1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
|
<pre>Network Working Group M. Brunner, Ed.
Request for Comments: 3726 NEC
Category: Informational April 2004
<span class="h1">Requirements for Signaling Protocols</span>
Status of this Memo
This memo provides information for the Internet community. It does
not specify an Internet standard of any kind. Distribution of this
memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2004). All Rights Reserved.
Abstract
This document defines requirements for signaling across different
network environments, such as across administrative and/or technology
domains. Signaling is mainly considered for Quality of Service (Qos)
such as the Resource Reservation Protocol (RSVP). However, in recent
years, several other applications of signaling have been defined.
For example, signaling for label distribution in Multiprotocol Label
Switching (MPLS) or signaling to middleboxes. To achieve wide
applicability of the requirements, the starting point is a diverse
set of scenarios/use cases concerning various types of networks and
application interactions. This document presents the assumptions
before listing the requirements. The requirements are grouped
according to areas such as architecture and design goals, signaling
flows, layering, performance, flexibility, security, and mobility.
<span class="grey">Brunner Informational [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc3726">RFC 3726</a> Requirements for Signaling Protocols April 2004</span>
Table of Contents
<a href="#section-1">1</a>. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-1.1">1.1</a>. Keywords . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-2">2</a>. Terminology. . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-3">3</a>. Problem Statement and Scope. . . . . . . . . . . . . . . . . . <a href="#page-6">6</a>
<a href="#section-4">4</a>. Assumptions and Exclusions . . . . . . . . . . . . . . . . . . <a href="#page-8">8</a>
<a href="#section-4.1">4.1</a>. Assumptions and Non-Assumptions. . . . . . . . . . . . . <a href="#page-8">8</a>
<a href="#section-4.2">4.2</a>. Exclusions . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-5">5</a>. Requirements . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-5.1">5.1</a>. Architecture and Design Goals. . . . . . . . . . . . . . <a href="#page-11">11</a>
5.1.1. NSIS SHOULD Provide Availability Information
on Request . . . . . . . . . . . . . . . . . . . <a href="#page-11">11</a>
<a href="#section-5.1.2">5.1.2</a>. NSIS MUST be Designed Modularly. . . . . . . . . <a href="#page-11">11</a>
<a href="#section-5.1.3">5.1.3</a>. NSIS MUST Decouple Protocol and Information. . . <a href="#page-12">12</a>
5.1.4. NSIS MUST Support Independence of Signaling and
Network Control Paradigm . . . . . . . . . . . . <a href="#page-12">12</a>
<a href="#section-5.1.5">5.1.5</a>. NSIS SHOULD be Able to Carry Opaque Objects. . . <a href="#page-12">12</a>
<a href="#section-5.2">5.2</a>. Signaling Flows. . . . . . . . . . . . . . . . . . . . . <a href="#page-12">12</a>
5.2.1. The Placement of NSIS Initiator, Forwarder, and
Responder Anywhere in the Network MUST be
Allowed. . . . . . . . . . . . . . . . . . . . . <a href="#page-12">12</a>
5.2.2. NSIS MUST Support Path-Coupled and MAY Support
Path-Decoupled Signaling . . . . . . . . . . . . <a href="#page-13">13</a>
5.2.3. Concealment of Topology and Technology
Information SHOULD be Possible . . . . . . . . . <a href="#page-13">13</a>
5.2.4. Transparent Signaling Through Networks SHOULD be
Possible . . . . . . . . . . . . . . . . . . . . <a href="#page-13">13</a>
<a href="#section-5.3">5.3</a>. Messaging. . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-13">13</a>
<a href="#section-5.3.1">5.3.1</a>. Explicit Erasure of State MUST be Possible . . . <a href="#page-13">13</a>
5.3.2. Automatic Release of State After Failure MUST be
Possible . . . . . . . . . . . . . . . . . . . . <a href="#page-14">14</a>
5.3.3. NSIS SHOULD Allow for Sending Notifications
Upstream . . . . . . . . . . . . . . . . . . . . <a href="#page-14">14</a>
5.3.4. Establishment and Refusal to set up State MUST
be Notified. . . . . . . . . . . . . . . . . . . <a href="#page-15">15</a>
5.3.5. NSIS MUST Allow for Local Information Exchange . 15
<a href="#section-5.4">5.4</a>. Control Information. . . . . . . . . . . . . . . . . . . <a href="#page-16">16</a>
5.4.1. Mutability Information on Parameters SHOULD be
Possible . . . . . . . . . . . . . . . . . . . . <a href="#page-16">16</a>
5.4.2. It SHOULD be Possible to Add and Remove Local
Domain Information . . . . . . . . . . . . . . . <a href="#page-16">16</a>
5.4.3. State MUST be Addressed Independent of Flow
Identification . . . . . . . . . . . . . . . . . <a href="#page-16">16</a>
5.4.4. Modification of Already Established State SHOULD
be Seamless. . . . . . . . . . . . . . . . . . . <a href="#page-16">16</a>
5.4.5. Grouping of Signaling for Several Micro-Flows
MAY be Provided. . . . . . . . . . . . . . . . . <a href="#page-17">17</a>
<span class="grey">Brunner Informational [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc3726">RFC 3726</a> Requirements for Signaling Protocols April 2004</span>
<a href="#section-5.5">5.5</a>. Performance. . . . . . . . . . . . . . . . . . . . . . . <a href="#page-17">17</a>
<a href="#section-5.5.1">5.5.1</a>. Scalability. . . . . . . . . . . . . . . . . . . <a href="#page-17">17</a>
<a href="#section-5.5.2">5.5.2</a>. NSIS SHOULD Allow for Low Latency in Setup . . . <a href="#page-18">18</a>
5.5.3. NSIS MUST Allow for Low Bandwidth Consumption
for the Signaling Protocol . . . . . . . . . . . <a href="#page-18">18</a>
5.5.4. NSIS SHOULD Allow to Constrain Load on Devices . 18
5.5.5. NSIS SHOULD Target the Highest Possible Network
Utilization. . . . . . . . . . . . . . . . . . . <a href="#page-18">18</a>
<a href="#section-5.6">5.6</a>. Flexibility. . . . . . . . . . . . . . . . . . . . . . . <a href="#page-19">19</a>
<a href="#section-5.6.1">5.6.1</a>. Flow Aggregation . . . . . . . . . . . . . . . . <a href="#page-19">19</a>
5.6.2. Flexibility in the Placement of the NSIS
Initiator/Responder. . . . . . . . . . . . . . . <a href="#page-19">19</a>
<a href="#section-5.6.3">5.6.3</a>. Flexibility in the Initiation of State Change. . <a href="#page-19">19</a>
<a href="#section-5.6.4">5.6.4</a>. SHOULD Support Network-Initiated State Change. . <a href="#page-19">19</a>
<a href="#section-5.6.5">5.6.5</a>. Uni / Bi-directional State Setup . . . . . . . . <a href="#page-20">20</a>
<a href="#section-5.7">5.7</a>. Security . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-20">20</a>
<a href="#section-5.7.1">5.7.1</a>. Authentication of Signaling Requests . . . . . . <a href="#page-20">20</a>
<a href="#section-5.7.2">5.7.2</a>. Request Authorization. . . . . . . . . . . . . . <a href="#page-20">20</a>
<a href="#section-5.7.3">5.7.3</a>. Integrity Protection . . . . . . . . . . . . . . <a href="#page-20">20</a>
<a href="#section-5.7.4">5.7.4</a>. Replay Protection. . . . . . . . . . . . . . . . <a href="#page-21">21</a>
<a href="#section-5.7.5">5.7.5</a>. Hop-by-Hop Security. . . . . . . . . . . . . . . <a href="#page-21">21</a>
5.7.6. Identity Confidentiality and Network Topology
Hiding . . . . . . . . . . . . . . . . . . . . . <a href="#page-21">21</a>
<a href="#section-5.7.7">5.7.7</a>. Denial-of-Service Attacks. . . . . . . . . . . . <a href="#page-21">21</a>
<a href="#section-5.7.8">5.7.8</a>. Confidentiality of Signaling Messages. . . . . . <a href="#page-22">22</a>
<a href="#section-5.7.9">5.7.9</a>. Ownership of State . . . . . . . . . . . . . . . <a href="#page-22">22</a>
<a href="#section-5.8">5.8</a>. Mobility . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-22">22</a>
5.8.1. Allow Efficient Service Re-Establishment After
Handover . . . . . . . . . . . . . . . . . . . . <a href="#page-22">22</a>
<a href="#section-5.9">5.9</a>. Interworking with Other Protocols and Techniques . . . . <a href="#page-22">22</a>
<a href="#section-5.9.1">5.9.1</a>. MUST Interwork with IP Tunneling . . . . . . . . <a href="#page-22">22</a>
<a href="#section-5.9.2">5.9.2</a>. MUST NOT Constrain Either to IPv4 or IPv6. . . . <a href="#page-23">23</a>
<a href="#section-5.9.3">5.9.3</a>. MUST be Independent from Charging Model. . . . . <a href="#page-23">23</a>
<a href="#section-5.9.4">5.9.4</a>. SHOULD Provide Hooks for AAA Protocols . . . . . <a href="#page-23">23</a>
<a href="#section-5.9.5">5.9.5</a>. SHOULD work with Seamless Handoff Protocols. . . <a href="#page-23">23</a>
<a href="#section-5.9.6">5.9.6</a>. MUST Work with Traditional Routing . . . . . . . <a href="#page-23">23</a>
<a href="#section-5.10">5.10</a>. Operational. . . . . . . . . . . . . . . . . . . . . . . <a href="#page-23">23</a>
5.10.1. Ability to Assign Transport Quality to Signaling
Messages . . . . . . . . . . . . . . . . . . . . <a href="#page-23">23</a>
<a href="#section-5.10.2">5.10.2</a>. Graceful Fail Over . . . . . . . . . . . . . . . <a href="#page-24">24</a>
<a href="#section-5.10.3">5.10.3</a>. Graceful Handling of NSIS Entity Problems. . . . <a href="#page-24">24</a>
<a href="#section-6">6</a>. Security Considerations. . . . . . . . . . . . . . . . . . . . <a href="#page-24">24</a>
<a href="#section-7">7</a>. Acknowledgments. . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-24">24</a>
<a href="#section-8">8</a>. Appendix: Scenarios/Use Cases. . . . . . . . . . . . . . . . . <a href="#page-26">26</a>
<a href="#section-8.1">8.1</a>. Terminal Mobility. . . . . . . . . . . . . . . . . . . . <a href="#page-26">26</a>
<a href="#section-8.2">8.2</a>. Wireless Networks. . . . . . . . . . . . . . . . . . . . <a href="#page-28">28</a>
<a href="#section-8.3">8.3</a>. An Example Scenario for 3G Wireless Networks . . . . . . <a href="#page-29">29</a>
<a href="#section-8.4">8.4</a>. Wired Part of Wireless Network . . . . . . . . . . . . . <a href="#page-31">31</a>
<span class="grey">Brunner Informational [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc3726">RFC 3726</a> Requirements for Signaling Protocols April 2004</span>
<a href="#section-8.5">8.5</a>. Session Mobility . . . . . . . . . . . . . . . . . . . . <a href="#page-33">33</a>
8.6. QoS Reservation/Negotiation from Access to Core Network. 34
8.7. QoS Reservation/Negotiation Over Administrative
Boundaries . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-34">34</a>
8.8. QoS Signaling Between PSTN Gateways and Backbone Routers 35
<a href="#section-8.9">8.9</a>. PSTN Trunking Gateway. . . . . . . . . . . . . . . . . . <a href="#page-36">36</a>
8.10. An Application Requests End-to-End QoS Path from the
Network. . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-38">38</a>
<a href="#section-8.11">8.11</a>. QOS for Virtual Private Networks . . . . . . . . . . . . <a href="#page-39">39</a>
<a href="#section-8.11.1">8.11.1</a>. Tunnel End Points at the Customer Premises . . . <a href="#page-39">39</a>
<a href="#section-8.11.2">8.11.2</a>. Tunnel End Points at the Provider Premises . . . <a href="#page-39">39</a>
<a href="#section-9">9</a>. References . . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-40">40</a>
<a href="#section-9.1">9.1</a>. Normative References . . . . . . . . . . . . . . . . . . <a href="#page-40">40</a>
<a href="#section-9.2">9.2</a>. Informative References . . . . . . . . . . . . . . . . . <a href="#page-40">40</a>
<a href="#section-10">10</a>. Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . <a href="#page-41">41</a>
<a href="#section-11">11</a>. Full Copyright Statement . . . . . . . . . . . . . . . . . . . <a href="#page-42">42</a>
<span class="grey">Brunner Informational [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc3726">RFC 3726</a> Requirements for Signaling Protocols April 2004</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
This document is the product of the Next Steps in Signaling (NSIS)
Working Group. It defines requirements for signaling across
different network environments. It does not list any problems of
existing signaling protocols such as [<a href="#ref-RSVP" title=""Resource Protocol (RSVP) -- Version 1 Functional Specification"">RSVP</a>].
In order to derive requirements for signaling it is necessary to
first have an idea of the scope within which they are applicable.
Therefore, we list use cases and scenarios where an NSIS protocol
could be applied. The scenarios are used to help derive requirements
and to test the requirements against use cases.
The requirements listed are independent of any application. However,
resource reservation and QoS related issues are used as examples
within the text. However, QoS is not the only field where signaling
is used in the Internet. Signaling might also be used as a
communication protocol to setup and maintain the state in middleboxes
[<a href="./rfc3234" title=""Middleboxes: Taxonomy and Issues"">RFC3234</a>].
This document does not cover requirements in relation to some
networking areas, in particular, interaction with host and site
multihoming. We leave these for future analysis.
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. Keywords</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>
[<a href="#ref-KEYWORDS" title=""Key words for use in RFCs to Indicate Requirement Levels"">KEYWORDS</a>].
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Terminology</span>
We list the most often used terms in the document. However, they
cannot be made precise without a more complete architectural model,
and they are not meant to prescribe any solution in the document.
Where applicable, they will be defined in protocol documents.
NSIS Entity (NE): The function within a node, which implements an
NSIS protocol. In the case of path-coupled signaling, the NE will
always be on the data path.
NSIS Forwarder (NF): NSIS Entity between a NI and NR, which may
interact with local state management functions in the network. It
also propagates NSIS signaling further through the network.
NSIS Initiator (NI): NSIS Entity that starts NSIS signaling to set up
or manipulate network state.
<span class="grey">Brunner Informational [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc3726">RFC 3726</a> Requirements for Signaling Protocols April 2004</span>
NSIS Responder (NR): NSIS Entity that terminates NSIS signaling and
can optionally interact with applications as well.
Flow: A traffic stream (sequence of IP packets between two end
systems) for which a specific packet level treatment is provided.
The flow can be unicast (uni- or bi-directional) or multicast. For
multicast, a flow can diverge into multiple flows as it propagates
toward the receiver. For multi-sender multicast, a flow can also
diverge when viewed in the reverse direction (toward the senders).
Data Path: The route across the networks taken by a flow or
aggregate, i.e., which domains/subdomains it passes through and the
egress/ingress points for each.
Signaling Path: The route across the networks taken by a signaling
flow or aggregate, i.e., which domains/subdomains it passes through
and the egress/ingress points for each.
Path-coupled signaling: A mode of signaling where the signaling
messages follow a path that is tied to the data packets. Signaling
messages are routed only through nodes (NEs) that are in the data
path.
Path-decoupled signaling: Signaling with independent data and
signaling paths. Signaling messages are routed to nodes (NEs) which
are not assumed to be on the data path, but which are (presumably)
aware of it. Signaling messages will always be directly addressed to
the neighbor NE, and the NI/NR may have no relation at all with the
ultimate data sender or receiver.
Service: A generic something provided by one entity and consumed by
another. It can be constructed by allocating resources. The network
can provide it to users or a network node can provide it to packets.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Problem Statement and Scope</span>
We provide in the following a preliminary architectural picture as a
basis for discussion. We will refer to it in the following
requirement sections.
Note that this model is intended not to constrain the technical
approach taken subsequently, simply to allow concrete phrasing of
requirements (e.g., requirements about placement of the NSIS
Initiator.)
<span class="grey">Brunner Informational [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc3726">RFC 3726</a> Requirements for Signaling Protocols April 2004</span>
Roughly, the scope of NSIS is assumed to be the interaction between
the NSIS Initiator, NSIS Forwarder(s), and NSIS Responder including a
protocol to carry the information, and the syntax/semantics of the
information that is exchanged. Further statements on
assumptions/exclusions are given in the next Section.
The main elements are:
1. Something that starts the request for state to be set up in the
network, the NSIS Initiator.
This might be in the end system or within some other part of the
network. The distinguishing feature of the NSIS Initiator is that
it acts on triggers coming (directly or indirectly) from the
higher layers in the end systems. It needs to map the services
requested by them, and also provides feedback information to the
higher layers, which might be used by transport layer algorithms
or adaptive applications.
2. Something that assists in managing state further along the
signaling path, the NSIS Forwarder.
The NSIS Forwarder does not interact with higher layers, but
interacts with the NSIS Initiator, NSIS Responder, and possibly
one or more NSIS Forwarders on the signaling path, edge-to-edge or
end-to-end.
3. Something that terminates the signaling path, the NSIS Responder.
The NSIS responder might be in an end-system or within other
equipment. The distinguishing feature of the NSIS Responder is
that it responds to requests at the end of a signaling path.
4. The signaling path traverses an underlying network covering one or
more IP hops. The underlying network might use locally different
technology. For instance, QoS technology has to be provisioned
appropriately for the service requested. In the QoS example, an
NSIS Forwarder maps service-specific information to technology-
related QoS parameters and receives indications about success or
failure in response.
5. We can see the network at the level of domains/subdomains rather
than individual routers (except in the special case that the
domain contains one link). Domains are assumed to be
administrative entities. So security requirements might apply
differently for the signaling between the domains and within a
domain. Both cases we deal with in this document.
<span class="grey">Brunner Informational [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc3726">RFC 3726</a> Requirements for Signaling Protocols April 2004</span>
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Assumptions and Exclusions</span>
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. Assumptions and Non-Assumptions</span>
1. The NSIS signaling could run end-to-end, end-to-edge, or edge-to-
edge, or network-to-network (between providers), depending on what
point in the network acts as NSIS initiator, and how far towards
the other end of the network the signaling propagates. In
general, we could expect NSIS Forwarders to become more 'dense'
towards the edges of the network, but this is not a requirement.
For example, in the case of QoS, an over-provisioned domain might
contain no NSIS Forwarders at all (and be NSIS transparent); at
the other extreme, NSIS Forwarders might be placed at every
router. In the latter case, QoS provisioning can be carried out
in a local implementation-dependent way without further signaling,
whereas in the case of remote NSIS Forwarders, a protocol might be
needed to control the routers along the path. This protocol is
then independent of the end-to-end NSIS signaling.
2. We do not consider 'pure' end-to-end signaling that is not
interpreted anywhere within the network. Such signaling is a
higher-layer issue and IETF protocols such as SIP etc. can be
used.
3. Where the signaling does cover several domains, we do not exclude
that different signaling protocols are used in each domain. We
only place requirements on the universality of the control
information that is being transported. (The goals here would be
to allow the use of signaling protocols, which are matched to the
characteristics of the portion of the network being traversed.)
Note that the outcome of NSIS work might result in various flavors
of the same protocol.
4. We assume that the service definitions a NSIS Initiator can ask
for are known in advance of the signaling protocol running. For
instance in the QoS example, the service definition includes QoS
parameters, lifetime of QoS guarantee etc., or any other service-
specific parameters.
There are many ways service requesters get to know about available
services. There might be standardized services, the definition
can be negotiated together with a contract, the service definition
is published in some on-line directory (e.g., at a Web page), and
so on.
5. We assume that there are means for the discovery of NSIS entities
in order to know the signaling peers (solutions include static
configuration, automatically discovered, or implicitly runs over
<span class="grey">Brunner Informational [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc3726">RFC 3726</a> Requirements for Signaling Protocols April 2004</span>
the right nodes along the data path, etc.). The discovery of the
NSIS entities has security implications that need to be addressed
properly. For some security mechanisms (i.e., Kerberos, pre-
shared secret) it is required to know the identity of the other
entity. Hence the discovery mechanism may provide means to learn
this identity, which is then later used to retrieve the required
keys and parameters.
6. NSIS assumes layer 3 routing and the determination of next data
node selection is not done by NSIS.
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. Exclusions</span>
1. Development of specific mechanisms and algorithms for application
and transport layer adaptation are not considered, nor are the
protocols that would support it.
2. Specific mechanisms (APIs and so on) for interaction between
transport/applications and the network layer are not considered,
except to clarify the requirements on the negotiation
capabilities and information semantics that would be needed of
the signaling protocol.
3. Specific mechanisms and protocols for provisioning or other
network control functions within a domain/subdomain are not
considered. The goal is to reuse existing functions and
protocols unchanged. However, NSIS itself can be used for
signaling within a domain/subdomain.
For instance in the QoS example, it means that the setting of QoS
mechanisms in a domain is out of scope, but if we have a tunnel,
NSIS could also be used for tunnel setup with QoS guarantees. It
should be possible to exploit these mechanisms optimally within
the end-to-end context. Consideration of how to do this might
generate new requirements for NSIS however. For example, the
information needed by a NSIS Forwarder to manage a radio
subnetwork needs to be provided by the NSIS solution.
4. Specific mechanisms (APIs and so on) for interaction between the
network layer and underlying provisioning mechanisms are not
considered.
5. Interaction with resource management or other internal state
management capabilities is not considered. Standard protocols
might be used for this. This may imply requirements for the sort
of information that should be exchanged between the NSIS
entities.
<span class="grey">Brunner Informational [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc3726">RFC 3726</a> Requirements for Signaling Protocols April 2004</span>
6. Security implications related to multicasting are outside the
scope of the signaling protocol.
7. Service definitions and in particular QoS services and classes
are out of scope. Together with the service definition any
definition of service specific parameters are not considered in
this document. Only the base NSIS signaling protocol for
transporting the service information are addressed.
8. Similarly, specific methods, protocols, and ways to express
service information in the Application/Session level are not
considered (e.g., SDP, SIP, RTSP, etc.).
9. The specification of any extensions needed to signal information
via application level protocols (e.g., SDP), and the mapping to
NSIS information are considered outside of the scope of NSIS
working group, as this work is in the direct scope of other IETF
working groups (e.g., MMUSIC).
10. Handoff decision and trigger sources: An NSIS protocol is not
used to trigger handoffs in mobile IP, nor is it used to decide
whether to handoff or not. As soon as or in some situations even
before a handoff happened, an NSIS protocol might be used for
signaling for the particular service again. The basic underlying
assumption is that the route comes first (defining the path) and
the signaling comes after it (following the path). This doesn't
prevent a signaling application at some node interacting with
something that modifies the path, but the requirement is then
just for NSIS to live with that possibility. However, NSIS must
interwork with several protocols for mobility management.
11. Service monitoring is out of scope. It is heavily dependent on
the type of the application and or transport service, and in what
scenario it is used.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Requirements</span>
This section defines more detailed requirements for a signaling
solution, respecting the problem statement, scoping assumptions, and
terminology considered earlier. The requirements are in subsections,
grouped roughly according to general technical aspects: architecture
and design goals, topology issues, parameters, performance, security,
information, and flexibility.
Two general (and potentially contradictory) goals for the solution
are that it should be applicable in a very wide range of scenarios,
and at the same time be lightweight in implementation complexity and
resource consumption requirements in NSIS Entities. We use the terms
<span class="grey">Brunner Informational [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc3726">RFC 3726</a> Requirements for Signaling Protocols April 2004</span>
'access' and 'core' informally in the discussion of some particular
requirements to refer to deployment conditions where particular
protocol attributes, especially performance characteristics, have
special importance. Specifically, 'access' refers to lower capacity
networks with fewer users and sessions. 'Core' refers to high
capacity networks with a large number of users and sessions.
One approach to this is that the solution could deal with certain
requirements via modular components or capabilities, which are
optional to implement or use in individual nodes.
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. Architecture and Design Goals</span>
This section contains requirements related to desirable overall
characteristics of a solution, e.g., enabling flexibility, or
independence of parts of the framework.
<span class="h4"><a class="selflink" id="section-5.1.1" href="#section-5.1.1">5.1.1</a>. NSIS SHOULD Provide Availability Information on Request</span>
NSIS SHOULD provide a mechanism to check whether state to be setup is
available without setting it up. For the resource reservation
example this translates into checking resource availability without
performing resource reservation. In some scenarios, e.g., the mobile
terminal scenario, it is required to query, whether resources are
available, without performing a reservation on the resource.
<span class="h4"><a class="selflink" id="section-5.1.2" href="#section-5.1.2">5.1.2</a>. NSIS MUST be Designed Modularly</span>
A modular design allows for more lightweight implementations, if
fewer features are needed. Mutually exclusive solutions are
supported. Examples for modularity:
- Work over any kind of network (narrowband versus broadband,
error-prone versus reliable, ...). This implies low bandwidth
signaling, and elimination of redundant information MUST be
supported if necessary.
- State setup for uni- and bi-directional flows is possible.
- Extensible in the future with different add-ons for certain
environments or scenarios.
- Protocol layering, where appropriate. This means NSIS MUST
provide a base protocol, which can be adapted to different
environments.
<span class="grey">Brunner Informational [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc3726">RFC 3726</a> Requirements for Signaling Protocols April 2004</span>
<span class="h4"><a class="selflink" id="section-5.1.3" href="#section-5.1.3">5.1.3</a>. NSIS MUST Decouple Protocol and Information</span>
The signaling protocol MUST be clearly separated from the control
information being transported. This provides for the independent
development of these two aspects of the solution, and allows for this
control information to be carried within other protocols, including
application layer ones, existing ones or those being developed in the
future. The flexibility gained in the transport of information
allows for the applicability of the same protocol in various
scenarios.
However, note that the information carried needs to be standardized;
otherwise interoperability is difficult to achieve.
<span class="h4"><a class="selflink" id="section-5.1.4" href="#section-5.1.4">5.1.4</a>. NSIS MUST Support Independence of Signaling and Network Control</span>
<span class="h4"> Paradigm</span>
The signaling MUST be independent of the paradigm and mechanism of
network control. E.g., in the case of signaling for QoS, the
independence of the signaling protocol from the QoS provisioning
allows for using the NSIS protocol together with various QoS
technologies in various scenarios.
<span class="h4"><a class="selflink" id="section-5.1.5" href="#section-5.1.5">5.1.5</a>. NSIS SHOULD be Able to Carry Opaque Objects</span>
NSIS SHOULD be able to pass around opaque objects, which are
interpreted only by some NSIS-capable nodes.
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. Signaling Flows</span>
This section contains requirements related to the possible signaling
flows that should be supported, e.g., over what parts of the flow
path, between what entities (end-systems, routers, middleboxes,
management systems), in which direction.
<span class="h4"><a class="selflink" id="section-5.2.1" href="#section-5.2.1">5.2.1</a>. The placement of NSIS Initiator, Forwarder, and Responder</span>
<span class="h4"> Anywhere in the Network MUST be Allowed</span>
The protocol MUST work in various scenarios such as host-to-network-
to-host, edge-to-edge, (e.g., just within one provider's domain),
user-to-network (from end system into the network, ending, e.g., at
the entry to the network and vice versa), and network-to-network
(e.g., between providers).
Placing the NSIS Forwarder and NSIS Initiator functions at different
locations allows for various scenarios to work with the same
protocol.
<span class="grey">Brunner Informational [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc3726">RFC 3726</a> Requirements for Signaling Protocols April 2004</span>
<span class="h4"><a class="selflink" id="section-5.2.2" href="#section-5.2.2">5.2.2</a>. NSIS MUST Support Path-Coupled and MAY Support Path-Decoupled</span>
<span class="h4"> Signaling.</span>
The path-coupled signaling mode MUST be supported. NSIS signaling
messages are routed only through nodes (NEs) that are in the data
path.
However, there is a set of scenarios, where signaling is not on the
data path. Therefore, NSIS MAY support the path-decoupled signaling
mode, where signaling messages are routed to nodes (NEs), which are
not assumed to be on the data path, but which are aware of it.
<span class="h4"><a class="selflink" id="section-5.2.3" href="#section-5.2.3">5.2.3</a>. Concealment of Topology and Technology Information SHOULD be</span>
<span class="h4"> Possible</span>
The NSIS protocol SHOULD allow for hiding the internal structure of a
NSIS domain from end-nodes and from other networks. Hence an
adversary should not be able to learn the internal structure of a
network with the help of the signaling protocol.
In various scenarios, topology information should be hidden for
various reasons. From a business point of view, some administrations
don't want to reveal the topology and technology used.
<span class="h4"><a class="selflink" id="section-5.2.4" href="#section-5.2.4">5.2.4</a>. Transparent Signaling Through Networks SHOULD be Possible</span>
It SHOULD be possible that the signaling for some flows traverses
path segments transparently, i.e., without interpretation at NSIS
Forwarders within the network. An example would be a subdomain
within a core network, which only interpreted signaling for
aggregates established at the domain edge, with the signaling for
individual flows passing transparently through it.
In other words, NSIS SHOULD work in hierarchical scenarios, where big
pipes/trunks are setup using NSIS signaling, but also flows which run
within that big pipe/trunk are setup using NSIS.
<span class="h3"><a class="selflink" id="section-5.3" href="#section-5.3">5.3</a>. Messaging</span>
<span class="h4"><a class="selflink" id="section-5.3.1" href="#section-5.3.1">5.3.1</a>. Explicit Erasure of State MUST be Possible</span>
When state along a path is no longer necessary, e.g., because the
application terminates, or because a mobile host experienced a hand-
off, it MUST be possible to erase the state explicitly.
<span class="grey">Brunner Informational [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc3726">RFC 3726</a> Requirements for Signaling Protocols April 2004</span>
<span class="h4"><a class="selflink" id="section-5.3.2" href="#section-5.3.2">5.3.2</a>. Automatic Release of State After Failure MUST be Possible</span>
When the NSIS Initiator goes down, the state it requested in the
network SHOULD be released, since it will most likely no longer be
necessary.
After detection of a failure in the network, any NSIS
Forwarder/Initiator MUST be able to release state it is involved in.
For example, this may require signaling of the "Release after
Failure" message upstream as well as downstream, or soft state timing
out.
The goal is to prevent stale state within the network and add
robustness to the operation of NSIS. So in other words, an NSIS
signaling protocol or mechanisms MUST provide means for an NSIS
entity to discover and remove local stale state.
Note that this might need to work together with a notification
mechanism. Note as well, that transient failures in NSIS processing
shouldn't necessarily have to cause all state to be released
immediately.
<span class="h4"><a class="selflink" id="section-5.3.3" href="#section-5.3.3">5.3.3</a>. NSIS SHOULD Allow for Sending Notifications Upstream</span>
NSIS Forwarders SHOULD notify the NSIS Initiator or any other NSIS
Forwarder upstream, if there is a state change inside the network.
There are various types of network changes for instance among them:
Recoverable errors: the network nodes can locally repair this type
error. The network nodes do not have to notify the users of the
error immediately. This is a condition when the danger of
degradation (or actual short term degradation) of the provided
service was overcome by the network (NSIS Forwarder) itself.
Unrecoverable errors: the network nodes cannot handle this type of
error, and have to notify the users as soon as possible.
Service degradation: In case the service cannot be provided
completely but only partially.
Repair indication: If an error occurred and it has been fixed, this
triggers the sending of a notification.
Service upgrade available: If a previously requested better service
becomes available.
<span class="grey">Brunner Informational [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc3726">RFC 3726</a> Requirements for Signaling Protocols April 2004</span>
The content of the notification is very service specific, but it is
must at least carry type information. Additionally, it may carry the
location of the state change.
The notifications may or may not be in response to a NSIS message.
This means an NSIS entity has to be able to handle notifications at
any time.
Note however, that there are a number of security consideration needs
to be solved with notification, even more important if the
notification is sent without prior request (asynchronously). The
problem basically is, that everybody could send notifications to any
NSIS entity and the NSIS entity most likely reacts on the
notification. For example, if it gets an error notification it might
erase state, even if everything is ok. So the notification might
depend on security associations between the sender of the
notification and its receiver. If a hop-by-hop security mechanism is
chosen, this implies also that notifications need to be sent on the
reverse path.
<span class="h4"><a class="selflink" id="section-5.3.4" href="#section-5.3.4">5.3.4</a>. Establishment and Refusal to Set Up State MUST be Notified</span>
A NR MUST acknowledge establishment of state on behalf of the NI
requesting establishment of that state. A refusal to set up state
MUST be replied with a negative acknowledgement by the NE refusing to
set up state. It MUST be sent to the NI. Depending on the signaling
application the (positive or negative) notifications may have to pass
through further NEs upstream. Information on the reason of the
refusal to set up state MAY be made available. For example, in the
resource reservation example, together with a negative answer, the
amount of resources available might also be returned.
<span class="h4"><a class="selflink" id="section-5.3.5" href="#section-5.3.5">5.3.5</a>. NSIS MUST Allow for Local Information Exchange</span>
The signaling protocol MUST be able to exchange local information
between NSIS Forwarders located within one single administrative
domain. The local information exchange is performed by a number of
separate messages not belonging to an end-to-end signaling process.
Local information might, for example, be IP addresses, notification
of successful or erroneous processing of signaling messages, or other
conditions.
In some cases, the NSIS signaling protocol MAY carry identification
of the NSIS Forwarders located at the boundaries of a domain.
However, the identification of edge should not be visible to the end
host (NSIS Initiator) and only applies within one administrative
domain.
<span class="grey">Brunner Informational [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc3726">RFC 3726</a> Requirements for Signaling Protocols April 2004</span>
<span class="h3"><a class="selflink" id="section-5.4" href="#section-5.4">5.4</a>. Control Information</span>
This section contains requirements related to the control information
that needs to be exchanged.
<span class="h4"><a class="selflink" id="section-5.4.1" href="#section-5.4.1">5.4.1</a>. Mutability Information on Parameters SHOULD be Possible</span>
It is possible that nodes modify parameters of a signaling message.
However, it SHOULD be possible for the NSIS Initiator to control the
mutability of the signaled information. For example, the NSIS
Initiator should be able to control what is requested end-to-end,
without the request being gradually mutated as it passes through a
sequence of nodes.
<span class="h4"><a class="selflink" id="section-5.4.2" href="#section-5.4.2">5.4.2</a>. It SHOULD be Possible to Add and Remove Local Domain Information</span>
It SHOULD be possible to add and remove local scope elements.
Compared to Requirement 5.3.5 this requirement does use the normal
signaling process and message exchange for transporting local
information. For example, at the entrance to a domain, domain-
specific information is added information is added, which is used in
this domain only, and the information is removed again when a
signaling message leaves the domain. The motivation is in the
economy of re-using the protocol for domain internal signaling of
various information pieces. Where additional information is needed
within a particular domain, it should be possible to carry this at
the same time as the end-to-end information.
<span class="h4"><a class="selflink" id="section-5.4.3" href="#section-5.4.3">5.4.3</a>. State MUST be Addressed Independent of Flow Identification</span>
Addressing or identifying state MUST be independent of the flow
identifier (flow end-points, topological addresses). Various
scenarios in the mobility area require this independence because
flows resulting from handoff might have changed end-points etc. but
still have the same service requirement. Also several proxy-based
signaling methods profit from such independence, though these are not
chartered work items for NSIS.
<span class="h4"><a class="selflink" id="section-5.4.4" href="#section-5.4.4">5.4.4</a>. Modification of Already Established State SHOULD be Seamless</span>
In many case, the established state needs to be updated (in QoS
example upgrade or downgrade of resource usage). This SHOULD happen
seamlessly without service interruption. At least the signaling
protocol should allow for it, even if some data path elements might
not be capable of doing so.
<span class="grey">Brunner Informational [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc3726">RFC 3726</a> Requirements for Signaling Protocols April 2004</span>
<span class="h4"><a class="selflink" id="section-5.4.5" href="#section-5.4.5">5.4.5</a>. Grouping of Signaling for Several Micro-Flows MAY be Provided</span>
NSIS MAY group signaling information for several micro-flows into one
signaling message. The goal of this is the optimization in terms of
setup delay, which can happen in parallel. This helps applications
requesting several flows at once. Also potential refreshes (in case
of a soft state solution) might profit from grouping.
However, the network need not know that a relationship between the
grouped flows exists. There MUST NOT be any transactional semantic
associated with the grouping. It is only meant for optimization
purposes.
<span class="h3"><a class="selflink" id="section-5.5" href="#section-5.5">5.5</a>. Performance</span>
This section discusses performance requirements and evaluation
criteria and the way in which these could and should be traded off
against each other in various parts of the solution.
Scalability is always an important requirement for signaling
protocols. However, the type of scalability and its importance
varies from one scenario to another.
Note that many of the performance issues are heavily dependent on the
scenario assumed and are normally a trade-off between speed,
reliability, complexity, and scalability. The trade-off varies in
different parts of the network. For example, in radio access
networks low bandwidth consumption will outweigh the low latency
requirement, while in core networks it may be reverse.
<span class="h4"><a class="selflink" id="section-5.5.1" href="#section-5.5.1">5.5.1</a>. Scalability</span>
NSIS MUST be scalable in the number of messages received by a
signaling communication partner (NSIS Initiator, NSIS Forwarder, and
NSIS Responder). The major concern lies in the core of the network,
where large numbers of messages arrive.
It MUST be scalable in number of hand-offs in mobile environments.
This mainly applies in access networks, because the core is
transparent to mobility in most cases.
It MUST be scalable in the number of interactions for setting up
state. This applies for end-systems setting up several states. Some
servers might be expected to setup a large number of states.
Scalability in the amount of state per entity MUST be achieved for
NSIS Forwarders in the core of the network.
<span class="grey">Brunner Informational [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc3726">RFC 3726</a> Requirements for Signaling Protocols April 2004</span>
Scalability in CPU usage MUST be achieved on end terminals and
intermediate nodes in case of many state setup processes at the same
time.
Specifically, NSIS MUST work in Internet scale deployments, where the
use of signaling by hosts becomes universal. Note that requirement
5.2.4 requires the functionality of transparently signaling through
networks without interpretation. Additionally, requirement 5.6.1
lists the capability to aggregate. Furthermore, requirement 5.5.4
states that NSIS should be able to constrain the load on devices.
Basically, the performance of the signaling MUST degrade gracefully
rather than catastrophically under overload conditions.
<span class="h4"><a class="selflink" id="section-5.5.2" href="#section-5.5.2">5.5.2</a>. NSIS SHOULD Allow for Low Latency in Setup</span>
NSIS SHOULD allow for low latency setup of states. This is only
needed in scenarios where state setups are required on a short time
scale (e.g., handover in mobile environments), or where human
interaction is immediately concerned (e.g., voice communication setup
delay).
<span class="h4"><a class="selflink" id="section-5.5.3" href="#section-5.5.3">5.5.3</a>. NSIS MUST Allow for Low Bandwidth Consumption for the Signaling</span>
<span class="h4"> Protocol</span>
NSIS MUST allow for low bandwidth consumption in certain access
networks. Again only small sets of scenarios call for low bandwidth,
mainly those where wireless links are involved.
<span class="h4"><a class="selflink" id="section-5.5.4" href="#section-5.5.4">5.5.4</a>. NSIS SHOULD Allow to Constrain Load on Devices</span>
The NSIS architecture SHOULD give the ability to constrain the load
(CPU load, memory space, signaling bandwidth consumption and
signaling intensity) on devices where it is needed. One of the
reasons is that the protocol handling should have a minimal impact on
interior (core) nodes.
This can be achieved by many different methods. Examples include
message aggregation, header compression, minimizing functionality, or
ignoring signaling in core nodes. NSIS may choose any method as long
as the requirement is met.
<span class="h4"><a class="selflink" id="section-5.5.5" href="#section-5.5.5">5.5.5</a>. NSIS SHOULD Target the Highest Possible Network Utilization</span>
This requirement applies specifically to QoS signaling.
<span class="grey">Brunner Informational [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc3726">RFC 3726</a> Requirements for Signaling Protocols April 2004</span>
There are networking environments that require high network
utilization for various reasons, and the signaling protocol SHOULD to
its best ability support high resource utilization while maintaining
appropriate service quality.
In networks where resources are very expensive (as is the case for
many wireless networks), efficient network utilization for signaling
traffic is of critical financial importance. On the other hand there
are other parts of the network where high utilization is not
required.
<span class="h3"><a class="selflink" id="section-5.6" href="#section-5.6">5.6</a>. Flexibility</span>
This section lists the various ways the protocol can flexibly be
employed.
<span class="h4"><a class="selflink" id="section-5.6.1" href="#section-5.6.1">5.6.1</a>. Flow Aggregation</span>
NSIS MUST allow for flow aggregation, including the capability to
select and change the level of aggregation.
<span class="h4"><a class="selflink" id="section-5.6.2" href="#section-5.6.2">5.6.2</a>. Flexibility in the Placement of the NSIS Initiator/Responder</span>
NSIS MUST be flexible in placing an NSIS Initiator and NSIS
Responder. The NSIS Initiator might be located at the sending or the
receiving side of a data stream, and the NSIS Responder naturally on
the other side.
Also network-initiated signaling and termination MUST be allowed in
various scenarios such as PSTN gateways, some VPNs, and mobility.
This means the NSIS Initiator and NSIS Responder might not be at the
end points of the data stream.
<span class="h4"><a class="selflink" id="section-5.6.3" href="#section-5.6.3">5.6.3</a>. Flexibility in the Initiation of State Change</span>
The NSIS Initiator or the NSIS Responder SHOULD be able to initiate a
change of state. In the example of resource reservation this is
often referred to as resource re-negotiation. It can happen due to
various reasons, such as local resource shortage (CPU, memory on
end-system) or a user changed application preference/profiles.
<span class="h4"><a class="selflink" id="section-5.6.4" href="#section-5.6.4">5.6.4</a>. SHOULD Support Network-Initiated State Change</span>
NSIS SHOULD support network-initiated state change. In the QoS
example, this is used in cases, where the network is not able to
further guarantee resources and wants to e.g., downgrade a resource
reservation.
<span class="grey">Brunner Informational [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc3726">RFC 3726</a> Requirements for Signaling Protocols April 2004</span>
<span class="h4"><a class="selflink" id="section-5.6.5" href="#section-5.6.5">5.6.5</a>. Uni / Bi-Directional State Setup</span>
Both unidirectional as well as bi-direction state setup SHOULD be
possible. With bi-directional state setup we mean that the state for
bi-directional data flows is setup. The bi-directional data flows
have the same end-points, but the path in the two directions does not
need to be the same.
The goal of a bi-directional state setup is mainly an optimization in
terms of setup delay. There is no requirements on constrains such as
use of the same data path etc.
<span class="h3"><a class="selflink" id="section-5.7" href="#section-5.7">5.7</a>. Security</span>
This section discusses security-related requirements. The NSIS
protocol MUST provide means for security, but it MUST be allowed that
nodes implementing NSIS signaling do not have to use the security
means.
<span class="h4"><a class="selflink" id="section-5.7.1" href="#section-5.7.1">5.7.1</a>. Authentication of Signaling Requests</span>
A signaling protocol MUST make provision for enabling various
entities to be authenticated against each other using strong
authentication mechanisms. The term strong authentication points to
the fact that weak plain-text password mechanisms must not be used
for authentication.
<span class="h4"><a class="selflink" id="section-5.7.2" href="#section-5.7.2">5.7.2</a>. Request Authorization</span>
The signaling protocol MUST provide means to authorize state setup
requests. This requirement demands a hook to interact with a policy
entity to request authorization data. This allows an authenticated
entity to be associated with authorization data and to verify the
request. Authorization prevents state setup by unauthorized
entities, setups violating policies, and theft of service.
Additionally it limits denial of service attacks against parts of the
network or the entire network caused by unrestricted state setups.
Additionally it might be helpful to provide some means to inform
other protocols of participating nodes within the same administrative
domain about a previous successful authorization event.
<span class="h4"><a class="selflink" id="section-5.7.3" href="#section-5.7.3">5.7.3</a>. Integrity Protection</span>
The signaling protocol MUST provide means to protect the message
payloads against modifications. Integrity protection prevents an
adversary from modifying parts of the signaling message and from
mounting denial of service or theft of service type of attacks
against network elements participating in the protocol execution.
<span class="grey">Brunner Informational [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc3726">RFC 3726</a> Requirements for Signaling Protocols April 2004</span>
<span class="h4"><a class="selflink" id="section-5.7.4" href="#section-5.7.4">5.7.4</a>. Replay Protection</span>
To prevent replay of previous signaling messages the signaling
protocol MUST provide means to detect old i.e., already transmitted
signaling messages. A solution must cover issues of synchronization
problems in the case of a restart or a crash of a participating
network element.
<span class="h4"><a class="selflink" id="section-5.7.5" href="#section-5.7.5">5.7.5</a>. Hop-by-Hop Security</span>
Channel security between signaling entities MUST be implemented. It
is a well known and proven concept in Quality of Service and other
signaling protocols to have intermediate nodes that actively
participate in the protocol to modify the messages as it is required
by processing rules. Note that this requirement does not exclude
end-to-end or network-to-network security of a signaling message.
End-to-end security between the NSIS Initiator and the NSIS Responder
may be used to provide protection of non-mutable data fields.
Network-to-network security refers to the protection of messages over
various hops but not in an end-to-end manner i.e., protected over a
particular network.
<span class="h4"><a class="selflink" id="section-5.7.6" href="#section-5.7.6">5.7.6</a>. Identity Confidentiality and Network Topology Hiding</span>
Identity confidentiality SHOULD be supported. It enables privacy and
avoids profiling of entities by adversary eavesdropping the signaling
traffic along the path. The identity used in the process of
authentication may also be hidden to a limited extent from a network
to which the initiator is attached. However the identity MUST
provide enough information for the nodes in the access network to
collect accounting data.
Network topology hiding MAY be supported to prevent entities along
the path to learn the topology of a network. Supporting this
property might conflict with a diagnostic capability.
<span class="h4"><a class="selflink" id="section-5.7.7" href="#section-5.7.7">5.7.7</a>. Denial-of-Service Attacks</span>
A signaling protocol SHOULD provide prevention of Denial-of-service
attacks. To effectively prevent denial-of-service attacks it is
necessary that the used security and protocol mechanisms MUST have
low computational complexity to verify a state setup request prior to
authenticating the requesting entity. Additionally the signaling
protocol and the used security mechanisms SHOULD NOT require large
resource consumption on NSIS Entities (for example main memory or
other additional message exchanges) before a successful
authentication is done.
<span class="grey">Brunner Informational [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc3726">RFC 3726</a> Requirements for Signaling Protocols April 2004</span>
<span class="h4"><a class="selflink" id="section-5.7.8" href="#section-5.7.8">5.7.8</a>. Confidentiality of Signaling Messages</span>
Based on the signaling information exchanged between nodes
participating in the signaling protocol an adversary may learn both
the identities and the content of the signaling messages. Since the
ability to listen to signaling channels is a major guide to what data
channels are interesting ones.
To prevent this from happening, confidentiality of the signaling
message in a hop-by-hop manner SHOULD be provided. Note that most
messages must be protected on a hop-by-hop basis, since entities,
which actively participate in the signaling protocol, must be able to
read and eventually modify the signaling messages.
<span class="h4"><a class="selflink" id="section-5.7.9" href="#section-5.7.9">5.7.9</a>. Ownership of State</span>
When existing states have to be modified then there is a need to use
a session identifier to uniquely identify the established state. A
signaling protocol MUST provide means of security protection to
prevent adversaries from modifying state.
<span class="h3"><a class="selflink" id="section-5.8" href="#section-5.8">5.8</a>. Mobility</span>
<span class="h4"><a class="selflink" id="section-5.8.1" href="#section-5.8.1">5.8.1</a>. Allow Efficient Service Re-Establishment After Handover</span>
Handover is an essential function in wireless networks. After
handover, the states may need to be completely or partially re-
established due to route changes. The re-establishment may be
requested by the mobile node itself or triggered by the access point
that the mobile node is attached to. In the first case, the
signaling MUST allow efficient re-establishment after handover. Re-
establishment after handover MUST be as quick as possible so that the
mobile node does not experience service interruption or service
degradation. The re-establishment SHOULD be localized, and not
require end-to-end signaling.
<span class="h3"><a class="selflink" id="section-5.9" href="#section-5.9">5.9</a>. Interworking with Other Protocols and Techniques</span>
Hooks SHOULD be provided to enable efficient interworking between
various protocols and techniques including the following listed.
<span class="h4"><a class="selflink" id="section-5.9.1" href="#section-5.9.1">5.9.1</a>. MUST Interwork with IP Tunneling</span>
IP tunneling for various applications MUST be supported. More
specifically IPSec tunnels are of importance. This mainly impacts
the identification of flows. When using IPSec, parts of information
commonly used for flow identification (e.g., transport protocol
information and ports) may not be accessible due to encryption.
<span class="grey">Brunner Informational [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc3726">RFC 3726</a> Requirements for Signaling Protocols April 2004</span>
<span class="h4"><a class="selflink" id="section-5.9.2" href="#section-5.9.2">5.9.2</a>. MUST NOT Constrain Either to IPv4 or IPv6</span>
<span class="h4"><a class="selflink" id="section-5.9.3" href="#section-5.9.3">5.9.3</a>. MUST be Independent from Charging Model</span>
Signaling MUST NOT be constrained by charging models or the charging
infrastructure used.
<span class="h4"><a class="selflink" id="section-5.9.4" href="#section-5.9.4">5.9.4</a>. SHOULD Provide Hooks for AAA Protocols</span>
The NSIS protocol SHOULD be developed with respect to be able to
collect usage records from one or more network elements.
<span class="h4"><a class="selflink" id="section-5.9.5" href="#section-5.9.5">5.9.5</a>. SHOULD Work with Seamless Handoff Protocols</span>
An NSIS protocol SHOULD work with seamless handoff protocols such as
context transfer and candidate access router (CAR) discovery.
<span class="h4"><a class="selflink" id="section-5.9.6" href="#section-5.9.6">5.9.6</a>. MUST Work with Traditional Routing</span>
NSIS assumes traditional L3 routing, which is purely based on L3
destination addresses. NSIS MUST work with L3 routing, in particular
it MUST work in case of route changes. This means state on the old
route MUST be released and state on the new route MUST be established
by an NSIS protocol.
Networks, which do non-traditional routing, should not break NSIS
signaling. NSIS MAY work for some of these situations.
Particularly, combinations of NSIS unaware nodes and routing other
then traditional one causes some problems. Non-traditional routing
includes, for example, routing decisions based on port numbers, other
IP header fields than the destination address, or splitting traffic
based on header hash values. These routing environments result in
the signaling path being potentially different than the data path.
<span class="h3"><a class="selflink" id="section-5.10" href="#section-5.10">5.10</a>. Operational</span>
<span class="h4"><a class="selflink" id="section-5.10.1" href="#section-5.10.1">5.10.1</a>. Ability to Assign Transport Quality to Signaling Messages</span>
The NSIS architecture SHOULD allow the network operator to assign the
NSIS protocol messages a certain transport quality. As signaling
opens up the possibility of denial-of-service attacks, this
requirement gives the network operator a means, but also the
obligation, to trade-off between signaling latency and the impact
(from the signaling messages) on devices within the network. From
protocol design this requirement states that the protocol messages
SHOULD be detectable, at least where the control and assignment of
the messages priority is done.
<span class="grey">Brunner Informational [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc3726">RFC 3726</a> Requirements for Signaling Protocols April 2004</span>
Furthermore, the protocol design must take into account reliability
concerns. Communication reliability is seen as part of the quality
assigned to signaling messages. So procedures MUST be defined for
how an NSIS signaling system behaves if some kind of request it sent
stays unanswered. The basic transport protocol to be used between
adjacent NSIS Entities MAY ensure message integrity and reliable
transport.
<span class="h4"><a class="selflink" id="section-5.10.2" href="#section-5.10.2">5.10.2</a>. Graceful Fail Over</span>
Any unit participating in NSIS signaling MUST NOT cause further
damage to other systems involved in NSIS signaling when it has to go
out of service.
<span class="h4"><a class="selflink" id="section-5.10.3" href="#section-5.10.3">5.10.3</a>. Graceful Handling of NSIS Entity Problems</span>
NSIS entities SHOULD be able to detect a malfunctioning peer. It may
notify the NSIS Initiator or another NSIS entity involved in the
signaling process. The NSIS peer may handle the problem itself e.g.,
switching to a backup NSIS entity. In the latter case note that
synchronization of state between the primary and the backup entity is
needed.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Security Considerations</span>
<a href="#section-5.7">Section 5.7</a> of this document provides security related requirements
of a signaling protocol.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Acknowledgments</span>
Quite a number of people have been involved in the discussion of the
document, adding some ideas, requirements, etc. We list them without
a guarantee on completeness: Changpeng Fan (Siemens), Krishna Paul
(NEC), Maurizio Molina (NEC), Mirko Schramm (Siemens), Andreas
Schrader (NEC), Hannes Hartenstein (NEC), Ralf Schmitz (NEC), Juergen
Quittek (NEC), Morihisa Momona (NEC), Holger Karl (Technical
University Berlin), Xiaoming Fu (Technical University Berlin), Hans-
Peter Schwefel (Siemens), Mathias Rautenberg (Siemens), Christoph
Niedermeier (Siemens), Andreas Kassler (University of Ulm), Ilya
Freytsis.
Some text and/or ideas for text, requirements, scenarios have been
taken from an Internet Draft written by the following authors: David
Partain (Ericsson), Anders Bergsten (Telia Research), Marc Greis
(Nokia), Georgios Karagiannis (Ericsson), Jukka Manner (University of
Helsinki), Ping Pan (Juniper), Vlora Rexhepi (Ericsson), Lars
Westberg (Ericsson), Haihong Zheng (Nokia). Some of those have
actively contributed new text to this document as well.
<span class="grey">Brunner Informational [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc3726">RFC 3726</a> Requirements for Signaling Protocols April 2004</span>
Another Internet Draft impacting this document has been written by
Sven Van den Bosch, Maarten Buchli, and Danny Goderis (all Alcatel).
These people contributed also new text.
Thanks also to Kwok Ho Chan (Nortel) for text changes. And finally
thanks Alison Mankin for the thorough AD review and thanks to Harald
Tveit Alvestrand and Steve Bellovin for the IESG review comments.
<span class="grey">Brunner Informational [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc3726">RFC 3726</a> Requirements for Signaling Protocols April 2004</span>
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Appendix: Scenarios/Use Cases</span>
In the following we describe scenarios, which are important to cover,
and which allow us to discuss various requirements. Some regard this
as use cases to be covered defining the use of a signaling protocol.
In general, these scenarios consider the specific case of signaling
for QoS (resource reservation), although many of the issues carry
over directly to other signaling types.
<span class="h3"><a class="selflink" id="section-8.1" href="#section-8.1">8.1</a>. Terminal Mobility</span>
The scenario we are looking at is the case where a mobile terminal
(MT) changes from one access point to another access point. The
access points are located in separate QoS domains. We assume Mobile
IP to handle mobility on the network layer in this scenario and
consider the various extensions (i.e., IETF proposals) to Mobile IP,
in order to provide 'fast handover' for roaming Mobile Terminals.
The goal to be achieved lies in providing, keeping, and adapting the
requested QoS for the ongoing IP sessions in case of handover.
Furthermore, the negotiation of QoS parameters with the new domain
via the old connection might be needed, in order to support the
different 'fast handover' proposals within the IETF.
The entities involved in this scenario include a mobile terminal,
access points, an access network manager, and communication partners
of the MT (the other end(s) of the communication association). From
a technical point of view, terminal mobility means changing the
access point of a mobile terminal (MT). However, technologies might
change in various directions (access technology, QoS technology,
administrative domain). If the access points are within one specific
QoS technology (independent of access technology) we call this
intra-QoS technology handoff. In the case of an inter-QoS technology
handoff, one changes from e.g., a DiffServ to an IntServ domain,
however still using the same access technology. Finally, if the
access points are using different access technologies we call it
inter-technology hand-off.
The following issues are of special importance in this scenario:
1) Handoff decision
- The QoS management requests handoff. The QoS management can
decide to change the access point, since the traffic conditions of
the new access point are better supporting the QoS requirements.
The metric may be different (optimized towards a single or a
group/class of users). Note that the MT or the network (see
below) might trigger the handoff.
<span class="grey">Brunner Informational [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc3726">RFC 3726</a> Requirements for Signaling Protocols April 2004</span>
- The mobility management forces handoff. This can have several
reasons. The operator optimizes his network, admission is no
longer granted (e.g., emptied prepaid condition). Or another
example is when the MT is reaching the focus of another base
station. However, this might be detected via measurements of QoS
on the physical layer and is therefore out of scope of QoS
signaling in IP. Note again that the MT or the network (see
below) might trigger the handoff.
- This scenario shows that local decisions might not be enough. The
rest of the path to the other end of the communication needs to be
considered as well. Hand-off decisions in a QoS domain do not
only depend on the local resource availability, e.g., the wireless
part, but involve the rest of the path as well. Additionally,
decomposition of an end-to-end signaling might be needed, in order
to change only parts of it.
2) Trigger sources
- Mobile terminal: If the end-system QoS management identifies
another (better-suited) access point, it will request the handoff
from the terminal itself. This will be especially likely in the
case that two different provider networks are involved. Another
important example is when the current access point bearer
disappears (e.g., removing the Ethernet cable). In this case, the
NSIS Initiator is basically located on the mobile terminal.
- Network (access network manager): Sometimes, the handoff trigger
will be issued from the network management to optimize the overall
load situation. Most likely this will result in changing the
base-station of a single providers network. Most likely the NSIS
Initiator is located on a system within the network.
3) Integration with other protocols
- Interworking with other protocol must be considered in one or the
other form. E.g., it might be worth combining QoS signaling
between different QoS domains with mobility signaling at hand-
over.
4) Handover rates
In mobile networks, the admission control process has to cope with
far more admission requests than call setups alone would generate.
For example, in the GSM (Global System for Mobile communications)
case, mobility usually generates an average of one to two handovers
<span class="grey">Brunner Informational [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc3726">RFC 3726</a> Requirements for Signaling Protocols April 2004</span>
per call. For third generation networks (such as UMTS), where it is
necessary to keep radio links to several cells simultaneously
(macro-diversity), the handover rate is significantly higher.
5) Fast state installation
Handover can also cause packet losses. This happens when the
processing of an admission request causes a delayed handover to the
new base station. In this situation, some packets might be
discarded, and the overall speech quality might be degraded
significantly. Moreover, a delay in handover may cause degradation
for other users. In the worst-case scenario, a delay in handover may
cause the connection to be dropped if the handover occurred due to
bad air link quality. Therefore, it is critical that QoS signaling
in connection with handover be carried out very quickly.
6) Call blocking in case of overload
Furthermore, when the network is overloaded, it is preferable to keep
states for previously established flows while blocking new requests.
Therefore, the resource reservation requests in connection with
handover should be given higher priority than new requests for
resource reservation.
<span class="h3"><a class="selflink" id="section-8.2" href="#section-8.2">8.2</a>. Wireless Networks</span>
In this scenario, the user is using the packet services of a wireless
system (such as the 3rd generation wireless system 3GPP/UMTS,
3GPP2/cdma2000). The region between the End Host and the Edge Node
(Edge Router) connecting the wireless network to another QoS domain
is considered to be a single QoS domain.
The issues in such an environment regarding QoS include:
1) The wireless networks provide their own QoS technology with
specialized parameters to coordinate the QoS provided by both the
radio access and wired access networks. Provisioning of QoS
technologies within a wireless network can be described mainly in
terms of calling bearer classes, service options, and service
instances. These QoS technologies need to be invoked with
suitable parameters when higher layers trigger a request for QoS.
Therefore these involve mapping of the requested higher layer QoS
parameters onto specific bearer classes or service instances. The
request for allocation of resources might be triggered by
signaling at the IP level that passes across the wireless system,
and possibly other QoS domains. Typically, wireless network
specific messages are invoked to setup the underlying bearer
<span class="grey">Brunner Informational [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc3726">RFC 3726</a> Requirements for Signaling Protocols April 2004</span>
classes or service instances in parallel with the IP layer QoS
negotiation, to allocate resources within the radio access
network.
2) The IP signaling messages are initiated by the NSIS initiator and
interpreted by the NSIS Forwarder. The most efficient placement
of the NSIS Initiator and NSIS Forwarder has not been determined
in wireless networks, but a few potential scenarios can be
envisioned. The NSIS Initiator could be located at the End Host
(e.g., 3G User equipment (UE)), the Access Gateway or at a node
that is not directly on the data path, such as a Policy Decision
Function. The Access Gateway could act as a proxy NSIS Initiator
on behalf of the End Host. The Policy Decision Function that
controls per-flow/aggregate resources with respect to the session
within its QoS domain (e.g., the 3G wireless network) may act as a
proxy NSIS Initiator for the end host or the Access Gateway.
Depending on the placement of the NSIS Initiator, the NSIS
Forwarder may be located at an appropriate point in the wireless
network.
3) The need for re-negotiation of resources in a new wireless domain
due to host mobility. In this case the NSIS Initiator and the
NSIS Forwarder should detect mobility events and autonomously
trigger re-negotiation of resources.
<span class="h3"><a class="selflink" id="section-8.3" href="#section-8.3">8.3</a>. An Example Scenario for 3G Wireless Networks</span>
The following example is a pure hypothetical scenario, where an NSIS
signaling protocol might be used in a 3G environment. We do not
impose in any way, how a potential integration might be done. Terms
from the 3GPP architecture are used (P-CSCF, IMS, expanded below) in
order to give specificity, but in a hypothetical design, one that
reflects neither development nor review by 3GPP. The example should
help in the design of a NSIS signaling protocol such that it could be
used in various environments.
The 3G wireless access scenario is shown in Figure 1. The Proxy-Call
State Control Function (P-CSCF) is the outbound SIP proxy (only used
in IP Multimedia Subsystems (IMS)). The Access Gateway is the egress
router of the 3G wireless domain and it connects the radio access
network to the Edge Router (ER) of the backbone IP network. The
Policy Decision Function (PDF) is an entity responsible for
controlling bearer level resource allocations/de-allocations in
relation to session level services e.g., SIP. The Policy Decision
Function may also control the Access Gateway to open and close the
gates and to configure per-flow policies, i.e., to authorize or
forbid user traffic. The P-CSCF (only used in IMS) and the Access
Gateway communicate with the Policy Decision Function, for network
<span class="grey">Brunner Informational [Page 29]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-30" ></span>
<span class="grey"><a href="./rfc3726">RFC 3726</a> Requirements for Signaling Protocols April 2004</span>
resource allocation/de-allocation decisions. The User Equipment (UE)
or the Mobile Station (MS) consists of a Mobile Terminal (MT) and
Terminal Equipment (TE), e.g., a laptop.
+--------+
+--------->| P-CSCF |---------> SIP signaling
/ +--------+
/ SIP |
| |
| +-----+ +----------------+
| | PDF |<---------->| NSIS Forwarder |<--->
| +-----+ +----------------+
| | ^
| | |
| | |
| |COPS |
| | |
+------+ +---------+ |
| UE/MS|----------| Access |<-----------+ +----+
+------+ | Gateway |------------------| ER |
+---------+ +----+
Figure 1: 3G wireless access scenario
The PDF has all the required QoS information for per-flow or
aggregate admission control in 3G wireless networks. It receives
resource allocation/de-allocation requests from the P-CSCF and/or
Access Gateway etc. and responds with policy decisions. Hence the
PDF may be a candidate entity to host the functionality of the NSIS
Initiator, initiating the NSIS QoS signaling towards the backbone IP
network. On the other hand, the UE/MS may act as the NSIS Initiator
or the Access Gateway may act as a Proxy NSIS Initiator on behalf of
the UE/MS. In the former case, the P-CSCF/PDF has to do the mapping
from codec types and media descriptors (derived from SIP/SDP
signaling) to IP traffic descriptor. In the latter case, the UE/MS
may use any appropriate QoS signaling mechanism as the NSIS
Initiator. If the Access Gateway is acting as the Proxy NSIS
initiator on behalf of the UE/MS, then it may have to do the mapping
of parameters from radio access specific QoS to IP QoS traffic
parameters before forwarding the request to the NSIS Forwarder.
The NSIS Forwarder is currently not part of the standard 3G wireless
architecture. However, to achieve end-to-end QoS a NSIS Forwarder is
needed such that the NSIS Initiators can request a QoS connection to
the IP network. As in the previous example, the NSIS Forwarder could
manage a set of pre-provisioned resources in the IP network, i.e.,
bandwidth pipes, and the NSIS Forwarder perform per-flow admission
control into these pipes. In this way, a connection can be made
<span class="grey">Brunner Informational [Page 30]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-31" ></span>
<span class="grey"><a href="./rfc3726">RFC 3726</a> Requirements for Signaling Protocols April 2004</span>
between two 3G wireless access networks, and hence, end-to-end QoS
can be achieved. In this case the NSIS Initiator and NSIS Forwarder
are clearly two separate logical entities. The Access Gateway or/and
the Edge Router in Fig.1 may contain the NSIS Forwarder
functionality, depending upon the placement of the NSIS Initiator as
discussed in scenario 2 in <a href="#section-8.2">section 8.2</a>. This use case clearly
illustrates the need for an NSIS QoS signaling protocol between NSIS
Initiator and NSIS Forwarder. An important application of such a
protocol may be its use in the end-to-end establishment of a
connection with specific QoS characteristics between a mobile host
and another party (e.g., end host or content server).
<span class="h3"><a class="selflink" id="section-8.4" href="#section-8.4">8.4</a>. Wired Part of Wireless Network</span>
A wireless network, seen from a QoS domain perspective, usually
consists of three parts: a wireless interface part (the "radio
interface"), a wired part of the wireless network (i.e., Radio Access
Network) and the backbone of the wireless network, as shown in Figure
2. Note that this figure should not be seen as an architectural
overview of wireless networks but rather as showing the conceptual
QoS domains in a wireless network.
In this scenario, a mobile host can roam and perform a handover
procedure between base stations/access routers. In this scenario the
NSIS QoS protocol can be applied between a base station and the
gateway (GW). In this case a GW can also be considered as a local
handover anchor point. Furthermore, in this scenario the NSIS QoS
protocol can also be applied either between two GWs, or between two
edge routers (ER).
<span class="grey">Brunner Informational [Page 31]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-32" ></span>
<span class="grey"><a href="./rfc3726">RFC 3726</a> Requirements for Signaling Protocols April 2004</span>
|--|
|GW|
|--| |--|
|MH|--- .
|--| / |-------| .
/--|base | |--| .
|station|-|ER|...
|-------| |--| . |--| back- |--| |---| |----|
..|ER|.......|ER|..|BGW|.."Internet"..|host|
-- |-------| |--| . |--| bone |--| |---| |----|
|--| \ |base |-|ER|... .
|MH| \ |station| |--| .
|--|--- |-------| . MH = mobile host
|--| ER = edge router
<----> |GW| GW = gateway
Wireless link |--| BGW = border gateway
... = interior nodes
<------------------->
Wired part of wireless network
<---------------------------------------->
Wireless Network
Figure 2. QoS architecture of wired part of wireless network
Each of these parts of the wireless network impose different issues
to be solved on the QoS signaling solution being used:
1) Wireless interface: The solution for the air interface link has to
ensure flexibility and spectrum efficient transmission of IP
packets. However, this link layer QoS can be solved in the same
way as any other last hop problem by allowing a host to request
the proper QoS profile.
2) Wired part of the wireless network: This is the part of the
network that is closest to the base stations/access routers. It
is an IP network although some parts logically perform tunneling
of the end user data. In cellular networks, the wired part of the
wireless network is denoted as a radio access network.
This part of the wireless network has different requirements for
signaling protocol characteristics when compared to traditional IP
networks:
- The network must support mobility. Many wireless networks are
able to provide a combination of soft and hard handover
procedures. When handover occurs, reservations need to be
established on new paths. The establishment time has to be as
<span class="grey">Brunner Informational [Page 32]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-33" ></span>
<span class="grey"><a href="./rfc3726">RFC 3726</a> Requirements for Signaling Protocols April 2004</span>
short as possible since long establishment times for s degrade
the performance of the wireless network. Moreover, for maximal
utilization of the radio spectrum, frequent handover operations
are required.
- These links are typically rather bandwidth-limited.
- The wired transmission in such a network contains a relatively
high volume of expensive leased lines. Overprovisioning might
therefore be prohibitively expensive.
- The radio base stations are spread over a wide geographical
area and are in general situated a large distance from the
backbone.
3) Backbone of the wireless network: the requirements imposed by this
network are similar to the requirements imposed by other types of
backbone networks.
Due to these very different characteristics and requirements, often
contradictory, different QoS signaling solutions might be needed in
each of the three network parts.
<span class="h3"><a class="selflink" id="section-8.5" href="#section-8.5">8.5</a>. Session Mobility</span>
In this scenario, a session is moved from one end-system to another.
Ongoing sessions are kept and QoS parameters need to be adapted,
since it is very likely that the new device provides different
capabilities. Note that it is open which entity initiates the move,
which implies that the NSIS Initiator might be triggered by different
entities.
User mobility (i.e., a user changing the device and therefore moving
the sessions to the new device) is considered to be a special case
within the session mobility scenario.
Note that this scenario is different from terminal mobility. The
terminal (end-system) has not moved to a different access point.
Both terminals are still connected to an IP network at their original
points.
The issues include:
1) Keeping the QoS guarantees negotiated implies that the end-
point(s) of communication are changed without changing the s.
2) The trigger of the session move might be the user or any other
party involved in the session.
<span class="grey">Brunner Informational [Page 33]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-34" ></span>
<span class="grey"><a href="./rfc3726">RFC 3726</a> Requirements for Signaling Protocols April 2004</span>
<span class="h3"><a class="selflink" id="section-8.6" href="#section-8.6">8.6</a>. QoS Reservation/Negotiation from Access to Core Network</span>
The scenario includes the signaling between access networks and core
networks in order to setup and change reservations together with
potential negotiation.
The issues to be solved in this scenario are different from previous
ones.
1) The entity of reservation is most likely an aggregate.
2) The time scales of states might be different (long living states
of aggregates, less often re-negotiation).
3) The specification of the traffic (amount of traffic), a particular
QoS is guaranteed for, needs to be changed. E.g., in case
additional flows are added to the aggregate, the traffic
specification of the flow needs to be added if it is not already
included in the aggregates specification.
4) The flow specification is more complex including network addresses
and sets of different address for the source as well as for the
destination of the flow.
<span class="h3"><a class="selflink" id="section-8.7" href="#section-8.7">8.7</a>. QoS Reservation/Negotiation Over Administrative Boundaries</span>
Signaling between two or more core networks to provide QoS is handled
in this scenario. This might also include access to core signaling
over administrative boundaries. Compared to the previous one it adds
the case, where the two networks are not in the same administrative
domain. Basically, it is the inter-domain/inter-provider signaling
which is handled in here.
The domain boundary is the critical issue to be resolved. Which of
various flavors of issues a QoS signaling protocol has to be
concerned with.
1) Competing administrations: Normally, only basic information should
be exchanged, if the signaling is between competing
administrations. Specifically information about core network
internals (e.g., topology, technology, etc.) should not be
exchanged. Some information exchange about the "access points" of
the core networks (which is topology information as well) may be
required, to be exchanged, because it is needed for proper
signaling.
2) Additionally, as in scenario 4, signaling most likely is based on
aggregates, with all the issues raise there.
<span class="grey">Brunner Informational [Page 34]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-35" ></span>
<span class="grey"><a href="./rfc3726">RFC 3726</a> Requirements for Signaling Protocols April 2004</span>
3) Authorization: It is critical that the NSIS Initiator is
authorized to perform a QoS path setup.
4) Accountability: It is important to notice that signaling might be
used as an entity to charge money for, therefore the
interoperation with accounting needs to be available.
<span class="h3"><a class="selflink" id="section-8.8" href="#section-8.8">8.8</a>. QoS Signaling Between PSTN Gateways and Backbone Routers</span>
A PSTN gateway (i.e., host) requires information from the network
regarding its ability to transport voice traffic across the network.
The voice quality will suffer due to packet loss, latency and jitter.
Signaling is used to identify and admit a flow for which these
impairments are minimized. In addition, the disposition of the
signaling request is used to allow the PSTN GW to make a call routing
decision before the call is actually accepted and delivered to the
final destination.
PSTN gateways may handle thousands of calls simultaneously and there
may be hundreds of PSTN gateways in a single provider network. These
numbers are likely to increase as the size of the network increases.
The point being that scalability is a major issue.
There are several ways that a PSTN gateway can acquire assurances
that a network can carry its traffic across the network. These
include:
1. Over-provisioning a high availability network.
2. Handling admission control through some policy server that has a
global view of the network and its resources.
3. Per PSTN GW pair admission control.
4. Per call admission control (where a call is defined as the 5-tuple
used to carry a single RTP flow).
Item 1 requires no signaling at all and is therefore outside the
scope of this working group.
Item 2 is really a better informed version of 1, but it is also
outside the scope of this working group as it relies on a particular
telephony signaling protocol rather than a packet admission control
protocol.
Item 3 is initially attractive, as it appears to have reasonable
scaling properties, however, its scaling properties only are
effective in cases where there are relatively few PSTN GWs. In the
<span class="grey">Brunner Informational [Page 35]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-36" ></span>
<span class="grey"><a href="./rfc3726">RFC 3726</a> Requirements for Signaling Protocols April 2004</span>
more general case where a PSTN GW reduces to a single IP phone
sitting behind some access network, the opportunities for aggregation
are reduced and the problem reduces to item 4.
Item 4 is the most general case. However, it has the most difficult
scaling problems. The objective here is to place the requirements on
Item 4 such that a scalable per-flow admission control protocol or
protocol suite may be developed.
The case where per-flow signaling extends to individual IP end-points
allows the inclusion of IP phones on cable, DSL, wireless or other
access networks in this scenario.
Call Scenario
A PSTN GW signals end-to-end for some 5-tuple defined flow a
bandwidth and QoS requirement. Note that the 5-tuple might include
masking/wildcarding. The access network admits this flow according
to its local policy and the specific details of the access
technology.
At the edge router (i.e., border node), the flow is admitted, again
with an optional authentication process, possibly involving an
external policy server. Note that the relationship between the PSTN
GW and the policy server and the routers and the policy server is
outside the scope of NSIS. The edge router then admits the flow into
the core of the network, possibly using some aggregation technique.
At the interior nodes, the NSIS host-to-host signaling should either
be ignored or invisible as the Edge router performed the admission
control decision to some aggregate.
At the inter-provider router (i.e., border node), again the NSIS
host-to-host signaling should either be ignored or invisible, as the
Edge router has performed an admission control decision about an
aggregate across a carrier network.
<span class="h3"><a class="selflink" id="section-8.9" href="#section-8.9">8.9</a>. PSTN Trunking Gateway</span>
One of the use cases for the NSIS signaling protocol is the scenario
of interconnecting PSTN gateways with an IP network that supports
QoS.
<span class="grey">Brunner Informational [Page 36]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-37" ></span>
<span class="grey"><a href="./rfc3726">RFC 3726</a> Requirements for Signaling Protocols April 2004</span>
Four different scenarios are considered here.
1. In-band QoS signaling is used. In this case the Media Gateway
(MG) will be acting as the NSIS Initiator and the Edge Router (ER)
will be the NSIS Forwarder. Hence, the ER should do admission
control (into pre-provisioned traffic trunks) for the individual
traffic flows. This scenario is not further considered here.
2. Out-of-band signaling in a single domain, the NSIS forwarder is
integrated in the Media Gateway Controller (MGC). In this case no
NSIS protocol is required.
3. Out-of-band signaling in a single domain, the NSIS forwarder is a
separate box. In this case NSIS signaling is used between the MGC
and the NSIS Forwarder.
4. Out-of-band signaling between multiple domains, the NSIS Forwarder
(which may be integrated in the MGC) triggers the NSIS Forwarder
of the next domain.
When the out-of-band QoS signaling is used the Media Gateway
Controller (MGC) will be acting as the NSIS Initiator.
In the second scenario the voice provider manages a set of traffic
trunks that are leased from a network provider. The MGC does the
admission control in this case. Since the NSIS Forwarder acts both
as a NSIS Initiator and a NSIS Forwarder, no NSIS signaling is
required. This scenario is shown in Figure 3.
+-------------+ ISUP/SIGTRAN +-----+ +-----+
| SS7 network |---------------------| MGC |--------------| SS7 |
+-------------+ +-------+-----+---------+ +-----+
: / : \
: / : \
: / +--------:----------+ \
: MEGACO / / : \ \
: / / +-----+ \ \
: / / | NMS | \ \
: / | +-----+ | \
: : | | :
+--------------+ +----+ | bandwidth pipe (SLS) | +----+
| PSTN network |--| MG |--|ER|======================|ER|-| MG |--
+--------------+ +----+ \ / +----+
\ QoS network /
+-------------------+
Figure 3: PSTN trunking gateway scenario
<span class="grey">Brunner Informational [Page 37]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-38" ></span>
<span class="grey"><a href="./rfc3726">RFC 3726</a> Requirements for Signaling Protocols April 2004</span>
In the third scenario, the voice provider does not lease traffic
trunks in the network. Another entity may lease traffic trunks and
may use a NSIS Forwarder to do per-flow admission control. In this
case the NSIS signaling is used between the MGC and the NSIS
Forwarder, which is a separate box here. Hence, the MGC acts only as
a NSIS Initiator. This scenario is depicted in Figure 4.
+-------------+ ISUP/SIGTRAN +-----+ +-----+
| SS7 network |---------------------| MGC |--------------| SS7 |
+-------------+ +-------+-----+---------+ +-----+
: / : \
: / +-----+ \
: / | NF | \
: / +-----+ \
: / : \
: / +--------:----------+ \
: MEGACO : / : \ :
: : / +-----+ \ :
: : / | NMS | \ :
: : | +-----+ | :
: : | | :
+--------------+ +----+ | bandwidth pipe (SLS) | +----+
| PSTN network |--| MG |--|ER|======================|ER|-| MG |--
+--------------+ +----+ \ / +----+
\ QoS network /
+-------------------+
Figure 4: PSTN trunking gateway scenario
In the fourth scenario multiple transport domains are involved. In
the originating network either the MGC may have an overview on the
resources of the overlay network or a separate NSIS Forwarder will
have the overview. Hence, depending on this either the MGC or the
NSIS Forwarder of the originating domain will contact the NSIS
Forwarder of the next domain. The MGC always acts as a NSIS
Initiator and may also be acting as a NSIS Forwarder in the first
domain.
<span class="h3"><a class="selflink" id="section-8.10" href="#section-8.10">8.10</a>. An Application Requests End-to-End QoS Path from the Network</span>
This is actually the conceptually simplest case. A multimedia
application requests a guaranteed service from an IP network. We
assume here that the application is somehow able to specify the
network service. The characteristics here are that many hosts might
do it, but that the requested service is low capacity (bounded by the
access line). Note that there is an issue of scaling in the number
of applications requesting this service in the core of the network.
<span class="grey">Brunner Informational [Page 38]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-39" ></span>
<span class="grey"><a href="./rfc3726">RFC 3726</a> Requirements for Signaling Protocols April 2004</span>
<span class="h3"><a class="selflink" id="section-8.11" href="#section-8.11">8.11</a>. QOS for Virtual Private Networks</span>
In a Virtual Private Network (VPN), a variety of tunnels might be
used between its edges. These tunnels could be for example, IPSec,
GRE, and IP-IP. One of the most significant issues in VPNs is
related to how a flow is identified and what quality a flow gets. A
flow identification might consist among others of the transport
protocol port numbers. In an IP-Sec tunnel this will be problematic
since the transport protocol information is encrypted.
There are two types of L3 VPNs, distinguished by where the endpoints
of the tunnels exist. The endpoints of the tunnels may either be on
the customer (CPE) or the provider equipment or provider edge (PE).
Virtual Private networks are also likely to request bandwidth or
other type of service in addition to the premium services the PSTN GW
are likely to use.
<span class="h4"><a class="selflink" id="section-8.11.1" href="#section-8.11.1">8.11.1</a>. Tunnel End Points at the Customer Premises</span>
When the endpoints are the CPE, the CPE may want to signal across the
public IP network for a particular amount of bandwidth and QoS for
the tunnel aggregate. Such signaling may be useful when a customer
wants to vary their network cost with demand, rather than paying a
flat rate. Such signaling exists between the two CPE routers.
Intermediate access and edge routers perform the same exact call
admission control, authentication and aggregation functions performed
by the corresponding routers in the PSTN GW scenario with the
exception that the endpoints are the CPE tunnel endpoints rather than
PSTN GWs and the 5-tuple used to describe the RTP flow is replaced
with the corresponding flow spec to uniquely identify the tunnels.
Tunnels may be of any variety (e.g., IP-Sec, GRE, IP-IP).
In such a scenario, NSIS would actually allow partly for customer
managed VPNs, which means a customer can setup VPNs by subsequent
NSIS signaling to various end-point. Plus the tunnel end-points are
not necessarily bound to an application. The customer administrator
might be the one triggering NSIS signaling.
<span class="h4"><a class="selflink" id="section-8.11.2" href="#section-8.11.2">8.11.2</a>. Tunnel End Points at the Provider Premises</span>
In the case were the tunnel end-points exist on the provider edge,
requests for bandwidth may be signaled either per flow, where a flow
is defined from a customers address space, or between customer sites.
In the case of per flow signaling, the PE router must map the
bandwidth request to the tunnel carrying traffic to the destination
specified in the flow spec. Such a tunnel is a member of an
<span class="grey">Brunner Informational [Page 39]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-40" ></span>
<span class="grey"><a href="./rfc3726">RFC 3726</a> Requirements for Signaling Protocols April 2004</span>
aggregate to which the flow must be admitted. In this case, the
operation of admission control is very similar to the case of the
PSTN GW with the additional level of indirection imposed by the VPN
tunnel. Therefore, authentication, accounting and policing may be
required on the PE router.
In the case of per site signaling, a site would need to be
identified. This may be accomplished by specifying the network
serviced at that site through an IP prefix. In this case, the
admission control function is performed on the aggregate to the PE
router connected to the site in question.
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. References</span>
<span class="h3"><a class="selflink" id="section-9.1" href="#section-9.1">9.1</a>. Normative References</span>
[<a id="ref-KEYWORDS">KEYWORDS</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
<span class="h3"><a class="selflink" id="section-9.2" href="#section-9.2">9.2</a>. Informative References</span>
[<a id="ref-RSVP">RSVP</a>] Braden, R., Ed., Zhang, L., Berson, S., Herzog, S. and S.
Jamin, "Resource Protocol (RSVP) -- Version 1 Functional
Specification", <a href="./rfc2205">RFC 2205</a>, September 1997.
[<a id="ref-RFC3234">RFC3234</a>] Carpenter, B. and S. Brim, "Middleboxes: Taxonomy and
Issues", <a href="./rfc3234">RFC 3234</a>, February 2002.
<span class="grey">Brunner Informational [Page 40]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-41" ></span>
<span class="grey"><a href="./rfc3726">RFC 3726</a> Requirements for Signaling Protocols April 2004</span>
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. Authors' Addresses</span>
Marcus Brunner (Editor)
NEC Europe Ltd.
Network Laboratories
Kurfuersten-Anlage 36
D-69115 Heidelberg
Germany
EMail: brunner@netlab.nec.de
Robert Hancock
Roke Manor Research Ltd
Romsey, Hants, SO51 0ZN
United Kingdom
EMail: robert.hancock@roke.co.uk
Eleanor Hepworth
Roke Manor Research Ltd
Romsey, Hants, SO51 0ZN
United Kingdom
EMail: eleanor.hepworth@roke.co.uk
Cornelia Kappler
Siemens AG
Berlin 13623
Germany
EMail: cornelia.kappler@siemens.com
Hannes Tschofenig
Siemens AG
Otto-Hahn-Ring 6
81739 Munchen
Germany
EMail: Hannes.Tschofenig@mchp.siemens.de
<span class="grey">Brunner Informational [Page 41]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-42" ></span>
<span class="grey"><a href="./rfc3726">RFC 3726</a> Requirements for Signaling Protocols April 2004</span>
<span class="h2"><a class="selflink" id="section-11" href="#section-11">11</a>. Full Copyright Statement</span>
Copyright (C) The Internet Society (2004). This document is subject
to the rights, licenses and restrictions contained in <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and
except as set forth therein, the authors retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and <a href="https://www.rfc-editor.org/bcp/bcp79">BCP 79</a>.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
<a href="http://www.ietf.org/ipr">http://www.ietf.org/ipr</a>.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at ietf-
ipr@ietf.org.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Brunner Informational [Page 42]
</pre>
|