.2</a>  Sending without Fragmentation ....................... <a href="#page-45">45</a>
        <a href="#section-11.3">11.3</a>  Path MTU Discovery and UDP .......................... <a href="#page-46">46</a>
        <a href="#section-11.4">11.4</a>  Determining the Current Path MTU .................... <a href="#page-47">47</a>
   <a href="#section-12">12</a>.  Ordering of Ancillary Data and IPv6 Extension Headers ..... <a href="#page-48">48</a>
   <a href="#section-13">13</a>.  IPv6-Specific Options with IPv4-Mapped IPv6 Addresses ..... <a href="#page-50">50</a>
   <a href="#section-14">14</a>.  Extended interfaces for rresvport, rcmd and rexec ......... <a href="#page-51">51</a>
        <a href="#section-14.1">14.1</a>  rresvport_af ........................................ <a href="#page-51">51</a>
        <a href="#section-14.2">14.2</a>  rcmd_af ............................................. <a href="#page-51">51</a>
        <a href="#section-14.3">14.3</a>  rexec_af ............................................ <a href="#page-52">52</a>
   <a href="#section-15">15</a>.  Summary of New Definitions ................................ <a href="#page-52">52</a>
   <a href="#section-16">16</a>.  Security Considerations ................................... <a href="#page-56">56</a>
   <a href="#section-17">17</a>.  Changes from <a href="./rfc2292">RFC 2292</a> ..................................... <a href="#page-57">57</a>
   <a href="#section-18">18</a>.  References ................................................ <a href="#page-59">59</a>
   <a href="#section-19">19</a>.  Acknowledgments ........................................... <a href="#page-59">59</a>
   <a href="#section-20">20</a>.  <a href="#appendix-A">Appendix A</a>: Ancillary Data Overview ....................... <a href="#page-60">60</a>
        <a href="#section-20.1">20.1</a>  The msghdr Structure ................................ <a href="#page-60">60</a>
        <a href="#section-20.2">20.2</a>  The cmsghdr Structure ............................... <a href="#page-61">61</a>
        <a href="#section-20.3">20.3</a>  Ancillary Data Object Macros ........................ <a href="#page-62">62</a>
              <a href="#section-20.3.1">20.3.1</a>  CMSG_FIRSTHDR ............................... <a href="#page-63">63</a>
              <a href="#section-20.3.2">20.3.2</a>  CMSG_NXTHDR ................................. <a href="#page-64">64</a>
              <a href="#section-20.3.3">20.3.3</a>  CMSG_DATA ................................... <a href="#page-65">65</a>
              <a href="#section-20.3.4">20.3.4</a>  CMSG_SPACE .................................. <a href="#page-65">65</a>
              <a href="#section-20.3.5">20.3.5</a>  CMSG_LEN .................................... <a href="#page-65">65</a>
   <a href="#section-21">21</a>.  <a href="#appendix-B">Appendix B</a>: Examples Using the inet6_rth_XXX() Functions .. <a href="#page-65">65</a>
        <a href="#section-21.1">21.1</a>  Sending a Routing Header ............................ <a href="#page-65">65</a>
        <a href="#section-21.2">21.2</a>  Receiving Routing Headers ........................... <a href="#page-70">70</a>
   <a href="#section-22">22</a>.  <a href="#appendix-C">Appendix C</a>: Examples Using the inet6_opt_XXX() Functions .. <a href="#page-72">72</a>
        <a href="#section-22.1">22.1</a>  Building Options .................................... <a href="#page-72">72</a>
        <a href="#section-22.2">22.2</a>  Parsing Received Options ............................ <a href="#page-74">74</a>
   <a href="#section-23">23</a>.  Authors' Addresses ........................................ <a href="#page-76">76</a>
   <a href="#section-24">24</a>.  Full Copyright Statement .................................. <a href="#page-77">77</a>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>.  Introduction</span>
   A separate specification [<a href="./rfc3493" title=""Basic Socket Interface Extensions for IPv6"">RFC-3493</a>] contains changes to the sockets
   API to support IP version 6.  Those changes are for TCP and UDP-based
   applications.  This document defines some of the "advanced" features
   of the sockets API that are required for applications to take
   advantage of additional features of IPv6.
<span class="grey">Stevens, et al.              Informational                      [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
   Today, the portability of applications using IPv4 raw sockets is
   quite high, but this is mainly because most IPv4 implementations
   started from a common base (the Berkeley source code) or at least
   started with the Berkeley header files.  This allows programs such as
   Ping and Traceroute, for example, to compile with minimal effort on
   many hosts that support the sockets API.  With IPv6, however, there
   is no common source code base that implementors are starting from,
   and the possibility for divergence at this level between different
   implementations is high.  To avoid a complete lack of portability
   amongst applications that use raw IPv6 sockets, some standardization
   is necessary.
   There are also features from the basic IPv6 specification that are
   not addressed in [<a href="./rfc3493" title=""Basic Socket Interface Extensions for IPv6"">RFC-3493</a>]: sending and receiving Routing headers,
   Hop-by-Hop options, and Destination options, specifying the outgoing
   interface, being told of the receiving interface, and control of path
   MTU information.
   This document updates and replaces <a href="./rfc2292">RFC 2292</a>.  This revision is based
   on implementation experience of <a href="./rfc2292">RFC 2292</a>, as well as some additional
   extensions that have been found to be useful through the IPv6
   deployment.  Note, however, that further work on this document may
   still be needed.  Once the API specification becomes mature and is
   deployed among implementations, it may be formally standardized by a
   more appropriate body, such as has been done with the Basic API
   [<a href="./rfc3493" title=""Basic Socket Interface Extensions for IPv6"">RFC-3493</a>].
   This document can be divided into the following main sections.
   1. Definitions of the basic constants and structures required for
      applications to use raw IPv6 sockets.  This includes structure
      definitions for the IPv6 and ICMPv6 headers and all associated
      constants (e.g., values for the Next Header field).
   2. Some basic semantic definitions for IPv6 raw sockets.  For
      example, a raw ICMPv4 socket requires the application to calculate
      and store the ICMPv4 header checksum.  But with IPv6 this would
      require the application to choose the source IPv6 address because
      the source address is part of the pseudo header that ICMPv6 now
      uses for its checksum computation.  It should be defined that with
      a raw ICMPv6 socket the kernel always calculates and stores the
      ICMPv6 header checksum.
   3. Packet information: how applications can obtain the received
      interface, destination address, and received hop limit, along with
      specifying these values on a per-packet basis.  There are a class
      of applications that need this capability and the technique should
      be portable.
<span class="grey">Stevens, et al.              Informational                      [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
   4. Access to the optional Routing header, Hop-by-Hop options, and
      Destination options extension headers.
   5. Additional features required for improved IPv6 application
      portability.
   The packet information along with access to the extension headers
   (Routing header, Hop-by-Hop options, and Destination options) are
   specified using the "ancillary data" fields that were added to the
   4.3BSD Reno sockets API in 1990.  The reason is that these ancillary
   data fields are part of the Posix standard [<a href="#ref-POSIX" title="Issue 6">POSIX</a>] and should
   therefore be adopted by most vendors.
   This document does not address application access to either the
   authentication header or the encapsulating security payload header.
   Many examples in this document omit error checking in favor of
   brevity and clarity.
   We note that some of the functions and socket options defined in this
   document may have error returns that are not defined in this
   document.  Some of these possible error returns will be recognized
   only as implementations proceed.
   Datatypes in this document follow the Posix format: intN_t means a
   signed integer of exactly N bits (e.g., int16_t) and uintN_t means an
   unsigned integer of exactly N bits (e.g., uint32_t).
   Note that we use the (unofficial) terminology ICMPv4, IGMPv4, and
   ARPv4 to avoid any confusion with the newer ICMPv6 protocol.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>.  Common Structures and Definitions</span>
   Many advanced applications examine fields in the IPv6 header and set
   and examine fields in the various ICMPv6 headers.  Common structure
   definitions for these protocol headers are required, along with
   common constant definitions for the structure members.
   This API assumes that the fields in the protocol headers are left in
   the network byte order, which is big-endian for the Internet
   protocols.  If not, then either these constants or the fields being
   tested must be converted at run-time, using something like htons() or
   htonl().
   Two new header files are defined: <netinet/ip6.h> and
   <netinet/icmp6.h>.
<span class="grey">Stevens, et al.              Informational                      [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
   When an include file is specified, that include file is allowed to
   include other files that do the actual declaration or definition.
<span class="h3"><a class="selflink" id="section-2.1" href="#section-2.1">2.1</a>.  The ip6_hdr Structure</span>
   The following structure is defined as a result of including
   <netinet/ip6.h>.  Note that this is a new header.
      struct ip6_hdr {
        union {
          struct ip6_hdrctl {
            uint32_t ip6_un1_flow; /* 4 bits version, 8 bits TC, 20 bits
                                      flow-ID */
            uint16_t ip6_un1_plen; /* payload length */
            uint8_t  ip6_un1_nxt;  /* next header */
            uint8_t  ip6_un1_hlim; /* hop limit */
          } ip6_un1;
          uint8_t ip6_un2_vfc;     /* 4 bits version, top 4 bits
                                      tclass */
        } ip6_ctlun;
        struct in6_addr ip6_src;   /* source address */
        struct in6_addr ip6_dst;   /* destination address */
      };
      #define ip6_vfc   ip6_ctlun.ip6_un2_vfc
      #define ip6_flow  ip6_ctlun.ip6_un1.ip6_un1_flow
      #define ip6_plen  ip6_ctlun.ip6_un1.ip6_un1_plen
      #define ip6_nxt   ip6_ctlun.ip6_un1.ip6_un1_nxt
      #define ip6_hlim  ip6_ctlun.ip6_un1.ip6_un1_hlim
      #define ip6_hops  ip6_ctlun.ip6_un1.ip6_un1_hlim
<span class="h4"><a class="selflink" id="section-2.1.1" href="#section-2.1.1">2.1.1</a>.  IPv6 Next Header Values</span>
   IPv6 defines many new values for the Next Header field.  The
   following constants are defined as a result of including
   <netinet/in.h>.
      #define IPPROTO_HOPOPTS   0   /* IPv6 Hop-by-Hop options */
      #define IPPROTO_IPV6     41   /* IPv6 header */
      #define IPPROTO_ROUTING  43   /* IPv6 Routing header */
      #define IPPROTO_FRAGMENT 44   /* IPv6 fragment header */
      #define IPPROTO_ESP      50   /* encapsulating security payload */
      #define IPPROTO_AH       51   /* authentication header */
      #define IPPROTO_ICMPV6   58   /* ICMPv6 */
      #define IPPROTO_NONE     59   /* IPv6 no next header */
      #define IPPROTO_DSTOPTS  60   /* IPv6 Destination options */
<span class="grey">Stevens, et al.              Informational                      [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
   Berkeley-derived IPv4 implementations also define IPPROTO_IP to be 0.
   This should not be a problem since IPPROTO_IP is used only with IPv4
   sockets and IPPROTO_HOPOPTS only with IPv6 sockets.
<span class="h4"><a class="selflink" id="section-2.1.2" href="#section-2.1.2">2.1.2</a>.  IPv6 Extension Headers</span>
   Six extension headers are defined for IPv6.  We define structures for
   all except the Authentication header and Encapsulating Security
   Payload header, both of which are beyond the scope of this document.
   The following structures are defined as a result of including
   <netinet/ip6.h>.
      /* Hop-by-Hop options header */
      struct ip6_hbh {
        uint8_t  ip6h_nxt;        /* next header */
        uint8_t  ip6h_len;        /* length in units of 8 octets */
          /* followed by options */
      };
      /* Destination options header */
      struct ip6_dest {
        uint8_t  ip6d_nxt;        /* next header */
        uint8_t  ip6d_len;        /* length in units of 8 octets */
          /* followed by options */
      };
      /* Routing header */
      struct ip6_rthdr {
        uint8_t  ip6r_nxt;        /* next header */
        uint8_t  ip6r_len;        /* length in units of 8 octets */
        uint8_t  ip6r_type;       /* routing type */
        uint8_t  ip6r_segleft;    /* segments left */
          /* followed by routing type specific data */
      };
      /* Type 0 Routing header */
      struct ip6_rthdr0 {
        uint8_t  ip6r0_nxt;       /* next header */
        uint8_t  ip6r0_len;       /* length in units of 8 octets */
        uint8_t  ip6r0_type;      /* always zero */
        uint8_t  ip6r0_segleft;   /* segments left */
        uint32_t ip6r0_reserved;  /* reserved field */
          /* followed by up to 127 struct in6_addr */
      };
<span class="grey">Stevens, et al.              Informational                      [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
      /* Fragment header */
      struct ip6_frag {
        uint8_t   ip6f_nxt;       /* next header */
        uint8_t   ip6f_reserved;  /* reserved field */
        uint16_t  ip6f_offlg;     /* offset, reserved, and flag */
        uint32_t  ip6f_ident;     /* identification */
      };
      #if     BYTE_ORDER == BIG_ENDIAN
      #define IP6F_OFF_MASK       0xfff8  /* mask out offset from
                                             ip6f_offlg */
      #define IP6F_RESERVED_MASK  0x0006  /* reserved bits in
                                             ip6f_offlg */
      #define IP6F_MORE_FRAG      0x0001  /* more-fragments flag */
      #else   /* BYTE_ORDER == LITTLE_ENDIAN */
      #define IP6F_OFF_MASK       0xf8ff  /* mask out offset from
                                             ip6f_offlg */
      #define IP6F_RESERVED_MASK  0x0600  /* reserved bits in
                                             ip6f_offlg */
      #define IP6F_MORE_FRAG      0x0100  /* more-fragments flag */
      #endif
<span class="h4"><a class="selflink" id="section-2.1.3" href="#section-2.1.3">2.1.3</a>.  IPv6 Options</span>
   Several options are defined for IPv6, and we define structures and
   macro definitions for some of them below.  The following structures
   are defined as a result of including <netinet/ip6.h>.
      /* IPv6 options */
      struct ip6_opt {
        uint8_t  ip6o_type;
        uint8_t  ip6o_len;
      };
      /*
       * The high-order 3 bits of the option type define the behavior
       * when processing an unknown option and whether or not the option
       * content changes in flight.
       */
      #define IP6OPT_TYPE(o)        ((o) & 0xc0)
      #define IP6OPT_TYPE_SKIP      0x00
      #define IP6OPT_TYPE_DISCARD   0x40
      #define IP6OPT_TYPE_FORCEICMP 0x80
      #define IP6OPT_TYPE_ICMP      0xc0
      #define IP6OPT_MUTABLE        0x20
      #define IP6OPT_PAD1           0x00  /* 00 0 00000 */
      #define IP6OPT_PADN           0x01  /* 00 0 00001 */
<span class="grey">Stevens, et al.              Informational                      [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
      #define IP6OPT_JUMBO          0xc2  /* 11 0 00010 */
      #define IP6OPT_NSAP_ADDR      0xc3  /* 11 0 00011 */
      #define IP6OPT_TUNNEL_LIMIT   0x04  /* 00 0 00100 */
      #define IP6OPT_ROUTER_ALERT   0x05  /* 00 0 00101 */
      /* Jumbo Payload Option */
      struct ip6_opt_jumbo {
        uint8_t  ip6oj_type;
        uint8_t  ip6oj_len;
        uint8_t  ip6oj_jumbo_len[4];
      };
      #define IP6OPT_JUMBO_LEN   6
      /* NSAP Address Option */
      struct ip6_opt_nsap {
        uint8_t  ip6on_type;
        uint8_t  ip6on_len;
        uint8_t  ip6on_src_nsap_len;
        uint8_t  ip6on_dst_nsap_len;
          /* followed by source NSAP */
          /* followed by destination NSAP */
      };
      /* Tunnel Limit Option */
      struct ip6_opt_tunnel {
        uint8_t  ip6ot_type;
        uint8_t  ip6ot_len;
        uint8_t  ip6ot_encap_limit;
      };
      /* Router Alert Option */
      struct ip6_opt_router {
        uint8_t  ip6or_type;
        uint8_t  ip6or_len;
        uint8_t  ip6or_value[2];
      };
      /* Router alert values (in network byte order) */
      #ifdef _BIG_ENDIAN
      #define IP6_ALERT_MLD      0x0000
      #define IP6_ALERT_RSVP     0x0001
      #define  IP6_ALERT_AN      0x0002
      #else
      #define IP6_ALERT_MLD      0x0000
      #define IP6_ALERT_RSVP     0x0100
      #define IP6_ALERT_AN       0x0200
      #endif
<span class="grey">Stevens, et al.              Informational                      [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
<span class="h3"><a class="selflink" id="section-2.2" href="#section-2.2">2.2</a>.  The icmp6_hdr Structure</span>
   The ICMPv6 header is needed by numerous IPv6 applications including
   Ping, Traceroute, router discovery daemons, and neighbor discovery
   daemons.  The following structure is defined as a result of including
   <netinet/icmp6.h>.  Note that this is a new header.
      struct icmp6_hdr {
        uint8_t     icmp6_type;   /* type field */
        uint8_t     icmp6_code;   /* code field */
        uint16_t    icmp6_cksum;  /* checksum field */
        union {
          uint32_t  icmp6_un_data32[1]; /* type-specific field */
          uint16_t  icmp6_un_data16[2]; /* type-specific field */
          uint8_t   icmp6_un_data8[4];  /* type-specific field */
        } icmp6_dataun;
      };
      #define icmp6_data32    icmp6_dataun.icmp6_un_data32
      #define icmp6_data16    icmp6_dataun.icmp6_un_data16
      #define icmp6_data8     icmp6_dataun.icmp6_un_data8
      #define icmp6_pptr      icmp6_data32[0]  /* parameter prob */
      #define icmp6_mtu       icmp6_data32[0]  /* packet too big */
      #define icmp6_id        icmp6_data16[0]  /* echo request/reply */
      #define icmp6_seq       icmp6_data16[1]  /* echo request/reply */
      #define icmp6_maxdelay  icmp6_data16[0]  /* mcast group
                                                  membership */
<span class="h4"><a class="selflink" id="section-2.2.1" href="#section-2.2.1">2.2.1</a>.  ICMPv6 Type and Code Values</span>
   In addition to a common structure for the ICMPv6 header, common
   definitions are required for the ICMPv6 type and code fields.  The
   following constants are also defined as a result of including
   <netinet/icmp6.h>.
      #define ICMP6_DST_UNREACH             1
      #define ICMP6_PACKET_TOO_BIG          2
      #define ICMP6_TIME_EXCEEDED           3
      #define ICMP6_PARAM_PROB              4
      #define ICMP6_INFOMSG_MASK  0x80    /* all informational
                                             messages */
      #define ICMP6_ECHO_REQUEST          128
      #define ICMP6_ECHO_REPLY            129
      #define ICMP6_DST_UNREACH_NOROUTE     0 /* no route to
                                                 destination */
<span class="grey">Stevens, et al.              Informational                     [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
      #define ICMP6_DST_UNREACH_ADMIN       1 /* communication with
                                                 destination */
                                              /* admin. prohibited */
      #define ICMP6_DST_UNREACH_BEYONDSCOPE 2 /* beyond scope of source
                                                 address */
      #define ICMP6_DST_UNREACH_ADDR        3 /* address unreachable */
      #define ICMP6_DST_UNREACH_NOPORT      4 /* bad port */
      #define ICMP6_TIME_EXCEED_TRANSIT     0 /* Hop Limit == 0 in
                                                 transit */
      #define ICMP6_TIME_EXCEED_REASSEMBLY  1 /* Reassembly time out */
      #define ICMP6_PARAMPROB_HEADER        0 /* erroneous header
                                                 field */
      #define ICMP6_PARAMPROB_NEXTHEADER    1 /* unrecognized
                                                 Next Header */
      #define ICMP6_PARAMPROB_OPTION        2 /* unrecognized
                                                 IPv6 option */
   The five ICMP message types defined by IPv6 neighbor discovery (133-
   137) are defined in the next section.
<span class="h4"><a class="selflink" id="section-2.2.2" href="#section-2.2.2">2.2.2</a>.  ICMPv6 Neighbor Discovery Definitions</span>
   The following structures and definitions are defined as a result of
   including <netinet/icmp6.h>.
      #define ND_ROUTER_SOLICIT           133
      #define ND_ROUTER_ADVERT            134
      #define ND_NEIGHBOR_SOLICIT         135
      #define ND_NEIGHBOR_ADVERT          136
      #define ND_REDIRECT                 137
      struct nd_router_solicit {     /* router solicitation */
        struct icmp6_hdr  nd_rs_hdr;
          /* could be followed by options */
      };
      #define nd_rs_type               nd_rs_hdr.icmp6_type
      #define nd_rs_code               nd_rs_hdr.icmp6_code
      #define nd_rs_cksum              nd_rs_hdr.icmp6_cksum
      #define nd_rs_reserved           nd_rs_hdr.icmp6_data32[0]
<span class="grey">Stevens, et al.              Informational                     [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
      struct nd_router_advert {      /* router advertisement */
        struct icmp6_hdr  nd_ra_hdr;
        uint32_t   nd_ra_reachable;   /* reachable time */
        uint32_t   nd_ra_retransmit;  /* retransmit timer */
          /* could be followed by options */
      };
      #define nd_ra_type               nd_ra_hdr.icmp6_type
      #define nd_ra_code               nd_ra_hdr.icmp6_code
      #define nd_ra_cksum              nd_ra_hdr.icmp6_cksum
      #define nd_ra_curhoplimit        nd_ra_hdr.icmp6_data8[0]
      #define nd_ra_flags_reserved     nd_ra_hdr.icmp6_data8[1]
      #define ND_RA_FLAG_MANAGED       0x80
      #define ND_RA_FLAG_OTHER         0x40
      #define nd_ra_router_lifetime    nd_ra_hdr.icmp6_data16[1]
      struct nd_neighbor_solicit {   /* neighbor solicitation */
        struct icmp6_hdr  nd_ns_hdr;
        struct in6_addr   nd_ns_target; /* target address */
          /* could be followed by options */
      };
      #define nd_ns_type               nd_ns_hdr.icmp6_type
      #define nd_ns_code               nd_ns_hdr.icmp6_code
      #define nd_ns_cksum              nd_ns_hdr.icmp6_cksum
      #define nd_ns_reserved           nd_ns_hdr.icmp6_data32[0]
      struct nd_neighbor_advert {    /* neighbor advertisement */
        struct icmp6_hdr  nd_na_hdr;
        struct in6_addr   nd_na_target; /* target address */
          /* could be followed by options */
      };
      #define nd_na_type               nd_na_hdr.icmp6_type
      #define nd_na_code               nd_na_hdr.icmp6_code
      #define nd_na_cksum              nd_na_hdr.icmp6_cksum
      #define nd_na_flags_reserved     nd_na_hdr.icmp6_data32[0]
      #if     BYTE_ORDER == BIG_ENDIAN
      #define ND_NA_FLAG_ROUTER        0x80000000
      #define ND_NA_FLAG_SOLICITED     0x40000000
      #define ND_NA_FLAG_OVERRIDE      0x20000000
      #else   /* BYTE_ORDER == LITTLE_ENDIAN */
      #define ND_NA_FLAG_ROUTER        0x00000080
      #define ND_NA_FLAG_SOLICITED     0x00000040
      #define ND_NA_FLAG_OVERRIDE      0x00000020
      #endif
<span class="grey">Stevens, et al.              Informational                     [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
      struct nd_redirect {           /* redirect */
        struct icmp6_hdr  nd_rd_hdr;
        struct in6_addr   nd_rd_target; /* target address */
        struct in6_addr   nd_rd_dst;    /* destination address */
          /* could be followed by options */
      };
      #define nd_rd_type               nd_rd_hdr.icmp6_type
      #define nd_rd_code               nd_rd_hdr.icmp6_code
      #define nd_rd_cksum              nd_rd_hdr.icmp6_cksum
      #define nd_rd_reserved           nd_rd_hdr.icmp6_data32[0]
      struct nd_opt_hdr {         /* Neighbor discovery option header */
        uint8_t  nd_opt_type;
        uint8_t  nd_opt_len;      /* in units of 8 octets */
          /* followed by option specific data */
      };
      #define  ND_OPT_SOURCE_LINKADDR       1
      #define  ND_OPT_TARGET_LINKADDR       2
      #define  ND_OPT_PREFIX_INFORMATION    3
      #define  ND_OPT_REDIRECTED_HEADER     4
      #define  ND_OPT_MTU                   5
      struct nd_opt_prefix_info {    /* prefix information */
        uint8_t   nd_opt_pi_type;
        uint8_t   nd_opt_pi_len;
        uint8_t   nd_opt_pi_prefix_len;
        uint8_t   nd_opt_pi_flags_reserved;
        uint32_t  nd_opt_pi_valid_time;
        uint32_t  nd_opt_pi_preferred_time;
        uint32_t  nd_opt_pi_reserved2;
        struct in6_addr  nd_opt_pi_prefix;
      };
      #define ND_OPT_PI_FLAG_ONLINK        0x80
      #define ND_OPT_PI_FLAG_AUTO          0x40
      struct nd_opt_rd_hdr {         /* redirected header */
        uint8_t   nd_opt_rh_type;
        uint8_t   nd_opt_rh_len;
        uint16_t  nd_opt_rh_reserved1;
        uint32_t  nd_opt_rh_reserved2;
          /* followed by IP header and data */
      };
<span class="grey">Stevens, et al.              Informational                     [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
      struct nd_opt_mtu {            /* MTU option */
        uint8_t   nd_opt_mtu_type;
        uint8_t   nd_opt_mtu_len;
        uint16_t  nd_opt_mtu_reserved;
        uint32_t  nd_opt_mtu_mtu;
      };
   We note that the nd_na_flags_reserved flags have the same byte
   ordering problems as we showed with ip6f_offlg.
<span class="h4"><a class="selflink" id="section-2.2.3" href="#section-2.2.3">2.2.3</a>.  Multicast Listener Discovery Definitions</span>
   The following structures and definitions are defined as a result of
   including <netinet/icmp6.h>.
      #define MLD_LISTENER_QUERY          130
      #define MLD_LISTENER_REPORT         131
      #define MLD_LISTENER_REDUCTION      132
      struct mld_hdr {
        struct icmp6_hdr  mld_icmp6_hdr;
        struct in6_addr   mld_addr; /* multicast address */
      };
      #define mld_type                 mld_icmp6_hdr.icmp6_type
      #define mld_code                 mld_icmp6_hdr.icmp6_code
      #define mld_cksum                mld_icmp6_hdr.icmp6_cksum
      #define mld_maxdelay             mld_icmp6_hdr.icmp6_data16[0]
      #define mld_reserved             mld_icmp6_hdr.icmp6_data16[1]
<span class="h4"><a class="selflink" id="section-2.2.4" href="#section-2.2.4">2.2.4</a>.  ICMPv6 Router Renumbering Definitions</span>
   The following structures and definitions are defined as a result of
   including <netinet/icmp6.h>.
      #define ICMP6_ROUTER_RENUMBERING    138   /* router renumbering */
      struct icmp6_router_renum {  /* router renumbering header */
        struct icmp6_hdr  rr_hdr;
        uint8_t           rr_segnum;
        uint8_t           rr_flags;
        uint16_t          rr_maxdelay;
        uint32_t          rr_reserved;
      };
      #define rr_type                  rr_hdr.icmp6_type
      #define rr_code                  rr_hdr.icmp6_code
      #define rr_cksum                 rr_hdr.icmp6_cksum
      #define rr_seqnum                rr_hdr.icmp6_data32[0]
<span class="grey">Stevens, et al.              Informational                     [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
      /* Router renumbering flags */
      #define ICMP6_RR_FLAGS_TEST        0x80
      #define ICMP6_RR_FLAGS_REQRESULT   0x40
      #define ICMP6_RR_FLAGS_FORCEAPPLY  0x20
      #define ICMP6_RR_FLAGS_SPECSITE    0x10
      #define ICMP6_RR_FLAGS_PREVDONE    0x08
      struct rr_pco_match {    /* match prefix part */
        uint8_t          rpm_code;
        uint8_t          rpm_len;
        uint8_t          rpm_ordinal;
        uint8_t          rpm_matchlen;
        uint8_t          rpm_minlen;
        uint8_t          rpm_maxlen;
        uint16_t         rpm_reserved;
        struct in6_addr  rpm_prefix;
      };
      /* PCO code values */
      #define RPM_PCO_ADD              1
      #define RPM_PCO_CHANGE           2
      #define RPM_PCO_SETGLOBAL        3
      struct rr_pco_use {    /* use prefix part */
        uint8_t          rpu_uselen;
        uint8_t          rpu_keeplen;
        uint8_t          rpu_ramask;
        uint8_t          rpu_raflags;
        uint32_t         rpu_vltime;
        uint32_t         rpu_pltime;
        uint32_t         rpu_flags;
        struct in6_addr  rpu_prefix;
      };
      #define ICMP6_RR_PCOUSE_RAFLAGS_ONLINK   0x20
      #define ICMP6_RR_PCOUSE_RAFLAGS_AUTO     0x10
      #if BYTE_ORDER == BIG_ENDIAN
      #define ICMP6_RR_PCOUSE_FLAGS_DECRVLTIME 0x80000000
      #define ICMP6_RR_PCOUSE_FLAGS_DECRPLTIME 0x40000000
      #elif BYTE_ORDER == LITTLE_ENDIAN
      #define ICMP6_RR_PCOUSE_FLAGS_DECRVLTIME 0x80
      #define ICMP6_RR_PCOUSE_FLAGS_DECRPLTIME 0x40
      #endif
<span class="grey">Stevens, et al.              Informational                     [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
      struct rr_result {    /* router renumbering result message */
        uint16_t         rrr_flags;
        uint8_t          rrr_ordinal;
        uint8_t          rrr_matchedlen;
        uint32_t         rrr_ifid;
        struct in6_addr  rrr_prefix;
      };
      #if BYTE_ORDER == BIG_ENDIAN
      #define ICMP6_RR_RESULT_FLAGS_OOB        0x0002
      #define ICMP6_RR_RESULT_FLAGS_FORBIDDEN  0x0001
      #elif BYTE_ORDER == LITTLE_ENDIAN
      #define ICMP6_RR_RESULT_FLAGS_OOB        0x0200
      #define ICMP6_RR_RESULT_FLAGS_FORBIDDEN  0x0100
      #endif
<span class="h3"><a class="selflink" id="section-2.3" href="#section-2.3">2.3</a>.  Address Testing Macros</span>
   The basic API ([<a href="./rfc3493" title=""Basic Socket Interface Extensions for IPv6"">RFC-3493</a>]) defines some macros for testing an IPv6
   address for certain properties.  This API extends those definitions
   with additional address testing macros, defined as a result of
   including <netinet/in.h>.
      int  IN6_ARE_ADDR_EQUAL(const struct in6_addr *,
                              const struct in6_addr *);
   This macro returns non-zero if the addresses are equal; otherwise it
   returns zero.
<span class="h3"><a class="selflink" id="section-2.4" href="#section-2.4">2.4</a>.  Protocols File</span>
   Many hosts provide the file /etc/protocols that contains the names of
   the various IP protocols and their protocol number (e.g., the value
   of the protocol field in the IPv4 header for that protocol, such as 1
   for ICMP).  Some programs then call the function getprotobyname() to
   obtain the protocol value that is then specified as the third
   argument to the socket() function.  For example, the Ping program
   contains code of the form
      struct protoent  *proto;
      proto = getprotobyname("icmp");
      s = socket(AF_INET, SOCK_RAW, proto->p_proto);
   Common names are required for the new IPv6 protocols in this file, to
   provide portability of applications that call the getprotoXXX()
   functions.
<span class="grey">Stevens, et al.              Informational                     [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
   We define the following protocol names with the values shown.  These
   are taken under <a href="http://www.iana.org/numbers.html">http://www.iana.org/numbers.html</a>.
      hopopt           0    # hop-by-hop options for ipv6
      ipv6            41    # ipv6
      ipv6-route      43    # routing header for ipv6
      ipv6-frag       44    # fragment header for ipv6
      esp             50    # encapsulating security payload for ipv6
      ah              51    # authentication header for ipv6
      ipv6-icmp       58    # icmp for ipv6
      ipv6-nonxt      59    # no next header for ipv6
      ipv6-opts       60    # destination options for ipv6
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>.  IPv6 Raw Sockets</span>
   Raw sockets bypass the transport layer (TCP or UDP).  With IPv4, raw
   sockets are used to access ICMPv4, IGMPv4, and to read and write IPv4
   datagrams containing a protocol field that the kernel does not
   process.  An example of the latter is a routing daemon for OSPF,
   since it uses IPv4 protocol field 89.  With IPv6 raw sockets will be
   used for ICMPv6 and to read and write IPv6 datagrams containing a
   Next Header field that the kernel does not process.  Examples of the
   latter are a routing daemon for OSPF for IPv6 and RSVP (protocol
   field 46).
   All data sent via raw sockets must be in network byte order and all
   data received via raw sockets will be in network byte order.  This
   differs from the IPv4 raw sockets, which did not specify a byte
   ordering and used the host's byte order for certain IP header fields.
   Another difference from IPv4 raw sockets is that complete packets
   (that is, IPv6 packets with extension headers) cannot be sent or
   received using the IPv6 raw sockets API.  Instead, ancillary data
   objects are used to transfer the extension headers and hoplimit
   information, as described in <a href="#section-6">Section 6</a>.  Should an application need
   access to the complete IPv6 packet, some other technique, such as the
   datalink interfaces BPF or DLPI, must be used.
   All fields except the flow label in the IPv6 header that an
   application might want to change (i.e., everything other than the
   version number) can be modified using ancillary data and/or socket
   options by the application for output.  All fields except the flow
   label in a received IPv6 header (other than the version number and
   Next Header fields) and all extension headers that an application
   might want to know are also made available to the application as
   ancillary data on input.  Hence there is no need for a socket option
<span class="grey">Stevens, et al.              Informational                     [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
   similar to the IPv4 IP_HDRINCL socket option and on receipt the
   application will only receive the payload i.e., the data after the
   IPv6 header and all the extension headers.
   This API does not define access to the flow label field, because
   today there is no standard usage of the field.
   When writing to a raw socket the kernel will automatically fragment
   the packet if its size exceeds the path MTU, inserting the required
   fragment headers.  On input the kernel reassembles received
   fragments, so the reader of a raw socket never sees any fragment
   headers.
   When we say "an ICMPv6 raw socket" we mean a socket created by
   calling the socket function with the three arguments AF_INET6,
   SOCK_RAW, and IPPROTO_ICMPV6.
   Most IPv4 implementations give special treatment to a raw socket
   created with a third argument to socket() of IPPROTO_RAW, whose value
   is normally 255, to have it mean that the application will send down
   complete packets including the IPv4 header.  (Note: This feature was
   added to IPv4 in 1988 by Van Jacobson to support traceroute, allowing
   a complete IP header to be passed by the application, before the
   IP_HDRINCL socket option was added.)  We note that IPPROTO_RAW has no
   special meaning to an IPv6 raw socket (and the IANA currently
   reserves the value of 255 when used as a next-header field).
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>.  Checksums</span>
   The kernel will calculate and insert the ICMPv6 checksum for ICMPv6
   raw sockets, since this checksum is mandatory.
   For other raw IPv6 sockets (that is, for raw IPv6 sockets created
   with a third argument other than IPPROTO_ICMPV6), the application
   must set the new IPV6_CHECKSUM socket option to have the kernel (1)
   compute and store a checksum for output, and (2) verify the received
   checksum on input, discarding the packet if the checksum is in error.
   This option prevents applications from having to perform source
   address selection on the packets they send.  The checksum will
   incorporate the IPv6 pseudo-header, defined in <a href="#section-8.1">Section 8.1</a> of [RFC-
   2460].  This new socket option also specifies an integer offset into
   the user data of where the checksum is located.
      int  offset = 2;
      setsockopt(fd, IPPROTO_IPV6, IPV6_CHECKSUM, &offset,
                 sizeof(offset));
<span class="grey">Stevens, et al.              Informational                     [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
   By default, this socket option is disabled.  Setting the offset to -1
   also disables the option.  By disabled we mean (1) the kernel will
   not calculate and store a checksum for outgoing packets, and (2) the
   kernel will not verify a checksum for received packets.
   This option assumes the use of the 16-bit one's complement of the
   one's complement sum as the checksum algorithm and that the checksum
   field is aligned on a 16-bit boundary.  Thus, specifying a positive
   odd value as offset is invalid, and setsockopt() will fail for such
   offset values.
   An attempt to set IPV6_CHECKSUM for an ICMPv6 socket will fail.
   Also, an attempt to set or get IPV6_CHECKSUM for a non-raw IPv6
   socket will fail.
   (Note: Since the checksum is always calculated by the kernel for an
   ICMPv6 socket, applications are not able to generate ICMPv6 packets
   with incorrect checksums (presumably for testing purposes) using this
   API.)
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>.  ICMPv6 Type Filtering</span>
   ICMPv4 raw sockets receive most ICMPv4 messages received by the
   kernel.  (We say "most" and not "all" because Berkeley-derived
   kernels never pass echo requests, timestamp requests, or address mask
   requests to a raw socket.  Instead these three messages are processed
   entirely by the kernel.)  But ICMPv6 is a superset of ICMPv4, also
   including the functionality of IGMPv4 and ARPv4.  This means that an
   ICMPv6 raw socket can potentially receive many more messages than
   would be received with an ICMPv4 raw socket: ICMP messages similar to
   ICMPv4, along with neighbor solicitations, neighbor advertisements,
   and the three multicast listener discovery messages.
   Most applications using an ICMPv6 raw socket care about only a small
   subset of the ICMPv6 message types.  To transfer extraneous ICMPv6
   messages from the kernel to user can incur a significant overhead.
   Therefore this API includes a method of filtering ICMPv6 messages by
   the ICMPv6 type field.
   Each ICMPv6 raw socket has an associated filter whose datatype is
   defined as
      struct icmp6_filter;
   This structure, along with the macros and constants defined later in
   this section, are defined as a result of including the
   <netinet/icmp6.h>.
<span class="grey">Stevens, et al.              Informational                     [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
   The current filter is fetched and stored using getsockopt() and
   setsockopt() with a level of IPPROTO_ICMPV6 and an option name of
   ICMP6_FILTER.
   Six macros operate on an icmp6_filter structure:
      void ICMP6_FILTER_SETPASSALL (struct icmp6_filter *);
      void ICMP6_FILTER_SETBLOCKALL(struct icmp6_filter *);
      void ICMP6_FILTER_SETPASS ( int, struct icmp6_filter *);
      void ICMP6_FILTER_SETBLOCK( int, struct icmp6_filter *);
      int  ICMP6_FILTER_WILLPASS (int,
                                  const struct icmp6_filter *);
      int  ICMP6_FILTER_WILLBLOCK(int,
                                  const struct icmp6_filter *);
   The first argument to the last four macros (an integer) is an ICMPv6
   message type, between 0 and 255.  The pointer argument to all six
   macros is a pointer to a filter that is modified by the first four
   macros and is examined by the last two macros.
   The first two macros, SETPASSALL and SETBLOCKALL, let us specify that
   all ICMPv6 messages are passed to the application or that all ICMPv6
   messages are blocked from being passed to the application.
   The next two macros, SETPASS and SETBLOCK, let us specify that
   messages of a given ICMPv6 type should be passed to the application
   or not passed to the application (blocked).
   The final two macros, WILLPASS and WILLBLOCK, return true or false
   depending whether the specified message type is passed to the
   application or blocked from being passed to the application by the
   filter pointed to by the second argument.
   When an ICMPv6 raw socket is created, it will by default pass all
   ICMPv6 message types to the application.
   As an example, a program that wants to receive only router
   advertisements could execute the following:
      struct icmp6_filter  myfilt;
      fd = socket(AF_INET6, SOCK_RAW, IPPROTO_ICMPV6);
      ICMP6_FILTER_SETBLOCKALL(&myfilt);
      ICMP6_FILTER_SETPASS(ND_ROUTER_ADVERT, &myfilt);
      setsockopt(fd, IPPROTO_ICMPV6, ICMP6_FILTER, &myfilt,
<span class="grey">Stevens, et al.              Informational                     [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
                 sizeof(myfilt));
   The filter structure is declared and then initialized to block all
   messages types.  The filter structure is then changed to allow router
   advertisement messages to be passed to the application and the filter
   is installed using setsockopt().
   In order to clear an installed filter the application can issue a
   setsockopt for ICMP6_FILTER with a zero length.  When no such filter
   has been installed, getsockopt() will return the kernel default
   filter.
   The icmp6_filter structure is similar to the fd_set datatype used
   with the select() function in the sockets API.  The icmp6_filter
   structure is an opaque datatype and the application should not care
   how it is implemented.  All the application does with this datatype
   is allocate a variable of this type, pass a pointer to a variable of
   this type to getsockopt() and setsockopt(), and operate on a variable
   of this type using the six macros that we just defined.
   Nevertheless, it is worth showing a simple implementation of this
   datatype and the six macros.
      struct icmp6_filter {
        uint32_t  icmp6_filt[8];  /* 8*32 = 256 bits */
      };
      #define ICMP6_FILTER_WILLPASS(type, filterp) \
        ((((filterp)->icmp6_filt[(type) >> 5]) & \
          (1 << ((type) & 31))) != 0)
      #define ICMP6_FILTER_WILLBLOCK(type, filterp) \
        ((((filterp)->icmp6_filt[(type) >> 5]) & \
          (1 << ((type) & 31))) == 0)
      #define ICMP6_FILTER_SETPASS(type, filterp) \
        ((((filterp)->icmp6_filt[(type) >> 5]) |= \
          (1 << ((type) & 31))))
      #define ICMP6_FILTER_SETBLOCK(type, filterp) \
        ((((filterp)->icmp6_filt[(type) >> 5]) &= \
          ~(1 << ((type) & 31))))
      #define ICMP6_FILTER_SETPASSALL(filterp) \
        memset((filterp), 0xFF, sizeof(struct icmp6_filter))
      #define ICMP6_FILTER_SETBLOCKALL(filterp) \
        memset((filterp), 0, sizeof(struct icmp6_filter))
   (Note: These sample definitions have two limitations that an
   implementation may want to change.  The first four macros evaluate
   their first argument two times.  The second two macros require the
   inclusion of the <string.h> header for the memset() function.)
<span class="grey">Stevens, et al.              Informational                     [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
<span class="h3"><a class="selflink" id="section-3.3" href="#section-3.3">3.3</a>.  ICMPv6 Verification of Received Packets</span>
   The protocol stack will verify the ICMPv6 checksum and discard any
   packets with invalid checksums.
   An implementation might perform additional validity checks on the
   ICMPv6 message content and discard malformed packets.  However, a
   portable application must not assume that such validity checks have
   been performed.
   The protocol stack should not automatically discard packets if the
   ICMP type is unknown to the stack.  For extensibility reasons
   received ICMP packets with any type (informational or error) must be
   passed to the applications (subject to ICMP6_FILTER filtering on the
   type value and the checksum verification).
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>.  Access to IPv6 and Extension Headers</span>
   Applications need to be able to control IPv6 header and extension
   header content when sending as well as being able to receive the
   content of these headers.  This is done by defining socket option
   types which can be used both with setsockopt and with ancillary data.
   Ancillary data is discussed in <a href="#appendix-A">Appendix A</a>.  The following optional
   information can be exchanged between the application and the kernel:
   1. The send/receive interface and source/destination address,
   2. The hop limit,
   3. Next hop address,
   4. The traffic class,
   5. Routing header,
   6. Hop-by-Hop options header, and
   7. Destination options header.
   First, to receive any of this optional information (other than the
   next hop address, which can only be set) on a UDP or raw socket, the
   application must call setsockopt() to turn on the corresponding flag:
      int  on = 1;
      setsockopt(fd, IPPROTO_IPV6, IPV6_RECVPKTINFO,  &on, sizeof(on));
      setsockopt(fd, IPPROTO_IPV6, IPV6_RECVHOPLIMIT, &on, sizeof(on));
      setsockopt(fd, IPPROTO_IPV6, IPV6_RECVRTHDR,    &on, sizeof(on));
      setsockopt(fd, IPPROTO_IPV6, IPV6_RECVHOPOPTS,  &on, sizeof(on));
      setsockopt(fd, IPPROTO_IPV6, IPV6_RECVDSTOPTS,  &on, sizeof(on));
      setsockopt(fd, IPPROTO_IPV6, IPV6_RECVTCLASS,   &on, sizeof(on));
<span class="grey">Stevens, et al.              Informational                     [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
   When any of these options are enabled, the corresponding data is
   returned as control information by recvmsg(), as one or more
   ancillary data objects.
   This document does not define how to receive the optional information
   on a TCP socket.  See <a href="#section-4.1">Section 4.1</a> for more details.
   Two different mechanisms exist for sending this optional information:
   1. Using setsockopt to specify the option content for a socket.
      These are known "sticky" options since they affect all transmitted
      packets on the socket until either a new setsockopt is done or the
      options are overridden using ancillary data.
   2. Using ancillary data to specify the option content for a single
      datagram.  This only applies to datagram and raw sockets; not to
      TCP sockets.
   The three socket option parameters and the three cmsghdr fields that
   describe the options/ancillary data objects are summarized as:
      opt level/    optname/          optval/
      cmsg_level    cmsg_type         cmsg_data[]
      ------------  ------------      ------------------------
      IPPROTO_IPV6  IPV6_PKTINFO      in6_pktinfo structure
      IPPROTO_IPV6  IPV6_HOPLIMIT     int
      IPPROTO_IPV6  IPV6_NEXTHOP      socket address structure
      IPPROTO_IPV6  IPV6_RTHDR        ip6_rthdr structure
      IPPROTO_IPV6  IPV6_HOPOPTS      ip6_hbh structure
      IPPROTO_IPV6  IPV6_DSTOPTS      ip6_dest structure
      IPPROTO_IPV6  IPV6_RTHDRDSTOPTS ip6_dest structure
      IPPROTO_IPV6  IPV6_TCLASS       int
      (Note: IPV6_HOPLIMIT can be used as ancillary data items only)
   All these options are described in detail in <a href="#section-6">Section 6</a>, 7, 8 and 9.
   All the constants beginning with IPV6_ are defined as a result of
   including <netinet/in.h>.
   Note: We intentionally use the same constant for the cmsg_level
   member as is used as the second argument to getsockopt() and
   setsockopt() (what is called the "level"), and the same constant for
   the cmsg_type member as is used as the third argument to getsockopt()
   and setsockopt() (what is called the "option name").
<span class="grey">Stevens, et al.              Informational                     [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
   Issuing getsockopt() for the above options will return the sticky
   option value i.e., the value set with setsockopt().  If no sticky
   option value has been set getsockopt() will return the following
   values:
   -  For the IPV6_PKTINFO option, it will return an in6_pktinfo
      structure with ipi6_addr being in6addr_any and ipi6_ifindex being
      zero.
   -  For the IPV6_TCLASS option, it will return the kernel default
      value.
   -  For other options, it will indicate the lack of the option value
      with optlen being zero.
   The application does not explicitly need to access the data
   structures for the Routing header, Hop-by-Hop options header, and
   Destination options header, since the API to these features is
   through a set of inet6_rth_XXX() and inet6_opt_XXX() functions that
   we define in <a href="#section-7">Section 7</a> and <a href="#section-10">Section 10</a>.  Those functions simplify the
   interface to these features instead of requiring the application to
   know the intimate details of the extension header formats.
   When specifying extension headers, this API assumes the header
   ordering and the number of occurrences of each header as described in
   [<a href="./rfc2460" title=""Internet Protocol, Version 6 (IPv6) Specification"">RFC-2460</a>].  More details about the ordering issue will be discussed
   in <a href="#section-12">Section 12</a>.
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>.  TCP Implications</span>
   It is not possible to use ancillary data to transmit the above
   options for TCP since there is not a one-to-one mapping between send
   operations and the TCP segments being transmitted.  Instead an
   application can use setsockopt to specify them as sticky options.
   When the application uses setsockopt to specify the above options it
   is expected that TCP will start using the new information when
   sending segments.  However, TCP may or may not use the new
   information when retransmitting segments that were originally sent
   when the old sticky options were in effect.
   It is unclear how a TCP application can use received information
   (such as extension headers) due to the lack of mapping between
   received TCP segments and receive operations.  In particular, the
   received information could not be used for access control purposes
   like on UDP and raw sockets.
<span class="grey">Stevens, et al.              Informational                     [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
   This specification therefore does not define how to get the received
   information on TCP sockets.  The result of the IPV6_RECVxxx options
   on a TCP socket is undefined as well.
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>.  UDP and Raw Socket Implications</span>
   The receive behavior for UDP and raw sockets is quite
   straightforward.  After the application has enabled an IPV6_RECVxxx
   socket option it will receive ancillary data items for every
   recvmsg() call containing the requested information.  However, if the
   information is not present in the packet the ancillary data item will
   not be included.  For example, if the application enables
   IPV6_RECVRTHDR and a received datagram does not contain a Routing
   header there will not be an IPV6_RTHDR ancillary data item.  Note
   that due to buffering in the socket implementation there might be
   some packets queued when an IPV6_RECVxxx option is enabled and they
   might not have the ancillary data information.
   For sending the application has the choice between using sticky
   options and ancillary data.  The application can also use both having
   the sticky options specify the "default" and using ancillary data to
   override the default options.
   When an ancillary data item is specified in a call to sendmsg(), the
   item will override an existing sticky option of the same name (if
   previously specified).  For example, if the application has set
   IPV6_RTHDR using a sticky option and later passes IPV6_RTHDR as
   ancillary data this will override the IPV6_RTHDR sticky option and
   the routing header of the outgoing packet will be from the ancillary
   data item, not from the sticky option.  Note, however, that other
   sticky options than IPV6_RTHDR will not be affected by the IPV6_RTHDR
   ancillary data item; the overriding mechanism only works for the same
   type of sticky options and ancillary data items.
   (Note: the overriding rule is different from the one in <a href="./rfc2292">RFC 2292</a>.  In
   <a href="./rfc2292">RFC 2292</a>, an ancillary data item overrode all sticky options
   previously defined.  This was reasonable, because sticky options
   could only be specified as a set by a single socket option.  However,
   in this API, each option is separated so that it can be specified as
   a single sticky option.  Additionally, there are much more ancillary
   data items and sticky options than in <a href="./rfc2292">RFC 2292</a>, including ancillary-
   only one.  Thus, it should be natural for application programmers to
   separate the overriding rule as well.)
   An application can also temporarily disable a particular sticky
   option by specifying a corresponding ancillary data item that could
   disable the sticky option when being used as an argument for a socket
   option.  For example, if the application has set IPV6_HOPOPTS as a
<span class="grey">Stevens, et al.              Informational                     [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
   sticky option and later passes IPV6_HOPOPTS with a zero length as an
   ancillary data item, the packet will not have a Hop-by-Hop options
   header.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>.  Extensions to Socket Ancillary Data</span>
   This specification uses ancillary data as defined in Posix with some
   compatible extensions, which are described in the following
   subsections.  <a href="#section-20">Section 20</a> will provide a detailed overview of
   ancillary data and related structures and macros, including the
   extensions.
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>.  CMSG_NXTHDR</span>
      struct cmsghdr *CMSG_NXTHDR(const struct msghdr *mhdr,
                                  const struct cmsghdr *cmsg);
   CMSG_NXTHDR() returns a pointer to the cmsghdr structure describing
   the next ancillary data object.  Mhdr is a pointer to a msghdr
   structure and cmsg is a pointer to a cmsghdr structure.  If there is
   not another ancillary data object, the return value is NULL.
   The following behavior of this macro is new to this API: if the value
   of the cmsg pointer is NULL, a pointer to the cmsghdr structure
   describing the first ancillary data object is returned.  That is,
   CMSG_NXTHDR(mhdr, NULL) is equivalent to CMSG_FIRSTHDR(mhdr).  If
   there are no ancillary data objects, the return value is NULL.
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>.  CMSG_SPACE</span>
   socklen_t CMSG_SPACE(socklen_t length);
   This macro is new with this API.  Given the length of an ancillary
   data object, CMSG_SPACE() returns an upper bound on the space
   required by the object and its cmsghdr structure, including any
   padding needed to satisfy alignment requirements.  This macro can be
   used, for example, when allocating space dynamically for the
   ancillary data.  This macro should not be used to initialize the
   cmsg_len member of a cmsghdr structure; instead use the CMSG_LEN()
   macro.
<span class="grey">Stevens, et al.              Informational                     [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
<span class="h3"><a class="selflink" id="section-5.3" href="#section-5.3">5.3</a>.  CMSG_LEN</span>
   socklen_t CMSG_LEN(socklen_t length);
   This macro is new with this API.  Given the length of an ancillary
   data object, CMSG_LEN() returns the value to store in the cmsg_len
   member of the cmsghdr structure, taking into account any padding
   needed to satisfy alignment requirements.
   Note the difference between CMSG_SPACE() and CMSG_LEN(), shown also
   in the figure in <a href="#section-20.2">Section 20.2</a>: the former accounts for any required
   padding at the end of the ancillary data object and the latter is the
   actual length to store in the cmsg_len member of the ancillary data
   object.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>.  Packet Information</span>
   There are five pieces of information that an application can specify
   for an outgoing packet using ancillary data:
      1.  the source IPv6 address,
      2.  the outgoing interface index,
      3.  the outgoing hop limit,
      4.  the next hop address, and
      5.  the outgoing traffic class value.
   Four similar pieces of information can be returned for a received
   packet as ancillary data:
      1.  the destination IPv6 address,
      2.  the arriving interface index,
      3.  the arriving hop limit, and
      4.  the arriving traffic class value.
   The first two pieces of information are contained in an in6_pktinfo
   structure that is set with setsockopt() or sent as ancillary data
   with sendmsg() and received as ancillary data with recvmsg().  This
   structure is defined as a result of including <netinet/in.h>.
      struct in6_pktinfo {
        struct in6_addr ipi6_addr;    /* src/dst IPv6 address */
        unsigned int    ipi6_ifindex; /* send/recv interface index */
      };
   In the socket option and cmsghdr level will be IPPROTO_IPV6, the type
   will be IPV6_PKTINFO, and the first byte of the option value and
   cmsg_data[] will be the first byte of the in6_pktinfo structure.  An
   application can clear any sticky IPV6_PKTINFO option by doing a
<span class="grey">Stevens, et al.              Informational                     [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
   "regular" setsockopt with ipi6_addr being in6addr_any and
   ipi6_ifindex being zero.
   This information is returned as ancillary data by recvmsg() only if
   the application has enabled the IPV6_RECVPKTINFO socket option:
      int  on = 1;
      setsockopt(fd, IPPROTO_IPV6, IPV6_RECVPKTINFO, &on, sizeof(on));
   (Note: The hop limit is not contained in the in6_pktinfo structure
   for the following reason.  Some UDP servers want to respond to client
   requests by sending their reply out the same interface on which the
   request was received and with the source IPv6 address of the reply
   equal to the destination IPv6 address of the request.  To do this the
   application can enable just the IPV6_RECVPKTINFO socket option and
   then use the received control information from recvmsg() as the
   outgoing control information for sendmsg().  The application need not
   examine or modify the in6_pktinfo structure at all.  But if the hop
   limit were contained in this structure, the application would have to
   parse the received control information and change the hop limit
   member, since the received hop limit is not the desired value for an
   outgoing packet.)
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>.  Specifying/Receiving the Interface</span>
   Interfaces on an IPv6 node are identified by a small positive
   integer, as described in <a href="./rfc3493#section-4">Section 4 of [RFC-3493]</a>.  That document also
   describes a function to map an interface name to its interface index,
   a function to map an interface index to its interface name, and a
   function to return all the interface names and indexes.  Notice from
   this document that no interface is ever assigned an index of 0.
   When specifying the outgoing interface, if the ipi6_ifindex value is
   0, the kernel will choose the outgoing interface.
   The ordering among various options that can specify the outgoing
   interface, including IPV6_PKTINFO, is defined in <a href="#section-6.7">Section 6.7</a>.
   When the IPV6_RECVPKTINFO socket option is enabled, the received
   interface index is always returned as the ipi6_ifindex member of the
   in6_pktinfo structure.
<span class="grey">Stevens, et al.              Informational                     [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>.  Specifying/Receiving Source/Destination Address</span>
   The source IPv6 address can be specified by calling bind() before
   each output operation, but supplying the source address together with
   the data requires less overhead (i.e., fewer system calls) and
   requires less state to be stored and protected in a multithreaded
   application.
   When specifying the source IPv6 address as ancillary data, if the
   ipi6_addr member of the in6_pktinfo structure is the unspecified
   address (IN6ADDR_ANY_INIT or in6addr_any), then (a) if an address is
   currently bound to the socket, it is used as the source address, or
   (b) if no address is currently bound to the socket, the kernel will
   choose the source address.  If the ipi6_addr member is not the
   unspecified address, but the socket has already bound a source
   address, then the ipi6_addr value overrides the already-bound source
   address for this output operation only.
   The kernel must verify that the requested source address is indeed a
   unicast address assigned to the node.  When the address is a scoped
   one, there may be ambiguity about its scope zone.  This is
   particularly the case for link-local addresses.  In such a case, the
   kernel must first determine the appropriate scope zone based on the
   zone of the destination address or the outgoing interface (if known),
   then qualify the address.  This also means that it is not feasible to
   specify the source address for a non-binding socket by the
   IPV6_PKTINFO sticky option, unless the outgoing interface is also
   specified.  The application should simply use bind() for such
   purposes.
   IPV6_PKTINFO can also be used as a sticky option for specifying the
   socket's default source address.  However, the ipi6_addr member must
   be the unspecified address for TCP sockets, because it is not
   possible to dynamically change the source address of a TCP
   connection.  When the IPV6_PKTINFO option is specified for a TCP
   socket with a non-unspecified address, the call will fail.  This
   restriction should be applied even before the socket binds a specific
   address.
   When the in6_pktinfo structure is returned as ancillary data by
   recvmsg(), the ipi6_addr member contains the destination IPv6 address
   from the received packet.
<span class="h3"><a class="selflink" id="section-6.3" href="#section-6.3">6.3</a>.  Specifying/Receiving the Hop Limit</span>
   The outgoing hop limit is normally specified with either the
   IPV6_UNICAST_HOPS socket option or the IPV6_MULTICAST_HOPS socket
   option, both of which are described in [<a href="./rfc3493" title=""Basic Socket Interface Extensions for IPv6"">RFC-3493</a>].  Specifying the
<span class="grey">Stevens, et al.              Informational                     [Page 29]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-30" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
   hop limit as ancillary data lets the application override either the
   kernel's default or a previously specified value, for either a
   unicast destination or a multicast destination, for a single output
   operation.  Returning the received hop limit is useful for IPv6
   applications that need to verify that the received hop limit is 255
   (e.g., that the packet has not been forwarded).
   The received hop limit is returned as ancillary data by recvmsg()
   only if the application has enabled the IPV6_RECVHOPLIMIT socket
   option:
      int  on = 1;
      setsockopt(fd, IPPROTO_IPV6, IPV6_RECVHOPLIMIT, &on, sizeof(on));
   In the cmsghdr structure containing this ancillary data, the
   cmsg_level member will be IPPROTO_IPV6, the cmsg_type member will be
   IPV6_HOPLIMIT, and the first byte of cmsg_data[] will be the first
   byte of the integer hop limit.
   Nothing special need be done to specify the outgoing hop limit: just
   specify the control information as ancillary data for sendmsg().  As
   specified in [<a href="./rfc3493" title=""Basic Socket Interface Extensions for IPv6"">RFC-3493</a>], the interpretation of the integer hop limit
   value is
      x < -1:        return an error of EINVAL
      x == -1:       use kernel default
      0 <= x <= 255: use x
      x >= 256:      return an error of EINVAL
   This API defines IPV6_HOPLIMIT as an ancillary-only option, that is,
   the option name cannot be used as a socket option.  This is because
   [<a href="./rfc3493" title=""Basic Socket Interface Extensions for IPv6"">RFC-3493</a>] has more fine-grained socket options; IPV6_UNICAST_HOPS
   and IPV6_MULTICAST_HOPS.
<span class="h3"><a class="selflink" id="section-6.4" href="#section-6.4">6.4</a>.  Specifying the Next Hop Address</span>
   The IPV6_NEXTHOP ancillary data object specifies the next hop for the
   datagram as a socket address structure.  In the cmsghdr structure
   containing this ancillary data, the cmsg_level member will be
   IPPROTO_IPV6, the cmsg_type member will be IPV6_NEXTHOP, and the
   first byte of cmsg_data[] will be the first byte of the socket
   address structure.
   This is a privileged option.  (Note: It is implementation defined and
   beyond the scope of this document to define what "privileged" means.
   Unix systems use this term to mean the process must have an effective
   user ID of 0.)
<span class="grey">Stevens, et al.              Informational                     [Page 30]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-31" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
   This API only defines the case where the socket address contains an
   IPv6 address (i.e., the sa_family member is AF_INET6).  And, in this
   case, the node identified by that address must be a neighbor of the
   sending host.  If that address equals the destination IPv6 address of
   the datagram, then this is equivalent to the existing SO_DONTROUTE
   socket option.
   This option does not have any meaning for multicast destinations.  In
   such a case, the specified next hop will be ignored.
   When the outgoing interface is specified by IPV6_PKTINFO as well, the
   next hop specified by this option must be reachable via the specified
   interface.
   In order to clear a sticky IPV6_NEXTHOP option the application must
   issue a setsockopt for IPV6_NEXTHOP with a zero length.
<span class="h3"><a class="selflink" id="section-6.5" href="#section-6.5">6.5</a>.  Specifying/Receiving the Traffic Class value</span>
   The outgoing traffic class is normally set to 0.  Specifying the
   traffic class as ancillary data lets the application override either
   the kernel's default or a previously specified value, for either a
   unicast destination or a multicast destination, for a single output
   operation.  Returning the received traffic class is useful for
   programs such as a diffserv debugging tool and for user level ECN
   (explicit congestion notification) implementation.
   The received traffic class is returned as ancillary data by recvmsg()
   only if the application has enabled the IPV6_RECVTCLASS socket
   option:
      int  on = 1;
      setsockopt(fd, IPPROTO_IPV6, IPV6_RECVTCLASS, &on, sizeof(on));
   In the cmsghdr structure containing this ancillary data, the
   cmsg_level member will be IPPROTO_IPV6, the cmsg_type member will be
   IPV6_TCLASS, and the first byte of cmsg_data[] will be the first byte
   of the integer traffic class.
   To specify the outgoing traffic class value, just specify the control
   information as ancillary data for sendmsg() or using setsockopt().
   Just like the hop limit value, the interpretation of the integer
   traffic class value is
      x < -1:        return an error of EINVAL
      x == -1:       use kernel default
      0 <= x <= 255: use x
      x >= 256:      return an error of EINVAL
<span class="grey">Stevens, et al.              Informational                     [Page 31]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-32" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
   In order to clear a sticky IPV6_TCLASS option the application can
   specify -1 as the value.
   There are cases where the kernel needs to control the traffic class
   value and conflicts with the user-specified value on the outgoing
   traffic.  An example is an implementation of ECN in the kernel,
   setting 2 bits of the traffic class value.  In such cases, the kernel
   should override the user-specified value.  On the incoming traffic,
   the kernel may mask some of the bits in the traffic class field.
<span class="h3"><a class="selflink" id="section-6.6" href="#section-6.6">6.6</a>.  Additional Errors with sendmsg() and setsockopt()</span>
   With the IPV6_PKTINFO socket option there are no additional errors
   possible with the call to recvmsg().  But when specifying the
   outgoing interface or the source address, additional errors are
   possible from sendmsg() or setsockopt().  Note that some
   implementations might only be able to return this type of errors for
   setsockopt().  The following are examples, but some of these may not
   be provided by some implementations, and some implementations may
   define additional errors:
   ENXIO         The interface specified by ipi6_ifindex does not exist.
   ENETDOWN      The interface specified by ipi6_ifindex is not enabled
                 for IPv6 use.
   EADDRNOTAVAIL ipi6_ifindex specifies an interface but the address
                 ipi6_addr is not available for use on that interface.
   EHOSTUNREACH  No route to the destination exists over the interface
                 specified by ipi6_ifindex.
<span class="h3"><a class="selflink" id="section-6.7" href="#section-6.7">6.7</a>.  Summary of Outgoing Interface Selection</span>
   This document and [<a href="./rfc3493" title=""Basic Socket Interface Extensions for IPv6"">RFC-3493</a>] specify various methods that affect the
   selection of the packet's outgoing interface.  This subsection
   summarizes the ordering among those in order to ensure deterministic
   behavior.
   For a given outgoing packet on a given socket, the outgoing interface
   is determined in the following order:
   1. if an interface is specified in an IPV6_PKTINFO ancillary data
      item, the interface is used.
   2. otherwise, if an interface is specified in an IPV6_PKTINFO sticky
      option, the interface is used.
<span class="grey">Stevens, et al.              Informational                     [Page 32]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-33" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
   3. otherwise, if the destination address is a multicast address and
      the IPV6_MULTICAST_IF socket option is specified for the socket,
      the interface is used.
   4. otherwise, if an IPV6_NEXTHOP ancillary data item is specified,
      the interface to the next hop is used.
   5. otherwise, if an IPV6_NEXTHOP sticky option is specified, the
      interface to the next hop is used.
   6. otherwise, the outgoing interface should be determined in an
      implementation dependent manner.
   The ordering above particularly means if the application specifies an
   interface by the IPV6_MULTICAST_IF socket option (described in [RFC-
   3493]) as well as specifying a different interface by the
   IPV6_PKTINFO sticky option, the latter will override the former for
   every multicast packet on the corresponding socket.  The reason for
   the ordering comes from expectation that the source address is
   specified as well and that the pair of the address and the outgoing
   interface should be preferred.
   In any case, the kernel must also verify that the source and
   destination addresses do not break their scope zones with regard to
   the outgoing interface.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>.  Routing Header Option</span>
   Source routing in IPv6 is accomplished by specifying a Routing header
   as an extension header.  There can be different types of Routing
   headers, but IPv6 currently defines only the Type 0 Routing header
   [<a href="./rfc2460" title=""Internet Protocol, Version 6 (IPv6) Specification"">RFC-2460</a>].  This type supports up to 127 intermediate nodes (limited
   by the length field in the extension header).  With this maximum
   number of intermediate nodes, a source, and a destination, there are
   128 hops.
   Source routing with the IPv4 sockets API (the IP_OPTIONS socket
   option) requires the application to build the source route in the
   format that appears as the IPv4 header option, requiring intimate
   knowledge of the IPv4 options format.  This IPv6 API, however,
   defines six functions that the application calls to build and examine
   a Routing header, and the ability to use sticky options or ancillary
   data to communicate this information between the application and the
   kernel using the IPV6_RTHDR option.
<span class="grey">Stevens, et al.              Informational                     [Page 33]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-34" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
   Three functions build a Routing header:
      inet6_rth_space()    - return #bytes required for Routing header
      inet6_rth_init()     - initialize buffer data for Routing header
      inet6_rth_add()      - add one IPv6 address to the Routing header
   Three functions deal with a returned Routing header:
      inet6_rth_reverse()  - reverse a Routing header
      inet6_rth_segments() - return #segments in a Routing header
      inet6_rth_getaddr()  - fetch one address from a Routing header
   The function prototypes for these functions are defined as a result
   of including <netinet/in.h>.
   To receive a Routing header the application must enable the
   IPV6_RECVRTHDR socket option:
      int  on = 1;
      setsockopt(fd, IPPROTO_IPV6, IPV6_RECVRTHDR, &on, sizeof(on));
   Each received Routing header is returned as one ancillary data object
   described by a cmsghdr structure with cmsg_type set to IPV6_RTHDR.
   When multiple Routing headers are received, multiple ancillary data
   objects (with cmsg_type set to IPV6_RTHDR) will be returned to the
   application.
   To send a Routing header the application specifies it either as
   ancillary data in a call to sendmsg() or using setsockopt().  For the
   sending side, this API assumes the number of occurrences of the
   Routing header as described in [<a href="./rfc2460" title=""Internet Protocol, Version 6 (IPv6) Specification"">RFC-2460</a>].  That is, applications can
   only specify at most one outgoing Routing header.
   The application can remove any sticky Routing header by calling
   setsockopt() for IPV6_RTHDR with a zero option length.
   When using ancillary data a Routing header is passed between the
   application and the kernel as follows: The cmsg_level member has a
   value of IPPROTO_IPV6 and the cmsg_type member has a value of
   IPV6_RTHDR.  The contents of the cmsg_data[] member is implementation
   dependent and should not be accessed directly by the application, but
   should be accessed using the six functions that we are about to
   describe.
   The following constant is defined as a result of including the
   <netinet/in.h>:
      #define IPV6_RTHDR_TYPE_0    0 /* IPv6 Routing header type 0 */
<span class="grey">Stevens, et al.              Informational                     [Page 34]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-35" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
   When a Routing header is specified, the destination address specified
   for connect(), sendto(), or sendmsg() is the final destination
   address of the datagram.  The Routing header then contains the
   addresses of all the intermediate nodes.
<span class="h3"><a class="selflink" id="section-7.1" href="#section-7.1">7.1</a>.  inet6_rth_space</span>
      socklen_t inet6_rth_space(int type, int segments);
   This function returns the number of bytes required to hold a Routing
   header of the specified type containing the specified number of
   segments (addresses).  For an IPv6 Type 0 Routing header, the number
   of segments must be between 0 and 127, inclusive.  The return value
   is just the space for the Routing header.  When the application uses
   ancillary data it must pass the returned length to CMSG_SPACE() to
   determine how much memory is needed for the ancillary data object
   (including the cmsghdr structure).
   If the return value is 0, then either the type of the Routing header
   is not supported by this implementation or the number of segments is
   invalid for this type of Routing header.
   (Note: This function returns the size but does not allocate the space
   required for the ancillary data.  This allows an application to
   allocate a larger buffer, if other ancillary data objects are
   desired, since all the ancillary data objects must be specified to
   sendmsg() as a single msg_control buffer.)
<span class="h3"><a class="selflink" id="section-7.2" href="#section-7.2">7.2</a>.  inet6_rth_init</span>
      void *inet6_rth_init(void *bp, socklen_t bp_len, int type,
                           int segments);
   This function initializes the buffer pointed to by bp to contain a
   Routing header of the specified type and sets ip6r_len based on the
   segments parameter.  bp_len is only used to verify that the buffer is
   large enough.  The ip6r_segleft field is set to zero; inet6_rth_add()
   will increment it.
   When the application uses ancillary data the application must
   initialize any cmsghdr fields.
   The caller must allocate the buffer and its size can be determined by
   calling inet6_rth_space().
   Upon success the return value is the pointer to the buffer (bp), and
   this is then used as the first argument to the inet6_rth_add()
   function.  Upon an error the return value is NULL.
<span class="grey">Stevens, et al.              Informational                     [Page 35]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-36" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
<span class="h3"><a class="selflink" id="section-7.3" href="#section-7.3">7.3</a>.  inet6_rth_add</span>
      int inet6_rth_add(void *bp, const struct in6_addr *addr);
   This function adds the IPv6 address pointed to by addr to the end of
   the Routing header being constructed.
   If successful, the segleft member of the Routing Header is updated to
   account for the new address in the Routing header and the return
   value of the function is 0.  Upon an error the return value of the
   function is -1.
<span class="h3"><a class="selflink" id="section-7.4" href="#section-7.4">7.4</a>.  inet6_rth_reverse</span>
      int inet6_rth_reverse(const void *in, void *out);
   This function takes a Routing header extension header (pointed to by
   the first argument) and writes a new Routing header that sends
   datagrams along the reverse of that route.  The function reverses the
   order of the addresses and sets the segleft member in the new Routing
   header to the number of segments.  Both arguments are allowed to
   point to the same buffer (that is, the reversal can occur in place).
   The return value of the function is 0 on success, or -1 upon an
   error.
<span class="h3"><a class="selflink" id="section-7.5" href="#section-7.5">7.5</a>.  inet6_rth_segments</span>
      int inet6_rth_segments(const void *bp);
   This function returns the number of segments (addresses) contained in
   the Routing header described by bp.  On success the return value is
   zero or greater.  The return value of the function is -1 upon an
   error.
<span class="h3"><a class="selflink" id="section-7.6" href="#section-7.6">7.6</a>.  inet6_rth_getaddr</span>
      struct in6_addr *inet6_rth_getaddr(const void *bp, int index);
   This function returns a pointer to the IPv6 address specified by
   index (which must have a value between 0 and one less than the value
   returned by inet6_rth_segments()) in the Routing header described by
   bp.  An application should first call inet6_rth_segments() to obtain
   the number of segments in the Routing header.
   Upon an error the return value of the function is NULL.
<span class="grey">Stevens, et al.              Informational                     [Page 36]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-37" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>.  Hop-By-Hop Options</span>
   A variable number of Hop-by-Hop options can appear in a single Hop-
   by-Hop options header.  Each option in the header is TLV-encoded with
   a type, length, and value.  This IPv6 API defines seven functions
   that the application calls to build and examine a Hop-by_Hop options
   header, and the ability to use sticky options or ancillary data to
   communicate this information between the application and the kernel.
   This uses the IPV6_HOPOPTS for a Hop-by-Hop options header.
   Today several Hop-by-Hop options are defined for IPv6.  Two pad
   options, Pad1 and PadN, are for alignment purposes and are
   automatically inserted by the inet6_opt_XXX() routines and ignored by
   the inet6_opt_XXX() routines on the receive side.  This section of
   the API is therefore defined for other (and future) Hop-by-Hop
   options that an application may need to specify and receive.
   Four functions build an options header:
      inet6_opt_init()     - initialize buffer data for options header
      inet6_opt_append()   - add one TLV option to the options header
      inet6_opt_finish()   - finish adding TLV options to the options
                             header
      inet6_opt_set_val()  - add one component of the option content to
                             the option
      Three functions deal with a returned options header:
      inet6_opt_next()     - extract the next option from the options
                             header
      inet6_opt_find()     - extract an option of a specified type from
                             the header
      inet6_opt_get_val()  - retrieve one component of the option
                             content
   Individual Hop-by-Hop options (and Destination options, which are
   described in <a href="#section-9">Section 9</a> and are very similar to the Hop-by-Hop
   options) may have specific alignment requirements.  For example, the
   4-byte Jumbo Payload length should appear on a 4-byte boundary, and
   IPv6 addresses are normally aligned on an 8-byte boundary.  These
   requirements and the terminology used with these options are
   discussed in <a href="#section-4.2">Section 4.2</a> and <a href="./rfc2460#appendix-B">Appendix B of [RFC-2460]</a>.  The alignment
   of first byte of each option is specified by two values, called x and
   y, written as "xn + y".  This states that the option must appear at
   an integer multiple of x bytes from the beginning of the options
   header (x can have the values 1, 2, 4, or 8), plus y bytes (y can
   have a value between 0 and 7, inclusive).  The Pad1 and PadN options
   are inserted as needed to maintain the required alignment.  The
<span class="grey">Stevens, et al.              Informational                     [Page 37]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-38" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
   functions below need to know the alignment of the end of the option
   (which is always in the form "xn," where x can have the values 1, 2,
   4, or 8) and the total size of the data portion of the option.  These
   are passed as the "align" and "len" arguments to inet6_opt_append().
   Multiple Hop-by-Hop options must be specified by the application by
   placing them in a single extension header.
   Finally, we note that use of some Hop-by-Hop options or some
   Destination options, might require special privilege.  That is,
   normal applications (without special privilege) might be forbidden
   from setting certain options in outgoing packets, and might never see
   certain options in received packets.
<span class="h3"><a class="selflink" id="section-8.1" href="#section-8.1">8.1</a>.  Receiving Hop-by-Hop Options</span>
   To receive a Hop-by-Hop options header the application must enable
   the IPV6_RECVHOPOPTS socket option:
      int  on = 1;
      setsockopt(fd, IPPROTO_IPV6, IPV6_RECVHOPOPTS, &on, sizeof(on));
   When using ancillary data a Hop-by-hop options header is passed
   between the application and the kernel as follows: The cmsg_level
   member will be IPPROTO_IPV6 and the cmsg_type member will be
   IPV6_HOPOPTS.  These options are then processed by calling the
   inet6_opt_next(), inet6_opt_find(), and inet6_opt_get_val()
   functions, described in <a href="#section-10">Section 10</a>.
<span class="h3"><a class="selflink" id="section-8.2" href="#section-8.2">8.2</a>.  Sending Hop-by-Hop Options</span>
   To send a Hop-by-Hop options header, the application specifies the
   header either as ancillary data in a call to sendmsg() or using
   setsockopt().
   The application can remove any sticky Hop-by-Hop options header by
   calling setsockopt() for IPV6_HOPOPTS with a zero option length.
   All the Hop-by-Hop options must be specified by a single ancillary
   data object.  The cmsg_level member is set to IPPROTO_IPV6 and the
   cmsg_type member is set to IPV6_HOPOPTS.  The option is normally
   constructed using the inet6_opt_init(), inet6_opt_append(),
   inet6_opt_finish(), and inet6_opt_set_val() functions, described in
   <a href="#section-10">Section 10</a>.
   Additional errors may be possible from sendmsg() and setsockopt() if
   the specified option is in error.
<span class="grey">Stevens, et al.              Informational                     [Page 38]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-39" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>.  Destination Options</span>
   A variable number of Destination options can appear in one or more
   Destination options headers.  As defined in [<a href="./rfc2460" title=""Internet Protocol, Version 6 (IPv6) Specification"">RFC-2460</a>], a Destination
   options header appearing before a Routing header is processed by the
   first destination plus any subsequent destinations specified in the
   Routing header, while a Destination options header that is not
   followed by a Routing header is processed only by the final
   destination.  As with the Hop-by-Hop options, each option in a
   Destination options header is TLV-encoded with a type, length, and
   value.
<span class="h3"><a class="selflink" id="section-9.1" href="#section-9.1">9.1</a>.  Receiving Destination Options</span>
   To receive Destination options header the application must enable the
   IPV6_RECVDSTOPTS socket option:
      int  on = 1;
      setsockopt(fd, IPPROTO_IPV6, IPV6_RECVDSTOPTS, &on, sizeof(on));
   Each Destination options header is returned as one ancillary data
   object described by a cmsghdr structure with cmsg_level set to
   IPPROTO_IPV6 and cmsg_type set to IPV6_DSTOPTS.
   These options are then processed by calling the inet6_opt_next(),
   inet6_opt_find(), and inet6_opt_get_value() functions.
<span class="h3"><a class="selflink" id="section-9.2" href="#section-9.2">9.2</a>.  Sending Destination Options</span>
   To send a Destination options header, the application specifies it
   either as ancillary data in a call to sendmsg() or using
   setsockopt().
   The application can remove any sticky Destination options header by
   calling setsockopt() for IPV6_RTHDRDSTOPTS/IPV6_DSTOPTS with a zero
   option length.
   This API assumes the ordering about extension headers as described in
   [<a href="./rfc2460" title=""Internet Protocol, Version 6 (IPv6) Specification"">RFC-2460</a>].  Thus, one set of Destination options can only appear
   before a Routing header, and one set can only appear after a Routing
   header (or in a packet with no Routing header).  Each set can consist
   of one or more options but each set is a single extension header.
   Today all destination options that an application may want to specify
   can be put after (or without) a Routing header.  Thus, applications
   should usually need IPV6_DSTOPTS only and should avoid using
   IPV6_RTHDRDSTOPTS whenever possible.
<span class="grey">Stevens, et al.              Informational                     [Page 39]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-40" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
   When using ancillary data a Destination options header is passed
   between the application and the kernel as follows: The set preceding
   a Routing header are specified with the cmsg_level member set to
   IPPROTO_IPV6 and the cmsg_type member set to IPV6_RTHDRDSTOPTS.  Any
   setsockopt or ancillary data for IPV6_RTHDRDSTOPTS is silently
   ignored when sending packets unless a Routing header is also
   specified.  Note that the "Routing header" here means the one
   specified by this API.  Even when the kernel inserts a routing header
   in its internal routine (e.g., in a mobile IPv6 stack), the
   Destination options header specified by IPV6_RTHDRDSTOPTS will still
   be ignored unless the application explicitly specifies its own
   Routing header.
   The set of Destination options after a Routing header, which are also
   used when no Routing header is present, are specified with the
   cmsg_level member is set to IPPROTO_IPV6 and the cmsg_type member is
   set to IPV6_DSTOPTS.
   The Destination options are normally constructed using the
   inet6_opt_init(), inet6_opt_append(), inet6_opt_finish(), and
   inet6_opt_set_val() functions, described in <a href="#section-10">Section 10</a>.
   Additional errors may be possible from sendmsg() and setsockopt() if
   the specified option is in error.
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>.  Hop-by-Hop and Destination Options Processing</span>
   Building and parsing the Hop-by-Hop and Destination options is
   complicated for the reasons given earlier.  We therefore define a set
   of functions to help the application.  These functions assume the
   formatting rules specified in <a href="./rfc2460#appendix-B">Appendix B in [RFC-2460]</a> i.e., that the
   largest field is placed last in the option.
   The function prototypes for these functions are defined as a result
   of including <netinet/in.h>.
   The first 3 functions (init, append, and finish) are used both to
   calculate the needed buffer size for the options, and to actually
   encode the options once the application has allocated a buffer for
   the header.  In order to only calculate the size the application must
   pass a NULL extbuf and a zero extlen to those functions.
<span class="grey">Stevens, et al.              Informational                     [Page 40]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-41" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
<span class="h3"><a class="selflink" id="section-10.1" href="#section-10.1">10.1</a>.  inet6_opt_init</span>
      int inet6_opt_init(void *extbuf, socklen_t extlen);
   This function returns the number of bytes needed for the empty
   extension header i.e., without any options.  If extbuf is not NULL it
   also initializes the extension header to have the correct length
   field.  In that case if the extlen value is not a positive (i.e.,
   non-zero) multiple of 8 the function fails and returns -1.
   (Note: since the return value on success is based on a "constant"
   parameter, i.e., the empty extension header, an implementation may
   return a constant value.  However, this specification does not
   require the value be constant, and leaves it as implementation
   dependent.  The application should not assume a particular constant
   value as a successful return value of this function.)
<span class="h3"><a class="selflink" id="section-10.2" href="#section-10.2">10.2</a>.  inet6_opt_append</span>
      int inet6_opt_append(void *extbuf, socklen_t extlen, int offset,
                           uint8_t type, socklen_t len, uint_t align,
                           void **databufp);
   Offset should be the length returned by inet6_opt_init() or a
   previous inet6_opt_append().  This function returns the updated total
   length taking into account adding an option with length 'len' and
   alignment 'align'.  If extbuf is not NULL then, in addition to
   returning the length, the function inserts any needed pad option,
   initializes the option (setting the type and length fields) and
   returns a pointer to the location for the option content in databufp.
   If the option does not fit in the extension header buffer the
   function returns -1.
   Type is the 8-bit option type.  Len is the length of the option data
   (i.e., excluding the option type and option length fields).
   Once inet6_opt_append() has been called the application can use the
   databuf directly, or use inet6_opt_set_val() to specify the content
   of the option.
   The option type must have a value from 2 to 255, inclusive.  (0 and 1
   are reserved for the Pad1 and PadN options, respectively.)
   The option data length must have a value between 0 and 255,
   inclusive, and is the length of the option data that follows.
   The align parameter must have a value of 1, 2, 4, or 8.  The align
   value can not exceed the value of len.
<span class="grey">Stevens, et al.              Informational                     [Page 41]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-42" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
<span class="h3"><a class="selflink" id="section-10.3" href="#section-10.3">10.3</a>.  inet6_opt_finish</span>
      int inet6_opt_finish(void *extbuf, socklen_t extlen, int offset);
   Offset should be the length returned by inet6_opt_init() or
   inet6_opt_append().  This function returns the updated total length
   taking into account the final padding of the extension header to make
   it a multiple of 8 bytes.  If extbuf is not NULL the function also
   initializes the option by inserting a Pad1 or PadN option of the
   proper length.
   If the necessary pad does not fit in the extension header buffer the
   function returns -1.
<span class="h3"><a class="selflink" id="section-10.4" href="#section-10.4">10.4</a>.  inet6_opt_set_val</span>
      int inet6_opt_set_val(void *databuf, int offset, void *val,
                            socklen_t vallen);
   Databuf should be a pointer returned by inet6_opt_append().  This
   function inserts data items of various sizes in the data portion of
   the option.  Val should point to the data to be inserted.  Offset
   specifies where in the data portion of the option the value should be
   inserted; the first byte after the option type and length is accessed
   by specifying an offset of zero.
   The caller should ensure that each field is aligned on its natural
   boundaries as described in <a href="./rfc2460#appendix-B">Appendix B of [RFC-2460]</a>, but the function
   must not rely on the caller's behavior.  Even when the alignment
   requirement is not satisfied, inet6_opt_set_val should just copy the
   data as required.
   The function returns the offset for the next field (i.e., offset +
   vallen) which can be used when composing option content with multiple
   fields.
<span class="h3"><a class="selflink" id="section-10.5" href="#section-10.5">10.5</a>.  inet6_opt_next</span>
      int inet6_opt_next(void *extbuf, socklen_t extlen, int offset,
                         uint8_t *typep, socklen_t *lenp,
                         void **databufp);
   This function parses received option extension headers returning the
   next option.  Extbuf and extlen specifies the extension header.
   Offset should either be zero (for the first option) or the length
   returned by a previous call to inet6_opt_next() or inet6_opt_find().
   It specifies the position where to continue scanning the extension
   buffer.  The next option is returned by updating typep, lenp, and
<span class="grey">Stevens, et al.              Informational                     [Page 42]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-43" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
   databufp.  Typep stores the option type, lenp stores the length of
   the option data (i.e., excluding the option type and option length
   fields), and databufp points the data field of the option.  This
   function returns the updated "previous" length computed by advancing
   past the option that was returned.  This returned "previous" length
   can then be passed to subsequent calls to inet6_opt_next().  This
   function does not return any PAD1 or PADN options.  When there are no
   more options or if the option extension header is malformed the
   return value is -1.
<span class="h3"><a class="selflink" id="section-10.6" href="#section-10.6">10.6</a>.  inet6_opt_find</span>
      int inet6_opt_find(void *extbuf, socklen_t extlen, int offset,
                         uint8_t type, socklen_t *lenp,
                         void **databufp);
   This function is similar to the previously described inet6_opt_next()
   function, except this function lets the caller specify the option
   type to be searched for, instead of always returning the next option
   in the extension header.
   If an option of the specified type is located, the function returns
   the updated "previous" total length computed by advancing past the
   option that was returned and past any options that didn't match the
   type.  This returned "previous" length can then be passed to
   subsequent calls to inet6_opt_find() for finding the next occurrence
   of the same option type.
   If an option of the specified type is not located, the return value
   is -1.  If the option extension header is malformed, the return value
   is -1.
<span class="h3"><a class="selflink" id="section-10.7" href="#section-10.7">10.7</a>.  inet6_opt_get_val</span>
      int inet6_opt_get_val(void *databuf, int offset, void *val,
                            socklen_t vallen);
   Databuf should be a pointer returned by inet6_opt_next() or
   inet6_opt_find().  This function extracts data items of various sizes
   in the data portion of the option.  Val should point to the
   destination for the extracted data.  Offset specifies from where in
   the data portion of the option the value should be extracted; the
   first byte after the option type and length is accessed by specifying
   an offset of zero.
   It is expected that each field is aligned on its natural boundaries
   as described in <a href="./rfc2460#appendix-B">Appendix B of [RFC-2460]</a>, but the function must not
   rely on the alignment.
<span class="grey">Stevens, et al.              Informational                     [Page 43]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-44" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
   The function returns the offset for the next field (i.e., offset +
   vallen) which can be used when extracting option content with
   multiple fields.
<span class="h2"><a class="selflink" id="section-11" href="#section-11">11</a>.  Additional Advanced API Functions</span>
<span class="h3"><a class="selflink" id="section-11.1" href="#section-11.1">11.1</a>.  Sending with the Minimum MTU</span>
   Unicast applications should usually let the kernel perform path MTU
   discovery [<a href="./rfc1981" title=""Path MTU Discovery for IP version 6"">RFC-1981</a>], as long as the kernel supports it, and should
   not care about the path MTU.  Some applications, however, might not
   want to incur the overhead of path MTU discovery, especially if the
   applications only send a single datagram to a destination.  A
   potential example is a DNS server.
   [<a id="ref-RFC-1981">RFC-1981</a>] describes how path MTU discovery works for multicast
   destinations.  From practice in using IPv4 multicast, however, many
   careless applications that send large multicast packets on the wire
   have caused implosion of ICMPv4 error messages.  The situation can be
   worse when there is a filtering node that blocks the ICMPv4 messages.
   Though the filtering issue applies to unicast as well, the impact is
   much larger in the multicast cases.
   Thus, applications sending multicast traffic should explicitly enable
   path MTU discovery only when they understand that the benefit of
   possibly larger MTU usage outweighs the possible impact of MTU
   discovery for active sources across the delivery tree(s).  This
   default behavior is based on the today's practice with IPv4 multicast
   and path MTU discovery.  The behavior may change in the future once
   it is found that path MTU discovery effectively works with actual
   multicast applications and network configurations.
   This specification defines a mechanism to avoid path MTU discovery by
   sending at the minimum IPv6 MTU [<a href="./rfc2460" title=""Internet Protocol, Version 6 (IPv6) Specification"">RFC-2460</a>].  If the packet is larger
   than the minimum MTU and this feature has been enabled the IP layer
   will fragment to the minimum MTU.  To control the policy about path
   MTU discovery, applications can use the IPV6_USE_MIN_MTU socket
   option.
   As described above, the default policy should depend on whether the
   destination is unicast or multicast.  For unicast destinations path
   MTU discovery should be performed by default.  For multicast
   destinations path MTU discovery should be disabled by default.  This
   option thus takes the following three types of integer arguments:
   -1: perform path MTU discovery for unicast destinations but do not
       perform it for multicast destinations.  Packets to multicast
       destinations are therefore sent with the minimum MTU.
<span class="grey">Stevens, et al.              Informational                     [Page 44]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-45" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
   0: always perform path MTU discovery.
   1: always disable path MTU discovery and send packets at the minimum
       MTU.
   The default value of this option is -1.  Values other than -1, 0, and
   1 are invalid, and an error EINVAL will be returned for those values.
   As an example, if a unicast application intentionally wants to
   disable path MTU discovery, it will add the following lines:
      int  on = 1;
      setsockopt(fd, IPPROTO_IPV6, IPV6_USE_MIN_MTU, &on, sizeof(on));
   Note that this API intentionally excludes the case where the
   application wants to perform path MTU discovery for multicast but to
   disable it for unicast.  This is because such usage is not feasible
   considering a scale of performance issues around whether to do path
   MTU discovery or not.  When path MTU discovery makes sense to a
   destination but not to a different destination, regardless of whether
   the destination is unicast or multicast, applications either need to
   toggle the option between sending such packets on the same socket, or
   use different sockets for the two classes of destinations.
   This option can also be sent as ancillary data.  In the cmsghdr
   structure containing this ancillary data, the cmsg_level member will
   be IPPROTO_IPV6, the cmsg_type member will be IPV6_USE_MIN_MTU, and
   the first byte of cmsg_data[] will be the first byte of the integer.
<span class="h3"><a class="selflink" id="section-11.2" href="#section-11.2">11.2</a>.  Sending without Fragmentation</span>
   In order to provide for easy porting of existing UDP and raw socket
   applications IPv6 implementations will, when originating packets,
   automatically insert a fragment header in the packet if the packet is
   too big for the path MTU.
   Some applications might not want this behavior.  An example is
   traceroute which might want to discover the actual path MTU.
   This specification defines a mechanism to turn off the automatic
   inserting of a fragment header for UDP and raw sockets.  This can be
   enabled using the IPV6_DONTFRAG socket option.
      int on = 1;
      setsockopt(fd, IPPROTO_IPV6, IPV6_DONTFRAG, &on, sizeof(on));
<span class="grey">Stevens, et al.              Informational                     [Page 45]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-46" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
   By default, this socket option is disabled.  Setting the value to 0
   also disables the option i.e., reverts to the default behavior of
   automatic inserting.  This option can also be sent as ancillary data.
   In the cmsghdr structure containing this ancillary data, the
   cmsg_level member will be IPPROTO_IPV6, the cmsg_type member will be
   IPV6_DONTFRAG, and the first byte of cmsg_data[] will be the first
   byte of the integer.  This API only specifies the use of this option
   for UDP and raw sockets, and does not define the usage for TCP
   sockets.
   When the data size is larger than the MTU of the outgoing interface,
   the packet will be discarded.  Applications can know the result by
   enabling the IPV6_RECVPATHMTU option described below and receiving
   the corresponding ancillary data items.  An additional error EMSGSIZE
   may also be returned in some implementations.  Note, however, that
   some other implementations might not be able to return this
   additional error when sending a message.
<span class="h3"><a class="selflink" id="section-11.3" href="#section-11.3">11.3</a>.  Path MTU Discovery and UDP</span>
   UDP and raw socket applications need to be able to  determine the
   "maximum send transport-message size" (<a href="./rfc1981#section-5.1">Section 5.1 of [RFC-1981]</a>) to
   a given destination so that those applications can participate in
   path MTU discovery.  This lets those applications send smaller
   datagrams to the destination, avoiding fragmentation.
   This is accomplished using a new ancillary data item (IPV6_PATHMTU)
   which is delivered to recvmsg() without any actual data.  The
   application can enable the receipt of IPV6_PATHMTU ancillary data
   items by setting the IPV6_RECVPATHMTU socket option.
      int  on = 1;
      setsockopt(fd, IPPROTO_IPV6, IPV6_RECVPATHMTU, &on, sizeof(on));
   By default, this socket option is disabled.  Setting the value to 0
   also disables the option.  This API only specifies the use of this
   option for UDP and raw sockets, and does not define the usage for TCP
   sockets.
   When the application is sending packets too big for the path MTU
   recvmsg() will return zero (indicating no data) but there will be a
   cmsghdr with cmsg_type set to IPV6_PATHMTU, and cmsg_len will
   indicate that cmsg_data is sizeof(struct ip6_mtuinfo) bytes long.
   This can happen when the sending node receives a corresponding ICMPv6
   packet too big error, or when the packet is sent from a socket with
   the IPV6_DONTFRAG option being on and the packet size is larger than
   the MTU of the outgoing interface.  This indication is considered as
   an ancillary data item for a separate (empty) message.  Thus, when
<span class="grey">Stevens, et al.              Informational                     [Page 46]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-47" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
   there are buffered messages (i.e., messages that the application has
   not received yet) on the socket the application will first receive
   the buffered messages and then receive the indication.
   The first byte of cmsg_data[] will point to a struct ip6_mtuinfo
   carrying the path MTU to use together with the IPv6 destination
   address.
      struct ip6_mtuinfo {
        struct sockaddr_in6 ip6m_addr; /* dst address including
                                          zone ID */
        uint32_t            ip6m_mtu;  /* path MTU in host byte order */
      };
   This cmsghdr will be passed to every socket that sets the
   IPV6_RECVPATHMTU socket option, even if the socket is non-connected.
   Note that this also means an application that sets the option may
   receive an IPV6_MTU ancillary data item for each ICMP too big error
   the node receives, including such ICMP errors caused by other
   applications on the node.  Thus, an application that wants to perform
   the path MTU discovery by itself needs to keep history of
   destinations that it has actually sent to and to compare the address
   returned in the ip6_mtuinfo structure to the history.  An
   implementation may choose not to delivery data to a connected socket
   that has a foreign address that is different than the address
   specified in the ip6m_addr structure.
   When an application sends a packet with a routing header, the final
   destination stored in the ip6m_addr member does not necessarily
   contain complete information of the entire path.
<span class="h3"><a class="selflink" id="section-11.4" href="#section-11.4">11.4</a>.  Determining the Current Path MTU</span>
   Some applications might need to determine the current path MTU e.g.,
   applications using IPV6_RECVPATHMTU might want to pick a good
   starting value.
   This specification defines a get-only socket option to retrieve the
   current path MTU value for the destination of a given connected
   socket.  If the IP layer does not have a cached path MTU value it
   will return the interface MTU for the interface that will be used
   when sending to the destination address.
   This information is retrieved using the IPV6_PATHMTU socket option.
   This option takes a pointer to the ip6_mtuinfo structure as the
   fourth argument, and the size of the structure should be passed as a
   value-result parameter in the fifth argument.
<span class="grey">Stevens, et al.              Informational                     [Page 47]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-48" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
      struct ip6_mtuinfo mtuinfo;
      socklen_t infolen = sizeof(mtuinfo);
      getsockopt(fd, IPPROTO_IPV6, IPV6_PATHMTU, &mtuinfo, &infolen);
   When the call succeeds, the path MTU value is stored in the ip6m_mtu
   member of the ip6_mtuinfo structure.  Since the socket is connected,
   the ip6m_addr member is meaningless and should not be referred to by
   the application.
   This option can only be used for a connected socket, because a non-
   connected socket does not have the information of the destination and
   there is no way to pass the destination via getsockopt().  When
   getsockopt() for this option is issued on a non-connected socket, the
   call will fail.  Despite this limitation, this option is still useful
   from a practical point of view, because applications that care about
   the path MTU tend to send a lot of packets to a single destination
   and to connect the socket to the destination for performance reasons.
   If the application needs to get the MTU value in a more generic way,
   it should use a more generic interface, such as routing sockets
   [<a href="#ref-TCPIPILLUST" title=""TCP/IP Illustrated, Volume 2: The Implementation"">TCPIPILLUST</a>].
<span class="h2"><a class="selflink" id="section-12" href="#section-12">12</a>.  Ordering of Ancillary Data and IPv6 Extension Headers</span>
   Three IPv6 extension headers can be specified by the application and
   returned to the application using ancillary data with sendmsg() and
   recvmsg(): the Routing header, Hop-by-Hop options header, and
   Destination options header.  When multiple ancillary data objects are
   transferred via recvmsg() and these objects represent any of these
   three extension headers, their placement in the control buffer is
   directly tied to their location in the corresponding IPv6 datagram.
   For example, when the application has enabled the IPV6_RECVRTHDR and
   IPV6_RECVDSTOPTS options and later receives an IPv6 packet with
   extension headers in the following order:
      The IPv6 header
      A Hop-by-Hop options header
      A Destination options header (1)
      A Routing header
      An Authentication header
      A Destination options header (2)
      A UDP header and UDP data
<span class="grey">Stevens, et al.              Informational                     [Page 48]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-49" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
   then the application will receive three ancillary data objects in the
   following order:
      an object with cmsg_type set to IPV6_DSTOPTS, which represents
      the destination options header (1)
      an object with cmsg_type set to IPV6_RTHDR, which represents the
      Routing header
      an object with cmsg_type set to IPV6_DSTOPTS, which represents the
      destination options header (2)
   This example follows the header ordering described in [<a href="./rfc2460" title=""Internet Protocol, Version 6 (IPv6) Specification"">RFC-2460</a>], but
   the receiving side of this specification does not assume the
   ordering.  Applications may receive any numbers of objects in any
   order according to the ordering of the received IPv6 datagram.
   For the sending side, however, this API imposes some ordering
   constraints according to [<a href="./rfc2460" title=""Internet Protocol, Version 6 (IPv6) Specification"">RFC-2460</a>].  Applications using this API
   cannot make a packet with extension headers that do not follow the
   ordering.  Note, however, that this does not mean applications must
   always follow the restriction.  This is just a limitation in this API
   in order to give application programmers a guideline to construct
   headers in a practical manner.  Should an application need to make an
   outgoing packet in an arbitrary order about the extension headers,
   some other technique, such as the datalink interfaces BPF or DLPI,
   must be used.
   The followings are more details about the constraints:
   -  Each IPV6_xxx ancillary data object for a particular type of
      extension header can be specified at most once in a single control
      buffer.
   -  IPV6_xxx ancillary data objects can appear in any order in a
      control buffer, because there is no ambiguity of the ordering.
   -  Each set of IPV6_xxx ancillary data objects and sticky options
      will be put in the outgoing packet along with the header ordering
      described in [<a href="./rfc2460" title=""Internet Protocol, Version 6 (IPv6) Specification"">RFC-2460</a>].
   -  An ancillary data object or a sticky option of IPV6_RTHDRDSTOPTS
      will affect the outgoing packet only when a Routing header is
      specified as an ancillary data object or a sticky option.
      Otherwise, the specified value for IPV6_RTHDRDSTOPTS will be
      ignored.
<span class="grey">Stevens, et al.              Informational                     [Page 49]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-50" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
   For example, when an application sends a UDP datagram with a control
   data buffer containing ancillary data objects in the following order:
      an object with cmsg_type set to IPV6_DSTOPTS
      an object with cmsg_type set to IPV6_RTHDRDSTOPTS
      an object with cmsg_type set to IPV6_HOPOPTS
   and the sending socket does not have any sticky options, then the
   outgoing packet would be constructed as follows:
      The IPv6 header
      A Hop-by-Hop options header
      A Destination options header
      A UDP header and UDP data
   where the destination options header corresponds to the ancillary
   data object with the type IPV6_DSTOPTS.
   Note that the constraints above do not necessarily mean that the
   outgoing packet sent on the wire always follows the header ordering
   specified in this API document.  The kernel may insert additional
   headers that break the ordering as a result.  For example, if the
   kernel supports Mobile IPv6, an additional destination options header
   may be inserted before an authentication header, even without a
   routing header.
   This API does not provide access to any other extension headers than
   the supported three types of headers.  In particular, no information
   is provided about the IP security headers on an incoming packet, nor
   can be specified for an outgoing packet.  This API is for
   applications that do not care about the existence of IP security
   headers.
<span class="h2"><a class="selflink" id="section-13" href="#section-13">13</a>.  IPv6-Specific Options with IPv4-Mapped IPv6 Addresses</span>
   The various socket options and ancillary data specifications defined
   in this document apply only to true IPv6 sockets.  It is possible to
   create an IPv6 socket that actually sends and receives IPv4 packets,
   using IPv4-mapped IPv6 addresses, but the mapping of the options
   defined in this document to an IPv4 datagram is beyond the scope of
   this document.
   In general, attempting to specify an IPv6-only option, such as the
   Hop-by-Hop options, Destination options, or Routing header on an IPv6
   socket that is using IPv4-mapped IPv6 addresses, will probably result
   in an error.  Some implementations, however, may provide access to
<span class="grey">Stevens, et al.              Informational                     [Page 50]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-51" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
   the packet information (source/destination address, send/receive
   interface, and hop limit) on an IPv6 socket that is using IPv4-mapped
   IPv6 addresses.
<span class="h2"><a class="selflink" id="section-14" href="#section-14">14</a>.  Extended interfaces for rresvport, rcmd and rexec</span>
   Library functions that support the "r" commands hide the creation of
   a socket and the name resolution procedure from an application.  When
   the libraries return an AF_INET6 socket to an application that do not
   support the address family, the application may encounter an
   unexpected result when, e.g., calling getpeername() for the socket.
   In order to support AF_INET6 sockets for the "r" commands while
   keeping backward compatibility, this section defines some extensions
   to the libraries.
<span class="h3"><a class="selflink" id="section-14.1" href="#section-14.1">14.1</a>.  rresvport_af</span>
   The rresvport() function is used by the rcmd() function, and this
   function is in turn called by many of the "r" commands such as
   rlogin.  While new applications are not being written to use the
   rcmd() function, legacy applications such as rlogin will continue to
   use it and these will be ported to IPv6.
   rresvport() creates an IPv4/TCP socket and binds a "reserved port" to
   the socket.  Instead of defining an IPv6 version of this function we
   define a new function that takes an address family as its argument.
      #include <unistd.h>
      int  rresvport_af(int *port, int family);
   This function behaves the same as the existing rresvport() function,
   but instead of creating an AF_INET TCP socket, it can also create an
   AF_INET6 TCP socket.  The family argument is either AF_INET or
   AF_INET6, and a new error return is EAFNOSUPPORT if the address
   family is not supported.
   (Note: There is little consensus on which header defines the
   rresvport() and rcmd() function prototypes.  4.4BSD defines it in
   <unistd.h>, others in <netdb.h>, and others don't define the function
   prototypes at all.)
<span class="h3"><a class="selflink" id="section-14.2" href="#section-14.2">14.2</a>.  rcmd_af</span>
   The existing rcmd() function can not transparently use AF_INET6
   sockets since an application would not be prepared to handle AF_INET6
   addresses returned by e.g., getpeername() on the file descriptor
   created by rcmd().  Thus a new function is needed.
<span class="grey">Stevens, et al.              Informational                     [Page 51]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-52" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
      int rcmd_af(char **ahost, unsigned short rport,
                  const char *locuser, const char *remuser,
                  const char *cmd, int *fd2p, int af)
   This function behaves the same as the existing rcmd() function, but
   instead of creating an AF_INET TCP socket, it can also create an
   AF_INET6 TCP socket.  The family argument is AF_INET, AF_INET6, or
   AF_UNSPEC.  When either AF_INET or AF_INET6 is specified, this
   function will create a socket of the specified address family.  When
   AF_UNSPEC is specified, it will try all possible address families
   until a connection can be established, and will return the associated
   socket of the connection.  A new error EAFNOSUPPORT will be returned
   if the address family is not supported.
<span class="h3"><a class="selflink" id="section-14.3" href="#section-14.3">14.3</a>.  rexec_af</span>
   The existing rexec() function can not transparently use AF_INET6
   sockets since an application would not be prepared to handle AF_INET6
   addresses returned by e.g., getpeername() on the file descriptor
   created by rexec().  Thus a new function is needed.
      int rexec_af(char **ahost, unsigned short rport, const char *name,
                   const char *pass, const char *cmd, int *fd2p, int af)
   This function behaves the same as the existing rexec() function, but
   instead of creating an AF_INET TCP socket, it can also create an
   AF_INET6 TCP socket.  The family argument is AF_INET, AF_INET6, or
   AF_UNSPEC.  When either AF_INET or AF_INET6 is specified, this
   function will create a socket of the specified address family.  When
   AF_UNSPEC is specified, it will try all possible address families
   until a connection can be established, and will return the associated
   socket of the connection.  A new error EAFNOSUPPORT will be returned
   if the address family is not supported.
<span class="h2"><a class="selflink" id="section-15" href="#section-15">15</a>.  Summary of New Definitions</span>
   The following list summarizes the constants and structure,
   definitions discussed in this memo, sorted by header.
      <netinet/icmp6.h> ICMP6_DST_UNREACH
      <netinet/icmp6.h> ICMP6_DST_UNREACH_ADDR
      <netinet/icmp6.h> ICMP6_DST_UNREACH_ADMIN
      <netinet/icmp6.h> ICMP6_DST_UNREACH_BEYONDSCOPE
      <netinet/icmp6.h> ICMP6_DST_UNREACH_NOPORT
      <netinet/icmp6.h> ICMP6_DST_UNREACH_NOROUTE
      <netinet/icmp6.h> ICMP6_ECHO_REPLY
      <netinet/icmp6.h> ICMP6_ECHO_REQUEST
      <netinet/icmp6.h> ICMP6_INFOMSG_MASK
<span class="grey">Stevens, et al.              Informational                     [Page 52]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-53" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
      <netinet/icmp6.h> ICMP6_PACKET_TOO_BIG
      <netinet/icmp6.h> ICMP6_PARAMPROB_HEADER
      <netinet/icmp6.h> ICMP6_PARAMPROB_NEXTHEADER
      <netinet/icmp6.h> ICMP6_PARAMPROB_OPTION
      <netinet/icmp6.h> ICMP6_PARAM_PROB
      <netinet/icmp6.h> ICMP6_ROUTER_RENUMBERING
      <netinet/icmp6.h> ICMP6_RR_FLAGS_FORCEAPPLY
      <netinet/icmp6.h> ICMP6_RR_FLAGS_PREVDONE
      <netinet/icmp6.h> ICMP6_RR_FLAGS_REQRESULT
      <netinet/icmp6.h> ICMP6_RR_FLAGS_SPECSITE
      <netinet/icmp6.h> ICMP6_RR_FLAGS_TEST
      <netinet/icmp6.h> ICMP6_RR_PCOUSE_FLAGS_DECRPLTIME
      <netinet/icmp6.h> ICMP6_RR_PCOUSE_FLAGS_DECRVLTIME
      <netinet/icmp6.h> ICMP6_RR_PCOUSE_RAFLAGS_AUTO
      <netinet/icmp6.h> ICMP6_RR_PCOUSE_RAFLAGS_ONLINK
      <netinet/icmp6.h> ICMP6_RR_RESULT_FLAGS_FORBIDDEN
      <netinet/icmp6.h> ICMP6_RR_RESULT_FLAGS_OOB
      <netinet/icmp6.h> ICMP6_TIME_EXCEEDED
      <netinet/icmp6.h> ICMP6_TIME_EXCEED_REASSEMBLY
      <netinet/icmp6.h> ICMP6_TIME_EXCEED_TRANSIT
      <netinet/icmp6.h> MLD_LISTENER_QUERY
      <netinet/icmp6.h> MLD_LISTENER_REDUCTION
      <netinet/icmp6.h> MLD_LISTENER_REPORT
      <netinet/icmp6.h> ND_NA_FLAG_OVERRIDE
      <netinet/icmp6.h> ND_NA_FLAG_ROUTER
      <netinet/icmp6.h> ND_NA_FLAG_SOLICITED
      <netinet/icmp6.h> ND_NEIGHBOR_ADVERT
      <netinet/icmp6.h> ND_NEIGHBOR_SOLICIT
      <netinet/icmp6.h> ND_OPT_MTU
      <netinet/icmp6.h> ND_OPT_PI_FLAG_AUTO
      <netinet/icmp6.h> ND_OPT_PI_FLAG_ONLINK
      <netinet/icmp6.h> ND_OPT_PREFIX_INFORMATION
      <netinet/icmp6.h> ND_OPT_REDIRECTED_HEADER
      <netinet/icmp6.h> ND_OPT_SOURCE_LINKADDR
      <netinet/icmp6.h> ND_OPT_TARGET_LINKADDR
      <netinet/icmp6.h> ND_RA_FLAG_MANAGED
      <netinet/icmp6.h> ND_RA_FLAG_OTHER
      <netinet/icmp6.h> ND_REDIRECT
      <netinet/icmp6.h> ND_ROUTER_ADVERT
      <netinet/icmp6.h> ND_ROUTER_SOLICIT
      <netinet/icmp6.h> struct icmp6_filter{};
      <netinet/icmp6.h> struct icmp6_hdr{};
      <netinet/icmp6.h> struct icmp6_router_renum{};
      <netinet/icmp6.h> struct mld_hdr{};
      <netinet/icmp6.h> struct nd_neighbor_advert{};
      <netinet/icmp6.h> struct nd_neighbor_solicit{};
      <netinet/icmp6.h> struct nd_opt_hdr{};
<span class="grey">Stevens, et al.              Informational                     [Page 53]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-54" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
      <netinet/icmp6.h> struct nd_opt_mtu{};
      <netinet/icmp6.h> struct nd_opt_prefix_info{};
      <netinet/icmp6.h> struct nd_opt_rd_hdr{};
      <netinet/icmp6.h> struct nd_redirect{};
      <netinet/icmp6.h> struct nd_router_advert{};
      <netinet/icmp6.h> struct nd_router_solicit{};
      <netinet/icmp6.h> struct rr_pco_match{};
      <netinet/icmp6.h> struct rr_pco_use{};
      <netinet/icmp6.h> struct rr_result{};
      <netinet/in.h>    IPPROTO_AH
      <netinet/in.h>    IPPROTO_DSTOPTS
      <netinet/in.h>    IPPROTO_ESP
      <netinet/in.h>    IPPROTO_FRAGMENT
      <netinet/in.h>    IPPROTO_HOPOPTS
      <netinet/in.h>    IPPROTO_ICMPV6
      <netinet/in.h>    IPPROTO_IPV6
      <netinet/in.h>    IPPROTO_NONE
      <netinet/in.h>    IPPROTO_ROUTING
      <netinet/in.h>    IPV6_CHECKSUM
      <netinet/in.h>    IPV6_DONTFRAG
      <netinet/in.h>    IPV6_DSTOPTS
      <netinet/in.h>    IPV6_HOPLIMIT
      <netinet/in.h>    IPV6_HOPOPTS
      <netinet/in.h>    IPV6_NEXTHOP
      <netinet/in.h>    IPV6_PATHMTU
      <netinet/in.h>    IPV6_PKTINFO
      <netinet/in.h>    IPV6_RECVDSTOPTS
      <netinet/in.h>    IPV6_RECVHOPLIMIT
      <netinet/in.h>    IPV6_RECVHOPOPTS
      <netinet/in.h>    IPV6_RECVPKTINFO
      <netinet/in.h>    IPV6_RECVRTHDR
      <netinet/in.h>    IPV6_RECVTCLASS
      <netinet/in.h>    IPV6_RTHDR
      <netinet/in.h>    IPV6_RTHDRDSTOPTS
      <netinet/in.h>    IPV6_RTHDR_TYPE_0
      <netinet/in.h>    IPV6_RECVPATHMTU
      <netinet/in.h>    IPV6_TCLASS
      <netinet/in.h>    IPV6_USE_MIN_MTU
      <netinet/in.h>    struct in6_pktinfo{};
      <netinet/in.h>    struct ip6_mtuinfo{};
      <netinet/ip6.h>   IP6F_MORE_FRAG
      <netinet/ip6.h>   IP6F_OFF_MASK
      <netinet/ip6.h>   IP6F_RESERVED_MASK
      <netinet/ip6.h>   IP6OPT_JUMBO
      <netinet/ip6.h>   IP6OPT_JUMBO_LEN
<span class="grey">Stevens, et al.              Informational                     [Page 54]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-55" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
      <netinet/ip6.h>   IP6OPT_MUTABLE
      <netinet/ip6.h>   IP6OPT_NSAP_ADDR
      <netinet/ip6.h>   IP6OPT_PAD1
      <netinet/ip6.h>   IP6OPT_PADN
      <netinet/ip6.h>   IP6OPT_ROUTER_ALERT
      <netinet/ip6.h>   IP6OPT_TUNNEL_LIMIT
      <netinet/ip6.h>   IP6OPT_TYPE_DISCARD
      <netinet/ip6.h>   IP6OPT_TYPE_FORCEICMP
      <netinet/ip6.h>   IP6OPT_TYPE_ICMP
      <netinet/ip6.h>   IP6OPT_TYPE_SKIP
      <netinet/ip6.h>   IP6_ALERT_AN
      <netinet/ip6.h>   IP6_ALERT_MLD
      <netinet/ip6.h>   IP6_ALERT_RSVP
      <netinet/ip6.h>   struct ip6_dest{};
      <netinet/ip6.h>   struct ip6_frag{};
      <netinet/ip6.h>   struct ip6_hbh{};
      <netinet/ip6.h>   struct ip6_hdr{};
      <netinet/ip6.h>   struct ip6_opt{};
      <netinet/ip6.h>   struct ip6_opt_jumbo{};
      <netinet/ip6.h>   struct ip6_opt_nsap{};
      <netinet/ip6.h>   struct ip6_opt_router{};
      <netinet/ip6.h>   struct ip6_opt_tunnel{};
      <netinet/ip6.h>   struct ip6_rthdr{};
      <netinet/ip6.h>   struct ip6_rthdr0{};
   The following list summarizes the function and macro prototypes
   discussed in this memo, sorted by header.
      <netinet/icmp6.h> void ICMP6_FILTER_SETBLOCK(int, struct
                                               icmp6_filter *);
      <netinet/icmp6.h> void
                        ICMP6_FILTER_SETBLOCKALL(struct icmp6_filter *);
      <netinet/icmp6.h> void
                        ICMP6_FILTER_SETPASS(int,
                                             struct icmp6_filter *);
      <netinet/icmp6.h> void
                        ICMP6_FILTER_SETPASSALL(struct icmp6_filter *);
      <netinet/icmp6.h> int  ICMP6_FILTER_WILLBLOCK(int,
                                           const struct icmp6_filter *);
      <netinet/icmp6.h> int  ICMP6_FILTER_WILLPASS(int,
                                           const struct icmp6_filter *);
      <netinet/in.h>    int IN6_ARE_ADDR_EQUAL(const struct in6_addr *,
                                           const struct in6_addr *);
      <netinet/in.h>    int inet6_opt_append(void *, socklen_t, int,
                                             uint8_t, socklen_t, uint_t,
                                             void **);
<span class="grey">Stevens, et al.              Informational                     [Page 55]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-56" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
      <netinet/in.h>    int inet6_opt_get_val(void *, int, void *,
                                              socklen_t);
      <netinet/in.h>    int inet6_opt_find(void *, socklen_t,
                                           int, uint8_t ,
                                           socklen_t *, void **);
      <netinet/in.h>    int inet6_opt_finish(void *, socklen_t, int);
      <netinet/in.h>    int inet6_opt_init(void *, socklen_t);
      <netinet/in.h>    int inet6_opt_next(void *, socklen_t,
                                           int, uint8_t *,
                                           socklen_t *, void **);
      <netinet/in.h>    int inet6_opt_set_val(void *, int,
                                              void *, socklen_t);
      <netinet/in.h>    int inet6_rth_add(void *,
                                          const struct in6_addr *);
      <netinet/in.h>    struct in6_addr inet6_rth_getaddr(const void *,
                                                          int);
      <netinet/in.h>    void *inet6_rth_init(void *, socklen_t,
                                             int, int);
      <netinet/in.h>    int inet6_rth_reverse(const void *, void *);
      <netinet/in.h>    int inet6_rth_segments(const void *);
      <netinet/in.h>    soccklen_t inet6_rth_space(int, int);
      <netinet/ip6.h>   int  IP6OPT_TYPE(uint8_t);
      <sys/socket.h>    socklen_t CMSG_LEN(socklen_t);
      <sys/socket.h>    socklen_t CMSG_SPACE(socklen_t);
      <unistd.h>        int rresvport_af(int *, int);
      <unistd.h>        int rcmd_af(char **, unsigned short,
                                    const char *, const char *,
                                    const char *, int *, int);
      <unistd.h>        int rexec_af(char **, unsigned short,
                                     const char *, const char *,
                                     const char *, int *, int);
<span class="h2"><a class="selflink" id="section-16" href="#section-16">16</a>.  Security Considerations</span>
   The setting of certain Hop-by-Hop options and Destination options may
   be restricted to privileged processes.  Similarly some Hop-by-Hop
   options and Destination options may not be returned to non-privileged
   applications.
   The ability to specify an arbitrary source address using IPV6_PKTINFO
   must be prevented; at least for non-privileged processes.
<span class="grey">Stevens, et al.              Informational                     [Page 56]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-57" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
<span class="h2"><a class="selflink" id="section-17" href="#section-17">17</a>.  Changes from <a href="./rfc2292">RFC 2292</a></span>
   Significant changes that affect the compatibility to <a href="./rfc2292">RFC 2292</a>:
   -  Removed the IPV6_PKTOPTIONS socket option by allowing sticky
      options to be set with individual setsockopt() calls.
   -  Removed the ability to be able to specify Hop-by-Hop and
      Destination options using multiple ancillary data items.  The
      application, using the inet6_opt_xxx() routines (see below), is
      responsible for formatting the whole extension header.
   -  Removed the support for the loose/strict Routing header since that
      has been removed from the IPv6 specification.
   -  Loosened the constraints for jumbo payload option that this option
      was always hidden from applications.
   -  Disabled the use of the IPV6_HOPLIMIT sticky option.
   -  Removed ip6r0_addr field from the ip6_rthdr structure.
   -  Intentionally unspecified how to get received packet's information
      on TCP sockets.
   New features:
   -  Added IPV6_RTHDRDSTOPTS to specify a Destination Options header
      before the Routing header.
   -  Added separate IPV6_RECVxxx options to enable the receipt of the
      corresponding ancillary data items.
   -  Added inet6_rth_xxx() and inet6_opt_xxx() functions to deal with
      routing or IPv6 options headers.
   -  Added extensions of libraries for the "r" commands.
   -  Introduced additional IPv6 option definitions such as IP6OPT_PAD1.
   -  Added MLD and router renumbering definitions.
   -  Added MTU-related socket options and ancillary data items.
   -  Added options and ancillary data items to manipulate the traffic
      class field.
<span class="grey">Stevens, et al.              Informational                     [Page 57]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-58" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
   -  Changed the name of ICMPv6 unreachable code 2 to be "beyond scope
      of source address."  ICMP6_DST_UNREACH_NOTNEIGHBOR was removed
      with this change.
   Clarifications:
   -  Added clarifications on extension headers ordering; for the
      sending side, assume the recommended ordering described in <a href="./rfc2460">RFC</a>
      <a href="./rfc2460">2460</a>.  For the receiving side, do not assume any ordering and pass
      all headers to the application in the received order.
   -  Added a summary about the interface selection rule.
   -  Clarified the ordering between IPV6_MULTICAST_IF and the
      IPV6_PKTINFO sticky option for multicast packets.
   -  Clarified how sticky options and the ICMPv6 filter are turned off
      and that getsockopt() of a sticky option returns what was set with
      setsockopt().
   -  Clarified that IPV6_NEXTHOP should be ignored for a multicast
      destination, that it should not contradict with the specified
      outgoing interface, and that the next hop should be a sockaddr_in6
      structure.
   -  Clarified corner cases of IPV6_CHECKSUM.
   -  Aligned with the POSIX standard.
   Editorial changes:
   -  Replaced MUST with must (since this is an informational document).
   -  Revised abstract to be more clear and concise, particularly
      concentrating on differences from <a href="./rfc2292">RFC 2292</a>.
   -  Made the URL of assigned numbers less specific so that it would be
      more robust for future changes.
   -  Updated the reference to the basic API.
   -  Added a reference to the latest POSIX standard.
   -  Moved general specifications of ancillary data and CMSG macros to
      the appendix.
<span class="grey">Stevens, et al.              Informational                     [Page 58]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-59" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
<span class="h2"><a class="selflink" id="section-18" href="#section-18">18</a>.  References</span>
   [<a id="ref-RFC-1981">RFC-1981</a>]    McCann, J., Deering, S. and J. Mogul, "Path MTU
                 Discovery for IP version 6", <a href="./rfc1981">RFC 1981</a>, August 1996.
   [<a id="ref-RFC-2460">RFC-2460</a>]    Deering, S. and R. Hinden, "Internet Protocol, Version
                 6 (IPv6) Specification", <a href="./rfc2460">RFC 2460</a>, December 1998.
   [<a id="ref-RFC-3493">RFC-3493</a>]    Gilligan, R., Thomson, S., Bound, J., McCann, J.  and
                 W. Stevens, "Basic Socket Interface Extensions for
                 IPv6", <a href="./rfc3493">RFC 3493</a>, March 2003.
   [<a id="ref-POSIX">POSIX</a>]       IEEE Std. 1003.1-2001 Standard for Information
                 Technology -- Portable Operating System Interface
                 (POSIX). Open group Technical Standard: Base
                 Specifications, Issue 6, December 2001. ISO/IEC
                 9945:2002. <a href="http://www.opengroup.org/austin">http://www.opengroup.org/austin</a>
   [<a id="ref-TCPIPILLUST">TCPIPILLUST</a>] Wright, G., Stevens, W., "TCP/IP Illustrated, Volume 2:
                 The Implementation", Addison Wesley, 1994.
<span class="h2"><a class="selflink" id="section-19" href="#section-19">19</a>.  Acknowledgments</span>
   Matt Thomas and Jim Bound have been working on the technical details
   in this document for over a year.  Keith Sklower is the original
   implementor of ancillary data in the BSD networking code.  Craig Metz
   provided lots of feedback, suggestions, and comments based on his
   implementing many of these features as the document was being
   written.  Mark Andrews first proposed the idea of the
   IPV6_USE_MIN_MTU option.  Jun-ichiro Hagino contributed text for the
   traffic class API from a document of his own.
   The following provided comments on earlier drafts: Pascal Anelli,
   Hamid Asayesh, Ran Atkinson, Karl Auerbach, Hamid Asayesh, Don
   Coolidge, Matt Crawford, Sam T. Denton, Richard Draves, Francis
   Dupont, Toerless Eckert, Lilian Fernandes, Bob Gilligan, Gerri
   Harter, Tim Hartrick, Bob Halley, Masaki Hirabaru, Michael Hunter,
   Yoshinobu Inoue, Mukesh Kacker, A. N. Kuznetsov, Sam Manthorpe, Pedro
   Marques, Jack McCann, der Mouse, John Moy, Lori Napoli, Thomas
   Narten, Atsushi Onoe, Steve Parker, Charles Perkins, Ken Powell, Tom
   Pusateri, Pedro Roque, Sameer Shah, Peter Sjodin, Stephen P.
   Spackman, Jinmei Tatuya, Karen Tracey, Sowmini Varadhan, Quaizar
   Vohra, Carl Williams, Steve Wise, Eric Wong, Farrell Woods, Kazu
   Yamamoto, Vladislav Yasevich, and Yoshifuji Hideaki.
<span class="grey">Stevens, et al.              Informational                     [Page 59]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-60" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
<span class="h2"><a class="selflink" id="section-20" href="#section-20">20</a>.  <a href="#appendix-A">Appendix A</a>: Ancillary Data Overview</span>
   4.2BSD allowed file descriptors to be transferred between separate
   processes across a UNIX domain socket using the sendmsg() and
   recvmsg() functions.  Two members of the msghdr structure,
   msg_accrights and msg_accrightslen, were used to send and receive the
   descriptors.  When the OSI protocols were added to 4.3BSD Reno in
   1990 the names of these two fields in the msghdr structure were
   changed to msg_control and msg_controllen, because they were used by
   the OSI protocols for "control information", although the comments in
   the source code call this "ancillary data".
   Other than the OSI protocols, the use of ancillary data has been
   rare.  In 4.4BSD, for example, the only use of ancillary data with
   IPv4 is to return the destination address of a received UDP datagram
   if the IP_RECVDSTADDR socket option is set.  With Unix domain sockets
   ancillary data is still used to send and receive descriptors.
   Nevertheless the ancillary data fields of the msghdr structure
   provide a clean way to pass information in addition to the data that
   is being read or written.  The inclusion of the msg_control and
   msg_controllen members of the msghdr structure along with the cmsghdr
   structure that is pointed to by the msg_control member is required by
   the Posix sockets API standard.
<span class="h3"><a class="selflink" id="section-20.1" href="#section-20.1">20.1</a>.  The msghdr Structure</span>
   The msghdr structure is used by the recvmsg() and sendmsg()
   functions.  Its Posix definition is:
      struct msghdr {
        void      *msg_name;        /* ptr to socket address
                                       structure */
        socklen_t  msg_namelen;     /* size of socket address
                                       structure */
        struct iovec  *msg_iov;     /* scatter/gather array */
        int        msg_iovlen;      /* # elements in msg_iov */
        void      *msg_control;     /* ancillary data */
        socklen_t  msg_controllen;  /* ancillary data buffer length */
        int        msg_flags;       /* flags on received message */
      };
   The structure is declared as a result of including <sys/socket.h>.
   (Note: Before Posix the two "void *" pointers were typically "char
   *", and the two socklen_t members were typically integers.  Earlier
   drafts of Posix had the two socklen_t members as size_t, but it then
   changed these to socklen_t to simplify binary portability for 64-bit
<span class="grey">Stevens, et al.              Informational                     [Page 60]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-61" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
   implementations and to align Posix with X/Open's Networking Services,
   Issue 5.  The change in msg_control to a "void *" pointer affects any
   code that increments this pointer.)
   Most Berkeley-derived implementations limit the amount of ancillary
   data in a call to sendmsg() to no more than 108 bytes (an mbuf).
   This API requires a minimum of 10240 bytes of ancillary data, but it
   is recommended that the amount be limited only by the buffer space
   reserved by the socket (which can be modified by the SO_SNDBUF socket
   option).  (Note: This magic number 10240 was picked as a value that
   should always be large enough.  108 bytes is clearly too small as the
   maximum size of a Routing header is 2048 bytes.)
<span class="h3"><a class="selflink" id="section-20.2" href="#section-20.2">20.2</a>.  The cmsghdr Structure</span>
   The cmsghdr structure describes ancillary data objects transferred by
   recvmsg() and sendmsg().  Its Posix definition is:
      struct cmsghdr {
        socklen_t  cmsg_len;   /* #bytes, including this header */
        int        cmsg_level; /* originating protocol */
        int        cmsg_type;  /* protocol-specific type */
                   /* followed by unsigned char cmsg_data[]; */
      };
   This structure is declared as a result of including <sys/socket.h>.
   (Note: Before Posix the cmsg_len member was an integer, and not a
   socklen_t.  See the Note in the previous section for why socklen_t is
   used here.)
   As shown in this definition, normally there is no member with the
   name cmsg_data[].  Instead, the data portion is accessed using the
   CMSG_xxx() macros, as described in <a href="#section-20.3">Section 20.3</a>.  Nevertheless, it is
   common to refer to the cmsg_data[] member.
   When ancillary data is sent or received, any number of ancillary data
   objects can be specified by the msg_control and msg_controllen
   members of the msghdr structure, because each object is preceded by a
   cmsghdr structure defining the object's length (the cmsg_len member).
   Historically Berkeley-derived implementations have passed only one
   object at a time, but this API allows multiple objects to be passed
   in a single call to sendmsg() or recvmsg().  The following example
   shows two ancillary data objects in a control buffer.
<span class="grey">Stevens, et al.              Informational                     [Page 61]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-62" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
|<--------------------------- msg_controllen ------------------------->|
|                                 OR                                   |
|<--------------------------- msg_controllen ---------------------->|
|                                                                      |
|<----- ancillary data object ----->|<---- ancillary data object ----->|
|<------ min CMSG_SPACE() --------->|<----- min CMSG_SPACE() --------->|
|                                   |                                  |
|<---------- cmsg_len ---------->|  |<-------- cmsg_len ----------->|  |
|<--------- CMSG_LEN() --------->|  |<------- CMSG_LEN() ---------->|  |
|                                |  |                               |  |
+-----+-----+-----+--+-----------+--+-----+-----+-----+--+----------+--+
|cmsg_|cmsg_|cmsg_|XX|   cmsg_   |XX|cmsg_|cmsg_|cmsg_|XX|  cmsg_   |XX|
|len  |level|type |XX|   data[]  |XX|len  |level|type |XX|  data[]  |XX|
+-----+-----+-----+--+-----------+--+-----+-----+-----+--+----------+--+
^
|
msg_control
points here
   The fields shown as "XX" are possible padding, between the cmsghdr
   structure and the data, and between the data and the next cmsghdr
   structure, if required by the implementation.  While sending an
   application may or may not include padding at the end of last
   ancillary data in msg_controllen and implementations must accept both
   as valid.  On receiving a portable application must provide space for
   padding at the end of the last ancillary data as implementations may
   copy out the padding at the end of the control message buffer and
   include it in the received msg_controllen.  When recvmsg() is called
   if msg_controllen is too small for all the ancillary data items
   including any trailing padding after the last item an implementation
   may set MSG_CTRUNC.
<span class="h3"><a class="selflink" id="section-20.3" href="#section-20.3">20.3</a>.  Ancillary Data Object Macros</span>
   To aid in the manipulation of ancillary data objects, three macros
   from 4.4BSD are defined by Posix: CMSG_DATA(), CMSG_NXTHDR(), and
   CMSG_FIRSTHDR().  Before describing these macros, we show the
   following example of how they might be used with a call to recvmsg().
      struct msghdr   msg;
      struct cmsghdr  *cmsgptr;
      /* fill in msg */
      /* call recvmsg() */
<span class="grey">Stevens, et al.              Informational                     [Page 62]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-63" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
      for (cmsgptr = CMSG_FIRSTHDR(&msg); cmsgptr != NULL;
           cmsgptr = CMSG_NXTHDR(&msg, cmsgptr)) {
          if (cmsgptr->cmsg_len == 0) {
              /* Error handling */
           break;
          }
          if (cmsgptr->cmsg_level == ... &&
              cmsgptr->cmsg_type == ... ) {
              u_char  *ptr;
              ptr = CMSG_DATA(cmsgptr);
              /* process data pointed to by ptr */
          }
      }
   We now describe the three Posix macros, followed by two more that are
   new with this API: CMSG_SPACE() and CMSG_LEN().  All these macros are
   defined as a result of including <sys/socket.h>.
<span class="h4"><a class="selflink" id="section-20.3.1" href="#section-20.3.1">20.3.1</a>.  CMSG_FIRSTHDR</span>
      struct cmsghdr *CMSG_FIRSTHDR(const struct msghdr *mhdr);
   CMSG_FIRSTHDR() returns a pointer to the first cmsghdr structure in
   the msghdr structure pointed to by mhdr.  The macro returns NULL if
   there is no ancillary data pointed to by the msghdr structure (that
   is, if either msg_control is NULL or if msg_controllen is less than
   the size of a cmsghdr structure).
   One possible implementation could be
      #define CMSG_FIRSTHDR(mhdr) \
          ( (mhdr)->msg_controllen >= sizeof(struct cmsghdr) ? \
            (struct cmsghdr *)(mhdr)->msg_control : \
            (struct cmsghdr *)NULL )
   (Note: Most existing implementations do not test the value of
   msg_controllen, and just return the value of msg_control.  The value
   of msg_controllen must be tested, because if the application asks
   recvmsg() to return ancillary data, by setting msg_control to point
   to the application's buffer and setting msg_controllen to the length
   of this buffer, the kernel indicates that no ancillary data is
   available by setting msg_controllen to 0 on return.  It is also
   easier to put this test into this macro, than making the application
   perform the test.)
<span class="grey">Stevens, et al.              Informational                     [Page 63]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-64" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
<span class="h4"><a class="selflink" id="section-20.3.2" href="#section-20.3.2">20.3.2</a>.  CMSG_NXTHDR</span>
   As described in <a href="#section-5.1">Section 5.1</a>, CMSG_NXTHDR has been extended to handle
   a NULL 2nd argument to mean "get the first header".  This provides an
   alternative way of coding the processing loop shown earlier:
      struct msghdr  msg;
      struct cmsghdr  *cmsgptr = NULL;
      /* fill in msg */
      /* call recvmsg() */
      while ((cmsgptr = CMSG_NXTHDR(&msg, cmsgptr)) != NULL) {
          if (cmsgptr->cmsg_len == 0) {
              /* Error handling */
           break;
          }
          if (cmsgptr->cmsg_level == ... &&
              cmsgptr->cmsg_type == ... ) {
              u_char  *ptr;
              ptr = CMSG_DATA(cmsgptr);
              /* process data pointed to by ptr */
          }
      }
   One possible implementation could be:
      #define CMSG_NXTHDR(mhdr, cmsg) \
        (((cmsg) == NULL) ? CMSG_FIRSTHDR(mhdr) : \
         (((u_char *)(cmsg) + ALIGN_H((cmsg)->cmsg_len) \
                            + ALIGN_D(sizeof(struct cmsghdr)) > \
           (u_char *)((mhdr)->msg_control) + (mhdr)->msg_controllen) ? \
          (struct cmsghdr *)NULL : \
          (struct cmsghdr *)((u_char *)(cmsg) + \
                                        ALIGN_H((cmsg)->cmsg_len))))
   The macros ALIGN_H() and ALIGN_D(), which are implementation
   dependent, round their arguments up to the next even multiple of
   whatever alignment is required for the start of the cmsghdr structure
   and the data, respectively.  (This is probably a multiple of 4 or 8
   bytes.)  They are often the same macro in implementations platforms
   where alignment requirement for header and data is chosen to be
   identical.
<span class="grey">Stevens, et al.              Informational                     [Page 64]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-65" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
<span class="h4"><a class="selflink" id="section-20.3.3" href="#section-20.3.3">20.3.3</a>.  CMSG_DATA</span>
      unsigned char *CMSG_DATA(const struct cmsghdr *cmsg);
   CMSG_DATA() returns a pointer to the data (what is called the
   cmsg_data[] member, even though such a member is not defined in the
   structure) following a cmsghdr structure.
   One possible implementation could be:
      #define CMSG_DATA(cmsg) ( (u_char *)(cmsg) + \
                                ALIGN_D(sizeof(struct cmsghdr)) )
<span class="h4"><a class="selflink" id="section-20.3.4" href="#section-20.3.4">20.3.4</a>.  CMSG_SPACE</span>
   CMSG_SPACE is new with this API (see <a href="#section-5.2">Section 5.2</a>).  It is used to
   determine how much space needs to be allocated for an ancillary data
   item.
   One possible implementation could be:
      #define CMSG_SPACE(length) ( ALIGN_D(sizeof(struct cmsghdr)) + \
                                   ALIGN_H(length) )
<span class="h4"><a class="selflink" id="section-20.3.5" href="#section-20.3.5">20.3.5</a>.  CMSG_LEN</span>
   CMSG_LEN is new with this API (see <a href="#section-5.3">Section 5.3</a>).  It  returns the
   value to store in the cmsg_len member of the cmsghdr structure,
   taking into account any padding needed to satisfy alignment
   requirements.
   One possible implementation could be:
      #define CMSG_LEN(length) ( ALIGN_D(sizeof(struct cmsghdr)) + \
                                 length )
<span class="h2"><a class="selflink" id="section-21" href="#section-21">21</a>.  <a href="#appendix-B">Appendix B</a>: Examples Using the inet6_rth_XXX() Functions</span>
   Here we show an example for both sending Routing headers and
   processing and reversing a received Routing header.
<span class="h3"><a class="selflink" id="section-21.1" href="#section-21.1">21.1</a>.  Sending a Routing Header</span>
   As an example of these Routing header functions defined in this
   document, we go through the function calls for the example on p. 17
   of [<a href="./rfc2460" title=""Internet Protocol, Version 6 (IPv6) Specification"">RFC-2460</a>].  The source is S, the destination is D, and the three
   intermediate nodes are I1, I2, and I3.
<span class="grey">Stevens, et al.              Informational                     [Page 65]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-66" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
              S -----> I1 -----> I2 -----> I3 -----> D
      src:    *    S         S         S         S   S
      dst:    D   I1        I2        I3         D   D
      A[1]:  I1   I2        I1        I1        I1  I1
      A[2]:  I2   I3        I3        I2        I2  I2
      A[3]:  I3    D         D         D        I3  I3
      #seg:   3    3         2         1         0   3
   src and dst are the source and destination IPv6 addresses in the IPv6
   header.  A[1], A[2], and A[3] are the three addresses in the Routing
   header.  #seg is the Segments Left field in the Routing header.
   The six values in the column beneath node S are the values in the
   Routing header specified by the sending application using sendmsg()
   of setsockopt().  The function calls by the sender would look like:
      void  *extptr;
      socklen_t   extlen;
      struct msghdr  msg;
      struct cmsghdr  *cmsgptr;
      int   cmsglen;
      struct sockaddr_in6  I1, I2, I3, D;
      extlen = inet6_rth_space(IPV6_RTHDR_TYPE_0, 3);
      cmsglen = CMSG_SPACE(extlen);
      cmsgptr = malloc(cmsglen);
      cmsgptr->cmsg_len = CMSG_LEN(extlen);
      cmsgptr->cmsg_level = IPPROTO_IPV6;
      cmsgptr->cmsg_type = IPV6_RTHDR;
      extptr = CMSG_DATA(cmsgptr);
      extptr = inet6_rth_init(extptr, extlen, IPV6_RTHDR_TYPE_0, 3);
      inet6_rth_add(extptr, &I1.sin6_addr);
      inet6_rth_add(extptr, &I2.sin6_addr);
      inet6_rth_add(extptr, &I3.sin6_addr);
      msg.msg_control = cmsgptr;
      msg.msg_controllen = cmsglen;
      /* finish filling in msg{}, msg_name = D */
      /* call sendmsg() */
   We also assume that the source address for the socket is not
   specified (i.e., the asterisk in the figure).
<span class="grey">Stevens, et al.              Informational                     [Page 66]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-67" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
   The four columns of six values that are then shown between the five
   nodes are the values of the fields in the packet while the packet is
   in transit between the two nodes.  Notice that before the packet is
   sent by the source node S, the source address is chosen (replacing
   the asterisk), I1 becomes the destination address of the datagram,
   the two addresses A[2] and A[3] are "shifted up", and D is moved to
   A[3].
   The columns of values that are shown beneath the destination node are
   the values returned by recvmsg(), assuming the application has
   enabled both the IPV6_RECVPKTINFO and IPV6_RECVRTHDR socket options.
   The source address is S (contained in the sockaddr_in6 structure
   pointed to by the msg_name member), the destination address is D
   (returned as an ancillary data object in an in6_pktinfo structure),
   and the ancillary data object specifying the Routing header will
   contain three addresses (I1, I2, and I3).  The number of segments in
   the Routing header is known from the Hdr Ext Len field in the Routing
   header (a value of 6, indicating 3 addresses).
   The return value from inet6_rth_segments() will be 3 and
   inet6_rth_getaddr(0) will return I1, inet6_rth_getaddr(1) will return
   I2, and inet6_rth_getaddr(2) will return I3,
   If the receiving application then calls inet6_rth_reverse(), the
   order of the three addresses will become I3, I2, and I1.
   We can also show what an implementation might store in the ancillary
   data object as the Routing header is being built by the sending
   process.  If we assume a 32-bit architecture where sizeof(struct
   cmsghdr) equals 12, with a desired alignment of 4-byte boundaries,
   then the call to inet6_rth_space(3) returns 68: 12 bytes for the
   cmsghdr structure and 56 bytes for the Routing header (8 + 3*16).
   The call to inet6_rth_init() initializes the ancillary data object to
   contain a Type 0 Routing header:
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |       cmsg_len = 20                                           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |       cmsg_level = IPPROTO_IPV6                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |       cmsg_type = IPV6_RTHDR                                  |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Next Header  | Hdr Ext Len=6 | Routing Type=0|  Seg Left=0   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                           Reserved                            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
<span class="grey">Stevens, et al.              Informational                     [Page 67]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-68" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
   The first call to inet6_rth_add() adds I1 to the list.
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |       cmsg_len = 36                                           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |       cmsg_level = IPPROTO_IPV6                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |       cmsg_type = IPV6_RTHDR                                  |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Next Header  | Hdr Ext Len=6 | Routing Type=0|  Seg Left=1   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                           Reserved                            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      +                                                               +
      |                                                               |
      +                           Address[1] = I1                     +
      |                                                               |
      +                                                               +
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   cmsg_len is incremented by 16, and the Segments Left field is
   incremented by 1.
<span class="grey">Stevens, et al.              Informational                     [Page 68]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-69" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
   The next call to inet6_rth_add() adds I2 to the list.
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |       cmsg_len = 52                                           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |       cmsg_level = IPPROTO_IPV6                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |       cmsg_type = IPV6_RTHDR                                  |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Next Header  | Hdr Ext Len=6 | Routing Type=0|  Seg Left=2   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                           Reserved                            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      +                                                               +
      |                                                               |
      +                           Address[1] = I1                     +
      |                                                               |
      +                                                               +
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      +                                                               +
      |                                                               |
      +                           Address[2] = I2                     +
      |                                                               |
      +                                                               +
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   cmsg_len is incremented by 16, and the Segments Left field is
   incremented by 1.
<span class="grey">Stevens, et al.              Informational                     [Page 69]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-70" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
   The last call to inet6_rth_add() adds I3 to the list.
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |       cmsg_len = 68                                           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |       cmsg_level = IPPROTO_IPV6                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |       cmsg_type = IPV6_RTHDR                                  |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Next Header  | Hdr Ext Len=6 | Routing Type=0|  Seg Left=3   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                           Reserved                            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      +                                                               +
      |                                                               |
      +                           Address[1] = I1                     +
      |                                                               |
      +                                                               +
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      +                                                               +
      |                                                               |
      +                           Address[2] = I2                     +
      |                                                               |
      +                                                               +
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      +                                                               +
      |                                                               |
      +                           Address[3] = I3                     +
      |                                                               |
      +                                                               +
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   cmsg_len is incremented by 16, and the Segments Left field is
   incremented by 1.
<span class="h3"><a class="selflink" id="section-21.2" href="#section-21.2">21.2</a>.  Receiving Routing Headers</span>
   This example assumes that the application has enabled IPV6_RECVRTHDR
   socket option.  The application prints and reverses a source route
   and uses that to echo the received data.
<span class="grey">Stevens, et al.              Informational                     [Page 70]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-71" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
      struct sockaddr_in6     addr;
      struct msghdr           msg;
      struct iovec            iov;
      struct cmsghdr          *cmsgptr;
      socklen_t               cmsgspace;
      void                    *extptr;
      int                     extlen;
      int                     segments;
      int                     i;
      char                    databuf[8192];
      segments = 100;        /* Enough */
      extlen = inet6_rth_space(IPV6_RTHDR_TYPE_0, segments);
      cmsgspace = CMSG_SPACE(extlen);
      cmsgptr = malloc(cmsgspace);
      if (cmsgptr == NULL) {
              perror("malloc");
              exit(1);
      }
      extptr = CMSG_DATA(cmsgptr);
      msg.msg_control = cmsgptr;
      msg.msg_controllen = cmsgspace;
      msg.msg_name = (struct sockaddr *)&addr;
      msg.msg_namelen = sizeof (addr);
      msg.msg_iov = &iov;
      msg.msg_iovlen = 1;
      iov.iov_base = databuf;
      iov.iov_len = sizeof (databuf);
      msg.msg_flags = 0;
      if (recvmsg(s, &msg, 0) == -1) {
              perror("recvmsg");
              return;
      }
      if (msg.msg_controllen != 0 &&
          cmsgptr->cmsg_level == IPPROTO_IPV6 &&
          cmsgptr->cmsg_type == IPV6_RTHDR) {
              struct in6_addr *in6;
              char asciiname[INET6_ADDRSTRLEN];
              struct ip6_rthdr *rthdr;
              rthdr = (struct ip6_rthdr *)extptr;
              segments = inet6_rth_segments(extptr);
              printf("route (%d segments, %d left): ",
                  segments, rthdr->ip6r_segleft);
              for (i = 0; i < segments; i++) {
                      in6 = inet6_rth_getaddr(extptr, i);
<span class="grey">Stevens, et al.              Informational                     [Page 71]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-72" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
                      if (in6 == NULL)
                              printf("<NULL> ");
                      else
                              printf("%s ", inet_ntop(AF_INET6,
                                  (void *)in6->s6_addr,
                                  asciiname, INET6_ADDRSTRLEN));
              }
              if (inet6_rth_reverse(extptr, extptr) == -1) {
                      printf("reverse failed");
                      return;
              }
      }
      iov.iov_base = databuf;
      iov.iov_len = strlen(databuf);
      if (sendmsg(s, &msg, 0) == -1)
              perror("sendmsg");
      if (cmsgptr != NULL)
              free(cmsgptr);
   Note: The above example is a simple illustration.  It skips some
   error checks, including those involving the MSG_TRUNC and MSG_CTRUNC
   flags.  It also leaves some type mismatches in favor of brevity.
<span class="h2"><a class="selflink" id="section-22" href="#section-22">22</a>.  <a href="#appendix-C">Appendix C</a>: Examples Using the inet6_opt_XXX() Functions</span>
   This shows how Hop-by-Hop and Destination options can be both built
   as well as parsed using the inet6_opt_XXX() functions.  These
   examples assume that there are defined values for OPT_X and OPT_Y.
   Note: The example is a simple illustration.  It skips some error
   checks and leaves some type mismatches in favor of brevity.
<span class="h3"><a class="selflink" id="section-22.1" href="#section-22.1">22.1</a>.  Building Options</span>
   We now provide an example that builds two Hop-by-Hop options using
   the example in <a href="./rfc2460#appendix-B">Appendix B of [RFC-2460]</a>.
      void *extbuf;
      socklen_t extlen;
      int currentlen;
      void *databuf;
      int offset;
      uint8_t value1;
      uint16_t value2;
      uint32_t value4;
      uint64_t value8;
      /* Estimate the length */
<span class="grey">Stevens, et al.              Informational                     [Page 72]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-73" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
      currentlen = inet6_opt_init(NULL, 0);
      if (currentlen == -1)
              return (-1);
      currentlen = inet6_opt_append(NULL, 0, currentlen, OPT_X,
                                    12, 8, NULL);
      if (currentlen == -1)
              return (-1);
      currentlen = inet6_opt_append(NULL, 0, currentlen, OPT_Y,
                                    7, 4, NULL);
      if (currentlen == -1)
              return (-1);
      currentlen = inet6_opt_finish(NULL, 0, currentlen);
      if (currentlen == -1)
              return (-1);
      extlen = currentlen;
      extbuf = malloc(extlen);
      if (extbuf == NULL) {
              perror("malloc");
              return (-1);
      }
      currentlen = inet6_opt_init(extbuf, extlen);
      if (currentlen == -1)
              return (-1);
      currentlen = inet6_opt_append(extbuf, extlen, currentlen,
          OPT_X, 12, 8, &databuf);
      if (currentlen == -1)
              return (-1);
      /* Insert value 0x12345678 for 4-octet field */
      offset = 0;
      value4 = 0x12345678;
      offset = inet6_opt_set_val(databuf, offset,
                                 &value4, sizeof (value4));
      /* Insert value 0x0102030405060708 for 8-octet field */
      value8 = 0x0102030405060708;
      offset = inet6_opt_set_val(databuf, offset,
                                 &value8, sizeof (value8));
      currentlen = inet6_opt_append(extbuf, extlen, currentlen,
          OPT_Y, 7, 4, &databuf);
      if (currentlen == -1)
              return (-1);
      /* Insert value 0x01 for 1-octet field */
      offset = 0;
      value1 = 0x01;
      offset = inet6_opt_set_val(databuf, offset,
                                 &value1, sizeof (value1));
<span class="grey">Stevens, et al.              Informational                     [Page 73]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-74" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
      /* Insert value 0x1331 for 2-octet field */
      value2 = 0x1331;
      offset = inet6_opt_set_val(databuf, offset,
                                 &value2, sizeof (value2));
      /* Insert value 0x01020304 for 4-octet field */
      value4 = 0x01020304;
      offset = inet6_opt_set_val(databuf, offset,
                                 &value4, sizeof (value4));
      currentlen = inet6_opt_finish(extbuf, extlen, currentlen);
      if (currentlen == -1)
              return (-1);
      /* extbuf and extlen are now completely formatted */
<span class="h3"><a class="selflink" id="section-22.2" href="#section-22.2">22.2</a>.  Parsing Received Options</span>
   This example parses and prints the content of the two options in the
   previous example.
      int
      print_opt(void *extbuf, socklen_t extlen)
      {
              struct ip6_dest *ext;
              int currentlen;
              uint8_t type;
              socklen_t len;
              void *databuf;
              int offset;
              uint8_t value1;
              uint16_t value2;
              uint32_t value4;
              uint64_t value8;
              ext = (struct ip6_dest *)extbuf;
              printf("nxt %u, len %u (bytes %d)\n", ext->ip6d_nxt,
                  ext->ip6d_len, (ext->ip6d_len + 1) * 8);
              currentlen = 0;
              while (1) {
                      currentlen = inet6_opt_next(extbuf, extlen,
                                                  currentlen, &type,
                                                  &len, &databuf);
                      if (currentlen == -1)
                              break;
                      printf("Received opt %u len %u\n",
                          type, len);
                      switch (type) {
                      case OPT_X:
<span class="grey">Stevens, et al.              Informational                     [Page 74]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-75" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
                              offset = 0;
                              offset =
                                  inet6_opt_get_val(databuf, offset,
                                                    &value4,
                                                    sizeof (value4));
                              printf("X 4-byte field %x\n", value4);
                              offset =
                                  inet6_opt_get_val(databuf, offset,
                                                    &value8,
                                                    sizeof (value8));
                              printf("X 8-byte field %llx\n", value8);
                              break;
                      case OPT_Y:
                              offset = 0;
                              offset =
                                  inet6_opt_get_val(databuf, offset,
                                                    &value1,
                                                    sizeof (value1));
                              printf("Y 1-byte field %x\n", value1);
                              offset =
                                  inet6_opt_get_val(databuf, offset,
                                                    &value2,
                                                    sizeof (value2));
                              printf("Y 2-byte field %x\n", value2);
                              offset =
                                  inet6_opt_get_val(databuf, offset,
                                                    &value4,
                                                    sizeof (value4));
                              printf("Y 4-byte field %x\n", value4);
                              break;
                      default:
                              printf("Unknown option %u\n", type);
                              break;
                      }
              }
              return (0);
      }
<span class="grey">Stevens, et al.              Informational                     [Page 75]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-76" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
<span class="h2"><a class="selflink" id="section-23" href="#section-23">23</a>. Authors' Addresses</span>
   W. Richard Stevens (deceased)
   Matt Thomas
   3am Software Foundry
   8053 Park Villa Circle
   Cupertino, CA 95014
   EMail: matt@3am-software.com
   Erik Nordmark
   Sun Microsystems Laboratories, Europe
   180, avenue de l'Europe
   38334 SAINT ISMIER Cedex, France
   Phone: +33 (0)4 74 18 88 03
   Fax:   +33 (0)4 76 18 88 88
   EMail: Erik.Nordmark@sun.com
   Tatuya JINMEI
   Corporate Research & Development Center, Toshiba Corporation
   1 Komukai Toshiba-cho, Kawasaki-shi
   Kanagawa 212-8582, Japan
   EMail: jinmei@isl.rdc.toshiba.co.jp
<span class="grey">Stevens, et al.              Informational                     [Page 76]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-77" ></span>
<span class="grey"><a href="./rfc3542">RFC 3542</a>             Advanced Sockets API for IPv6              May 2003</span>
<span class="h2"><a class="selflink" id="section-24" href="#section-24">24</a>. Full Copyright Statement</span>
   Copyright (C) The Internet Society (2003).  All Rights Reserved.
   This document and translations of it may be copied and furnished to
   others, and derivative works that comment on or otherwise explain it
   or assist in its implementation may be prepared, copied, published
   and distributed, in whole or in part, without restriction of any
   kind, provided that the above copyright notice and this paragraph are
   included on all such copies and derivative works.  However, this
   document itself may not be modified in any way, such as by removing
   the copyright notice or references to the Internet Society or other
   Internet organizations, except as needed for the purpose of
   developing Internet standards in which case the procedures for
   copyrights defined in the Internet Standards process must be
   followed, or as required to translate it into languages other than
   English.
   The limited permissions granted above are perpetual and will not be
   revoked by the Internet Society or its successors or assigns.
   This document and the information contained herein is provided on an
   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Acknowledgement
   Funding for the RFC Editor function is currently provided by the
   Internet Society.
Stevens, et al.              Informational                     [Page 77]
</pre>
 
     |