1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
|
<pre>Network Working Group S. Legg
Request for Comments: 3687 Adacel Technologies
Category: Standards Track February 2004
<span class="h1">Lightweight Directory Access Protocol (LDAP)</span>
<span class="h1">and X.500 Component Matching Rules</span>
Status of this Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2004). All Rights Reserved.
Abstract
The syntaxes of attributes in a Lightweight Directory Access Protocol
(LDAP) or X.500 directory range from simple data types, such as text
string, integer, or boolean, to complex structured data types, such
as the syntaxes of the directory schema operational attributes.
Matching rules defined for the complex syntaxes usually only provide
the most immediately useful matching capability. This document
defines generic matching rules that can match any user selected
component parts in an attribute value of any arbitrarily complex
attribute syntax.
<span class="grey">Legg Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc3687">RFC 3687</a> LDAP and X.500 Component Matching Rules February 2004</span>
Table of Contents
<a href="#section-1">1</a>. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-3">3</a>
<a href="#section-2">2</a>. Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-3">3</a>. ComponentAssertion . . . . . . . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-3.1">3.1</a>. Component Reference. . . . . . . . . . . . . . . . . . . <a href="#page-6">6</a>
<a href="#section-3.1.1">3.1.1</a>. Component Type Substitutions . . . . . . . . . . <a href="#page-7">7</a>
3.1.2. Referencing SET, SEQUENCE and CHOICE Components. 8
<a href="#section-3.1.3">3.1.3</a>. Referencing SET OF and SEQUENCE OF Components. . <a href="#page-9">9</a>
<a href="#section-3.1.4">3.1.4</a>. Referencing Components of Parameterized Types. . <a href="#page-10">10</a>
<a href="#section-3.1.5">3.1.5</a>. Component Referencing Example. . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-3.1.6">3.1.6</a>. Referencing Components of Open Types . . . . . . <a href="#page-12">12</a>
<a href="#section-3.1.6.1">3.1.6.1</a>. Open Type Referencing Example . . . . . <a href="#page-12">12</a>
<a href="#section-3.1.7">3.1.7</a>. Referencing Contained Types. . . . . . . . . . . <a href="#page-14">14</a>
<a href="#section-3.1.7.1">3.1.7.1</a>. Contained Type Referencing Example. . . <a href="#page-14">14</a>
<a href="#section-3.2">3.2</a>. Matching of Components . . . . . . . . . . . . . . . . . <a href="#page-15">15</a>
<a href="#section-3.2.1">3.2.1</a>. Applicability of Existing Matching Rules . . . . <a href="#page-17">17</a>
<a href="#section-3.2.1.1">3.2.1.1</a>. String Matching . . . . . . . . . . . . <a href="#page-17">17</a>
<a href="#section-3.2.1.2">3.2.1.2</a>. Telephone Number Matching . . . . . . . <a href="#page-17">17</a>
<a href="#section-3.2.1.3">3.2.1.3</a>. Distinguished Name Matching . . . . . . <a href="#page-18">18</a>
<a href="#section-3.2.2">3.2.2</a>. Additional Useful Matching Rules . . . . . . . . <a href="#page-18">18</a>
<a href="#section-3.2.2.1">3.2.2.1</a>. The rdnMatch Matching Rule. . . . . . . <a href="#page-18">18</a>
<a href="#section-3.2.2.2">3.2.2.2</a>. The presentMatch Matching Rule. . . . . <a href="#page-19">19</a>
<a href="#section-3.2.3">3.2.3</a>. Summary of Useful Matching Rules . . . . . . . . <a href="#page-20">20</a>
<a href="#section-4">4</a>. ComponentFilter. . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-21">21</a>
<a href="#section-5">5</a>. The componentFilterMatch Matching Rule . . . . . . . . . . . . <a href="#page-22">22</a>
<a href="#section-6">6</a>. Equality Matching of Complex Components. . . . . . . . . . . . <a href="#page-24">24</a>
<a href="#section-6.1">6.1</a>. The OpenAssertionType Syntax . . . . . . . . . . . . . . <a href="#page-24">24</a>
<a href="#section-6.2">6.2</a>. The allComponentsMatch Matching Rule . . . . . . . . . . <a href="#page-25">25</a>
<a href="#section-6.3">6.3</a>. Deriving Component Equality Matching Rules . . . . . . . <a href="#page-27">27</a>
<a href="#section-6.4">6.4</a>. The directoryComponentsMatch Matching Rule . . . . . . . <a href="#page-28">28</a>
<a href="#section-7">7</a>. Component Matching Examples. . . . . . . . . . . . . . . . . . <a href="#page-30">30</a>
<a href="#section-8">8</a>. Security Considerations. . . . . . . . . . . . . . . . . . . . <a href="#page-37">37</a>
<a href="#section-9">9</a>. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-37">37</a>
<a href="#section-10">10</a>. IANA Considerations. . . . . . . . . . . . . . . . . . . . . . <a href="#page-37">37</a>
<a href="#section-11">11</a>. References . . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-38">38</a>
<a href="#section-11.1">11.1</a>. Normative References. . . . . . . . . . . . . . . . . . <a href="#page-38">38</a>
<a href="#section-11.2">11.2</a>. Informative References. . . . . . . . . . . . . . . . . <a href="#page-40">40</a>
<a href="#section-12">12</a>. Intellectual Property Statement. . . . . . . . . . . . . . . . <a href="#page-40">40</a>
<a href="#section-13">13</a>. Author's Address . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-41">41</a>
<a href="#section-14">14</a>. Full Copyright Statement . . . . . . . . . . . . . . . . . . . <a href="#page-42">42</a>
<span class="grey">Legg Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc3687">RFC 3687</a> LDAP and X.500 Component Matching Rules February 2004</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
The structure or data type of data held in an attribute of a
Lightweight Directory Access Protocol (LDAP) [<a href="#ref-7" title=""Lightweight Directory Access Protocol (v3): Technical Specification"">7</a>] or X.500 [<a href="#ref-19" title=" Information Technology - Open Systems Interconnection - The Directory: Overview of concepts">19</a>]
directory is described by the attribute's syntax. Attribute syntaxes
range from simple data types, such as text string, integer, or
boolean, to complex data types, for example, the syntaxes of the
directory schema operational attributes.
In X.500, the attribute syntaxes are explicitly described by Abstract
Syntax Notation One (ASN.1) [<a href="#ref-13">13</a>] type definitions. ASN.1 type
notation has a number of simple data types (e.g., PrintableString,
INTEGER, BOOLEAN), and combining types (i.e., SET, SEQUENCE, SET OF,
SEQUENCE OF, and CHOICE) for constructing arbitrarily complex data
types from simpler component types. In LDAP, the attribute syntaxes
are usually described in Augmented Backus-Naur Form (ABNF) [<a href="#ref-2" title=""Augmented BNF for Syntax Specifications: ABNF"">2</a>],
though there is an implied association between the LDAP attribute
syntaxes and the X.500 ASN.1 types. To a large extent, the data
types of attribute values in either an LDAP or X.500 directory are
described by ASN.1 types. This formal description can be exploited
to identify component parts of an attribute value for a variety of
purposes. This document addresses attribute value matching.
With any complex attribute syntax there is normally a requirement to
partially match an attribute value of that syntax by matching only
selected components of the value. Typically, matching rules specific
to the attribute syntax are defined to fill this need. These highly
specific matching rules usually only provide the most immediately
useful matching capability. Some complex attribute syntaxes don't
even have an equality matching rule let alone any additional matching
rules for partial matching. This document defines a generic way of
matching user selected components in an attribute value of any
arbitrarily complex attribute syntax, where that syntax is described
using ASN.1 type notation. All of the type notations defined in
X.680 [<a href="#ref-13">13</a>] are supported.
<a href="#section-3">Section 3</a> describes the ComponentAssertion, a testable assertion
about the value of a component of an attribute value of any complex
syntax.
<a href="#section-4">Section 4</a> introduces the ComponentFilter assertion, which is an
expression of ComponentAssertions. The ComponentFilter enables more
powerful filter matching of components in an attribute value.
<a href="#section-5">Section 5</a> defines the componentFilterMatch matching rule, which
enables a ComponentFilter to be evaluated against attribute values.
<span class="grey">Legg Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc3687">RFC 3687</a> LDAP and X.500 Component Matching Rules February 2004</span>
<a href="#section-6">Section 6</a> defines matching rules for component-wise equality matching
of attribute values of any syntax described by an ASN.1 type
definition.
Examples showing the usage of componentFilterMatch are in <a href="#section-7">Section 7</a>.
For a new attribute syntax, the Generic String Encoding Rules [<a href="#ref-9" title=""Generic String Encoding Rules (GSER) for ASN.1 Types"">9</a>] and
the specifications in sections <a href="#section-3">3</a> to <a href="#section-6">6</a> of this document make it
possible to fully and precisely define the LDAP-specific encoding,
the LDAP and X.500 binary encoding (and possibly other ASN.1
encodings in the future), a suitable equality matching rule, and a
comprehensive collection of component matching capabilities, by
simply writing down an ASN.1 type definition for the syntax. These
implicit definitions are also automatically extended if the ASN.1
type is later extended. The algorithmic relationship between the
ASN.1 type definition, the various encodings and the component
matching behaviour makes directory server implementation support for
the component matching rules amenable to automatic code generation
from ASN.1 type definitions.
Schema designers have the choice of storing related items of data as
a single attribute value of a complex syntax in some entry, or as a
subordinate entry where the related data items are stored as separate
attribute values of simpler syntaxes. The inability to search
component parts of a complex syntax has been used as an argument for
favouring the subordinate entries approach. The component matching
rules provide the analogous matching capability on an attribute value
of a complex syntax that a search filter has on a subordinate entry.
Most LDAP syntaxes have corresponding ASN.1 type definitions, though
they are usually not reproduced or referenced alongside the formal
definition of the LDAP syntax. Syntaxes defined with only a
character string encoding, i.e., without an explicit or implied
corresponding ASN.1 type definition, cannot use the component
matching capabilities described in this document unless and until a
semantically equivalent ASN.1 type definition is defined for them.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Conventions</span>
Throughout this document "type" shall be taken to mean an ASN.1 type
unless explicitly qualified as an attribute type, and "value" shall
be taken to mean an ASN.1 value unless explicitly qualified as an
attribute value.
<span class="grey">Legg Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc3687">RFC 3687</a> LDAP and X.500 Component Matching Rules February 2004</span>
Note that "ASN.1 value" does not mean a Basic Encoding Rules (BER)
[<a href="#ref-17" title=" Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER)">17</a>] encoded value. The ASN.1 value is an abstract concept that is
independent of any particular encoding. BER is just one possible
encoding of an ASN.1 value. The component matching rules operate at
the abstract level without regard for the possible encodings of a
value.
Attribute type and matching rule definitions in this document are
provided in both the X.500 [<a href="#ref-10">10</a>] and LDAP [<a href="#ref-4" title=""Lightweight Directory Access Protocol (v3): Attribute Syntax Definitions"">4</a>] description formats.
Note that the LDAP descriptions have been rendered with additional
white-space and line breaks for the sake of readability.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED" and "MAY" in this document are
to be interpreted as described in <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a> [<a href="#ref-1" title=""Key words for use in RFCs to Indicate Requirement Levels"">1</a>]. The key word
"OPTIONAL" is exclusively used with its ASN.1 meaning.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. ComponentAssertion</span>
A ComponentAssertion is an assertion about the presence, or values
of, components within an ASN.1 value, i.e., an instance of an ASN.1
type. The ASN.1 value is typically an attribute value, where the
ASN.1 type is the syntax of the attribute. However, a
ComponentAssertion may also be applied to a component part of an
attribute value. The assertion evaluates to either TRUE, FALSE or
Undefined for each tested ASN.1 value.
A ComponentAssertion is described by the following ASN.1 type
(assumed to be defined with "EXPLICIT TAGS" in force):
ComponentAssertion ::= SEQUENCE {
component ComponentReference (SIZE(1..MAX)) OPTIONAL,
useDefaultValues BOOLEAN DEFAULT TRUE,
rule MATCHING-RULE.&id,
value MATCHING-RULE.&AssertionType }
ComponentReference ::= UTF8String
MATCHING-RULE.&id equates to the OBJECT IDENTIFIER of a matching
rule. MATCHING-RULE.&AssertionType is an open type (formerly known
as the ANY type).
The "component" field of a ComponentAssertion identifies which
component part of a value of some ASN.1 type is to be tested, the
"useDefaultValues" field indicates whether DEFAULT values are to be
substituted for absent component values, the "rule" field indicates
<span class="grey">Legg Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc3687">RFC 3687</a> LDAP and X.500 Component Matching Rules February 2004</span>
how the component is to be tested, and the "value" field is an
asserted ASN.1 value against which the component is tested. The
ASN.1 type of the asserted value is determined by the chosen rule.
The fields of a ComponentAssertion are described in detail in the
following sections.
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. Component Reference</span>
The component field in a ComponentAssertion is a UTF-8 character
string [<a href="#ref-6" title=""UTF-8, a transformation format of ISO 10646"">6</a>] whose textual content is a component reference,
identifying a component part of some ASN.1 type or value. A
component reference conforms to the following ABNF [<a href="#ref-2" title=""Augmented BNF for Syntax Specifications: ABNF"">2</a>], which extends
the notation defined in Clause 14 of X.680 [<a href="#ref-13">13</a>]:
component-reference = ComponentId *( "." ComponentId )
ComponentId = identifier /
from-beginning /
count /
from-end / ; extends Clause 14
content / ; extends Clause 14
select / ; extends Clause 14
all
identifier = lowercase *alphanumeric
*(hyphen 1*alphanumeric)
alphanumeric = uppercase / lowercase / decimal-digit
uppercase = %x41-5A ; "A" to "Z"
lowercase = %x61-7A ; "a" to "z"
hyphen = "-"
from-beginning = positive-number
count = "0"
from-end = "-" positive-number
content = %x63.6F.6E.74.65.6E.74 ; "content"
select = "(" Value *( "," Value ) ")"
all = "*"
positive-number = non-zero-digit *decimal-digit
decimal-digit = %x30-39 ; "0" to "9"
non-zero-digit = %x31-39 ; "1" to "9"
<span class="grey">Legg Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc3687">RFC 3687</a> LDAP and X.500 Component Matching Rules February 2004</span>
An <identifier> conforms to the definition of an identifier in ASN.1
notation (Clause 11.3 of X.680 [<a href="#ref-13">13</a>]). It begins with a lowercase
letter and is followed by zero or more letters, digits, and hyphens.
A hyphen is not permitted to be the last character and a hyphen is
not permitted to be followed by another hyphen.
The <Value> rule is described by the Generic String Encoding Rules
(GSER) [<a href="#ref-9" title=""Generic String Encoding Rules (GSER) for ASN.1 Types"">9</a>].
A component reference is a sequence of one or more ComponentIds where
each successive ComponentId identifies either an inner component at
the next level of nesting of an ASN.1 combining type, i.e., SET,
SEQUENCE, SET OF, SEQUENCE OF, or CHOICE, or a specific type within
an ASN.1 open type.
A component reference is always considered in the context of a
particular complex ASN.1 type. When applied to the ASN.1 type the
component reference identifies a specific component type. When
applied to a value of the ASN.1 type a component reference identifies
zero, one or more component values of that component type. The
component values are potentially in a DEFAULT value if
useDefaultValues is TRUE. The specific component type identified by
the component reference determines what matching rules are capable of
being used to match the component values.
The component field in a ComponentAssertion may also be absent, in
which case the identified component type is the ASN.1 type to which
the ComponentAssertion is applied, and the identified component value
is the whole ASN.1 value.
A valid component reference for a particular complex ASN.1 type is
constructed by starting with the outermost combining type and
repeatedly selecting one of the permissible forms of ComponentId to
identify successively deeper nested components. A component
reference MAY identify a component with a complex ASN.1 type, i.e.,
it is not required that the component type identified by a component
reference be a simple ASN.1 type.
<span class="h4"><a class="selflink" id="section-3.1.1" href="#section-3.1.1">3.1.1</a>. Component Type Substitutions</span>
ASN.1 type notation has a number of constructs for referencing other
defined types, and constructs that are irrelevant for matching
purposes. These constructs are not represented in a component
reference in any way and substitutions of the component type are
performed to eliminate them from further consideration. These
substitutions automatically occur prior to each ComponentId, whether
constructing or interpreting a component reference, but do not occur
after the last ComponentId, except as allowed by <a href="#section-3.2">Section 3.2</a>.
<span class="grey">Legg Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc3687">RFC 3687</a> LDAP and X.500 Component Matching Rules February 2004</span>
If the ASN.1 type is an ASN.1 type reference then the component type
is taken to be the actual definition on the right hand side of the
type assignment for the referenced type.
If the ASN.1 type is a tagged type then the component type is taken
to be the type without the tag.
If the ASN.1 type is a constrained type (see X.680 [<a href="#ref-13">13</a>] and X.682
[<a href="#ref-15">15</a>] for the details of ASN.1 constraint notation) then the component
type is taken to be the type without the constraint.
If the ASN.1 type is an ObjectClassFieldType (Clause 14 of X.681
[<a href="#ref-14">14</a>]) that denotes a specific ASN.1 type (e.g., MATCHING-RULE.&id
denotes the OBJECT IDENTIFIER type) then the component type is taken
to be the denoted type. <a href="#section-3.1.6">Section 3.1.6</a> describes the case where the
ObjectClassFieldType denotes an open type.
If the ASN.1 type is a selection type other than one used in the list
of components for a SET or SEQUENCE type then the component type is
taken to be the selected alternative type from the named CHOICE.
If the ASN.1 type is a TypeFromObject (Clause 15 of X.681 [<a href="#ref-14">14</a>]) then
the component type is taken to be the denoted type.
If the ASN.1 type is a ValueSetFromObjects (Clause 15 of X.681 [<a href="#ref-14">14</a>])
then the component type is taken to be the governing type of the
denoted values.
<span class="h4"><a class="selflink" id="section-3.1.2" href="#section-3.1.2">3.1.2</a>. Referencing SET, SEQUENCE and CHOICE Components</span>
If the ASN.1 type is a SET or SEQUENCE type then the <identifier>
form of ComponentId may be used to identify the component type within
that SET or SEQUENCE having that identifier. If <identifier>
references an OPTIONAL component type and that component is not
present in a particular value then there are no corresponding
component values. If <identifier> references a DEFAULT component
type and useDefaultValues is TRUE (the default setting for
useDefaultValues) and that component is not present in a particular
value then the component value is taken to be the default value. If
<identifier> references a DEFAULT component type and useDefaultValues
is FALSE and that component is not present in a particular value then
there are no corresponding component values.
If the ASN.1 type is a CHOICE type then the <identifier> form of
ComponentId may be used to identify the alternative type within that
CHOICE having that identifier. If <identifier> references an
alternative other than the one used in a particular value then there
are no corresponding component values.
<span class="grey">Legg Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc3687">RFC 3687</a> LDAP and X.500 Component Matching Rules February 2004</span>
The COMPONENTS OF notation in Clause 24 of X.680 [<a href="#ref-13">13</a>] augments the
defined list of components in a SET or SEQUENCE type by including all
the components of another defined SET or SEQUENCE type respectively.
These included components are referenced directly by identifier as
though they were defined in-line in the SET or SEQUENCE type
containing the COMPONENTS OF notation.
The SelectionType (Clause 29 of X.680 [<a href="#ref-13">13</a>]), when used in the list of
components for a SET or SEQUENCE type, includes a single component
from a defined CHOICE type. This included component is referenced
directly by identifier as though it was defined in-line in the SET or
SEQUENCE type.
The REAL type is treated as though it is the SEQUENCE type defined in
Clause 20.5 of X.680 [<a href="#ref-13">13</a>].
The EMBEDDED PDV type is treated as though it is the SEQUENCE type
defined in Clause 33.5 of X.680 [<a href="#ref-13">13</a>].
The EXTERNAL type is treated as though it is the SEQUENCE type
defined in Clause 8.18.1 of X.690 [<a href="#ref-17" title=" Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER)">17</a>].
The unrestricted CHARACTER STRING type is treated as though it is the
SEQUENCE type defined in Clause 40.5 of X.680 [<a href="#ref-13">13</a>].
The INSTANCE OF type is treated as though it is the SEQUENCE type
defined in Annex C of X.681 [<a href="#ref-14">14</a>].
The <identifier> form MUST NOT be used on any other ASN.1 type.
<span class="h4"><a class="selflink" id="section-3.1.3" href="#section-3.1.3">3.1.3</a>. Referencing SET OF and SEQUENCE OF Components</span>
If the ASN.1 type is a SET OF or SEQUENCE OF type then the
<from-beginning>, <from-end>, <count> and <all> forms of ComponentId
may be used.
The <from-beginning> form of ComponentId may be used to identify one
instance (i.e., value) of the component type of the SET OF or
SEQUENCE OF type (e.g., if Foo ::= SET OF Bar, then Bar is the
component type), where the instances are numbered from one upwards.
If <from-beginning> references a higher numbered instance than the
last instance in a particular value of the SET OF or SEQUENCE OF type
then there is no corresponding component value.
The <from-end> form of ComponentId may be used to identify one
instance of the component type of the SET OF or SEQUENCE OF type,
where "-1" is the last instance, "-2" is the second last instance,
<span class="grey">Legg Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc3687">RFC 3687</a> LDAP and X.500 Component Matching Rules February 2004</span>
and so on. If <from-end> references a lower numbered instance than
the first instance in a particular value of the SET OF or SEQUENCE OF
type then there is no corresponding component value.
The <count> form of ComponentId identifies a notional count of the
number of instances of the component type in a value of the SET OF or
SEQUENCE OF type. This count is not explicitly represented but for
matching purposes it has an assumed ASN.1 type of INTEGER (0..MAX).
A ComponentId of the <count> form, if used, MUST be the last
ComponentId in a component reference.
The <all> form of ComponentId may be used to simultaneously identify
all instances of the component type of the SET OF or SEQUENCE OF
type. It is through the <all> form that a component reference can
identify more than one component value. However, if a particular
value of the SET OF or SEQUENCE OF type is an empty list, then there
are no corresponding component values.
Where multiple component values are identified, the remaining
ComponentIds in the component reference, if any, can identify zero,
one or more subcomponent values for each of the higher level
component values.
The corresponding ASN.1 type for the <from-beginning>, <from-end>,
and <all> forms of ComponentId is the component type of the SET OF or
SEQUENCE OF type.
The <from-beginning>, <count>, <from-end> and <all> forms MUST NOT be
used on ASN.1 types other than SET OF or SEQUENCE OF.
<span class="h4"><a class="selflink" id="section-3.1.4" href="#section-3.1.4">3.1.4</a>. Referencing Components of Parameterized Types</span>
A component reference cannot be formed for a parameterized type
unless the type has been used with actual parameters, in which case
the type is treated as though the DummyReferences [<a href="#ref-16">16</a>] have been
substituted with the actual parameters.
<span class="h4"><a class="selflink" id="section-3.1.5" href="#section-3.1.5">3.1.5</a>. Component Referencing Example</span>
Consider the following ASN.1 type definitions.
ExampleType ::= SEQUENCE {
part1 [0] INTEGER,
part2 [<a href="#ref-1" title=""Key words for use in RFCs to Indicate Requirement Levels"">1</a>] ExampleSet,
part3 [<a href="#ref-2" title=""Augmented BNF for Syntax Specifications: ABNF"">2</a>] SET OF OBJECT IDENTIFIER,
part4 [<a href="#ref-3" title=""Lightweight Directory Access Protocol (v3)"">3</a>] ExampleChoice }
<span class="grey">Legg Standards Track [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc3687">RFC 3687</a> LDAP and X.500 Component Matching Rules February 2004</span>
ExampleSet ::= SET {
option PrintableString,
setting BOOLEAN }
ExampleChoice ::= CHOICE {
eeny-meeny BIT STRING,
miney-mo OCTET STRING }
Following are component references constructed with respect to the
type ExampleType.
The component reference "part1" identifies a component of a value of
ExampleType having the ASN.1 tagged type [0] INTEGER.
The component reference "part2" identifies a component of a value of
ExampleType having the ASN.1 type of [<a href="#ref-1" title=""Key words for use in RFCs to Indicate Requirement Levels"">1</a>] ExampleSet
The component reference "part2.option" identifies a component of a
value of ExampleType having the ASN.1 type of PrintableString. A
ComponentAssertion could also be applied to a value of ASN.1 type
ExampleSet, in which case the component reference "option" would
identify the same kind of information.
The component reference "part3" identifies a component of a value of
ExampleType having the ASN.1 type of [<a href="#ref-2" title=""Augmented BNF for Syntax Specifications: ABNF"">2</a>] SET OF OBJECT IDENTIFIER.
The component reference "part3.2" identifies the second instance of
the part3 SET OF. The instance has the ASN.1 type of OBJECT
IDENTIFIER.
The component reference "part3.0" identifies the count of the number
of instances in the part3 SET OF. The count has the corresponding
ASN.1 type of INTEGER (0..MAX).
The component reference "part3.*" identifies all the instances in the
part3 SET OF. Each instance has the ASN.1 type of OBJECT IDENTIFIER.
The component reference "part4" identifies a component of a value of
ExampleType having the ASN.1 type of [<a href="#ref-3" title=""Lightweight Directory Access Protocol (v3)"">3</a>] ExampleChoice.
The component reference "part4.miney-mo" identifies a component of a
value of ExampleType having the ASN.1 type of OCTET STRING.
<span class="grey">Legg Standards Track [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc3687">RFC 3687</a> LDAP and X.500 Component Matching Rules February 2004</span>
<span class="h4"><a class="selflink" id="section-3.1.6" href="#section-3.1.6">3.1.6</a>. Referencing Components of Open Types</span>
If a sequence of ComponentIds identifies an ObjectClassFieldType
denoting an open type (e.g., ATTRIBUTE.&Type denotes an open type)
then the ASN.1 type of the component varies. An open type is
typically constrained by some other component(s) in an outer
enclosing type, either formally through the use of a component
relation constraint [<a href="#ref-15">15</a>], or informally in the accompanying text, so
the actual ASN.1 type of a value of the open type will generally be
known. The constraint will also limit the range of permissible
types. The <select> form of ComponentId may be used to identify one
of these permissible types in an open type. Subcomponents of that
type can then be identified with further ComponentIds.
The other components constraining the open type are termed the
referenced components [<a href="#ref-15">15</a>]. The <select> form contains a list of one
or more values which take the place of the value(s) of the referenced
component(s) to uniquely identify one of the permissible types of the
open type.
Where the open type is constrained by a component relation
constraint, there is a <Value> in the <select> form for each of the
referenced components in the component relation constraint, appearing
in the same order. The ASN.1 type of each of these values is the
same as the ASN.1 type of the corresponding referenced component.
The type of a referenced component is potentially any ASN.1 type
however it is typically an OBJECT IDENTIFIER or INTEGER, which means
that the <Value> in the <select> form of ComponentId will nearly
always be an <ObjectIdentifierValue> or <IntegerValue> [<a href="#ref-9" title=""Generic String Encoding Rules (GSER) for ASN.1 Types"">9</a>].
Furthermore, component relation constraints typically have only one
referenced component.
Where the open type is not constrained by a component relation
constraint, the specification introducing the syntax containing the
open type should explicitly nominate the referenced components and
their order, so that the <select> form can be used.
If an instance of <select> contains a value other than the value of
the referenced component used in a particular value of the outer
enclosing type then there are no corresponding component values for
the open type.
<span class="h5"><a class="selflink" id="section-3.1.6.1" href="#section-3.1.6.1">3.1.6.1</a>. Open Type Referencing Example</span>
The ASN.1 type AttributeTypeAndValue [<a href="#ref-10">10</a>] describes a single
attribute value of a nominated attribute type.
<span class="grey">Legg Standards Track [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc3687">RFC 3687</a> LDAP and X.500 Component Matching Rules February 2004</span>
AttributeTypeAndValue ::= SEQUENCE {
type ATTRIBUTE.&id ({SupportedAttributes}),
value ATTRIBUTE.&Type ({SupportedAttributes}{@type}) }
ATTRIBUTE.&id denotes an OBJECT IDENTIFIER and
({SupportedAttributes}) constrains the OBJECT IDENTIFIER to be a
supported attribute type.
ATTRIBUTE.&Type denotes an open type, in this case an attribute
value, and ({SupportedAttributes}{@type}) is a component relation
constraint that constrains the open type to be of the attribute
syntax for the attribute type. The component relation constraint
references only the "type" component, which has the ASN.1 type of
OBJECT IDENTIFIER, thus if the <select> form of ComponentId is used
to identify attribute values of specific attribute types it will
contain a single OBJECT IDENTIFIER value.
The component reference "value" on AttributeTypeAndValue refers to
the open type.
One of the X.500 standard attributes is facsimileTelephoneNumber
[<a href="#ref-12">12</a>], which is identified with the OBJECT IDENTIFIER 2.5.4.23, and is
defined to have the following syntax.
FacsimileTelephoneNumber ::= SEQUENCE {
telephoneNumber PrintableString(SIZE(1..ub-telephone-number)),
parameters G3FacsimileNonBasicParameters OPTIONAL }
The component reference "value.(2.5.4.23)" on AttributeTypeAndValue
specifies an attribute value with the FacsimileTelephoneNumber
syntax.
The component reference "value.(2.5.4.23).telephoneNumber" on
AttributeTypeAndValue identifies the telephoneNumber component of a
facsimileTelephoneNumber attribute value. The component reference
"value.(facsimileTelephoneNumber)" is equivalent to
"value.(2.5.4.23)".
If the AttributeTypeAndValue ASN.1 value contains an attribute type
other than facsimileTelephoneNumber then there are no corresponding
component values for the component references "value.(2.5.4.23)" and
"value.(2.5.4.23).telephoneNumber".
<span class="grey">Legg Standards Track [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc3687">RFC 3687</a> LDAP and X.500 Component Matching Rules February 2004</span>
<span class="h4"><a class="selflink" id="section-3.1.7" href="#section-3.1.7">3.1.7</a>. Referencing Contained Types</span>
Sometimes the contents of a BIT STRING or OCTET STRING value are
required to be the encodings of other ASN.1 values of specific ASN.1
types. For example, the extnValue component of the Extension type
component in the Certificate type [<a href="#ref-11">11</a>] is an OCTET STRING that is
required to contain a Distinguished Encoding Rules (DER) [<a href="#ref-17" title=" Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER)">17</a>]
encoding of a certificate extension value. It is useful to be able
to refer to the embedded encoded value and its components. An
embedded encoded value is here referred to as a contained value and
its associated type as the contained type.
If the ASN.1 type is a BIT STRING or OCTET STRING type containing
encodings of other ASN.1 values then the <content> form of
ComponentId may be used to identify the contained type.
Subcomponents of that type can then be identified with further
ComponentIds.
The contained type may be (effectively) an open type, constrained by
some other component in an outer enclosing type (e.g., in a
certificate Extension, extnValue is constrained by the chosen
extnId). In these cases the next ComponentId, if any, MUST be of the
<select> form.
For the purpose of building component references, the content of the
extnValue OCTET STRING in the Extension type is assumed to be an open
type having a notional component relation constraint with the extnId
component as the single referenced component, i.e.,
EXTENSION.&ExtnType ({ExtensionSet}{@extnId})
The data-value component of the associated types for the EMBEDDED PDV
and CHARACTER STRING types is an OCTET STRING containing the encoding
of a data value described by the identification component. For the
purpose of building component references, the content of the
data-value OCTET STRING in these types is assumed to be an open type
having a notional component relation constraint with the
identification component as the single referenced component.
<span class="h5"><a class="selflink" id="section-3.1.7.1" href="#section-3.1.7.1">3.1.7.1</a>. Contained Type Referencing Example</span>
The Extension ASN.1 type [<a href="#ref-11">11</a>] describes a single certificate
extension value of a nominated extension type.
<span class="grey">Legg Standards Track [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc3687">RFC 3687</a> LDAP and X.500 Component Matching Rules February 2004</span>
Extension ::= SEQUENCE {
extnId EXTENSION.&id ({ExtensionSet}),
critical BOOLEAN DEFAULT FALSE,
extnValue OCTET STRING
-- contains a DER encoding of a value of type &ExtnType
-- for the extension object identified by extnId -- }
EXTENSION.&id denotes an OBJECT IDENTIFIER and ({ExtensionSet})
constrains the OBJECT IDENTIFIER to be the identifier of a supported
certificate extension.
The component reference "extnValue" on Extension refers to a
component type of OCTET STRING. The corresponding component values
will be OCTET STRING values. The component reference
"extnValue.content" on Extension refers to the type of the contained
type, which in this case is an open type.
One of the X.509 [<a href="#ref-11">11</a>] standard extensions is basicConstraints, which
is identified with the OBJECT IDENTIFIER 2.5.29.19 and is defined to
have the following syntax.
BasicConstraintsSyntax ::= SEQUENCE {
cA BOOLEAN DEFAULT FALSE,
pathLenConstraint INTEGER (0..MAX) OPTIONAL }
The component reference "extnValue.content.(2.5.29.19)" on Extension
specifies a BasicConstraintsSyntax extension value and the component
reference "extnValue.content.(2.5.29.19).cA" identifies the cA
component of a BasicConstraintsSyntax extension value.
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. Matching of Components</span>
The rule in a ComponentAssertion specifies how the zero, one or more
component values identified by the component reference are tested by
the assertion. Attribute matching rules are used to specify the
semantics of the test.
Each matching rule has a notional set of attribute syntaxes
(typically one), defined as ASN.1 types, to which it may be applied.
When used in a ComponentAssertion these matching rules apply to the
same ASN.1 types, only in this context the corresponding ASN.1 values
are not necessarily complete attribute values.
Note that the referenced component type may be a tagged and/or
constrained version of the expected attribute syntax (e.g.,
[0] INTEGER, whereas integerMatch would expect simply INTEGER), or an
open type. Additional type substitutions of the kind described in
<span class="grey">Legg Standards Track [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc3687">RFC 3687</a> LDAP and X.500 Component Matching Rules February 2004</span>
<a href="#section-3.1.1">Section 3.1.1</a> are performed as required to reduce the component type
to the same type as the attribute syntax expected by the matching
rule.
If a matching rule applies to more than one attribute syntax (e.g.,
objectIdentifierFirstComponentMatch [<a href="#ref-12">12</a>]) then the minimum number of
substitutions required to conform to any one of those syntaxes is
performed. If a matching rule can apply to any attribute syntax
(e.g., the allComponentsMatch rule defined in <a href="#section-6.2">Section 6.2</a>) then the
referenced component type is used as is, with no additional
substitutions.
The value in a ComponentAssertion will be of the assertion syntax
(i.e., ASN.1 type) required by the chosen matching rule. Note that
the assertion syntax of a matching rule is not necessarily the same
as the attribute syntax(es) to which the rule may be applied.
Some matching rules do not have a fixed assertion syntax (e.g.,
allComponentsMatch). The required assertion syntax is determined in
each instance of use by the syntax of the attribute type to which the
matching rule is applied. For these rules the ASN.1 type of the
referenced component is used in place of an attribute syntax to
decide the required assertion syntax.
The ComponentAssertion is Undefined if:
a) the matching rule in the ComponentAssertion is not known to the
evaluating procedure,
b) the matching rule is not applicable to the referenced component
type, even with the additional type substitutions,
c) the value in the ComponentAssertion does not conform to the
assertion syntax defined for the matching rule,
d) some part of the component reference identifies an open type in
the tested value that cannot be decoded, or
e) the implementation does not support the particular combination of
component reference and matching rule.
If the ComponentAssertion is not Undefined then the
ComponentAssertion evaluates to TRUE if there is at least one
component value for which the matching rule applied to that component
value returns TRUE, and evaluates to FALSE otherwise (which includes
the case where there are no component values).
<span class="grey">Legg Standards Track [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc3687">RFC 3687</a> LDAP and X.500 Component Matching Rules February 2004</span>
<span class="h4"><a class="selflink" id="section-3.2.1" href="#section-3.2.1">3.2.1</a>. Applicability of Existing Matching Rules</span>
<span class="h5"><a class="selflink" id="section-3.2.1.1" href="#section-3.2.1.1">3.2.1.1</a>. String Matching</span>
ASN.1 has a number of built in restricted character string types with
different character sets and/or different character encodings. A
directory user generally has little interest in the particular
character set or encoding used to represent a character string
component value, and some directory server implementations make no
distinction between the different string types in their internal
representation of values. So rather than define string matching
rules for each of the restricted character string types, the existing
case ignore and case exact string matching rules are extended to
apply to component values of any of the restricted character string
types and any ChoiceOfStrings type [<a href="#ref-9" title=""Generic String Encoding Rules (GSER) for ASN.1 Types"">9</a>], in addition to component
values of the DirectoryString type. This extension is only for the
purposes of component matching described in this document.
The relevant string matching rules are: caseIgnoreMatch,
caseIgnoreOrderingMatch, caseIgnoreSubstringsMatch, caseExactMatch,
caseExactOrderingMatch and caseExactSubstringsMatch. The relevant
restricted character string types are: NumericString,
PrintableString, VisibleString, IA5String, UTF8String, BMPString,
UniversalString, TeletexString, VideotexString, GraphicString and
GeneralString. A ChoiceOfStrings type is a purely syntactic CHOICE
of these ASN.1 string types. Note that GSER [<a href="#ref-9" title=""Generic String Encoding Rules (GSER) for ASN.1 Types"">9</a>] declares each and
every use of the DirectoryString{} parameterized type to be a
ChoiceOfStrings type.
The assertion syntax of the string matching rules is still
DirectoryString regardless of the string syntax of the component
being matched. Thus an implementation will be called upon to compare
a DirectoryString value to a value of one of the restricted character
string types, or a ChoiceOfStrings type. As is the case when
comparing two DirectoryStrings where the chosen alternatives are of
different string types, the comparison proceeds so long as the
corresponding characters are representable in both character sets.
Otherwise matching returns FALSE.
<span class="h5"><a class="selflink" id="section-3.2.1.2" href="#section-3.2.1.2">3.2.1.2</a>. Telephone Number Matching</span>
Early editions of X.520 [<a href="#ref-12">12</a>] gave the syntax of the telephoneNumber
attribute as a constrained PrintableString. The fourth edition of
X.520 equates the ASN.1 type name TelephoneNumber to the constrained
PrintableString and uses TelephoneNumber as the attribute and
assertion syntax. For the purposes of component matching,
<span class="grey">Legg Standards Track [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc3687">RFC 3687</a> LDAP and X.500 Component Matching Rules February 2004</span>
telephoneNumberMatch and telephoneNumberSubstringsMatch are permitted
to be applied to any PrintableString value, as well as to
TelephoneNumber values.
<span class="h5"><a class="selflink" id="section-3.2.1.3" href="#section-3.2.1.3">3.2.1.3</a>. Distinguished Name Matching</span>
The DistinguishedName type is defined by assignment to be the same as
the RDNSequence type, however RDNSequence is sometimes directly used
in other type definitions. For the purposes of component matching,
distinguishedNameMatch is also permitted to be applied to values of
the RDNSequence type.
<span class="h4"><a class="selflink" id="section-3.2.2" href="#section-3.2.2">3.2.2</a>. Additional Useful Matching Rules</span>
This section defines additional matching rules that may prove useful
in ComponentAssertions. These rules may also be used in
extensibleMatch search filters [<a href="#ref-3" title=""Lightweight Directory Access Protocol (v3)"">3</a>].
<span class="h5"><a class="selflink" id="section-3.2.2.1" href="#section-3.2.2.1">3.2.2.1</a>. The rdnMatch Matching Rule</span>
The distinguishedNameMatch matching rule can match whole
distinguished names but it is sometimes useful to be able to match
specific Relative Distinguished Names (RDNs) in a Distinguished Name
(DN) without regard for the other RDNs in the DN. The rdnMatch
matching rule allows component RDNs of a DN to be tested.
The LDAP-style definitions for rdnMatch and its assertion syntax are:
( 1.2.36.79672281.1.13.3 NAME 'rdnMatch'
SYNTAX 1.2.36.79672281.1.5.0 )
( 1.2.36.79672281.1.5.0 DESC 'RDN' )
The LDAP-specific encoding for a value of the RDN syntax is given by
the <RelativeDistinguishedNameValue> rule [<a href="#ref-9" title=""Generic String Encoding Rules (GSER) for ASN.1 Types"">9</a>].
The X.500-style definition for rdnMatch is:
rdnMatch MATCHING-RULE ::= {
SYNTAX RelativeDistinguishedName
ID { 1 2 36 79672281 1 13 3 } }
The rdnMatch rule evaluates to true if the component value and
assertion value are the same RDN, using the same RDN comparison
method as distinguishedNameMatch.
<span class="grey">Legg Standards Track [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc3687">RFC 3687</a> LDAP and X.500 Component Matching Rules February 2004</span>
When using rdnMatch to match components of DNs it is important to
note that the LDAP-specific encoding of a DN [<a href="#ref-5" title=""Lightweight Directory Access Protocol (v3): UTF-8 String Representation of Distinguished Names"">5</a>] reverses the order
of the RDNs. So for the DN represented in LDAP as
"cn=Steven Legg,o=Adacel,c=AU", the RDN "cn=Steven Legg" corresponds
to the component reference "3", or alternatively, "-1".
<span class="h5"><a class="selflink" id="section-3.2.2.2" href="#section-3.2.2.2">3.2.2.2</a>. The presentMatch Matching Rule</span>
At times it would be useful to test not if a specific value of a
particular component is present, but whether any value of a
particular component is present. The presentMatch matching rule
allows the presence of a particular component value to be tested.
The LDAP-style definitions for presentMatch and its assertion syntax
are:
( 1.2.36.79672281.1.13.5 NAME 'presentMatch'
SYNTAX 1.2.36.79672281.1.5.1 )
( 1.2.36.79672281.1.5.1 DESC 'NULL' )
The LDAP-specific encoding for a value of the NULL syntax is given by
the <NullValue> rule [<a href="#ref-9" title=""Generic String Encoding Rules (GSER) for ASN.1 Types"">9</a>].
The X.500-style definition for presentMatch is:
presentMatch MATCHING-RULE ::= {
SYNTAX NULL
ID { 1 2 36 79672281 1 13 5 } }
When used in a extensible match filter item, presentMatch behaves
like the "present" case of a regular search filter. In a
ComponentAssertion, presentMatch evaluates to TRUE if and only if the
component reference identifies one or more component values,
regardless of the actual component value contents. Note that if
useDefaultValues is TRUE then the identified component values may be
(part of) a DEFAULT value.
The notional count referenced by the <count> form of ComponentId is
taken to be present if the SET OF value is present, and absent
otherwise. Note that in ASN.1 notation an absent SET OF value is
distinctly different from a SET OF value that is present but empty.
It is up to the specification using the ASN.1 notation to decide
whether the distinction matters. Often an empty SET OF component and
an absent SET OF component are treated as semantically equivalent.
If a SET OF value is present, but empty, a presentMatch on the SET OF
component SHALL return TRUE and the notional count SHALL be regarded
as present and equal to zero.
<span class="grey">Legg Standards Track [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc3687">RFC 3687</a> LDAP and X.500 Component Matching Rules February 2004</span>
<span class="h4"><a class="selflink" id="section-3.2.3" href="#section-3.2.3">3.2.3</a>. Summary of Useful Matching Rules</span>
The following is a non-exhaustive list of useful matching rules and
the ASN.1 types to which they can be applied, taking account of all
the extensions described in <a href="#section-3.2.1">Section 3.2.1</a>, and the new matching rules
defined in <a href="#section-3.2.2">Section 3.2.2</a>.
+================================+==============================+
| Matching Rule | ASN.1 Type |
+================================+==============================+
| bitStringMatch | BIT STRING |
+--------------------------------+------------------------------+
| booleanMatch | BOOLEAN |
+--------------------------------+------------------------------+
| caseIgnoreMatch | NumericString |
| caseIgnoreOrderingMatch | PrintableString |
| caseIgnoreSubstringsMatch | VisibleString (ISO646String) |
| caseExactMatch | IA5String |
| caseExactOrderingMatch | UTF8String |
| caseExactSubstringsMatch | BMPString (UCS-2, UNICODE) |
| | UniversalString (UCS-4) |
| | TeletexString (T61String) |
| | VideotexString |
| | GraphicString |
| | GeneralString |
| | any ChoiceOfStrings type |
+--------------------------------+------------------------------+
| caseIgnoreIA5Match | IA5String |
| caseExactIA5Match | |
+--------------------------------+------------------------------+
| distinguishedNameMatch | DistinguishedName |
| | RDNSequence |
+--------------------------------+------------------------------+
| generalizedTimeMatch | GeneralizedTime |
| generalizedTimeOrderingMatch | |
+--------------------------------+------------------------------+
| integerMatch | INTEGER |
| integerOrderingMatch | |
+--------------------------------+------------------------------+
| numericStringMatch | NumericString |
| numericStringOrderingMatch | |
| numericStringSubstringsMatch | |
+--------------------------------+------------------------------+
| objectIdentifierMatch | OBJECT IDENTIFIER |
+--------------------------------+------------------------------+
| octetStringMatch | OCTET STRING |
| octetStringOrderingMatch | |
| octetStringSubstringsMatch | |
<span class="grey">Legg Standards Track [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc3687">RFC 3687</a> LDAP and X.500 Component Matching Rules February 2004</span>
+--------------------------------+------------------------------+
| presentMatch | any ASN.1 type |
+--------------------------------+------------------------------+
| rdnMatch | RelativeDistinguishedName |
+--------------------------------+------------------------------+
| telephoneNumberMatch | PrintableString |
| telephoneNumberSubstringsMatch | TelephoneNumber |
+--------------------------------+------------------------------+
| uTCTimeMatch | UTCTime |
| uTCTimeOrderingMatch | |
+--------------------------------+------------------------------+
Note that the allComponentsMatch matching rule defined in <a href="#section-6.2">Section 6.2</a>
can be used for equality matching of values of the ENUMERATED, NULL,
REAL and RELATIVE-OID ASN.1 types, among other things.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. ComponentFilter</span>
The ComponentAssertion allows the value(s) of any one component type
in a complex ASN.1 type to be matched, but there is often a desire to
match the values of more than one component type. A ComponentFilter
is an assertion about the presence, or values of, multiple components
within an ASN.1 value.
The ComponentFilter assertion, an expression of ComponentAssertions,
evaluates to either TRUE, FALSE or Undefined for each tested ASN.1
value.
A ComponentFilter is described by the following ASN.1 type (assumed
to be defined with "EXPLICIT TAGS" in force):
ComponentFilter ::= CHOICE {
item [0] ComponentAssertion,
and [<a href="#ref-1" title=""Key words for use in RFCs to Indicate Requirement Levels"">1</a>] SEQUENCE OF ComponentFilter,
or [<a href="#ref-2" title=""Augmented BNF for Syntax Specifications: ABNF"">2</a>] SEQUENCE OF ComponentFilter,
not [<a href="#ref-3" title=""Lightweight Directory Access Protocol (v3)"">3</a>] ComponentFilter }
Note: despite the use of SEQUENCE OF instead of SET OF for the "and"
and "or" alternatives in ComponentFilter, the order of the component
filters is not significant.
A ComponentFilter that is a ComponentAssertion evaluates to TRUE if
the ComponentAssertion is TRUE, evaluates to FALSE if the
ComponentAssertion is FALSE, and evaluates to Undefined otherwise.
<span class="grey">Legg Standards Track [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc3687">RFC 3687</a> LDAP and X.500 Component Matching Rules February 2004</span>
The "and" of a sequence of component filters evaluates to TRUE if the
sequence is empty or if each component filter evaluates to TRUE,
evaluates to FALSE if at least one component filter is FALSE, and
evaluates to Undefined otherwise.
The "or" of a sequence of component filters evaluates to FALSE if the
sequence is empty or if each component filter evaluates to FALSE,
evaluates to TRUE if at least one component filter is TRUE, and
evaluates to Undefined otherwise.
The "not" of a component filter evaluates to TRUE if the component
filter is FALSE, evaluates to FALSE if the component filter is TRUE,
and evaluates to Undefined otherwise.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. The componentFilterMatch Matching Rule</span>
The componentFilterMatch matching rule allows a ComponentFilter to be
applied to an attribute value. The result of the matching rule is
the result of applying the ComponentFilter to the attribute value.
The LDAP-style definitions for componentFilterMatch and its assertion
syntax are:
( 1.2.36.79672281.1.13.2 NAME 'componentFilterMatch'
SYNTAX 1.2.36.79672281.1.5.2 )
( 1.2.36.79672281.1.5.2 DESC 'ComponentFilter' )
The LDAP-specific encoding for the ComponentFilter assertion syntax
is specified by GSER [<a href="#ref-9" title=""Generic String Encoding Rules (GSER) for ASN.1 Types"">9</a>].
As a convenience to implementors, an equivalent ABNF description of
the GSER encoding for ComponentFilter is provided here. In the event
that there is a discrepancy between this ABNF and the encoding
determined by GSER, GSER is to be taken as definitive. The GSER
encoding of a ComponentFilter is described by the following
equivalent ABNF:
ComponentFilter = filter-item /
and-filter /
or-filter /
not-filter
filter-item = item-chosen ComponentAssertion
and-filter = and-chosen SequenceOfComponentFilter
or-filter = or-chosen SequenceOfComponentFilter
not-filter = not-chosen ComponentFilter
<span class="grey">Legg Standards Track [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc3687">RFC 3687</a> LDAP and X.500 Component Matching Rules February 2004</span>
item-chosen = %x69.74.65.6D.3A ; "item:"
and-chosen = %x61.6E.64.3A ; "and:"
or-chosen = %x6F.72.3A ; "or:"
not-chosen = %x6E.6F.74.3A ; "not:"
SequenceOfComponentFilter = "{" [ sp ComponentFilter
*( "," sp ComponentFilter) ] sp "}"
ComponentAssertion = "{" [ sp component "," ]
[ sp useDefaultValues "," ]
sp rule ","
sp assertion-value sp "}"
component = component-label msp StringValue
useDefaultValues = use-defaults-label msp BooleanValue
rule = rule-label msp ObjectIdentifierValue
assertion-value = value-label msp Value
component-label = %x63.6F.6D.70.6F.6E.65.6E.74 ; "component"
use-defaults-label = %x75.73.65.44.65.66.61.75.6C.74.56.61.6C.75
%x65.73 ; "useDefaultValues"
rule-label = %x72.75.6C.65 ; "rule"
value-label = %x76.61.6C.75.65 ; "value"
sp = *%x20 ; zero, one or more space characters
msp = 1*%x20 ; one or more space characters
The ABNF for <Value>, <StringValue>, <ObjectIdentifierValue> and
<BooleanValue> is defined by GSER [<a href="#ref-9" title=""Generic String Encoding Rules (GSER) for ASN.1 Types"">9</a>].
The ABNF descriptions of LDAP-specific encodings for attribute
syntaxes typically do not clearly or consistently delineate the
component parts of an attribute value. A regular and uniform
character string encoding for arbitrary component data types is
needed to encode the assertion value in a ComponentAssertion. The
<Value> rule from GSER provides a human readable text encoding for a
component value of any arbitrary ASN.1 type.
The X.500-style definition [<a href="#ref-10">10</a>] for componentFilterMatch is:
componentFilterMatch MATCHING-RULE ::= {
SYNTAX ComponentFilter
ID { 1 2 36 79672281 1 13 2 } }
A ComponentAssertion can potentially use any matching rule, including
componentFilterMatch, so componentFilterMatch may be nested. The
component references in a nested componentFilterMatch are relative to
<span class="grey">Legg Standards Track [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc3687">RFC 3687</a> LDAP and X.500 Component Matching Rules February 2004</span>
the component corresponding to the containing ComponentAssertion. In
<a href="#section-7">Section 7</a>, an example search on the seeAlso attribute shows this
usage.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Equality Matching of Complex Components</span>
It is possible to test if an attribute value of a complex ASN.1
syntax is the same as some purported (i.e., assertion) value by using
a complicated ComponentFilter that tests if corresponding components
are the same. However, it would be more convenient to be able to
present a whole assertion value to a matching rule that could do the
component-wise comparison of an attribute value with the assertion
value for any arbitrary attribute syntax. Similarly, the ability to
do a straightforward equality comparison of a component value that is
itself of a complex ASN.1 type would also be convenient.
It would be difficult to define a single matching rule that
simultaneously satisfies all notions of what the equality matching
semantics should be. For example, in some instances a case sensitive
comparison of string components may be preferable to a case
insensitive comparison. Therefore a basic equality matching rule,
allComponentsMatch, is defined in <a href="#section-6.2">Section 6.2</a>, and the means to
derive new matching rules from it with slightly different equality
matching semantics are described in <a href="#section-6.3">Section 6.3</a>.
The directoryComponentsMatch defined in <a href="#section-6.4">Section 6.4</a> is a derivation
of allComponentsMatch that suits typical uses of the directory.
Other specifications are free to derive new rules from
allComponentsMatch or directoryComponentsMatch, that suit their usage
of the directory.
The allComponentsMatch rule, the directoryComponentsMatch rule and
any matching rules derived from them are collectively called
component equality matching rules.
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. The OpenAssertionType Syntax</span>
The component equality matching rules have a variable assertion
syntax. In X.500 this is indicated by omitting the optional SYNTAX
field in the MATCHING-RULE information object. The assertion syntax
then defaults to the target attribute's syntax in actual usage,
unless the description of the matching rule says otherwise. The
SYNTAX field in the LDAP-specific encoding of a
MatchingRuleDescription is mandatory, so the OpenAssertionType syntax
is defined to fill the same role. That is, the OpenAssertionType
syntax is semantically equivalent to an omitted SYNTAX field in an
X.500 MATCHING-RULE information object. OpenAssertionType MUST NOT
be used as the attribute syntax in an attribute type definition.
<span class="grey">Legg Standards Track [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc3687">RFC 3687</a> LDAP and X.500 Component Matching Rules February 2004</span>
Unless explicitly varied by the description of a particular matching
rule, if an OpenAssertionType assertion value appears in a
ComponentAssertion its LDAP-specific encoding is described by the
<Value> rule in GSER [<a href="#ref-9" title=""Generic String Encoding Rules (GSER) for ASN.1 Types"">9</a>], otherwise its LDAP-specific encoding is the
encoding defined for the syntax of the attribute type to which the
matching rule with the OpenAssertionType assertion syntax is applied.
The LDAP definition for the OpenAssertionType syntax is:
( 1.2.36.79672281.1.5.3 DESC 'OpenAssertionType' )
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>. The allComponentsMatch Matching Rule</span>
The LDAP-style definition for allComponentsMatch is:
( 1.2.36.79672281.1.13.6 NAME 'allComponentsMatch'
SYNTAX 1.2.36.79672281.1.5.3 )
The X.500-style definition for allComponentsMatch is:
allComponentsMatch MATCHING-RULE ::= {
ID { 1 2 36 79672281 1 13 6 } }
When allComponentsMatch is used in a ComponentAssertion the assertion
syntax is the same as the ASN.1 type of the identified component.
Otherwise, the assertion syntax of allComponentsMatch is the same as
the attribute syntax of the attribute to which the matching rule is
applied.
Broadly speaking, this matching rule evaluates to true if and only if
corresponding components of the assertion value and the attribute or
component value are the same.
In detail, equality is determined by the following cases applied
recursively.
a) Two values of a SET or SEQUENCE type are the same if and only if,
for each component type, the corresponding component values are
either,
1) both absent,
2) both present and the same, or
3) absent or the same as the DEFAULT value for the component, if a
DEFAULT value is defined.
<span class="grey">Legg Standards Track [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc3687">RFC 3687</a> LDAP and X.500 Component Matching Rules February 2004</span>
Values of an EMBEDDED PDV, EXTERNAL, unrestricted CHARACTER
STRING, or INSTANCE OF type are compared according to their
respective associated SEQUENCE type (see <a href="#section-3.1.2">Section 3.1.2</a>).
b) Two values of a SEQUENCE OF type are the same if and only if, the
values have the same number of (possibly duplicated) instances and
corresponding instances are the same.
c) Two values of a SET OF type are the same if and only if, the
values have the same number of instances and each distinct
instance occurs in both values the same number of times, i.e.,
both values have the same instances, including duplicates, but in
any order.
d) Two values of a CHOICE type are the same if and only if, both
values are of the same chosen alternative and the component values
are the same.
e) Two BIT STRING values are the same if and only if the values have
the same number of bits and corresponding bits are the same. If
the BIT STRING type is defined with a named bit list then trailing
zero bits in the values are treated as absent for the purposes of
this comparison.
f) Two BOOLEAN values are the same if and only if both are TRUE or
both are FALSE.
g) Two values of a string type are the same if and only if the values
have the same number of characters and corresponding characters
are the same. Letter case is significant. For the purposes of
allComponentsMatch, the string types are NumericString,
PrintableString, TeletexString (T61String), VideotexString,
IA5String, GraphicString, VisibleString (ISO646String),
GeneralString, UniversalString, BMPString, UTF8String,
GeneralizedTime, UTCTime and ObjectDescriptor.
h) Two INTEGER values are the same if and only if the integers are
equal.
i) Two ENUMERATED values are the same if and only if the enumeration
item identifiers are the same (equivalently, if the integer values
associated with the identifiers are equal).
j) Two NULL values are always the same, unconditionally.
k) Two OBJECT IDENTIFIER values are the same if and only if the
values have the same number of arcs and corresponding arcs are the
same.
<span class="grey">Legg Standards Track [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc3687">RFC 3687</a> LDAP and X.500 Component Matching Rules February 2004</span>
l) Two OCTET STRING values are the same if and only if the values
have the same number of octets and corresponding octets are the
same.
m) Two REAL values are the same if and only if they are both the same
special value, or neither is a special value and they have the
same base and represent the same real number. The special values
for REAL are zero, PLUS-INFINITY and MINUS-INFINITY.
n) Two RELATIVE-OID values are the same if and only if the values
have the same number of arcs and corresponding arcs are the same.
The respective starting nodes for the RELATIVE-OID values are
disregarded in the comparison, i.e., they are assumed to be the
same.
o) Two values of an open type are the same if and only if both are of
the same ASN.1 type and are the same according to that type. If
the actual ASN.1 type of the values is unknown then the
allComponentsMatch rule evaluates to Undefined.
Tags and constraints, being part of the type definition and not part
of the abstract values, are ignored for matching purposes.
The allComponentsMatch rule may be used as the defined equality
matching rule for an attribute.
<span class="h3"><a class="selflink" id="section-6.3" href="#section-6.3">6.3</a>. Deriving Component Equality Matching Rules</span>
A new component equality matching rule with more refined matching
semantics may be derived from allComponentsMatch, or any other
component equality matching rule, using the convention described in
this section.
The matching behaviour of a derived component equality matching rule
is specified by nominating, for each of one or more identified
components, a commutative equality matching rule that will be used to
match values of that component. This overrides the matching that
would otherwise occur for values of that component using the base
rule for the derivation. These overrides can be conveniently
represented as rows in a table of the following form.
Component | Matching Rule
============+===============
|
|
<span class="grey">Legg Standards Track [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc3687">RFC 3687</a> LDAP and X.500 Component Matching Rules February 2004</span>
Usually, all component values of a particular ASN.1 type are to be
matched the same way. An ASN.1 type reference (e.g.,
DistinguishedName) or an ASN.1 built-in type name (e.g., INTEGER) in
the Component column of the table specifies that the nominated
equality matching rule is to be applied to all values of the named
type, regardless of context.
An ASN.1 type reference with a component reference appended
(separated by a ".") specifies that the nominated matching rule
applies only to the identified components of values of the named
type. Other component values that happen to be of the same ASN.1
type are not selected.
Additional type substitutions as described in <a href="#section-3.2">Section 3.2</a> are assumed
to be performed to align the component type with the matching rule
assertion syntax.
Conceptually, the rows in a table for the base rule are appended to
the rows in the table for a derived rule for the purpose of deciding
the matching semantics of the derived rule. Notionally,
allComponentsMatch has an empty table.
A row specifying values of an outer containing type (e.g.,
DistinguishedName) takes precedence over a row specifying values of
an inner component type (e.g., RelativeDistinguishedName), regardless
of their order in the table. Specifying a row for component values
of an inner type is only useful if a value of the type can also
appear on its own, or as a component of values of a different outer
type. For example, if there is a row for DistinguishedName then a
row for RelativeDistinguishedName can only ever apply to
RelativeDistinguishedName component values that are not part of a
DistinguishedName. A row for values of an outer type in the table
for the base rule takes precedence over a row for values of an inner
type in the table for the derived rule.
Where more than one row applies to a particular component value the
earlier row takes precedence over the later row. Thus rows in the
table for the derived rule take precedence over any rows for the same
component in the table for the base rule.
<span class="h3"><a class="selflink" id="section-6.4" href="#section-6.4">6.4</a>. The directoryComponentsMatch Matching Rule</span>
The directoryComponentsMatch matching rule is derived from the
allComponentsMatch matching rule.
<span class="grey">Legg Standards Track [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc3687">RFC 3687</a> LDAP and X.500 Component Matching Rules February 2004</span>
The LDAP-style definition for directoryComponentsMatch is:
( 1.2.36.79672281.1.13.7 NAME 'directoryComponentsMatch'
SYNTAX 1.2.36.79672281.1.5.3 )
The X.500-style definition for directoryComponentsMatch is:
directoryComponentsMatch MATCHING-RULE ::= {
ID { 1 2 36 79672281 1 13 7 } }
The matching semantics of directoryComponentsMatch are described by
the following table, using the convention described in <a href="#section-6.3">Section 6.3</a>.
ASN.1 Type | Matching Rule
=========================================+========================
RDNSequence | distinguishedNameMatch
RelativeDistinguishedName | rdnMatch
TelephoneNumber | telephoneNumberMatch
FacsimileTelephoneNumber.telephoneNumber | telephoneNumberMatch
NumericString | numericStringMatch
GeneralizedTime | generalizedTimeMatch
UTCTime | uTCTimeMatch
DirectoryString{} | caseIgnoreMatch
BMPString | caseIgnoreMatch
GeneralString | caseIgnoreMatch
GraphicString | caseIgnoreMatch
IA5String | caseIgnoreMatch
PrintableString | caseIgnoreMatch
TeletexString | caseIgnoreMatch
UniversalString | caseIgnoreMatch
UTF8String | caseIgnoreMatch
VideotexString | caseIgnoreMatch
VisibleString | caseIgnoreMatch
Notes:
1) The DistinguishedName type is defined by assignment to be the same
as the RDNSequence type. Some types (e.g., Name and LocalName)
directly reference RDNSequence rather than DistinguishedName.
Specifying RDNSequence captures all these DN-like types.
2) A RelativeDistinguishedName value is only matched by rdnMatch if
it is not part of an RDNSequence value.
3) The telephone number component of the FacsimileTelephoneNumber
ASN.1 type [<a href="#ref-12">12</a>] is defined as a constrained PrintableString.
PrintableString component values that are part of a
FacsimileTelephoneNumber value can be identified separately from
<span class="grey">Legg Standards Track [Page 29]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-30" ></span>
<span class="grey"><a href="./rfc3687">RFC 3687</a> LDAP and X.500 Component Matching Rules February 2004</span>
other components of PrintableString type by the specifier
FacsimileTelephoneNumber.telephoneNumber, so that
telephoneNumberMatch can be selectively applied. The fourth
edition of X.520 defines the telephoneNumber component of
FacsimileTelephoneNumber to be of the type TelephoneNumber, making
the row for FacsimileTelephoneNumber.telephoneNumber components
redundant.
The directoryComponentsMatch rule may be used as the defined equality
matching rule for an attribute.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Component Matching Examples</span>
This section contains examples of search filters using the
componentFilterMatch matching rule. The filters are described using
the string representation of LDAP search filters [<a href="#ref-18" title=""The String Representation of LDAP Search Filters"">18</a>]. Note that
this representation requires asterisks to be escaped in assertion
values (in these examples the assertion values are all
<ComponentAssertion> encodings). The asterisks have not been escaped
in these examples for the sake of clarity, and to avoid confusing the
protocol representation of LDAP search filter assertion values, where
such escaping does not apply. Line breaks and indenting have been
added only as an aid to readability.
The example search filters using componentFilterMatch are all single
extensible match filter items, though there is no reason why
componentFilterMatch can't be used in more complicated search
filters.
The first examples describe searches over the objectClasses schema
operational attribute, which has an attribute syntax described by the
ASN.1 type ObjectClassDescription [<a href="#ref-10">10</a>], and holds the definitions of
the object classes known to a directory server. The definition of
ObjectClassDescription is as follows:
ObjectClassDescription ::= SEQUENCE {
identifier OBJECT-CLASS.&id,
name SET OF DirectoryString {ub-schema} OPTIONAL,
description DirectoryString {ub-schema} OPTIONAL,
obsolete BOOLEAN DEFAULT FALSE,
information [0] ObjectClassInformation }
ObjectClassInformation ::= SEQUENCE {
subclassOf SET OF OBJECT-CLASS.&id OPTIONAL,
kind ObjectClassKind DEFAULT structural,
mandatories [<a href="#ref-3" title=""Lightweight Directory Access Protocol (v3)"">3</a>] SET OF ATTRIBUTE.&id OPTIONAL,
optionals [<a href="#ref-4" title=""Lightweight Directory Access Protocol (v3): Attribute Syntax Definitions"">4</a>] SET OF ATTRIBUTE.&id OPTIONAL }
<span class="grey">Legg Standards Track [Page 30]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-31" ></span>
<span class="grey"><a href="./rfc3687">RFC 3687</a> LDAP and X.500 Component Matching Rules February 2004</span>
ObjectClassKind ::= ENUMERATED {
abstract (0),
structural (1),
auxiliary (2) }
OBJECT-CLASS.&id and ATTRIBUTE.&id are equivalent to the OBJECT
IDENTIFIER ASN.1 type. A value of OBJECT-CLASS.&id is an OBJECT
IDENTIFIER for an object class. A value of ATTRIBUTE.&id is an
OBJECT IDENTIFIER for an attribute type.
The following search filter finds the object class definition for the
object class identified by the OBJECT IDENTIFIER 2.5.6.18:
(objectClasses:componentFilterMatch:=
item:{ component "identifier",
rule objectIdentifierMatch, value 2.5.6.18 })
A match on the "identifier" component of objectClasses values is
equivalent to the objectIdentifierFirstComponentMatch matching rule
applied to attribute values of the objectClasses attribute type. The
componentFilterMatch matching rule subsumes the functionality of the
objectIdentifierFirstComponentMatch, integerFirstComponentMatch and
directoryStringFirstComponentMatch matching rules.
The following search filter finds the object class definition for the
object class called foobar:
(objectClasses:componentFilterMatch:=
item:{ component "name.*",
rule caseIgnoreMatch, value "foobar" })
An object class definition can have multiple names and the above
filter will match an objectClasses value if any one of the names is
"foobar".
The component reference "name.0" identifies the notional count of the
number of names in an object class definition. The following search
filter finds object class definitions with exactly one name:
(objectClasses:componentFilterMatch:=
item:{ component "name.0", rule integerMatch, value 1 })
The "description" component of an ObjectClassDescription is defined
to be an OPTIONAL DirectoryString. The following search filter finds
object class definitions that have descriptions, regardless of the
contents of the description string:
<span class="grey">Legg Standards Track [Page 31]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-32" ></span>
<span class="grey"><a href="./rfc3687">RFC 3687</a> LDAP and X.500 Component Matching Rules February 2004</span>
(objectClasses:componentFilterMatch:=
item:{ component "description",
rule presentMatch, value NULL })
The presentMatch returns TRUE if the description component is present
and FALSE otherwise.
The following search filter finds object class definitions that don't
have descriptions:
(objectClasses:componentFilterMatch:=
not:item:{ component "description",
rule presentMatch, value NULL })
The following search filter finds object class definitions with the
word "bogus" in the description:
(objectClasses:componentFilterMatch:=
item:{ component "description",
rule caseIgnoreSubstringsMatch,
value { any:"bogus" } })
The assertion value is of the SubstringAssertion syntax, i.e.,
SubstringAssertion ::= SEQUENCE OF CHOICE {
initial [0] DirectoryString {ub-match},
any [<a href="#ref-1" title=""Key words for use in RFCs to Indicate Requirement Levels"">1</a>] DirectoryString {ub-match},
final [<a href="#ref-2" title=""Augmented BNF for Syntax Specifications: ABNF"">2</a>] DirectoryString {ub-match} }
The "obsolete" component of an ObjectClassDescription is defined to
be DEFAULT FALSE. An object class is obsolete if the "obsolete"
component is present and set to TRUE. The following search filter
finds all obsolete object classes:
(objectClasses:componentFilterMatch:=
item:{ component "obsolete", rule booleanMatch, value TRUE })
An object class is not obsolete if the "obsolete" component is not
present, in which case it defaults to FALSE, or is present but is
explicitly set to FALSE. The following search filter finds all non-
obsolete object classes:
(objectClasses:componentFilterMatch:=
item:{ component "obsolete", rule booleanMatch, value FALSE })
The useDefaultValues flag in the ComponentAssertion defaults to TRUE
so the componentFilterMatch rule treats an absent "obsolete"
component as being present and set to FALSE. The following search
<span class="grey">Legg Standards Track [Page 32]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-33" ></span>
<span class="grey"><a href="./rfc3687">RFC 3687</a> LDAP and X.500 Component Matching Rules February 2004</span>
filter finds only object class definitions where the "obsolete"
component has been explicitly set to FALSE, rather than implicitly
defaulting to FALSE:
(objectClasses:componentFilterMatch:=
item:{ component "obsolete", useDefaultValues FALSE,
rule booleanMatch, value FALSE })
With the useDefaultValues flag set to FALSE, if the "obsolete"
component is absent the component reference identifies no component
value and the matching rule will return FALSE. The matching rule can
only return TRUE if the component is present and set to FALSE.
The "information.kind" component of the ObjectClassDescription is an
ENUMERATED type. The allComponentsMatch matching rule can be used to
match values of an ENUMERATED type. The following search filter
finds object class definitions for auxiliary object classes:
(objectClasses:componentFilterMatch:=
item:{ component "information.kind",
rule allComponentsMatch, value auxiliary })
The following search filter finds auxiliary object classes with
commonName (cn or 2.5.4.3) as a mandatory attribute:
(objectClasses:componentFilterMatch:=and:{
item:{ component "information.kind",
rule allComponentsMatch, value auxiliary },
item:{ component "information.mandatories.*",
rule objectIdentifierMatch, value cn } })
The following search filter finds auxiliary object classes with
commonName as a mandatory or optional attribute:
(objectClasses:componentFilterMatch:=and:{
item:{ component "information.kind",
rule allComponentsMatch, value auxiliary },
or:{
item:{ component "information.mandatories.*",
rule objectIdentifierMatch, value cn },
item:{ component "information.optionals.*",
rule objectIdentifierMatch, value cn } } })
Extra care is required when matching optional SEQUENCE OF or SET OF
components because of the distinction between an absent list of
instances and a present, but empty, list of instances. The following
search filter finds object class definitions with less than three
<span class="grey">Legg Standards Track [Page 33]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-34" ></span>
<span class="grey"><a href="./rfc3687">RFC 3687</a> LDAP and X.500 Component Matching Rules February 2004</span>
names, including object class definitions with a present but empty
list of names, but does not find object class definitions with an
absent list of names:
(objectClasses:componentFilterMatch:=
item:{ component "name.0",
rule integerOrderingMatch, value 3 })
If the "name" component is absent the "name.0" component is also
considered to be absent and the ComponentAssertion evaluates to
FALSE. If the "name" component is present, but empty, the "name.0"
component is also present and equal to zero, so the
ComponentAssertion evaluates to TRUE. To also find the object class
definitions with an absent list of names the following search filter
would be used:
(objectClasses:componentFilterMatch:=or:{
not:item:{ component "name", rule presentMatch, value NULL },
item:{ component "name.0",
rule integerOrderingMatch, value 3 } })
Distinguished names embedded in other syntaxes can be matched with a
componentFilterMatch. The uniqueMember attribute type has an
attribute syntax described by the ASN.1 type NameAndOptionalUID.
NameAndOptionalUID ::= SEQUENCE {
dn DistinguishedName,
uid UniqueIdentifier OPTIONAL }
The following search filter finds values of the uniqueMember
attribute containing the author's DN:
(uniqueMember:componentFilterMatch:=
item:{ component "dn",
rule distinguishedNameMatch,
value "cn=Steven Legg,o=Adacel,c=AU" })
The DistinguishedName and RelativeDistinguishedName ASN.1 types are
also complex ASN.1 types so the component matching rules can be
applied to their inner components.
DistinguishedName ::= RDNSequence
RDNSequence ::= SEQUENCE OF RelativeDistinguishedName
RelativeDistinguishedName ::= SET SIZE (1..MAX) OF
AttributeTypeAndValue
<span class="grey">Legg Standards Track [Page 34]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-35" ></span>
<span class="grey"><a href="./rfc3687">RFC 3687</a> LDAP and X.500 Component Matching Rules February 2004</span>
AttributeTypeAndValue ::= SEQUENCE {
type AttributeType ({SupportedAttributes}),
value AttributeValue ({SupportedAttributes}{@type}) }
AttributeType ::= ATTRIBUTE.&id
AttributeValue ::= ATTRIBUTE.&Type
ATTRIBUTE.&Type is an open type. A value of ATTRIBUTE.&Type is
constrained by the type component of AttributeTypeAndValue to be of
the attribute syntax of the nominated attribute type. Note: the
fourth edition of X.500 extends and renames the AttributeTypeAndValue
SEQUENCE type.
The seeAlso attribute has the DistinguishedName syntax. The
following search filter finds seeAlso attribute values containing the
RDN, "o=Adacel", anywhere in the DN:
(seeAlso:componentFilterMatch:=
item:{ component "*", rule rdnMatch, value "o=Adacel" })
The following search filter finds all seeAlso attribute values with
"cn=Steven Legg" as the RDN of the named entry (i.e., the "first" RDN
in an LDAPDN or the "last" RDN in an X.500 DN):
(seeAlso:componentFilterMatch:=
item:{ component "-1",
rule rdnMatch, value "cn=Steven Legg" })
The following search filter finds all seeAlso attribute values naming
entries in the DIT subtree of "o=Adacel,c=AU":
(seeAlso:componentFilterMatch:=and:{
item:{ component "1", rule rdnMatch, value "c=AU" },
item:{ component "2", rule rdnMatch, value "o=Adacel" } })
The following search filter finds all seeAlso attribute values
containing the naming attribute types commonName (cn) and
telephoneNumber in the same RDN:
(seeAlso:componentFilterMatch:=
item:{ component "*", rule componentFilterMatch,
value and:{
item:{ component "*.type",
rule objectIdentifierMatch, value cn },
item:{ component "*.type",
rule objectIdentifierMatch,
value telephoneNumber } } })
<span class="grey">Legg Standards Track [Page 35]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-36" ></span>
<span class="grey"><a href="./rfc3687">RFC 3687</a> LDAP and X.500 Component Matching Rules February 2004</span>
The following search filter would find all seeAlso attribute values
containing the attribute types commonName and telephoneNumber, but
not necessarily in the same RDN:
(seeAlso:componentFilterMatch:=and:{
item:{ component "*.*.type",
rule objectIdentifierMatch, value cn },
item:{ component "*.*.type",
rule objectIdentifierMatch, value telephoneNumber } })
The following search filter finds all seeAlso attribute values
containing the word "Adacel" in any organizationalUnitName (ou)
attribute value in any AttributeTypeAndValue of any RDN:
(seeAlso:componentFilterMatch:=
item:{ component "*.*.value.(2.5.4.11)",
rule caseIgnoreSubstringsMatch,
value { any:"Adacel" } })
The component reference "*.*.value" identifies an open type, in this
case an attribute value. In a particular AttributeTypeAndValue, if
the attribute type is not organizationalUnitName then the
ComponentAssertion evaluates to FALSE. Otherwise the substring
assertion is evaluated against the attribute value.
Absent component references in ComponentAssertions can be exploited
to avoid false positive matches on multi-valued attributes. For
example, suppose there is a multi-valued attribute named
productCodes, defined to have the Integer syntax
(1.3.6.1.4.1.1466.115.121.1.27). Consider the following search
filter:
(&(!(productCodes:integerOrderingMatch:=3))
(productCodes:integerOrderingMatch:=8))
An entry whose productCodes attribute contains only the values 1 and
10 will match the above filter. The first subfilter is satisfied by
the value 10 (10 is not less than 3), and the second subfilter is
satisfied by the value 1 (1 is less than 8). The following search
filter can be used instead to only match entries that have a
productCodes value in the range 3 to 7, because the ComponentFilter
is evaluated against each productCodes value in isolation:
(productCodes:componentFilterMatch:= and:{
not:item:{ rule integerOrderingMatch, value 3 },
item:{ rule integerOrderingMatch, value 8 } })
<span class="grey">Legg Standards Track [Page 36]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-37" ></span>
<span class="grey"><a href="./rfc3687">RFC 3687</a> LDAP and X.500 Component Matching Rules February 2004</span>
An entry whose productCodes attribute contains only the values 1 and
10 will not match the above filter.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Security Considerations</span>
The component matching rules described in this document allow for a
compact specification of matching capabilities that could otherwise
have been defined by a plethora of specific matching rules, i.e.,
despite their expressiveness and flexibility the component matching
rules do not behave in a way uncharacteristic of other matching
rules, so the security issues for component matching rules are no
different than for any other matching rule. However, because the
component matching rules are applicable to any attribute syntax,
support for them in a directory server may allow searching of
attributes that were previously unsearchable by virtue of there not
being a suitable matching rule. Such attribute types ought to be
properly protected with appropriate access controls. A generic,
interoperable access control mechanism has not yet been developed,
however, and implementors should be aware of the interaction of that
lack with the increased risk of exposure described above.
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. Acknowledgements</span>
The author would like to thank Tom Gindin for private email
discussions that clarified and refined the ideas presented in this
document.
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. IANA Considerations</span>
The Internet Assigned Numbers Authority (IANA) has updated the LDAP
descriptors registry [<a href="#ref-8" title=""Internet Assigned Numbers Authority (IANA) Considerations for the Lightweight Directory Access Protocol (LDAP)"">8</a>] as indicated by the following templates:
Subject: Request for LDAP Descriptor Registration
Descriptor (short name): componentFilterMatch
Object Identifier: 1.2.36.79672281.1.13.2
Person & email address to contact for further information:
Steven Legg <steven.legg@adacel.com.au>
Usage: other (matching rule)
Specification: <a href="./rfc3687">RFC 3687</a>
Author/Change Controller: IESG
<span class="grey">Legg Standards Track [Page 37]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-38" ></span>
<span class="grey"><a href="./rfc3687">RFC 3687</a> LDAP and X.500 Component Matching Rules February 2004</span>
Subject: Request for LDAP Descriptor Registration
Descriptor (short name): rdnMatch
Object Identifier: 1.2.36.79672281.1.13.3
Person & email address to contact for further information:
Steven Legg <steven.legg@adacel.com.au>
Usage: other (matching rule)
Specification: <a href="./rfc3687">RFC 3687</a>
Author/Change Controller: IESG
Subject: Request for LDAP Descriptor Registration
Descriptor (short name): presentMatch
Object Identifier: 1.2.36.79672281.1.13.5
Person & email address to contact for further information:
Steven Legg <steven.legg@adacel.com.au>
Usage: other (matching rule)
Specification: <a href="./rfc3687">RFC 3687</a>
Author/Change Controller: IESG
Subject: Request for LDAP Descriptor Registration
Descriptor (short name): allComponentsMatch
Object Identifier: 1.2.36.79672281.1.13.6
Person & email address to contact for further information:
Steven Legg <steven.legg@adacel.com.au>
Usage: other (matching rule)
Specification: <a href="./rfc3687">RFC 3687</a>
Author/Change Controller: IESG
Subject: Request for LDAP Descriptor Registration
Descriptor (short name): directoryComponentsMatch
Object Identifier: 1.2.36.79672281.1.13.7
Person & email address to contact for further information:
Steven Legg <steven.legg@adacel.com.au>
Usage: other (matching rule)
Specification: <a href="./rfc3687">RFC 3687</a>
Author/Change Controller: IESG
The object identifiers have been assigned for use in this
specification by Adacel Technologies, under an arc assigned to Adacel
by Standards Australia.
<span class="h2"><a class="selflink" id="section-11" href="#section-11">11</a>. References</span>
<span class="h3"><a class="selflink" id="section-11.1" href="#section-11.1">11.1</a>. Normative References</span>
[<a id="ref-1">1</a>] Bradner, S., "Key words for use in RFCs to Indicate Requirement
Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
<span class="grey">Legg Standards Track [Page 38]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-39" ></span>
<span class="grey"><a href="./rfc3687">RFC 3687</a> LDAP and X.500 Component Matching Rules February 2004</span>
[<a id="ref-2">2</a>] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
Specifications: ABNF", <a href="./rfc2234">RFC 2234</a>, November 1997.
[<a id="ref-3">3</a>] Wahl, M., Howes, T. and S. Kille, "Lightweight Directory Access
Protocol (v3)", <a href="./rfc2251">RFC 2251</a>, December 1997.
[<a id="ref-4">4</a>] Wahl, M., Coulbeck, A., Howes, T. and S. Kille, "Lightweight
Directory Access Protocol (v3): Attribute Syntax Definitions",
<a href="./rfc2252">RFC 2252</a>, December 1997.
[<a id="ref-5">5</a>] Wahl, M., Kille S. and T. Howes. "Lightweight Directory Access
Protocol (v3): UTF-8 String Representation of Distinguished
Names", <a href="./rfc2253">RFC 2253</a>, December 1997.
[<a id="ref-6">6</a>] Yergeau, F., "UTF-8, a transformation format of ISO 10646", STD
63, <a href="./rfc3629">RFC 3629</a>, November 2003.
[<a id="ref-7">7</a>] Hodges, J. and R. Morgan, "Lightweight Directory Access
Protocol (v3): Technical Specification", <a href="./rfc3377">RFC 3377</a>, September
2002.
[<a id="ref-8">8</a>] Zeilenga, K., "Internet Assigned Numbers Authority (IANA)
Considerations for the Lightweight Directory Access Protocol
(LDAP)", <a href="https://www.rfc-editor.org/bcp/bcp64">BCP 64</a>, <a href="./rfc3383">RFC 3383</a>, September 2002.
[<a id="ref-9">9</a>] Legg, S., "Generic String Encoding Rules (GSER) for ASN.1
Types", <a href="./rfc3641">RFC 3641</a>, October 2003.
[<a id="ref-10">10</a>] ITU-T Recommendation X.501 (1993) | ISO/IEC 9594-2:1994,
Information Technology - Open Systems Interconnection - The
Directory: Models
[<a id="ref-11">11</a>] ITU-T Recommendation X.509 (1997) | ISO/IEC 9594-8:1998,
Information Technology - Open Systems Interconnection - The
Directory: Authentication Framework
[<a id="ref-12">12</a>] ITU-T Recommendation X.520 (1993) | ISO/IEC 9594-6:1994,
Information technology - Open Systems Interconnection - The
Directory: Selected attribute types
[<a id="ref-13">13</a>] ITU-T Recommendation X.680 (07/02) | ISO/IEC 8824-1:2002,
Information technology - Abstract Syntax Notation One (ASN.1):
Specification of basic notation
[<a id="ref-14">14</a>] ITU-T Recommendation X.681 (07/02) | ISO/IEC 8824-2:2002,
Information technology - Abstract Syntax Notation One (ASN.1):
Information object specification
<span class="grey">Legg Standards Track [Page 39]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-40" ></span>
<span class="grey"><a href="./rfc3687">RFC 3687</a> LDAP and X.500 Component Matching Rules February 2004</span>
[<a id="ref-15">15</a>] ITU-T Recommendation X.682 (07/02) | ISO/IEC 8824-3:2002,
Information technology - Abstract Syntax Notation One (ASN.1):
Constraint specification
[<a id="ref-16">16</a>] ITU-T Recommendation X.683 (07/02) | ISO/IEC 8824-4:2002,
Information technology - Abstract Syntax Notation One (ASN.1):
Parameterization of ASN.1 specifications
[<a id="ref-17">17</a>] ITU-T Recommendation X.690 (07/02) | ISO/IEC 8825-1,
Information technology - ASN.1 encoding rules: Specification of
Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and
Distinguished Encoding Rules (DER)
<span class="h3"><a class="selflink" id="section-12.2" href="#section-12.2">12.2</a>. Informative References</span>
[<a id="ref-18">18</a>] Howes, T., "The String Representation of LDAP Search Filters",
<a href="./rfc2254">RFC 2254</a>, December 1997.
[<a id="ref-19">19</a>] ITU-T Recommendation X.500 (1993) | ISO/IEC 9594-1:1994,
Information Technology - Open Systems Interconnection - The
Directory: Overview of concepts, models and services
<span class="h2"><a class="selflink" id="section-12" href="#section-12">12</a>. Intellectual Property Statement</span>
The IETF takes no position regarding the validity or scope of any
intellectual property or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; neither does it represent that it
has made any effort to identify any such rights. Information on the
IETF's procedures with respect to rights in standards-track and
standards-related documentation can be found in <a href="https://www.rfc-editor.org/bcp/bcp11">BCP-11</a>. Copies of
claims of rights made available for publication and any assurances of
licenses to be made available, or the result of an attempt made to
obtain a general license or permission for the use of such
proprietary rights by implementors or users of this specification can
be obtained from the IETF Secretariat.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights which may cover technology that may be required to practice
this standard. Please address the information to the IETF Executive
Director.
<span class="grey">Legg Standards Track [Page 40]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-41" ></span>
<span class="grey"><a href="./rfc3687">RFC 3687</a> LDAP and X.500 Component Matching Rules February 2004</span>
<span class="h2"><a class="selflink" id="section-13" href="#section-13">13</a>. Author's Address</span>
Steven Legg
Adacel Technologies Ltd.
250 Bay Street
Brighton, Victoria 3186
AUSTRALIA
Phone: +61 3 8530 7710
Fax: +61 3 8530 7888
EMail: steven.legg@adacel.com.au
<span class="grey">Legg Standards Track [Page 41]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-42" ></span>
<span class="grey"><a href="./rfc3687">RFC 3687</a> LDAP and X.500 Component Matching Rules February 2004</span>
<span class="h2"><a class="selflink" id="section-14" href="#section-14">14</a>. Full Copyright Statement</span>
Copyright (C) The Internet Society (2004). All Rights Reserved.
This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.
The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assignees.
This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Legg Standards Track [Page 42]
</pre>
|