1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
|
<pre>Network Working Group J. Soininen, Ed.
Request for Comments: 3574 Nokia
Category: Informational August 2003
<span class="h1">Transition Scenarios for 3GPP Networks</span>
Status of this Memo
This memo provides information for the Internet community. It does
not specify an Internet standard of any kind. Distribution of this
memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2003). All Rights Reserved.
Abstract
This document describes different scenarios in Third Generation
Partnership Project (3GPP) defined packet network, i.e., General
Packet Radio Service (GPRS) that would need IP version 6 and IP
version 4 transition. The focus of this document is on the scenarios
where the User Equipment (UE) connects to nodes in other networks,
e.g., in the Internet. GPRS network internal transition scenarios,
i.e., between different GPRS elements in the network, are out of
scope. The purpose of the document is to list the scenarios for
further discussion and study.
Table of Contents
<a href="#section-1">1</a>. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-2">2</a>
<a href="#section-2">2</a>. Scope of the Document. . . . . . . . . . . . . . . . . . . . . <a href="#page-2">2</a>
<a href="#section-3">3</a>. Brief Description of the 3GPP Network Environment. . . . . . . <a href="#page-2">2</a>
<a href="#section-3.1">3.1</a> GPRS Architecture Basics . . . . . . . . . . . . . . . . . <a href="#page-3">3</a>
<a href="#section-3.2">3.2</a> IP Multimedia Core Network Subsystem (IMS) . . . . . . . . <a href="#page-3">3</a>
<a href="#section-4">4</a>. Transition Scenarios . . . . . . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-4.1">4.1</a> GPRS Scenarios . . . . . . . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-4.2">4.2</a> IMS Scenarios . . . . . . . . . . . . . . . . . . . . . . <a href="#page-8">8</a>
<a href="#section-5">5</a>. Security Considerations. . . . . . . . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-6">6</a>. Contributing Authors . . . . . . . . . . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-7">7</a>. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-8">8</a>. References . . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-8.1">8.1</a>. Normative References . . . . . . . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-8.2">8.2</a>. Informative References . . . . . . . . . . . . . . . . . <a href="#page-11">11</a>
<a href="#section-9">9</a>. Editor's Address . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-11">11</a>
<a href="#section-10">10</a>. Full Copyright Statement . . . . . . . . . . . . . . . . . . . <a href="#page-12">12</a>
<span class="grey">Soininen Informational [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc3574">RFC 3574</a> Transition Scenarios for 3GPP Networks August 2003</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
This document describes the transition scenarios in 3GPP packet data
networks that might come up in the deployment phase of IPv6. The
main purpose of this document is to identify and to document those
scenarios for further discussion and study them in the v6ops working
group.
Just a brief overview of the 3GPP packet data network, GPRS, is given
to help the reader to better understand the transition scenarios. A
better overview of the 3GPP specified GPRS can be found for example
from [<a href="#ref-6" title=""Recommendations for IPv6 in Third Generation Partnership Project (3GPP) Standards"">6</a>]. The GPRS architecture is defined in [<a href="#ref-1" title=""General Packet Radio Service (GPRS); Service description; Stage 2(Release 5)"">1</a>].
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Scope of the Document</span>
The scope is to describe the possible transition scenarios in the
3GPP defined GPRS network where a UE connects to, or is contacted
from, the Internet or another UE. The document describes scenarios
with and without the usage of the SIP-based (Session Initiation
Protocol [<a href="#ref-5" title=""SIP: Session Initiation Protocol"">5</a>]) IP Multimedia Core Network Subsystem (IMS). The 3GPP
releases 1999, 4, and 5 are considered as the basis.
Out of scope are scenarios inside the GPRS network, i.e., on the
different interfaces of the GPRS network. This document neither
changes 3GPP specifications, nor proposes changes to the current
specifications.
In addition, the possible transition scenarios are described. The
solutions will be documented in a separate document.
All the possible scenarios are listed here. Further analysis may
show that some of the scenarios are not actually relevant in this
context.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Brief Description of the 3GPP Network Environment</span>
This section describes the most important concepts of the 3GPP
environment for understanding the transition scenarios. The first
part of the description gives a brief overview to the GPRS network as
such. The second part concentrates on the IP Multimedia Core Network
Subsystem (IMS).
<span class="grey">Soininen Informational [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc3574">RFC 3574</a> Transition Scenarios for 3GPP Networks August 2003</span>
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. GPRS Architecture Basics</span>
This section gives an overview to the most important concepts of the
3GPP packet architecture. For more detailed description, please see
[<a href="#ref-1" title=""General Packet Radio Service (GPRS); Service description; Stage 2(Release 5)"">1</a>].
From the point of view of this document, the most relevant 3GPP
architectural elements are the User Equipment (UE), and the Gateway
GPRS Support Node (GGSN). A simplified picture of the architecture
is shown in Figure 1.
The UE is the mobile phone. It can either be an integrated device
comprising a combined GPRS part, and the IP stack, or it might be a
separate GPRS device, and separate equipment with the IP stack, e.g.,
a laptop.
The GGSN serves as an anchor-point for the GPRS mobility management.
It also serves as the default router for the UE.
The Peer node mentioned in the picture refers to a node with which
the UE is communicating.
-- ---- ************ ---------
|UE|- ... -|GGSN|--+--* IPv4/v6 NW *--+--|Peer node|
-- ---- ************ ---------
Figure 1: Simplified GPRS Architecture
There is a dedicated link between the UE and the GGSN called the
Packet Data Protocol (PDP) Context. This link is created through the
PDP Context activation process. During the activation the UE is
configured with its IP address and other information needed to
maintain IP access, e.g., DNS server address. There are three
different types of PDP Contexts: IPv4, IPv6, and Point-to-Point
Protocol (PPP).
A UE can have one or more simultaneous PDP Contexts open to the same
or to different GGSNs. The PDP Context can be either of the same or
different types.
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. IP Multimedia Core Network Subsystem (IMS)</span>
IP Multimedia Core Network Subsystem (IMS) is an architecture for
supporting multimedia services via a SIP infrastructure. It is
specified in 3GPP Release 5. This section provides an overview of
the 3GPP IMS and is not intended to be comprehensive. A more
detailed description can be found in [<a href="#ref-2" title="" IP Multimedia Subsystem (IMS); Stage 2(Release 5)"">2</a>], [<a href="#ref-3" title=""Signalling flows for the IP multimedia call control based on SIP and SDP; Stage 3 (Release 5)"">3</a>] and [<a href="#ref-4" title=""IP Multimedia Call Control Protocol based on SIP and SDP; Stage 3 (Release 5)"">4</a>].
<span class="grey">Soininen Informational [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc3574">RFC 3574</a> Transition Scenarios for 3GPP Networks August 2003</span>
The IMS comprises a set of SIP proxies, servers, and registrars. In
addition, there are Media Gateways (MGWs) that offer connections to
non-IP networks such as the Public Switched Telephony Network (PSTN).
A simplified overview of the IMS is depicted in figure 2.
+-------------+ +-------------------------------------+
| | | +------+ |
| | | |S-CSCF|---
| | | | +------+ |
+-|+ | | | / |
| | | SIP Sig. | | +------+ +------+ |
| |----|------+------|--|----|P-CSCF|----------|I-CSCF| |
| | | | | +------+ +------+ |
| |-----------+------------------------------------------------
+--+ | User traf. | | |
UE | | | |
| GPRS access | | IP Multimedia CN Subsystem |
+-------------+ +-------------------------------------+
Figure 2: Overview of the 3GPP IMS architecture
The SIP proxies, servers, and registrars shown in Figure 2 are as
follows.
- P-CSCF (Proxy-Call Session Control Function) is the first
contact point within the IMS for the subscriber.
- I-CSCF (Interrogating-CSCF) is the contact point within an
operator's network for all connections destined to a subscriber
of that network operator, or a roaming subscriber currently
located within that network operator's service area.
- S-CSCF (Serving-CSCF) performs the session control services for
the subscriber. It also acts as a SIP Registrar.
IMS capable UEs utilize the GPRS network as an access network for
accessing the IMS. Thus, a UE has to have an activated PDP Context
to the IMS before it can proceed to use the IMS services. The PDP
Context activation is explained briefly in <a href="#section-3.1">section 3.1</a>.
The IMS is exclusively IPv6. Thus, the activated PDP Context is of
PDP Type IPv6. This means that a 3GPP IP Multimedia terminal uses
exclusively IPv6 to access the IMS, and the IMS SIP server and proxy
support exclusively IPv6. Hence, all the traffic going to the IMS is
IPv6, even if the UE is dual stack capable - this comprises both
signaling and user traffic.
<span class="grey">Soininen Informational [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc3574">RFC 3574</a> Transition Scenarios for 3GPP Networks August 2003</span>
This, of course, does not prevent the usage of other unrelated
services (e.g., corporate access) on IPv4.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Transition Scenarios</span>
This section is divided into two main parts - GPRS scenarios, and
scenarios with the IP Multimedia Subsystem (IMS). The first part -
GPRS scenarios - concentrates on scenarios with a User Equipment (UE)
connecting to services in the Internet, e.g., mail, web. The second
part - IMS scenarios - then describes how an IMS capable UE can
connect to other SIP-capable nodes in the Internet using the IMS
services.
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. GPRS Scenarios</span>
This section describes the scenarios that might occur when a GPRS UE
contacts services, or nodes outside the GPRS network, e.g., web-
server in the Internet.
Transition scenarios of the GPRS internal interfaces are outside of
the scope of this document.
The following scenarios are described here. In all of the scenarios,
the UE is part of a network where there is at least one router of the
same IP version, i.e., GGSN, and it is connecting to a node in a
different network.
The scenarios here apply also for PDP Context type Point-to-Point
Protocol (PPP) where PPP is terminated at the GGSN. On the other
hand, where the PPP PDP Context is terminated e.g., at an external
ISP, the environment is the same as for general ISP cases.
1) Dual Stack UE connecting to IPv4 and IPv6 nodes
2) IPv6 UE connecting to an IPv6 node through an IPv4 network
3) IPv4 UE connecting to an IPv4 node through an IPv6 network
4) IPv6 UE connecting to an IPv4 node
5) IPv4 UE connecting to an IPv6 node
1) Dual Stack UE connecting to IPv4 and IPv6 nodes
The GPRS system has been designed in a manner that there is the
possibility to have simultaneous IPv4, and IPv6 PDP Contexts open.
Thus, in cases where the UE is dual stack capable, and in the
network there is a GGSN (or separate GGSNs) that supports both
connections to IPv4 and IPv6 networks, it is possible to connect
to both at the same time. Figure 3 depicts this scenario.
<span class="grey">Soininen Informational [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc3574">RFC 3574</a> Transition Scenarios for 3GPP Networks August 2003</span>
+-------------+
| |
| UE | +------+
| | | IPv4 |
| | /| |
|------|------+ / +------+
| IPv6 | IPv4 | +--------+ /
+-------------+ IPv4 | | /
| |------------------------| |/
| | |
| IPv6 | GGSN |\
|-------------------------------| | \
+-----------+ | | \ +------+
| GPRS Core | | | \ | IPv6 |
+-----------+ +--------+ \| |
+------+
Figure 3: Dual-Stack Case
However, the IPv4 addresses may be a scarce resource for the
mobile operator or an ISP. In that case, it might not be possible
for the UE to have a globally unique IPv4 address allocated all
the time. Hence, the UE could either activate the IPv4 PDP
Context only when needed, or be allocated an IPv4 address from a
private address space.
2) IPv6 UE connecting to an IPv6 node through an IPv4 network
Especially in the initial stages of IPv6 deployment, there are
cases where an IPv6 node would need to connect to the IPv6
Internet through a network that is IPv4. For instance, this can
be seen in current fixed networks, where the access is provided
via IPv4 only, but there is an IPv6 network deeper in the
Internet. This scenario is shown in Figure 4.
+------+ +------+
| | | | +------+
| UE |------------------| |-----------------| |
| | +-----------+ | GGSN | +---------+ | IPv6 |
| IPv6 | | GPRS Core | | | | IPv4 Net| | |
+------+ +-----------+ +------+ +---------+ +------+
Figure 4: IPv6 nodes communicating over IPv4
In this case, in the GPRS system, the UE would be IPv6 capable,
and the GPRS network would provide an IPv6 capable GGSN in the
network. However, there is an IPv4 network between the GGSN, and
the peer node.
<span class="grey">Soininen Informational [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc3574">RFC 3574</a> Transition Scenarios for 3GPP Networks August 2003</span>
3) IPv4 UE connecting to an IPv4 node through an IPv6 network
Further in the future, there are cases where the legacy UEs are
still IPv4 only, capable of connecting only to the legacy IPv4
Internet. However, the GPRS operator network has already been
upgraded to IPv6. Figure 5 represents this scenario.
+------+ +------+
| | | | +------+
| UE |------------------| |-----------------| |
| | +-----------+ | GGSN | +---------+ | IPv4 |
| IPv4 | | GPRS Core | | | | IPv6 Net| | |
+------+ +-----------+ +------+ +---------+ +------+
Figure 5: IPv4 nodes communicating over IPv6
In this case, the operator would still provide an IPv4 capable
GGSN, and a connection through the IPv6 network to the IPv4
Internet.
4) IPv6 UE connecting to an IPv4 node
In this scenario, an IPv6 UE connects to an IPv4 node in the IPv4
Internet. As an example, an IPv6 UE connects to an IPv4 web
server in the legacy Internet. In the figure 6, this kind of
possible installation is described.
+------+ +------+
| | | | +---+ +------+
| UE |------------------| |-----| |----| |
| | +-----------+ | GGSN | | ? | | IPv4 |
| IPv6 | | GPRS Core | | | | | | |
+------+ +-----------+ +------+ +---+ +------+
Figure 6: IPv6 node communicating with IPv4 node
<span class="grey">Soininen Informational [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc3574">RFC 3574</a> Transition Scenarios for 3GPP Networks August 2003</span>
5) IPv4 UE connecting to an IPv6 node
This is similar to the case above, but in the opposite direction.
Here an IPv4 UE connects to an IPv6 node in the IPv6 Internet. As
an example, a legacy IPv4 UE is connected to an IPv6 server in the
IPv6 Internet. Figure 7 depicts this configuration.
+------+ +------+
| | | | +---+ +------+
| UE |------------------| |-----| |----| |
| | +-----------+ | GGSN | | ? | | IPv6 |
| IPv4 | | GPRS Core | | | | | | |
+------+ +-----------+ +------+ +---+ +------+
Figure 7: IPv4 node communicating with IPv6 node
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. IMS Scenarios</span>
As described in <a href="#section-3.2">section 3.2</a>, IMS is exclusively IPv6. Thus, the
number of possible transition scenarios is reduced dramatically. In
the following, the possible transition scenarios are listed.
1) UE connecting to a node in an IPv4 network through IMS
2) Two IPv6 IMS connected via an IPv4 network
1) UE connecting to a node in an IPv4 network through IMS
This scenario occurs when an IMS UE (IPv6) connects to a node in
the IPv4 Internet through the IMS, or vice versa. This happens
when the other node is a part of a different system than 3GPP,
e.g., a fixed PC, with only IPv4 capabilities. This scenario is
shown in the Figure 8.
+------+ +------+ +-----+
| | | | | | +---+ +------+
| UE |-...-| |-----| IMS |--| |--| |
| | | GGSN | | | | ? | | IPv4 |
| IPv6 | | | | | | | | |
+------+ +------+ +-----+ +---+ +------+
Figure 8: IMS UE connecting to an IPv4 node
<span class="grey">Soininen Informational [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc3574">RFC 3574</a> Transition Scenarios for 3GPP Networks August 2003</span>
2) Two IPv6 IMS connected via an IPv4 network
At the early stages of IMS deployment, there may be cases where
two IMS islands are only connected via an IPv4 network such as the
legacy Internet. See Figure 9 for illustration.
+------+ +------+ +-----+ +-----+
| | | | | | | |
| UE |-...-| |-----| IMS |----------| |
| | | GGSN | | | +------+ | IMS |
| IPv6 | | | | | | IPv4 | | |
+------+ +------+ +-----+ +------+ +-----+
Figure 9: Two IMS islands connected over IPv4
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Security Considerations</span>
This document describes possible transition scenarios for 3GPP
networks for future study. Solutions and mechanism are explored in
other documents. The description of the 3GPP network scenarios does
not have any security issues.
<span class="grey">Soininen Informational [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc3574">RFC 3574</a> Transition Scenarios for 3GPP Networks August 2003</span>
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Contributing Authors</span>
This document is a result of a joint effort of a design team. The
members of the design team are listed in the following.
Alain Durand, Sun Microsystems
<Alain.Durand@sun.com>
Karim El-Malki, Ericsson Radio Systems
<Karim.El-Malki@era.ericsson.se>
Niall Richard Murphy, Enigma Consulting Limited
<niallm@enigma.ie>
Hugh Shieh, AT&T Wireless
<hugh.shieh@attws.com>
Jonne Soininen, Nokia
<jonne.soininen@nokia.com>
Hesham Soliman, Ericsson Radio Systems
<hesham.soliman@era.ericsson.se>
Margaret Wasserman, Wind River
<mrw@windriver.com>
Juha Wiljakka, Nokia
<juha.wiljakka@nokia.com>
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Acknowledgements</span>
The authors would like to thank Basavaraj Patil, Tuomo Sipila, Fred
Templin, Rod Van Meter, Pekka Savola, Francis Dupont, Christine
Fisher, Alain Baudot, Rod Walsh, and Jens Staack for good input, and
comments that helped writing this document.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. References</span>
<span class="h3"><a class="selflink" id="section-8.1" href="#section-8.1">8.1</a>. Normative References</span>
[<a id="ref-1">1</a>] 3GPP TS 23.060 v 5.2.0, "General Packet Radio Service (GPRS);
Service description; Stage 2(Release 5)", June 2002.
[<a id="ref-2">2</a>] 3GPP TS 23.228 v 5.3.0, " IP Multimedia Subsystem (IMS); Stage
2(Release 5)", January 2002.
<span class="grey">Soininen Informational [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc3574">RFC 3574</a> Transition Scenarios for 3GPP Networks August 2003</span>
[<a id="ref-3">3</a>] 3GPP TS 24.228 V5.0.0, "Signalling flows for the IP multimedia
call control based on SIP and SDP; Stage 3 (Release 5)", March
2002.
[<a id="ref-4">4</a>] 3GPP TS 24.229 V5.0.0, "IP Multimedia Call Control Protocol based
on SIP and SDP; Stage 3 (Release 5)", March 2002.
[<a id="ref-5">5</a>] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
Peterson, J., Sparks, R., Handley, M. and E. Schooler, "SIP:
Session Initiation Protocol", <a href="./rfc3261">RFC 3261</a>, June 2002.
<span class="h3"><a class="selflink" id="section-8.2" href="#section-8.2">8.2</a>. Informative References</span>
[<a id="ref-6">6</a>] Wasserman, M., "Recommendations for IPv6 in Third Generation
Partnership Project (3GPP) Standards", <a href="./rfc3314">RFC 3314</a>, September 2002.
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. Editor's Address</span>
Jonne Soininen
Nokia
313 Fairchild Dr.
Mountain View, CA, USA
Phone: +1-650-864-6794
EMail: jonne.soininen@nokia.com
<span class="grey">Soininen Informational [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc3574">RFC 3574</a> Transition Scenarios for 3GPP Networks August 2003</span>
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. Full Copyright Statement</span>
Copyright (C) The Internet Society (2003). All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.
The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assignees.
This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Soininen Informational [Page 12]
</pre>
|