1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
|
<pre>Network Working Group D. Whiting
Request for Comments: 3610 Hifn
Category: Informational R. Housley
Vigil Security
N. Ferguson
MacFergus
September 2003
<span class="h1">Counter with CBC-MAC (CCM)</span>
Status of this Memo
This memo provides information for the Internet community. It does
not specify an Internet standard of any kind. Distribution of this
memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2003). All Rights Reserved.
Abstract
Counter with CBC-MAC (CCM) is a generic authenticated encryption
block cipher mode. CCM is defined for use with 128-bit block
ciphers, such as the Advanced Encryption Standard (AES).
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
Counter with CBC-MAC (CCM) is a generic authenticated encryption
block cipher mode. CCM is only defined for use with 128-bit block
ciphers, such as AES [<a href="#ref-AES" title=""Advanced Encryption Standard (AES),"">AES</a>]. The CCM design principles can easily be
applied to other block sizes, but these modes will require their own
specifications.
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. Conventions Used In This Document</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [<a href="#ref-STDWORDS" title=""Key words for use in RFCs to Indicate Requirement Levels"">STDWORDS</a>].
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. CCM Mode Specification</span>
For the generic CCM mode there are two parameter choices. The first
choice is M, the size of the authentication field. The choice of the
value for M involves a trade-off between message expansion and the
probability that an attacker can undetectably modify a message.
Valid values are 4, 6, 8, 10, 12, 14, and 16 octets. The second
<span class="grey">Whiting, et al. Informational [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc3610">RFC 3610</a> Counter with CBC-MAC (CCM) September 2003</span>
choice is L, the size of the length field. This value requires a
trade-off between the maximum message size and the size of the Nonce.
Different applications require different trade-offs, so L is a
parameter. Valid values of L range between 2 octets and 8 octets
(the value L=1 is reserved).
Name Description Size Encoding
---- ---------------------------------------- ------ --------
M Number of octets in authentication field 3 bits (M-2)/2
L Number of octets in length field 3 bits L-1
<span class="h3"><a class="selflink" id="section-2.1" href="#section-2.1">2.1</a>. Inputs</span>
To authenticate and encrypt a message the following information is
required:
1. An encryption key K suitable for the block cipher.
2. A nonce N of 15-L octets. Within the scope of any encryption key
K, the nonce value MUST be unique. That is, the set of nonce
values used with any given key MUST NOT contain any duplicate
values. Using the same nonce for two different messages
encrypted with the same key destroys the security properties of
this mode.
3. The message m, consisting of a string of l(m) octets where 0 <=
l(m) < 2^(8L). The length restriction ensures that l(m) can be
encoded in a field of L octets.
4. Additional authenticated data a, consisting of a string of l(a)
octets where 0 <= l(a) < 2^64. This additional data is
authenticated but not encrypted, and is not included in the
output of this mode. It can be used to authenticate plaintext
packet headers, or contextual information that affects the
interpretation of the message. Users who do not wish to
authenticate additional data can provide a string of length zero.
The inputs are summarized as:
Name Description Size
---- ----------------------------------- -----------------------
K Block cipher key Depends on block cipher
N Nonce 15-L octets
m Message to authenticate and encrypt l(m) octets
a Additional authenticated data l(a) octets
<span class="grey">Whiting, et al. Informational [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc3610">RFC 3610</a> Counter with CBC-MAC (CCM) September 2003</span>
<span class="h3"><a class="selflink" id="section-2.2" href="#section-2.2">2.2</a>. Authentication</span>
The first step is to compute the authentication field T. This is
done using CBC-MAC [<a href="#ref-MAC" title=""Computer Data Authentication,"">MAC</a>]. We first define a sequence of blocks B_0,
B_1, ..., B_n and then apply CBC-MAC to these blocks.
The first block B_0 is formatted as follows, where l(m) is encoded in
most-significant-byte first order:
Octet Number Contents
------------ ---------
0 Flags
1 ... 15-L Nonce N
16-L ... 15 l(m)
Within the first block B_0, the Flags field is formatted as follows:
Bit Number Contents
---------- ----------------------
7 Reserved (always zero)
6 Adata
5 ... 3 M'
2 ... 0 L'
Another way say the same thing is: Flags = 64*Adata + 8*M' + L'.
The Reserved bit is reserved for future expansions and should always
be set to zero. The Adata bit is set to zero if l(a)=0, and set to
one if l(a)>0. The M' field is set to (M-2)/2. As M can take on the
even values from 4 to 16, the 3-bit M' field can take on the values
from one to seven. The 3-bit field MUST NOT have a value of zero,
which would correspond to a 16-bit integrity check value. The L'
field encodes the size of the length field used to store l(m). The
parameter L can take on the values from 2 to 8 (recall, the value L=1
is reserved). This value is encoded in the 3-bit L' field using the
values from one to seven by choosing L' = L-1 (the zero value is
reserved).
If l(a)>0 (as indicated by the Adata field), then one or more blocks
of authentication data are added. These blocks contain l(a) and a
encoded in a reversible manner. We first construct a string that
encodes l(a).
If 0 < l(a) < (2^16 - 2^8), then the length field is encoded as two
octets which contain the value l(a) in most-significant-byte first
order.
<span class="grey">Whiting, et al. Informational [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc3610">RFC 3610</a> Counter with CBC-MAC (CCM) September 2003</span>
If (2^16 - 2^8) <= l(a) < 2^32, then the length field is encoded as
six octets consisting of the octets 0xff, 0xfe, and four octets
encoding l(a) in most-significant-byte-first order.
If 2^32 <= l(a) < 2^64, then the length field is encoded as ten
octets consisting of the octets 0xff, 0xff, and eight octets encoding
l(a) in most-significant-byte-first order.
The length encoding conventions are summarized in the following
table. Note that all fields are interpreted in most-significant-byte
first order.
First two octets Followed by Comment
----------------- ---------------- -------------------------------
0x0000 Nothing Reserved
0x0001 ... 0xFEFF Nothing For 0 < l(a) < (2^16 - 2^8)
0xFF00 ... 0xFFFD Nothing Reserved
0xFFFE 4 octets of l(a) For (2^16 - 2^8) <= l(a) < 2^32
0xFFFF 8 octets of l(a) For 2^32 <= l(a) < 2^64
The blocks encoding a are formed by concatenating this string that
encodes l(a) with a itself, and splitting the result into 16-octet
blocks, and then padding the last block with zeroes if necessary.
These blocks are appended to the first block B0.
After the (optional) additional authentication blocks have been
added, we add the message blocks. The message blocks are formed by
splitting the message m into 16-octet blocks, and then padding the
last block with zeroes if necessary. If the message m consists of
the empty string, then no blocks are added in this step.
The result is a sequence of blocks B0, B1, ..., Bn. The CBC-MAC is
computed by:
X_1 := E( K, B_0 )
X_i+1 := E( K, X_i XOR B_i ) for i=1, ..., n
T := first-M-bytes( X_n+1 )
where E() is the block cipher encryption function, and T is the MAC
value. CCM was designed with AES in mind for the E() function, but
any 128-bit block cipher can be used. Note that the last block B_n
is XORed with X_n, and the result is encrypted with the block cipher.
If needed, the ciphertext is truncated to give T.
<span class="grey">Whiting, et al. Informational [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc3610">RFC 3610</a> Counter with CBC-MAC (CCM) September 2003</span>
<span class="h3"><a class="selflink" id="section-2.3" href="#section-2.3">2.3</a>. Encryption</span>
To encrypt the message data we use Counter (CTR) mode. We first
define the key stream blocks by:
S_i := E( K, A_i ) for i=0, 1, 2, ...
The values A_i are formatted as follows, where the Counter field i is
encoded in most-significant-byte first order:
Octet Number Contents
------------ ---------
0 Flags
1 ... 15-L Nonce N
16-L ... 15 Counter i
The Flags field is formatted as follows:
Bit Number Contents
---------- ----------------------
7 Reserved (always zero)
6 Reserved (always zero)
5 ... 3 Zero
2 ... 0 L'
Another way say the same thing is: Flags = L'.
The Reserved bits are reserved for future expansions and MUST be set
to zero. Bit 6 corresponds to the Adata bit in the B_0 block, but as
this bit is not used here, it is reserved and MUST be set to zero.
Bits 3, 4, and 5 are also set to zero, ensuring that all the A blocks
are distinct from B_0, which has the non-zero encoding of M in this
position. Bits 0, 1, and 2 contain L', using the same encoding as in
B_0.
The message is encrypted by XORing the octets of message m with the
first l(m) octets of the concatenation of S_1, S_2, S_3, ... . Note
that S_0 is not used to encrypt the message.
The authentication value U is computed by encrypting T with the key
stream block S_0 and truncating it to the desired length.
U := T XOR first-M-bytes( S_0 )
<span class="h3"><a class="selflink" id="section-2.4" href="#section-2.4">2.4</a>. Output</span>
The final result c consists of the encrypted message followed by the
encrypted authentication value U.
<span class="grey">Whiting, et al. Informational [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc3610">RFC 3610</a> Counter with CBC-MAC (CCM) September 2003</span>
<span class="h3"><a class="selflink" id="section-2.5" href="#section-2.5">2.5</a>. Decryption and Authentication Checking</span>
To decrypt a message the following information is required:
1. The encryption key K.
2. The nonce N.
3. The additional authenticated data a.
4. The encrypted and authenticated message c.
Decryption starts by recomputing the key stream to recover the
message m and the MAC value T. The message and additional
authentication data is then used to recompute the CBC-MAC value and
check T.
If the T value is not correct, the receiver MUST NOT reveal any
information except for the fact that T is incorrect. The receiver
MUST NOT reveal the decrypted message, the value T, or any other
information.
<span class="h3"><a class="selflink" id="section-2.6" href="#section-2.6">2.6</a>. Restrictions</span>
To preserve security, implementations need to limit the total amount
of data that is encrypted with a single key; the total number of
block cipher encryption operations in the CBC-MAC and encryption
together cannot exceed 2^61. (This allows nearly 2^64 octets to be
encrypted and authenticated using CCM. This is roughly 16 million
terabytes, which should be more than enough for most applications.)
In an environment where this limit might be reached, the sender MUST
ensure that the total number of block cipher encryption operations in
the CBC-MAC and encryption together does not exceed 2^61. Receivers
that do not expect to decrypt the same message twice MAY also check
this limit.
The recipient MUST verify the CBC-MAC before releasing any
information such as the plaintext. If the CBC-MAC verification
fails, the receiver MUST destroy all information, except for the fact
that the CBC-MAC verification failed.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Security Proof</span>
Jakob Jonsson has developed a security proof of CCM [<a href="#ref-PROOF" title=""On the Security of CTR + CBC-MAC,"">PROOF</a>]. The
resulting paper was presented at the SAC 2002 conference. The proof
shows that CCM provides a level of confidentiality and authenticity
that is in line with other proposed authenticated encryption modes,
such as OCB mode [<a href="#ref-OCB" title=""OCB: A block-Cipher Mod of Operation for Efficient Authenticated Encryption,"">OCB</a>].
<span class="grey">Whiting, et al. Informational [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc3610">RFC 3610</a> Counter with CBC-MAC (CCM) September 2003</span>
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Rationale</span>
The main difficulty in specifying this mode is the trade-off between
nonce size and counter size. For a general mode we want to support
large messages. Some applications use only small messages, but would
rather have a larger nonce. Introducing the L parameter solves this
issue. The parameter M gives the traditional trade-off between
message expansion and probability of forgery. For most applications,
we recommend choosing M at least 8.
The CBC-MAC is computed over a sequence of blocks that encode the
relevant data in a unique way. Given the block sequence it is easy
to recover N, M, L, m, and a. The length encoding of a was chosen to
be simple and efficient when a is empty and when a is small. We
expect that many implementations will limit the maximum size of a.
CCM encryption is a straightforward application of CTR mode [<a href="#ref-MODES" title=""Recommendation for Block Cipher Modes of Operation: Methods and Techniques,"">MODES</a>].
As some implementations will support a variable length counter field,
we have ensured that the least significant octet of the counter is at
one end of the field. This also ensures that the counter is aligned
on the block boundary.
By encrypting T we avoid CBC-MAC collision attacks. If the block
cipher behaves as a pseudo-random permutation, then the key stream is
indistinguishable from a random string. Thus, the attacker gets no
information about the CBC-MAC results. The only avenue of attack
that is left is a differential-style attack, which has no significant
chance of success if the block cipher is a pseudo-random permutation.
To simplify implementation we use the same block cipher key for the
encryption and authentication functions. In our design this is not a
problem. All the A blocks are different, and they are different from
the B_0 block. If the block cipher behaves like a random
permutation, then the outputs are independent of each other, up to
the insignificant limitation that they are all different. The only
cases where the inputs to the block cipher can overlap are an
intermediate value in the CBC-MAC and one of the other encryptions.
As all the intermediate values of the CBC-MAC computation are
essentially random (because the block cipher behaves like a random
permutation) the probability of such a collision is very small. Even
if there is a collision, these values only affect T, which is
encrypted so that an attacker cannot deduce any information, or
detect any collision.
<span class="grey">Whiting, et al. Informational [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc3610">RFC 3610</a> Counter with CBC-MAC (CCM) September 2003</span>
Care has been taken to ensure that the blocks used by the
authentication function match up with the blocks used by the
encryption function. This should simplify hardware implementations,
and reduce the amount of byte-shifting required by software
implementations.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Nonce Suggestions</span>
The main requirement is that, within the scope of a single key, the
nonce values are unique for each message. A common technique is to
number messages sequentially, and to use this number as the nonce.
Sequential message numbers are also used to detect replay attacks and
to detect message reordering, so in many situations (such as IPsec
ESP [<a href="#ref-ESP" title=""IP Encapsulating Security Payload (ESP)"">ESP</a>]) the sequence numbers are already available.
Users of CCM, and all other block cipher modes, should be aware of
precomputation attacks. These are effectively collision attacks on
the cipher key. Let us suppose the key K is 128 bits, and the same
nonce value N' is used with many different keys. The attacker
chooses a particular nonce N'. She chooses 2^64 different keys at
random and computes a table entry for each K value, generating a pair
of the form (K,S_1). (Given the key and the nonce, computing S_1 is
easy.) She then waits for messages to be sent with nonce N'. We
will assume the first 16 bytes of each message are known so that she
can compute S_1 for each message. She looks in her table for a pair
with a matching S_1 value. She can expect to find a match after
checking about 2^64 messages. Once a match is found, the other part
of the matched pair is the key in question. The total workload of
the attacker is only 2^64 steps, rather than the expected 2^128
steps. Similar precomputation attacks exist for all block cipher
modes.
The main weapon against precomputation attacks is to use a larger
key. Using a 256-bit key forces the attacker to perform at least
2^128 precomputations, which is infeasible. In situations where
using a large key is not possible or desirable (for example, due to
the resulting performance impact), users can use part of the nonce to
reduce the number of times any specific nonce value is used with
different keys. If there is room in the nonce, the sender could add
a few random bytes, and send these random bytes along with the
message. This makes the precomputation attack much harder, as the
attacker now has to precompute a table for each of the possible
random values. An alternative is to use something like the sender's
Ethernet address. Note that due to the widespread use of DHCP and
NAT, IP addresses are rarely unique. Including the Ethernet address
forces the attacker to perform the precomputation specifically for a
specific source address, and the resulting table could not be used to
attack anyone else. Although these solutions can all work, they need
<span class="grey">Whiting, et al. Informational [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc3610">RFC 3610</a> Counter with CBC-MAC (CCM) September 2003</span>
careful analysis and almost never entirely prevent these attacks.
Where possible, we recommend using a larger key, as this solves all
the problems.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Efficiency and Performance</span>
Performance depends on the speed of the block cipher implementation.
In hardware, for large packets, the speed achievable for CCM is
roughly the same as that achievable with the CBC encryption mode.
Encrypting and authenticating an empty message, without any
additional authentication data, requires two block cipher encryption
operations. For each block of additional authentication data one
additional block cipher encryption operation is required (if one
includes the length encoding). Each message block requires two block
cipher encryption operations. The worst-case situation is when both
the message and the additional authentication data are a single
octet. In this case, CCM requires five block cipher encryption
operations.
CCM results in the minimal possible message expansion; the only bits
added are the authentication bits.
Both the CCM encryption and CCM decryption operations require only
the block cipher encryption function. In AES, the encryption and
decryption algorithms have some significant differences. Thus, using
only the encrypt operation can lead to a significant savings in code
size or hardware size.
In hardware, CCM can compute the message authentication code and
perform encryption in a single pass. That is, the implementation
does not have to complete calculation of the message authentication
code before encryption can begin.
CCM was designed for use in the packet processing environment. The
authentication processing requires the message length to be known at
the beginning of the operation, which makes one-pass processing
difficult in some environments. However, in almost all environments,
message or packet lengths are known in advance.
<span class="grey">Whiting, et al. Informational [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc3610">RFC 3610</a> Counter with CBC-MAC (CCM) September 2003</span>
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Summary of Properties</span>
Security Function
authenticated encryption
Error Propagation
none
Synchronization
same nonce used by sender and recipient
Parallelizability
encryption can be parallelized, but authentication cannot
Keying Material Requirements
one key
Counter/IV/Nonce Requirements
counter and nonce are part of the counter block
Memory Requirements
requires memory for encrypt operation of the underlying block
cipher, plaintext, ciphertext (expanded for CBC-MAC), and a per-
packet counter (an integer; at most L octets in size)
Pre-processing Capability
encryption key stream can be precomputed, but authentication
cannot
Message Length Requirements
octet aligned message of arbitrary length, up to 2^(8*L) octets,
and octet aligned arbitrary additional authenticated data, up to
2^64 octets
Ciphertext Expansion
4, 6, 8, 10, 12, 14, or 16 octets depending on size of MAC
selected
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Test Vectors</span>
These test vectors use AES for the block cipher [<a href="#ref-AES" title=""Advanced Encryption Standard (AES),"">AES</a>]. In each of
these test vectors, the least significant sixteen bits of the counter
block is used for the block counter, and the nonce is 13 octets.
Some of the test vectors include a eight octet authentication value,
and others include a ten octet authentication value.
<span class="grey">Whiting, et al. Informational [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc3610">RFC 3610</a> Counter with CBC-MAC (CCM) September 2003</span>
=============== Packet Vector #1 ==================
AES Key = C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF
Nonce = 00 00 00 03 02 01 00 A0 A1 A2 A3 A4 A5
Total packet length = 31. [Input with 8 cleartext header octets]
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E
CBC IV in: 59 00 00 00 03 02 01 00 A0 A1 A2 A3 A4 A5 00 17
CBC IV out:EB 9D 55 47 73 09 55 AB 23 1E 0A 2D FE 4B 90 D6
After xor: EB 95 55 46 71 0A 51 AE 25 19 0A 2D FE 4B 90 D6 [hdr]
After AES: CD B6 41 1E 3C DC 9B 4F 5D 92 58 B6 9E E7 F0 91
After xor: C5 BF 4B 15 30 D1 95 40 4D 83 4A A5 8A F2 E6 86 [msg]
After AES: 9C 38 40 5E A0 3C 1B C9 04 B5 8B 40 C7 6C A2 EB
After xor: 84 21 5A 45 BC 21 05 C9 04 B5 8B 40 C7 6C A2 EB [msg]
After AES: 2D C6 97 E4 11 CA 83 A8 60 C2 C4 06 CC AA 54 2F
CBC-MAC : 2D C6 97 E4 11 CA 83 A8
CTR Start: 01 00 00 00 03 02 01 00 A0 A1 A2 A3 A4 A5 00 01
CTR[0001]: 50 85 9D 91 6D CB 6D DD E0 77 C2 D1 D4 EC 9F 97
CTR[0002]: 75 46 71 7A C6 DE 9A FF 64 0C 9C 06 DE 6D 0D 8F
CTR[MAC ]: 3A 2E 46 C8 EC 33 A5 48
Total packet length = 39. [Authenticated and Encrypted Output]
00 01 02 03 04 05 06 07 58 8C 97 9A 61 C6 63 D2
F0 66 D0 C2 C0 F9 89 80 6D 5F 6B 61 DA C3 84 17
E8 D1 2C FD F9 26 E0
=============== Packet Vector #2 ==================
AES Key = C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF
Nonce = 00 00 00 04 03 02 01 A0 A1 A2 A3 A4 A5
Total packet length = 32. [Input with 8 cleartext header octets]
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
CBC IV in: 59 00 00 00 04 03 02 01 A0 A1 A2 A3 A4 A5 00 18
CBC IV out:F0 C2 54 D3 CA 03 E2 39 70 BD 24 A8 4C 39 9E 77
After xor: F0 CA 54 D2 C8 00 E6 3C 76 BA 24 A8 4C 39 9E 77 [hdr]
After AES: 48 DE 8B 86 28 EA 4A 40 00 AA 42 C2 95 BF 4A 8C
After xor: 40 D7 81 8D 24 E7 44 4F 10 BB 50 D1 81 AA 5C 9B [msg]
After AES: 0F 89 FF BC A6 2B C2 4F 13 21 5F 16 87 96 AA 33
After xor: 17 90 E5 A7 BA 36 DC 50 13 21 5F 16 87 96 AA 33 [msg]
After AES: F7 B9 05 6A 86 92 6C F3 FB 16 3D C4 99 EF AA 11
CBC-MAC : F7 B9 05 6A 86 92 6C F3
CTR Start: 01 00 00 00 04 03 02 01 A0 A1 A2 A3 A4 A5 00 01
CTR[0001]: 7A C0 10 3D ED 38 F6 C0 39 0D BA 87 1C 49 91 F4
CTR[0002]: D4 0C DE 22 D5 F9 24 24 F7 BE 9A 56 9D A7 9F 51
CTR[MAC ]: 57 28 D0 04 96 D2 65 E5
Total packet length = 40. [Authenticated and Encrypted Output]
00 01 02 03 04 05 06 07 72 C9 1A 36 E1 35 F8 CF
29 1C A8 94 08 5C 87 E3 CC 15 C4 39 C9 E4 3A 3B
A0 91 D5 6E 10 40 09 16
<span class="grey">Whiting, et al. Informational [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc3610">RFC 3610</a> Counter with CBC-MAC (CCM) September 2003</span>
=============== Packet Vector #3 ==================
AES Key = C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF
Nonce = 00 00 00 05 04 03 02 A0 A1 A2 A3 A4 A5
Total packet length = 33. [Input with 8 cleartext header octets]
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
20
CBC IV in: 59 00 00 00 05 04 03 02 A0 A1 A2 A3 A4 A5 00 19
CBC IV out:6F 8A 12 F7 BF 8D 4D C5 A1 19 6E 95 DF F0 B4 27
After xor: 6F 82 12 F6 BD 8E 49 C0 A7 1E 6E 95 DF F0 B4 27 [hdr]
After AES: 37 E9 B7 8C C2 20 17 E7 33 80 43 0C BE F4 28 24
After xor: 3F E0 BD 87 CE 2D 19 E8 23 91 51 1F AA E1 3E 33 [msg]
After AES: 90 CA 05 13 9F 4D 4E CF 22 6F E9 81 C5 9E 2D 40
After xor: 88 D3 1F 08 83 50 50 D0 02 6F E9 81 C5 9E 2D 40 [msg]
After AES: 73 B4 67 75 C0 26 DE AA 41 03 97 D6 70 FE 5F B0
CBC-MAC : 73 B4 67 75 C0 26 DE AA
CTR Start: 01 00 00 00 05 04 03 02 A0 A1 A2 A3 A4 A5 00 01
CTR[0001]: 59 B8 EF FF 46 14 73 12 B4 7A 1D 9D 39 3D 3C FF
CTR[0002]: 69 F1 22 A0 78 C7 9B 89 77 89 4C 99 97 5C 23 78
CTR[MAC ]: 39 6E C0 1A 7D B9 6E 6F
Total packet length = 41. [Authenticated and Encrypted Output]
00 01 02 03 04 05 06 07 51 B1 E5 F4 4A 19 7D 1D
A4 6B 0F 8E 2D 28 2A E8 71 E8 38 BB 64 DA 85 96
57 4A DA A7 6F BD 9F B0 C5
=============== Packet Vector #4 ==================
AES Key = C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF
Nonce = 00 00 00 06 05 04 03 A0 A1 A2 A3 A4 A5
Total packet length = 31. [Input with 12 cleartext header octets]
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E
CBC IV in: 59 00 00 00 06 05 04 03 A0 A1 A2 A3 A4 A5 00 13
CBC IV out:06 65 2C 60 0E F5 89 63 CA C3 25 A9 CD 3E 2B E1
After xor: 06 69 2C 61 0C F6 8D 66 CC C4 2D A0 C7 35 2B E1 [hdr]
After AES: A0 75 09 AC 15 C2 58 86 04 2F 80 60 54 FE A6 86
After xor: AC 78 07 A3 05 D3 4A 95 10 3A 96 77 4C E7 BC 9D [msg]
After AES: 64 4C 09 90 D9 1B 83 E9 AB 4B 8E ED 06 6F F5 BF
After xor: 78 51 17 90 D9 1B 83 E9 AB 4B 8E ED 06 6F F5 BF [msg]
After AES: 4B 4F 4B 39 B5 93 E6 BF B0 B2 C2 B7 0F 29 CD 7A
CBC-MAC : 4B 4F 4B 39 B5 93 E6 BF
CTR Start: 01 00 00 00 06 05 04 03 A0 A1 A2 A3 A4 A5 00 01
CTR[0001]: AE 81 66 6A 83 8B 88 6A EE BF 4A 5B 32 84 50 8A
CTR[0002]: D1 B1 92 06 AC 93 9E 2F B6 DD CE 10 A7 74 FD 8D
CTR[MAC ]: DD 87 2A 80 7C 75 F8 4E
Total packet length = 39. [Authenticated and Encrypted Output]
00 01 02 03 04 05 06 07 08 09 0A 0B A2 8C 68 65
93 9A 9A 79 FA AA 5C 4C 2A 9D 4A 91 CD AC 8C 96
C8 61 B9 C9 E6 1E F1
<span class="grey">Whiting, et al. Informational [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc3610">RFC 3610</a> Counter with CBC-MAC (CCM) September 2003</span>
=============== Packet Vector #5 ==================
AES Key = C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF
Nonce = 00 00 00 07 06 05 04 A0 A1 A2 A3 A4 A5
Total packet length = 32. [Input with 12 cleartext header octets]
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
CBC IV in: 59 00 00 00 07 06 05 04 A0 A1 A2 A3 A4 A5 00 14
CBC IV out:00 4C 50 95 45 80 3C 48 51 CD E1 3B 56 C8 9A 85
After xor: 00 40 50 94 47 83 38 4D 57 CA E9 32 5C C3 9A 85 [hdr]
After AES: E2 B8 F7 CE 49 B2 21 72 84 A8 EA 84 FA AD 67 5C
After xor: EE B5 F9 C1 59 A3 33 61 90 BD FC 93 E2 B4 7D 47 [msg]
After AES: 3E FB 36 72 25 DB 11 01 D3 C2 2F 0E CA FF 44 F3
After xor: 22 E6 28 6D 25 DB 11 01 D3 C2 2F 0E CA FF 44 F3 [msg]
After AES: 48 B9 E8 82 55 05 4A B5 49 0A 95 F9 34 9B 4B 5E
CBC-MAC : 48 B9 E8 82 55 05 4A B5
CTR Start: 01 00 00 00 07 06 05 04 A0 A1 A2 A3 A4 A5 00 01
CTR[0001]: D0 FC F5 74 4D 8F 31 E8 89 5B 05 05 4B 7C 90 C3
CTR[0002]: 72 A0 D4 21 9F 0D E1 D4 04 83 BC 2D 3D 0C FC 2A
CTR[MAC ]: 19 51 D7 85 28 99 67 26
Total packet length = 40. [Authenticated and Encrypted Output]
00 01 02 03 04 05 06 07 08 09 0A 0B DC F1 FB 7B
5D 9E 23 FB 9D 4E 13 12 53 65 8A D8 6E BD CA 3E
51 E8 3F 07 7D 9C 2D 93
=============== Packet Vector #6 ==================
AES Key = C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF
Nonce = 00 00 00 08 07 06 05 A0 A1 A2 A3 A4 A5
Total packet length = 33. [Input with 12 cleartext header octets]
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
20
CBC IV in: 59 00 00 00 08 07 06 05 A0 A1 A2 A3 A4 A5 00 15
CBC IV out:04 72 DA 4C 6F F6 0A 63 06 52 1A 06 04 80 CD E5
After xor: 04 7E DA 4D 6D F5 0E 66 00 55 12 0F 0E 8B CD E5 [hdr]
After AES: 64 4C 36 A5 A2 27 37 62 0B 89 F1 D7 BF F2 73 D4
After xor: 68 41 38 AA B2 36 25 71 1F 9C E7 C0 A7 EB 69 CF [msg]
After AES: 41 E1 19 CD 19 24 CE 77 F1 2F A6 60 C1 6E BB 4E
After xor: 5D FC 07 D2 39 24 CE 77 F1 2F A6 60 C1 6E BB 4E [msg]
After AES: A5 27 D8 15 6A C3 59 BF 1C B8 86 E6 2F 29 91 29
CBC-MAC : A5 27 D8 15 6A C3 59 BF
CTR Start: 01 00 00 00 08 07 06 05 A0 A1 A2 A3 A4 A5 00 01
CTR[0001]: 63 CC BE 1E E0 17 44 98 45 64 B2 3A 8D 24 5C 80
CTR[0002]: 39 6D BA A2 A7 D2 CB D4 B5 E1 7C 10 79 45 BB C0
CTR[MAC ]: E5 7D DC 56 C6 52 92 2B
Total packet length = 41. [Authenticated and Encrypted Output]
00 01 02 03 04 05 06 07 08 09 0A 0B 6F C1 B0 11
F0 06 56 8B 51 71 A4 2D 95 3D 46 9B 25 70 A4 BD
87 40 5A 04 43 AC 91 CB 94
<span class="grey">Whiting, et al. Informational [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc3610">RFC 3610</a> Counter with CBC-MAC (CCM) September 2003</span>
=============== Packet Vector #7 ==================
AES Key = C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF
Nonce = 00 00 00 09 08 07 06 A0 A1 A2 A3 A4 A5
Total packet length = 31. [Input with 8 cleartext header octets]
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E
CBC IV in: 61 00 00 00 09 08 07 06 A0 A1 A2 A3 A4 A5 00 17
CBC IV out:60 06 C5 72 DA 23 9C BF A0 5B 0A DE D2 CD A8 1E
After xor: 60 0E C5 73 D8 20 98 BA A6 5C 0A DE D2 CD A8 1E [hdr]
After AES: 41 7D E2 AE 94 E2 EA D9 00 FC 44 FC D0 69 52 27
After xor: 49 74 E8 A5 98 EF E4 D6 10 ED 56 EF C4 7C 44 30 [msg]
After AES: 2A 6C 42 CA 49 D7 C7 01 C5 7D 59 FF 87 16 49 0E
After xor: 32 75 58 D1 55 CA D9 01 C5 7D 59 FF 87 16 49 0E [msg]
After AES: 89 8B D6 45 4E 27 20 BB D2 7E F3 15 7A 7C 90 B2
CBC-MAC : 89 8B D6 45 4E 27 20 BB D2 7E
CTR Start: 01 00 00 00 09 08 07 06 A0 A1 A2 A3 A4 A5 00 01
CTR[0001]: 09 3C DB B9 C5 52 4F DA C1 C5 EC D2 91 C4 70 AF
CTR[0002]: 11 57 83 86 E2 C4 72 B4 8E CC 8A AD AB 77 6F CB
CTR[MAC ]: 8D 07 80 25 62 B0 8C 00 A6 EE
Total packet length = 41. [Authenticated and Encrypted Output]
00 01 02 03 04 05 06 07 01 35 D1 B2 C9 5F 41 D5
D1 D4 FE C1 85 D1 66 B8 09 4E 99 9D FE D9 6C 04
8C 56 60 2C 97 AC BB 74 90
=============== Packet Vector #8 ==================
AES Key = C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF
Nonce = 00 00 00 0A 09 08 07 A0 A1 A2 A3 A4 A5
Total packet length = 32. [Input with 8 cleartext header octets]
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
CBC IV in: 61 00 00 00 0A 09 08 07 A0 A1 A2 A3 A4 A5 00 18
CBC IV out:63 A3 FA E4 6C 79 F3 FA 78 38 B8 A2 80 36 B6 0B
After xor: 63 AB FA E5 6E 7A F7 FF 7E 3F B8 A2 80 36 B6 0B [hdr]
After AES: 1C 99 1A 3D B7 60 79 27 34 40 79 1F AD 8B 5B 02
After xor: 14 90 10 36 BB 6D 77 28 24 51 6B 0C B9 9E 4D 15 [msg]
After AES: 14 19 E8 E8 CB BE 75 58 E1 E3 BE 4B 6C 9F 82 E3
After xor: 0C 00 F2 F3 D7 A3 6B 47 E1 E3 BE 4B 6C 9F 82 E3 [msg]
After AES: E0 16 E8 1C 7F 7B 8A 38 A5 38 F2 CB 5B B6 C1 F2
CBC-MAC : E0 16 E8 1C 7F 7B 8A 38 A5 38
CTR Start: 01 00 00 00 0A 09 08 07 A0 A1 A2 A3 A4 A5 00 01
CTR[0001]: 73 7C 33 91 CC 8E 13 DD E0 AA C5 4B 6D B7 EB 98
CTR[0002]: 74 B7 71 77 C5 AA C5 3B 04 A4 F8 70 8E 92 EB 2B
CTR[MAC ]: 21 6D AC 2F 8B 4F 1C 07 91 8C
Total packet length = 42. [Authenticated and Encrypted Output]
00 01 02 03 04 05 06 07 7B 75 39 9A C0 83 1D D2
F0 BB D7 58 79 A2 FD 8F 6C AE 6B 6C D9 B7 DB 24
C1 7B 44 33 F4 34 96 3F 34 B4
<span class="grey">Whiting, et al. Informational [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc3610">RFC 3610</a> Counter with CBC-MAC (CCM) September 2003</span>
=============== Packet Vector #9 ==================
AES Key = C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF
Nonce = 00 00 00 0B 0A 09 08 A0 A1 A2 A3 A4 A5
Total packet length = 33. [Input with 8 cleartext header octets]
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
20
CBC IV in: 61 00 00 00 0B 0A 09 08 A0 A1 A2 A3 A4 A5 00 19
CBC IV out:4F 2C 86 11 1E 08 2A DD 6B 44 21 3A B5 13 13 16
After xor: 4F 24 86 10 1C 0B 2E D8 6D 43 21 3A B5 13 13 16 [hdr]
After AES: F6 EC 56 87 3C 57 12 DC 9C C5 3C A8 D4 D1 ED 0A
After xor: FE E5 5C 8C 30 5A 1C D3 8C D4 2E BB C0 C4 FB 1D [msg]
After AES: 17 C1 80 A5 31 53 D4 C3 03 85 0C 95 65 80 34 52
After xor: 0F D8 9A BE 2D 4E CA DC 23 85 0C 95 65 80 34 52 [msg]
After AES: 46 A1 F6 E2 B1 6E 75 F8 1C F5 6B 1A 80 04 44 1B
CBC-MAC : 46 A1 F6 E2 B1 6E 75 F8 1C F5
CTR Start: 01 00 00 00 0B 0A 09 08 A0 A1 A2 A3 A4 A5 00 01
CTR[0001]: 8A 5A 10 6B C0 29 9A 55 5B 93 6B 0B 0E A0 DE 5A
CTR[0002]: EA 05 FD E2 AB 22 5C FE B7 73 12 CB 88 D9 A5 4A
CTR[MAC ]: AC 3D F1 07 DA 30 C4 86 43 BB
Total packet length = 43. [Authenticated and Encrypted Output]
00 01 02 03 04 05 06 07 82 53 1A 60 CC 24 94 5A
4B 82 79 18 1A B5 C8 4D F2 1C E7 F9 B7 3F 42 E1
97 EA 9C 07 E5 6B 5E B1 7E 5F 4E
=============== Packet Vector #10 ==================
AES Key = C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF
Nonce = 00 00 00 0C 0B 0A 09 A0 A1 A2 A3 A4 A5
Total packet length = 31. [Input with 12 cleartext header octets]
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E
CBC IV in: 61 00 00 00 0C 0B 0A 09 A0 A1 A2 A3 A4 A5 00 13
CBC IV out:7F B8 0A 32 E9 80 57 46 EC 31 6C 3A B2 A2 EB 5D
After xor: 7F B4 0A 33 EB 83 53 43 EA 36 64 33 B8 A9 EB 5D [hdr]
After AES: 7E 96 96 BF F1 56 D6 A8 6E AC F5 7B 7F 23 47 5A
After xor: 72 9B 98 B0 E1 47 C4 BB 7A B9 E3 6C 67 3A 5D 41 [msg]
After AES: 8B 4A EE 42 04 24 8A 59 FA CC 88 66 57 66 DD 72
After xor: 97 57 F0 42 04 24 8A 59 FA CC 88 66 57 66 DD 72 [msg]
After AES: 41 63 89 36 62 ED D7 EB CD 6E 15 C1 89 48 62 05
CBC-MAC : 41 63 89 36 62 ED D7 EB CD 6E
CTR Start: 01 00 00 00 0C 0B 0A 09 A0 A1 A2 A3 A4 A5 00 01
CTR[0001]: 0B 39 2B 9B 05 66 97 06 3F 12 56 8F 2B 13 A1 0F
CTR[0002]: 07 89 65 25 23 40 94 3B 9E 69 B2 56 CC 5E F7 31
CTR[MAC ]: 17 09 20 76 09 A0 4E 72 45 B3
Total packet length = 41. [Authenticated and Encrypted Output]
00 01 02 03 04 05 06 07 08 09 0A 0B 07 34 25 94
15 77 85 15 2B 07 40 98 33 0A BB 14 1B 94 7B 56
6A A9 40 6B 4D 99 99 88 DD
<span class="grey">Whiting, et al. Informational [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc3610">RFC 3610</a> Counter with CBC-MAC (CCM) September 2003</span>
=============== Packet Vector #11 ==================
AES Key = C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF
Nonce = 00 00 00 0D 0C 0B 0A A0 A1 A2 A3 A4 A5
Total packet length = 32. [Input with 12 cleartext header octets]
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
CBC IV in: 61 00 00 00 0D 0C 0B 0A A0 A1 A2 A3 A4 A5 00 14
CBC IV out:B0 84 85 79 51 D2 FA 42 76 EF 3A D7 14 B9 62 87
After xor: B0 88 85 78 53 D1 FE 47 70 E8 32 DE 1E B2 62 87 [hdr]
After AES: C9 B3 64 7E D8 79 2A 5C 65 B7 CE CC 19 0A 97 0A
After xor: C5 BE 6A 71 C8 68 38 4F 71 A2 D8 DB 01 13 8D 11 [msg]
After AES: 34 0F 69 17 FA B9 19 D6 1D AC D0 35 36 D6 55 8B
After xor: 28 12 77 08 FA B9 19 D6 1D AC D0 35 36 D6 55 8B [msg]
After AES: 6B 5E 24 34 12 CC C2 AD 6F 1B 11 C3 A1 A9 D8 BC
CBC-MAC : 6B 5E 24 34 12 CC C2 AD 6F 1B
CTR Start: 01 00 00 00 0D 0C 0B 0A A0 A1 A2 A3 A4 A5 00 01
CTR[0001]: 6B 66 BC 0C 90 A1 F1 12 FC BE 6F 4E 12 20 77 BC
CTR[0002]: 97 9E 57 2B BE 65 8A E5 CC 20 11 83 2A 9A 9B 5B
CTR[MAC ]: 9E 64 86 DD 02 B6 49 C1 6D 37
Total packet length = 42. [Authenticated and Encrypted Output]
00 01 02 03 04 05 06 07 08 09 0A 0B 67 6B B2 03
80 B0 E3 01 E8 AB 79 59 0A 39 6D A7 8B 83 49 34
F5 3A A2 E9 10 7A 8B 6C 02 2C
=============== Packet Vector #12 ==================
AES Key = C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF
Nonce = 00 00 00 0E 0D 0C 0B A0 A1 A2 A3 A4 A5
Total packet length = 33. [Input with 12 cleartext header octets]
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
20
CBC IV in: 61 00 00 00 0E 0D 0C 0B A0 A1 A2 A3 A4 A5 00 15
CBC IV out:5F 8E 8D 02 AD 95 7C 5A 36 14 CF 63 40 16 97 4F
After xor: 5F 82 8D 03 AF 96 78 5F 30 13 C7 6A 4A 1D 97 4F [hdr]
After AES: 63 FA BD 69 B9 55 65 FF 54 AA F4 60 88 7D EC 9F
After xor: 6F F7 B3 66 A9 44 77 EC 40 BF E2 77 90 64 F6 84 [msg]
After AES: 5A 76 5F 0B 93 CE 4F 6A B4 1D 91 30 18 57 6A D7
After xor: 46 6B 41 14 B3 CE 4F 6A B4 1D 91 30 18 57 6A D7 [msg]
After AES: 9D 66 92 41 01 08 D5 B6 A1 45 85 AC AF 86 32 E8
CBC-MAC : 9D 66 92 41 01 08 D5 B6 A1 45
CTR Start: 01 00 00 00 0E 0D 0C 0B A0 A1 A2 A3 A4 A5 00 01
CTR[0001]: CC F2 AE D9 E0 4A C9 74 E6 58 55 B3 2B 94 30 BF
CTR[0002]: A2 CA AC 11 63 F4 07 E5 E5 F6 E3 B3 79 0F 79 F8
CTR[MAC ]: 50 7C 31 57 63 EF 78 D3 77 9E
Total packet length = 43. [Authenticated and Encrypted Output]
00 01 02 03 04 05 06 07 08 09 0A 0B C0 FF A0 D6
F0 5B DB 67 F2 4D 43 A4 33 8D 2A A4 BE D7 B2 0E
43 CD 1A A3 16 62 E7 AD 65 D6 DB
<span class="grey">Whiting, et al. Informational [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc3610">RFC 3610</a> Counter with CBC-MAC (CCM) September 2003</span>
=============== Packet Vector #13 ==================
AES Key = D7 82 8D 13 B2 B0 BD C3 25 A7 62 36 DF 93 CC 6B
Nonce = 00 41 2B 4E A9 CD BE 3C 96 96 76 6C FA
Total packet length = 31. [Input with 8 cleartext header octets]
0B E1 A8 8B AC E0 18 B1 08 E8 CF 97 D8 20 EA 25
84 60 E9 6A D9 CF 52 89 05 4D 89 5C EA C4 7C
CBC IV in: 59 00 41 2B 4E A9 CD BE 3C 96 96 76 6C FA 00 17
CBC IV out:33 AE C3 1A 1F B7 CC 35 E5 DA D2 BA C0 90 D9 A3
After xor: 33 A6 C8 FB B7 3C 60 D5 FD 6B D2 BA C0 90 D9 A3 [hdr]
After AES: B7 56 CA 1E 5B 42 C6 9C 58 E3 0A F5 2B F7 7C FD
After xor: BF BE 05 89 83 62 2C B9 DC 83 E3 9F F2 38 2E 74 [msg]
After AES: 33 3D 3A 3D 07 B5 3C 7B 22 0E 96 1A 18 A9 A1 9E
After xor: 36 70 B3 61 ED 71 40 7B 22 0E 96 1A 18 A9 A1 9E [msg]
After AES: 14 BD DB 6B F9 01 63 4D FB 56 51 83 BC 74 93 F7
CBC-MAC : 14 BD DB 6B F9 01 63 4D
CTR Start: 01 00 41 2B 4E A9 CD BE 3C 96 96 76 6C FA 00 01
CTR[0001]: 44 51 B0 11 7A 84 82 BF 03 19 AE C1 59 5E BD DA
CTR[0002]: 83 EB 76 E1 3A 44 84 7F 92 20 09 07 76 B8 25 C5
CTR[MAC ]: F3 31 2C A0 F5 DC B4 FE
Total packet length = 39. [Authenticated and Encrypted Output]
0B E1 A8 8B AC E0 18 B1 4C B9 7F 86 A2 A4 68 9A
87 79 47 AB 80 91 EF 53 86 A6 FF BD D0 80 F8 E7
8C F7 CB 0C DD D7 B3
=============== Packet Vector #14 ==================
AES Key = D7 82 8D 13 B2 B0 BD C3 25 A7 62 36 DF 93 CC 6B
Nonce = 00 33 56 8E F7 B2 63 3C 96 96 76 6C FA
Total packet length = 32. [Input with 8 cleartext header octets]
63 01 8F 76 DC 8A 1B CB 90 20 EA 6F 91 BD D8 5A
FA 00 39 BA 4B AF F9 BF B7 9C 70 28 94 9C D0 EC
CBC IV in: 59 00 33 56 8E F7 B2 63 3C 96 96 76 6C FA 00 18
CBC IV out:42 0D B1 50 BB 0C 44 DA 83 E4 52 09 55 99 67 E3
After xor: 42 05 D2 51 34 7A 98 50 98 2F 52 09 55 99 67 E3 [hdr]
After AES: EA D1 CA 56 02 02 09 5C E6 12 B0 D2 18 A0 DD 44
After xor: 7A F1 20 39 93 BF D1 06 1C 12 89 68 53 0F 24 FB [msg]
After AES: 51 77 41 69 C3 DE 6B 24 13 27 74 90 F5 FF C5 62
After xor: E6 EB 31 41 57 42 BB C8 13 27 74 90 F5 FF C5 62 [msg]
After AES: D4 CC 3B 82 DF 9F CC 56 7E E5 83 61 D7 8D FB 5E
CBC-MAC : D4 CC 3B 82 DF 9F CC 56
CTR Start: 01 00 33 56 8E F7 B2 63 3C 96 96 76 6C FA 00 01
CTR[0001]: DC EB F4 13 38 3C 66 A0 5A 72 55 EF 98 D7 FF AD
CTR[0002]: 2F 54 2C BA 15 D6 6C DF E1 EC 46 8F 0E 68 A1 24
CTR[MAC ]: 11 E2 D3 9F A2 E8 0C DC
Total packet length = 40. [Authenticated and Encrypted Output]
63 01 8F 76 DC 8A 1B CB 4C CB 1E 7C A9 81 BE FA
A0 72 6C 55 D3 78 06 12 98 C8 5C 92 81 4A BC 33
C5 2E E8 1D 7D 77 C0 8A
<span class="grey">Whiting, et al. Informational [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc3610">RFC 3610</a> Counter with CBC-MAC (CCM) September 2003</span>
=============== Packet Vector #15 ==================
AES Key = D7 82 8D 13 B2 B0 BD C3 25 A7 62 36 DF 93 CC 6B
Nonce = 00 10 3F E4 13 36 71 3C 96 96 76 6C FA
Total packet length = 33. [Input with 8 cleartext header octets]
AA 6C FA 36 CA E8 6B 40 B9 16 E0 EA CC 1C 00 D7
DC EC 68 EC 0B 3B BB 1A 02 DE 8A 2D 1A A3 46 13
2E
CBC IV in: 59 00 10 3F E4 13 36 71 3C 96 96 76 6C FA 00 19
CBC IV out:B3 26 49 FF D5 9F 56 0F 02 2D 11 E2 62 C5 BE EA
After xor: B3 2E E3 93 2F A9 9C E7 69 6D 11 E2 62 C5 BE EA [hdr]
After AES: 82 50 9E E5 B2 FF DB CA 9B D0 2E 20 6B 3F B7 AD
After xor: 3B 46 7E 0F 7E E3 DB 1D 47 3C 46 CC 60 04 0C B7 [msg]
After AES: 80 46 0E 4C 08 3A D0 3F B9 A9 13 BE E4 DE 2F 66
After xor: 82 98 84 61 12 99 96 2C 97 A9 13 BE E4 DE 2F 66 [msg]
After AES: 47 29 CB 00 31 F1 81 C1 92 68 4B 89 A4 71 50 E7
CBC-MAC : 47 29 CB 00 31 F1 81 C1
CTR Start: 01 00 10 3F E4 13 36 71 3C 96 96 76 6C FA 00 01
CTR[0001]: 08 C4 DA C8 EC C1 C0 7B 4C E1 F2 4C 37 5A 47 EE
CTR[0002]: A7 87 2E 6C 6D C4 4E 84 26 02 50 4C 3F A5 73 C5
CTR[MAC ]: E0 5F B2 6E EA 83 B4 C7
Total packet length = 41. [Authenticated and Encrypted Output]
AA 6C FA 36 CA E8 6B 40 B1 D2 3A 22 20 DD C0 AC
90 0D 9A A0 3C 61 FC F4 A5 59 A4 41 77 67 08 97
08 A7 76 79 6E DB 72 35 06
=============== Packet Vector #16 ==================
AES Key = D7 82 8D 13 B2 B0 BD C3 25 A7 62 36 DF 93 CC 6B
Nonce = 00 76 4C 63 B8 05 8E 3C 96 96 76 6C FA
Total packet length = 31. [Input with 12 cleartext header octets]
D0 D0 73 5C 53 1E 1B EC F0 49 C2 44 12 DA AC 56
30 EF A5 39 6F 77 0C E1 A6 6B 21 F7 B2 10 1C
CBC IV in: 59 00 76 4C 63 B8 05 8E 3C 96 96 76 6C FA 00 13
CBC IV out:AB DC 4E C9 AA 72 33 97 DF 2D AD 76 33 DE 3B 0D
After xor: AB D0 9E 19 D9 2E 60 89 C4 C1 5D 3F F1 9A 3B 0D [hdr]
After AES: 62 86 F6 2F 23 42 63 B0 1C FD 8C 37 40 74 81 EB
After xor: 70 5C 5A 79 13 AD C6 89 73 8A 80 D6 E6 1F A0 1C [msg]
After AES: 88 95 84 18 CF 79 CA BE EB C0 0C C4 86 E6 01 F7
After xor: 3A 85 98 18 CF 79 CA BE EB C0 0C C4 86 E6 01 F7 [msg]
After AES: C1 85 92 D9 84 CD 67 80 63 D1 D9 6D C1 DF A1 11
CBC-MAC : C1 85 92 D9 84 CD 67 80
CTR Start: 01 00 76 4C 63 B8 05 8E 3C 96 96 76 6C FA 00 01
CTR[0001]: 06 08 FF 95 A6 94 D5 59 F4 0B B7 9D EF FA 41 DF
CTR[0002]: 80 55 3A 75 78 38 04 A9 64 8B 68 DD 7F DC DD 7A
CTR[MAC ]: 5B EA DB 4E DF 07 B9 2F
Total packet length = 39. [Authenticated and Encrypted Output]
D0 D0 73 5C 53 1E 1B EC F0 49 C2 44 14 D2 53 C3
96 7B 70 60 9B 7C BB 7C 49 91 60 28 32 45 26 9A
6F 49 97 5B CA DE AF
<span class="grey">Whiting, et al. Informational [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc3610">RFC 3610</a> Counter with CBC-MAC (CCM) September 2003</span>
=============== Packet Vector #17 ==================
AES Key = D7 82 8D 13 B2 B0 BD C3 25 A7 62 36 DF 93 CC 6B
Nonce = 00 F8 B6 78 09 4E 3B 3C 96 96 76 6C FA
Total packet length = 32. [Input with 12 cleartext header octets]
77 B6 0F 01 1C 03 E1 52 58 99 BC AE E8 8B 6A 46
C7 8D 63 E5 2E B8 C5 46 EF B5 DE 6F 75 E9 CC 0D
CBC IV in: 59 00 F8 B6 78 09 4E 3B 3C 96 96 76 6C FA 00 14
CBC IV out:F4 68 FE 5D B1 53 0B 7A 5A A5 FB 27 40 CF 6E 33
After xor: F4 64 89 EB BE 52 17 79 BB F7 A3 BE FC 61 6E 33 [hdr]
After AES: 23 29 0E 0B 33 45 9A 83 32 2D E4 06 86 67 10 04
After xor: CB A2 64 4D F4 C8 F9 66 1C 95 21 40 69 D2 CE 6B [msg]
After AES: 8F BE D4 0F 8B 89 B7 B8 20 D5 5F E0 3C E2 43 11
After xor: FA 57 18 02 8B 89 B7 B8 20 D5 5F E0 3C E2 43 11 [msg]
After AES: 6A DB 15 B6 71 81 B2 E2 2B E3 4A F2 B2 83 E2 29
CBC-MAC : 6A DB 15 B6 71 81 B2 E2
CTR Start: 01 00 F8 B6 78 09 4E 3B 3C 96 96 76 6C FA 00 01
CTR[0001]: BD CE 95 5C CF D3 81 0A 91 EA 77 A6 A4 5B C0 4C
CTR[0002]: 43 2E F2 32 AE 36 D8 92 22 BF 63 37 E6 B2 6C E8
CTR[MAC ]: 1C F7 19 C1 35 7F CC DE
Total packet length = 40. [Authenticated and Encrypted Output]
77 B6 0F 01 1C 03 E1 52 58 99 BC AE 55 45 FF 1A
08 5E E2 EF BF 52 B2 E0 4B EE 1E 23 36 C7 3E 3F
76 2C 0C 77 44 FE 7E 3C
=============== Packet Vector #18 ==================
AES Key = D7 82 8D 13 B2 B0 BD C3 25 A7 62 36 DF 93 CC 6B
Nonce = 00 D5 60 91 2D 3F 70 3C 96 96 76 6C FA
Total packet length = 33. [Input with 12 cleartext header octets]
CD 90 44 D2 B7 1F DB 81 20 EA 60 C0 64 35 AC BA
FB 11 A8 2E 2F 07 1D 7C A4 A5 EB D9 3A 80 3B A8
7F
CBC IV in: 59 00 D5 60 91 2D 3F 70 3C 96 96 76 6C FA 00 15
CBC IV out:BA 37 74 54 D7 20 A4 59 25 97 F6 A3 D1 D6 BA 67
After xor: BA 3B B9 C4 93 F2 13 46 FE 16 D6 49 B1 16 BA 67 [hdr]
After AES: 81 6A 20 20 38 D0 A6 30 CB E0 B7 3C 39 BB CE 05
After xor: E5 5F 8C 9A C3 C1 0E 1E E4 E7 AA 40 9D 1E 25 DC [msg]
After AES: 6D 5C 15 FD 85 2D 5C 3C E3 03 3D 85 DA 57 BD AC
After xor: 57 DC 2E 55 FA 2D 5C 3C E3 03 3D 85 DA 57 BD AC [msg]
After AES: B0 4A 1C 23 BC 39 B6 51 76 FD 5B FF 9B C1 28 5E
CBC-MAC : B0 4A 1C 23 BC 39 B6 51
CTR Start: 01 00 D5 60 91 2D 3F 70 3C 96 96 76 6C FA 00 01
CTR[0001]: 64 A2 C5 56 50 CE E0 4C 7A 93 D8 EE F5 43 E8 8E
CTR[0002]: 18 E7 65 AC B7 B0 E9 AF 09 2B D0 20 6C A1 C8 3C
CTR[MAC ]: F7 43 82 79 5C 49 F3 00
Total packet length = 41. [Authenticated and Encrypted Output]
CD 90 44 D2 B7 1F DB 81 20 EA 60 C0 00 97 69 EC
AB DF 48 62 55 94 C5 92 51 E6 03 57 22 67 5E 04
C8 47 09 9E 5A E0 70 45 51
<span class="grey">Whiting, et al. Informational [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc3610">RFC 3610</a> Counter with CBC-MAC (CCM) September 2003</span>
=============== Packet Vector #19 ==================
AES Key = D7 82 8D 13 B2 B0 BD C3 25 A7 62 36 DF 93 CC 6B
Nonce = 00 42 FF F8 F1 95 1C 3C 96 96 76 6C FA
Total packet length = 31. [Input with 8 cleartext header octets]
D8 5B C7 E6 9F 94 4F B8 8A 19 B9 50 BC F7 1A 01
8E 5E 67 01 C9 17 87 65 98 09 D6 7D BE DD 18
CBC IV in: 61 00 42 FF F8 F1 95 1C 3C 96 96 76 6C FA 00 17
CBC IV out:44 F7 CC 9C 2B DD 2F 45 F6 38 25 6B 73 6E 1D 7A
After xor: 44 FF 14 C7 EC 3B B0 D1 B9 80 25 6B 73 6E 1D 7A [hdr]
After AES: 57 C3 73 F8 00 AA 5F CC 7B CF 1D 1B DD BB 4C 52
After xor: DD DA CA A8 BC 5D 45 CD F5 91 7A 1A 14 AC CB 37 [msg]
After AES: 42 4E 93 72 72 C8 79 B6 11 C7 A5 9F 47 8D 9F D8
After xor: DA 47 45 0F CC 15 61 B6 11 C7 A5 9F 47 8D 9F D8 [msg]
After AES: 9A CB 03 F8 B9 DB C8 D2 D2 D7 A4 B4 95 25 08 67
CBC-MAC : 9A CB 03 F8 B9 DB C8 D2 D2 D7
CTR Start: 01 00 42 FF F8 F1 95 1C 3C 96 96 76 6C FA 00 01
CTR[0001]: 36 38 34 FA 28 83 3D B7 55 66 0D 98 65 0D 68 46
CTR[0002]: 35 E9 63 54 87 16 72 56 3F 0C 08 AF 78 44 31 A9
CTR[MAC ]: F9 B7 FA 46 7B 9B 40 45 14 6D
Total packet length = 41. [Authenticated and Encrypted Output]
D8 5B C7 E6 9F 94 4F B8 BC 21 8D AA 94 74 27 B6
DB 38 6A 99 AC 1A EF 23 AD E0 B5 29 39 CB 6A 63
7C F9 BE C2 40 88 97 C6 BA
=============== Packet Vector #20 ==================
AES Key = D7 82 8D 13 B2 B0 BD C3 25 A7 62 36 DF 93 CC 6B
Nonce = 00 92 0F 40 E5 6C DC 3C 96 96 76 6C FA
Total packet length = 32. [Input with 8 cleartext header octets]
74 A0 EB C9 06 9F 5B 37 17 61 43 3C 37 C5 A3 5F
C1 F3 9F 40 63 02 EB 90 7C 61 63 BE 38 C9 84 37
CBC IV in: 61 00 92 0F 40 E5 6C DC 3C 96 96 76 6C FA 00 18
CBC IV out:60 CB 21 CE 40 06 50 AE 2A D2 BE 52 9F 5F 0F C2
After xor: 60 C3 55 6E AB CF 56 31 71 E5 BE 52 9F 5F 0F C2 [hdr]
After AES: 03 20 64 14 35 32 5D 95 C8 A2 50 40 93 28 DA 9B
After xor: 14 41 27 28 02 F7 FE CA 09 51 CF 00 F0 2A 31 0B [msg]
After AES: B9 E8 87 95 ED F7 F0 08 15 15 F0 14 E2 FE 0E 48
After xor: C5 89 E4 2B D5 3E 74 3F 15 15 F0 14 E2 FE 0E 48 [msg]
After AES: 8F AD 0C 23 E9 63 7E 87 FA 21 45 51 1B 47 DE F1
CBC-MAC : 8F AD 0C 23 E9 63 7E 87 FA 21
CTR Start: 01 00 92 0F 40 E5 6C DC 3C 96 96 76 6C FA 00 01
CTR[0001]: 4F 71 A5 C1 12 42 E3 7D 29 F0 FE E4 1B E1 02 5F
CTR[0002]: 34 2B D3 F1 7C B7 7B C1 79 0B 05 05 61 59 27 2C
CTR[MAC ]: 7F 09 7B EF C6 AA C1 D3 73 65
Total packet length = 42. [Authenticated and Encrypted Output]
74 A0 EB C9 06 9F 5B 37 58 10 E6 FD 25 87 40 22
E8 03 61 A4 78 E3 E9 CF 48 4A B0 4F 44 7E FF F6
F0 A4 77 CC 2F C9 BF 54 89 44
<span class="grey">Whiting, et al. Informational [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc3610">RFC 3610</a> Counter with CBC-MAC (CCM) September 2003</span>
=============== Packet Vector #21 ==================
AES Key = D7 82 8D 13 B2 B0 BD C3 25 A7 62 36 DF 93 CC 6B
Nonce = 00 27 CA 0C 71 20 BC 3C 96 96 76 6C FA
Total packet length = 33. [Input with 8 cleartext header octets]
44 A3 AA 3A AE 64 75 CA A4 34 A8 E5 85 00 C6 E4
15 30 53 88 62 D6 86 EA 9E 81 30 1B 5A E4 22 6B
FA
CBC IV in: 61 00 27 CA 0C 71 20 BC 3C 96 96 76 6C FA 00 19
CBC IV out:43 07 C0 73 A8 9E E1 D5 05 27 B2 9A 62 48 D6 D2
After xor: 43 0F 84 D0 02 A4 4F B1 70 ED B2 9A 62 48 D6 D2 [hdr]
After AES: B6 0B C6 F5 84 01 75 BC 01 27 70 F1 11 8D 75 10
After xor: 12 3F 6E 10 01 01 B3 58 14 17 23 79 73 5B F3 FA [msg]
After AES: 7D 5E 64 92 CE 2C B9 EA 7E 4C 4A 09 09 89 C8 FB
After xor: E3 DF 54 89 94 C8 9B 81 84 4C 4A 09 09 89 C8 FB [msg]
After AES: 68 5F 8D 79 D2 2B 9B 74 21 DF 4C 3E 87 BA 0A AF
CBC-MAC : 68 5F 8D 79 D2 2B 9B 74 21 DF
CTR Start: 01 00 27 CA 0C 71 20 BC 3C 96 96 76 6C FA 00 01
CTR[0001]: 56 8A 45 9E 40 09 48 67 EB 85 E0 9E 6A 2E 64 76
CTR[0002]: A6 00 AA 92 92 03 54 9A AE EF 2C CC 59 13 7A 57
CTR[MAC ]: 25 1E DC DD 3F 11 10 F3 98 11
Total packet length = 43. [Authenticated and Encrypted Output]
44 A3 AA 3A AE 64 75 CA F2 BE ED 7B C5 09 8E 83
FE B5 B3 16 08 F8 E2 9C 38 81 9A 89 C8 E7 76 F1
54 4D 41 51 A4 ED 3A 8B 87 B9 CE
=============== Packet Vector #22 ==================
AES Key = D7 82 8D 13 B2 B0 BD C3 25 A7 62 36 DF 93 CC 6B
Nonce = 00 5B 8C CB CD 9A F8 3C 96 96 76 6C FA
Total packet length = 31. [Input with 12 cleartext header octets]
EC 46 BB 63 B0 25 20 C3 3C 49 FD 70 B9 6B 49 E2
1D 62 17 41 63 28 75 DB 7F 6C 92 43 D2 D7 C2
CBC IV in: 61 00 5B 8C CB CD 9A F8 3C 96 96 76 6C FA 00 13
CBC IV out:91 14 AD 06 B6 CC 02 35 76 9A B6 14 C4 82 95 03
After xor: 91 18 41 40 0D AF B2 10 56 59 8A 5D 39 F2 95 03 [hdr]
After AES: 29 BD 7C 27 83 E3 E8 D3 C3 5C 01 F4 4C EC BB FA
After xor: 90 D6 35 C5 9E 81 FF 92 A0 74 74 2F 33 80 29 B9 [msg]
After AES: 4E DA F4 0D 21 0B D4 5F FE 97 90 B9 AA EC 34 4C
After xor: 9C 0D 36 0D 21 0B D4 5F FE 97 90 B9 AA EC 34 4C [msg]
After AES: 21 9E F8 90 EA 64 C2 11 A5 37 88 83 E1 BA 22 0D
CBC-MAC : 21 9E F8 90 EA 64 C2 11 A5 37
CTR Start: 01 00 5B 8C CB CD 9A F8 3C 96 96 76 6C FA 00 01
CTR[0001]: 88 BC 19 42 80 C1 FA 3E BE FC EF FB 4D C6 2D 54
CTR[0002]: 3E 59 7D A5 AE 21 CC A4 00 9E 4C 0C 91 F6 22 49
CTR[MAC ]: 5C BC 30 98 66 02 A9 F4 64 A0
Total packet length = 41. [Authenticated and Encrypted Output]
EC 46 BB 63 B0 25 20 C3 3C 49 FD 70 31 D7 50 A0
9D A3 ED 7F DD D4 9A 20 32 AA BF 17 EC 8E BF 7D
22 C8 08 8C 66 6B E5 C1 97
<span class="grey">Whiting, et al. Informational [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc3610">RFC 3610</a> Counter with CBC-MAC (CCM) September 2003</span>
=============== Packet Vector #23 ==================
AES Key = D7 82 8D 13 B2 B0 BD C3 25 A7 62 36 DF 93 CC 6B
Nonce = 00 3E BE 94 04 4B 9A 3C 96 96 76 6C FA
Total packet length = 32. [Input with 12 cleartext header octets]
47 A6 5A C7 8B 3D 59 42 27 E8 5E 71 E2 FC FB B8
80 44 2C 73 1B F9 51 67 C8 FF D7 89 5E 33 70 76
CBC IV in: 61 00 3E BE 94 04 4B 9A 3C 96 96 76 6C FA 00 14
CBC IV out:0F 70 3F 5A 54 2C 44 6E 8B 74 A3 73 9B 48 B9 61
After xor: 0F 7C 78 FC 0E EB CF 53 D2 36 84 9B C5 39 B9 61 [hdr]
After AES: 40 5B ED 29 D0 98 AE 91 DB 68 78 F3 68 B8 73 85
After xor: A2 A7 16 91 50 DC 82 E2 C0 91 29 94 A0 47 A4 0C [msg]
After AES: 3D 03 29 3C FD 81 1B 37 01 51 FB C7 85 6B 7A 74
After xor: 63 30 59 4A FD 81 1B 37 01 51 FB C7 85 6B 7A 74 [msg]
After AES: 66 4F 27 16 3E 36 0F 72 62 0D 4E 67 7C E0 61 DE
CBC-MAC : 66 4F 27 16 3E 36 0F 72 62 0D
CTR Start: 01 00 3E BE 94 04 4B 9A 3C 96 96 76 6C FA 00 01
CTR[0001]: 0A 7E 0A 63 53 C8 CF 9E BC 3B 6E 63 15 9A D0 97
CTR[0002]: EA 20 32 DA 27 82 6E 13 9E 1E 72 5C 5B 0D 3E BF
CTR[MAC ]: B9 31 27 CA F0 F1 A1 20 FA 70
Total packet length = 42. [Authenticated and Encrypted Output]
47 A6 5A C7 8B 3D 59 42 27 E8 5E 71 E8 82 F1 DB
D3 8C E3 ED A7 C2 3F 04 DD 65 07 1E B4 13 42 AC
DF 7E 00 DC CE C7 AE 52 98 7D
=============== Packet Vector #24 ==================
AES Key = D7 82 8D 13 B2 B0 BD C3 25 A7 62 36 DF 93 CC 6B
Nonce = 00 8D 49 3B 30 AE 8B 3C 96 96 76 6C FA
Total packet length = 33. [Input with 12 cleartext header octets]
6E 37 A6 EF 54 6D 95 5D 34 AB 60 59 AB F2 1C 0B
02 FE B8 8F 85 6D F4 A3 73 81 BC E3 CC 12 85 17
D4
CBC IV in: 61 00 8D 49 3B 30 AE 8B 3C 96 96 76 6C FA 00 15
CBC IV out:67 AC E4 E8 06 77 7A D3 27 1D 0B 93 4C 67 98 15
After xor: 67 A0 8A DF A0 98 2E BE B2 40 3F 38 2C 3E 98 15 [hdr]
After AES: 35 58 F8 7E CA C2 B4 39 B6 7E 75 BB F1 5E 69 08
After xor: 9E AA E4 75 C8 3C 0C B6 33 13 81 18 82 DF D5 EB [msg]
After AES: 54 E4 7B 62 22 F0 BB 87 17 D0 71 6A EB AF 19 9E
After xor: 98 F6 FE 75 F6 F0 BB 87 17 D0 71 6A EB AF 19 9E [msg]
After AES: 23 E3 30 50 BC 57 DC 2C 3D 3E 7C 94 77 D1 49 71
CBC-MAC : 23 E3 30 50 BC 57 DC 2C 3D 3E
CTR Start: 01 00 8D 49 3B 30 AE 8B 3C 96 96 76 6C FA 00 01
CTR[0001]: 58 DB 19 B3 88 9A A3 8B 3C A4 0B 16 FF 42 2C 73
CTR[0002]: C3 2F 24 3D 65 DC 7E 9F 4B 02 16 AB 7F B9 6B 4D
CTR[MAC ]: 4E 2D AE D2 53 F6 B1 8A 1D 67
Total packet length = 43. [Authenticated and Encrypted Output]
6E 37 A6 EF 54 6D 95 5D 34 AB 60 59 F3 29 05 B8
8A 64 1B 04 B9 C9 FF B5 8C C3 90 90 0F 3D A1 2A
B1 6D CE 9E 82 EF A1 6D A6 20 59
<span class="grey">Whiting, et al. Informational [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc3610">RFC 3610</a> Counter with CBC-MAC (CCM) September 2003</span>
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. Intellectual Property Statements</span>
The authors hereby explicitly release any intellectual property
rights to CCM to the public domain. Further, the authors are not
aware of any patent or patent application anywhere in the world that
covers CCM mode. It is our belief that CCM is a simple combination
of well-established techniques, and we believe that CCM is obvious to
a person of ordinary skill in the arts.
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. Security Considerations</span>
We claim that this block cipher mode is secure against attackers
limited to 2^128 steps of operation if the key K is 256 bits or
larger. There are fairly generic precomputation attacks against all
block cipher modes that allow a meet-in-the-middle attack on the key
K. If these attacks can be made, then the theoretical strength of
this, and any other, block cipher mode is limited to 2^(n/2) where n
is the number of bits in the key. The strength of the authentication
is of course limited by M.
Users of smaller key sizes (such as 128-bits) should take precautions
to make the precomputation attacks more difficult. Repeated use of
the same nonce value (with different keys of course) ought to be
avoided. One solution is to include a random value within the nonce.
Of course, a packet counter is also needed within the nonce. Since
the nonce is of limited size, a random value in the nonce provides a
limited amount of additional security.
<span class="h2"><a class="selflink" id="section-11" href="#section-11">11</a>. References</span>
This section provides normative and informative references.
<span class="h3"><a class="selflink" id="section-11.1" href="#section-11.1">11.1</a>. Normative References</span>
[<a id="ref-STDWORDS">STDWORDS</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
<span class="h3"><a class="selflink" id="section-11.2" href="#section-11.2">11.2</a>. Informative References</span>
[<a id="ref-AES">AES</a>] NIST, FIPS PUB 197, "Advanced Encryption Standard (AES),"
November 2001.
[<a id="ref-CCM">CCM</a>] Whiting, D., Housley, R. and N. Ferguson, "AES Encryption
& Authentication Using CTR Mode & CBC-MAC," IEEE P802.11
doc 02/001r2, May 2002.
[<a id="ref-ESP">ESP</a>] Kent, S. and R. Atkinson, "IP Encapsulating Security
Payload (ESP)", <a href="./rfc2406">RFC 2406</a>, November 1998.
<span class="grey">Whiting, et al. Informational [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc3610">RFC 3610</a> Counter with CBC-MAC (CCM) September 2003</span>
[<a id="ref-MAC">MAC</a>] NIST, FIPS PUB 113, "Computer Data Authentication," May
1985.
[<a id="ref-MODES">MODES</a>] Dworkin, M., "Recommendation for Block Cipher Modes of
Operation: Methods and Techniques," NIST Special
Publication 800-38A, December 2001.
[<a id="ref-OCB">OCB</a>] Rogaway, P., Bellare, M., Black, J. and T, Krovetz, "OCB:
A block-Cipher Mod of Operation for Efficient
Authenticated Encryption," 8th ACM Conference on Computer
and Communications Security, pp 196-295, ACM Press, 2001.
[<a id="ref-PROOF">PROOF</a>] Jonsson, J., "On the Security of CTR + CBC-MAC," SAC 2002
-- Ninth Annual Workshop on Selected Areas of
Cryptography, Workshop Record version, 2002. Final
version to appear in the LNCS Proceedings.
<span class="h2"><a class="selflink" id="section-12" href="#section-12">12</a>. Acknowledgement</span>
Russ Housley thanks the management at RSA Laboratories, especially
Burt Kaliski, who supported the development of this cryptographic
mode and this specification. The vast majority of this work was done
while Russ was employed at RSA Laboratories.
<span class="grey">Whiting, et al. Informational [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc3610">RFC 3610</a> Counter with CBC-MAC (CCM) September 2003</span>
<span class="h2"><a class="selflink" id="section-13" href="#section-13">13</a>. Authors' Addresses</span>
Doug Whiting
Hifn
5973 Avenida Encinas, #110
Carlsbad, CA 92009
USA
EMail: dwhiting@hifn.com
Russell Housley
Vigil Security, LLC
918 Spring Knoll Drive
Herndon, VA 20170
USA
EMail: housley@vigilsec.com
Niels Ferguson
MacFergus BV
Bart de Ligtstraat 64
1097 JE Amsterdam
Netherlands
EMail: niels@macfergus.com
<span class="grey">Whiting, et al. Informational [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc3610">RFC 3610</a> Counter with CBC-MAC (CCM) September 2003</span>
<span class="h2"><a class="selflink" id="section-14" href="#section-14">14</a>. Full Copyright Statement</span>
Copyright (C) The Internet Society (2003). All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.
The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assignees.
This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Whiting, et al. Informational [Page 26]
</pre>
|