1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
|
<pre>Network Working Group C. DeSanti
Request for Comments: 3831 Cisco Systems
Category: Standards Track July 2004
<span class="h1">Transmission of IPv6 Packets over Fibre Channel</span>
Status of this Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2004).
Abstract
This document specifies the way of encapsulating IPv6 packets over
Fibre Channel, and the method of forming IPv6 link-local addresses
and statelessly autoconfigured addresses on Fibre Channel networks.
Table Of Contents
<a href="#section-1">1</a>. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-2">2</a>
<a href="#section-2">2</a>. Summary of Fibre Channel . . . . . . . . . . . . . . . . . . . <a href="#page-3">3</a>
<a href="#section-2.1">2.1</a>. Overview . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-3">3</a>
<a href="#section-2.2">2.2</a>. Identifiers and Login. . . . . . . . . . . . . . . . . . <a href="#page-3">3</a>
<a href="#section-2.3">2.3</a>. FC Levels and Frame Format . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-2.4">2.4</a>. Sequences and Exchanges . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-3">3</a>. IPv6 Capable Nx_Ports. . . . . . . . . . . . . . . . . . . . . <a href="#page-6">6</a>
<a href="#section-4">4</a>. IPv6 Encapsulation . . . . . . . . . . . . . . . . . . . . . . <a href="#page-6">6</a>
<a href="#section-4.1">4.1</a>. FC Sequence Format . . . . . . . . . . . . . . . . . . . <a href="#page-6">6</a>
<a href="#section-4.2">4.2</a>. FC Classes of Service. . . . . . . . . . . . . . . . . . <a href="#page-8">8</a>
<a href="#section-4.3">4.3</a>. FC Header Code Points. . . . . . . . . . . . . . . . . . <a href="#page-8">8</a>
<a href="#section-4.4">4.4</a>. FC Network_Header. . . . . . . . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-4.5">4.5</a>. LLC/SNAP Header. . . . . . . . . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-4.6">4.6</a>. Bit and Byte Ordering. . . . . . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-5">5</a>. Maximum Transfer Unit. . . . . . . . . . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-6">6</a>. Stateless Address Autoconfiguration. . . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-6.1">6.1</a>. IPv6 Interface Identifier and Address Prefix . . . . . . <a href="#page-10">10</a>
6.2. Generating an Interface ID from a Format 1
N_Port_Name. . . . . . . . . . . . . . . . . . . . . . . <a href="#page-11">11</a>
6.3. Generating an Interface ID from a Format 2
N_Port_Name. . . . . . . . . . . . . . . . . . . . . . . <a href="#page-12">12</a>
<span class="grey">DeSanti Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc3831">RFC 3831</a> IPv6 over Fibre Channel July 2004</span>
6.4. Generating an Interface ID from a Format 5
N_Port_Name. . . . . . . . . . . . . . . . . . . . . . . <a href="#page-13">13</a>
6.5. Generating an Interface ID from an EUI-64
mapped N_Port_Name . . . . . . . . . . . . . . . . . . . <a href="#page-14">14</a>
<a href="#section-7">7</a>. Link-Local Addresses . . . . . . . . . . . . . . . . . . . . . <a href="#page-15">15</a>
<a href="#section-8">8</a>. Address Mapping for Unicast. . . . . . . . . . . . . . . . . . <a href="#page-15">15</a>
<a href="#section-9">9</a>. Address Mapping for Multicast. . . . . . . . . . . . . . . . . <a href="#page-16">16</a>
<a href="#section-10">10</a>. Sequence Management. . . . . . . . . . . . . . . . . . . . . . <a href="#page-17">17</a>
<a href="#section-11">11</a>. Exchange Management. . . . . . . . . . . . . . . . . . . . . . <a href="#page-17">17</a>
<a href="#section-12">12</a>. Security Considerations. . . . . . . . . . . . . . . . . . . . <a href="#page-18">18</a>
<a href="#section-13">13</a>. Acknowledgments. . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-18">18</a>
<a href="#section-14">14</a>. References . . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-18">18</a>
<a href="#section-14.1">14.1</a>. Normative References. . . . . . . . . . . . . . . . . . <a href="#page-18">18</a>
<a href="#section-14.2">14.2</a>. Informative References. . . . . . . . . . . . . . . . . <a href="#page-19">19</a>
<a href="#appendix-A">A</a>. Transmission of a Broadcast FC Sequence over FC Topologies . . <a href="#page-20">20</a>
<a href="#appendix-B">B</a>. Validation of the <N_Port_Name, N_Port_ID> mapping . . . . . . <a href="#page-21">21</a>
<a href="#appendix-C">C</a>. Fibre Channel Bit and Byte Numbering Guidance. . . . . . . . . <a href="#page-22">22</a>
Author's Address . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-23">23</a>
Full Copyright Statement . . . . . . . . . . . . . . . . . . . . . <a href="#page-24">24</a>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
Fibre Channel (FC) is a high speed serial interface technology that
supports several Upper Layer Protocols including Small Computer
System Interface (SCSI) and IPv4 as specified in [<a href="#ref-IPFC" title=""IP and ARP over Fibre Channel"">IPFC</a>].
The purpose of this document is to specify a way of encapsulating IP
version 6 [<a href="#ref-IPv6" title=""Internet Protocol, Version 6 (IPv6) Specification"">IPv6</a>] over Fibre Channel and to describe a method of
forming IPv6 link-local addresses [<a href="#ref-AARCH" title=""Internet Protocol Version 6 (IPv6) Addressing Architecture"">AARCH</a>] and statelessly
autoconfigured addresses on Fibre Channel networks. This document
also describes the content of the Source/Target Link-layer Address
option used in Neighbor Discovery [<a href="#ref-DISC" title=""Neighbor Discovery for IP Version 6 (IPv6)"">DISC</a>] when the messages are
transmitted on a Fibre Channel network.
Warning to readers familiar with Fibre Channel: both Fibre Channel
and IETF standards use the same byte transmission order. However,
the bit numbering is different. See <a href="#appendix-C">Appendix C</a> for guidance.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [<a href="#ref-KEYWORDS" title=""Key words for use in RFCs to Indicate Requirement Levels"">KEYWORDS</a>].
<span class="grey">DeSanti Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc3831">RFC 3831</a> IPv6 over Fibre Channel July 2004</span>
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Summary of Fibre Channel</span>
<span class="h3"><a class="selflink" id="section-2.1" href="#section-2.1">2.1</a>. Overview</span>
Fibre Channel (FC) is a gigabit speed network technology primarily
used for Storage Networking. Fibre Channel is standardized in the
T11 Technical Committee of the InterNational Committee for
Information Technology Standards (INCITS), an American National
Standard Institute (ANSI) accredited standards committee.
Fibre Channel devices are called Nodes. Each Node has one or more
Ports that connect to Ports of other devices. Fibre Channel may be
implemented using any combination of the following three topologies:
- a point-to-point link between two Ports;
- a set of Ports interconnected by a switching network called a
Fabric, as defined in [<a href="#ref-FC-FS" title=""Fibre Channel - Framing and Signaling (FC-FS)"">FC-FS</a>];
- a set of Ports interconnected with a loop topology, as defined in
[<a href="#ref-FC-AL-2" title=""Fibre Channel - Arbitrated Loop-2 (FC-AL-2)"">FC-AL-2</a>].
A Node Port is more precisely called an N_Port. A Node Port that is
capable of operating in a loop topology using the loop specific
protocols is designated as an NL_Port. The term Nx_Port is used to
generically indicate these two kinds of Node Port.
A Fabric Port is more precisely called an F_Port. A Fabric Port that
is capable of operating in a loop topology using the loop specific
protocols is designated as an FL_Port. The term Fx_Port is used to
generically indicate these two kinds of Fabric Port.
From an IPv6 point of view, a Fibre Channel network, built with any
combination of the FC topologies described above, is an IPv6 Link
[<a href="#ref-IPv6" title=""Internet Protocol, Version 6 (IPv6) Specification"">IPv6</a>]. IPv6-capable Nx_Ports are what [<a href="#ref-IPv6" title=""Internet Protocol, Version 6 (IPv6) Specification"">IPv6</a>] calls Interfaces.
<span class="h3"><a class="selflink" id="section-2.2" href="#section-2.2">2.2</a>. Identifiers and Login</span>
Fibre Channel entities are identified by permanent 64 bit long
Name_Identifiers. [<a href="#ref-FC-FS" title=""Fibre Channel - Framing and Signaling (FC-FS)"">FC-FS</a>] defines several formats of
Name_Identifiers. The value of the first four bits defines the
format of a Name_Identifier. These names are referred to in a more
precise manner as follows:
- an Nx_Port's Name_Identifier is called N_Port_Name;
- an Fx_Port's Name_Identifier is called F_Port_Name;
- a Node's Name_Identifier is called Node_Name;
- a Fabric's Name_Identifier is called Fabric_Name.
<span class="grey">DeSanti Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc3831">RFC 3831</a> IPv6 over Fibre Channel July 2004</span>
An Nx_Port connected to a Fibre Channel network is associated with
two identifiers, its permanent N_Port_Name and a volatile 24 bit
address called N_Port_ID. The N_Port_Name is used to identify the
Nx_Port, while the N_Port_ID is used for communications among
Nx_Ports.
Each Nx_Port acquires an N_Port_ID from the Fabric by performing a
process called Fabric Login or FLOGI. The FLOGI process is used also
to negotiate several communications parameters between the Nx_Port
and the Fabric, such as the receive data field size, which determines
the maximum size of the Fibre Channel frames that may be transferred
between the Nx_Port and the Fabric.
Before effective communication may take place between two Nx_Ports,
they must complete a process called Port Login or PLOGI. The PLOGI
process provides each Nx_Port with the other Nx_Port's N_Port_Name,
and negotiates several communication parameters, such as the receive
data field size, which determines the maximum size of the Fibre
Channel frames that may be transferred between the two Nx_Ports.
Both Fabric Login and Port Login may be explicit, i.e., performed
using specific FC control messages (called Extended Link Services or
ELS), or implicit, in which the parameters are specified by
configuration or other methods.
<span class="h3"><a class="selflink" id="section-2.3" href="#section-2.3">2.3</a>. FC Levels and Frame Format</span>
[<a id="ref-FC-FS">FC-FS</a>] describes the Fibre Channel protocol using 5 different
levels. The FC-2 and FC-4 levels are relevant for this
specification. The FC-2 level defines the FC frame format, the
transport services, and control functions necessary for information
transfer. The FC-4 level supports Upper Level Protocols, such as
IPv4, IPv6 or SCSI. The Fibre Channel frame format is depicted in
figure 1.
+-----+-----------+-----------+--------//-------+-----+-----+
| | | Data Field | | |
| SOF | FC Header |<--------------------------->| CRC | EOF |
| | | Optional | Frame | | |
| | | Header(s) | Payload | | |
+-----+-----------+-----------+--------//-------+-----+-----+
Fig. 1: Fibre Channel Frame Format
The Start of Frame (SOF) and End of Frame (EOF) are special FC
transmission words that act as frame delimiters. The CRC is 4 octets
long and uses the same 32-bit polynomial used in FDDI.
<span class="grey">DeSanti Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc3831">RFC 3831</a> IPv6 over Fibre Channel July 2004</span>
The FC Header is 24 octets long and contains several fields
associated with the identification and control of the Data Field.
The Data Field is of variable size, ranging from 0 to 2112 octets,
and includes the user data in the Frame Payload field, and Optional
Headers. The currently defined Optional Headers are:
- ESP_Header;
- Network_Header;
- Association_Header;
- Device_Header.
The value of the SOF field determines the FC Class of service
associated with the frame. Five Classes of service are specified in
[<a href="#ref-FC-FS" title=""Fibre Channel - Framing and Signaling (FC-FS)"">FC-FS</a>]. They are distinguished primarily by the method of flow
control between the communicating Nx_Ports and by the level of data
integrity provided. A given Fabric or Nx_Port may support one or
more of the following Classes of service:
- Class 1: Dedicated physical connection with delivery confirmation;
- Class 2: Frame multiplexed service with delivery confirmation;
- Class 3: Datagram service;
- Class 4: Fractional bandwidth;
- Class 6: Reliable multicast via dedicated connections.
<span class="h3"><a class="selflink" id="section-2.4" href="#section-2.4">2.4</a>. Sequences and Exchanges</span>
An application level payload such as IPv6 is called Information Unit
at the FC-4 level of Fibre Channel. Each FC-4 Information Unit is
mapped to an FC Sequence by the FC-2 level. An FC Sequence consists
of one or more FC frames related by the value of the Sequence_ID
(SEQ_ID) field of the FC Header.
The maximum data that may be carried by an FC frame is 2112 octets.
The maximum usable frame size depends on the Fabric and Nx_Port
implementations and is negotiated during the Login process. Whenever
an Information Unit to be transmitted exceeds this value, the FC-2
level segments it into multiple FC frames, sent as a single Sequence.
The receiving Nx_Port reassembles the Sequence of frames and delivers
a reassembled Information Unit to the FC-4 level. The Sequence Count
(SEQ_CNT) field of the FC Header may be used to ensure frame
ordering.
Multiple Sequences may be related together as belonging to the same
FC Exchange. The Exchange is a mechanism used by two Nx_Ports to
identify and manage an operation between them. The Exchange is
opened when the operation is started between the two Nx_Ports, and
closed when the operation ends. FC frames belonging to the same
<span class="grey">DeSanti Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc3831">RFC 3831</a> IPv6 over Fibre Channel July 2004</span>
Exchange are related by the value of the Exchange_ID fields in the FC
Header. An Originator Exchange_ID (OX_ID) and a Responder
Exchange_ID (RX_ID) uniquely identify the Exchange.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. IPv6 Capable Nx_Ports</span>
This specification requires an IPv6 capable Nx_Port to have the
following properties:
- The format of its N_Port_Name MUST be one of 0x1, 0x2, 0x5, 0xC,
0xD, 0xE, 0xF (see <a href="#section-6.1">section 6.1</a>). IPv6 support for other
Name_Identifier formats is outside the scope of this
specification;
- It MUST support Class 3;
- It MUST support continuously increasing SEQ_CNT [<a href="#ref-FC-FS" title=""Fibre Channel - Framing and Signaling (FC-FS)"">FC-FS</a>];
- It MUST be able to transmit and receive an FC-4 Information Unit
at least 1304 octets long;
- It SHOULD support a receive data field size for Device_Data FC
frames of at least 1024 octets.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. IPv6 Encapsulation</span>
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. FC Sequence Format</span>
An IPv6 packet is mapped to an Information Unit at the FC-4 level of
Fibre Channel, which in turn is mapped to an FC Sequence by the FC-2
level. An FC Information Unit containing an IPv6 packet MUST carry
the FC Network_Header [<a href="#ref-FC-FS" title=""Fibre Channel - Framing and Signaling (FC-FS)"">FC-FS</a>] and the LLC/SNAP header [<a href="#ref-IEEE-LLC" title=""IEEE Standard for Local and Metropolitan Area Networks: Overview and Architecture"">IEEE-LLC</a>],
resulting in the FC Information Unit format depicted in figure 2.
<span class="grey">DeSanti Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc3831">RFC 3831</a> IPv6 over Fibre Channel July 2004</span>
+---------------+---------------+---------------+---------------+
| |
+- -+
| Network_Header |
+- (16 octets) -+
| |
+- -+
| |
+---------------+---------------+---------------+---------------+
| LLC/SNAP header |
+- (8 octets) -+
| |
+---------------+---------------+---------------+---------------+
| |
+- -+
/ IPv6 Packet /
/ /
+- -+
| |
+---------------+---------------+---------------+---------------+
Fig. 2: FC Information Unit Mapping an IPv6 Packet
The FC ESP_Header [<a href="#ref-FC-FS" title=""Fibre Channel - Framing and Signaling (FC-FS)"">FC-FS</a>] MAY be used to secure the FC frames
composing the FC Sequence. [<a href="#ref-AH" title=""IP Authentication Header"">AH</a>] or [<a href="#ref-ESP" title=""IP Encapsulating Security Payload (ESP)"">ESP</a>] may be used to provide
security at the IPv6 layer. Other types of FC Optional Header MUST
NOT be used in an IPv6 FC Sequence.
Typically, a Sequence consists of more than one frame. Only the
first frame of the Sequence MUST include the FC Network_Header and
the LLC/SNAP header. The other frames MUST NOT include them, as
depicted in figure 3.
First Frame of an IPv6 FC Sequence
+-----------+-------------------+-----------------+-------//--------+
| FC Header | FC Network_Header | LLC/SNAP header | First chunk of |
| | | | the IPv6 Packet |
+-----------+-------------------+-----------------+-------//--------+
Subsequent Frames of an IPv6 FC Sequence
+-----------+-----------------//------------------+
| FC Header | Additional chunk of the IPv6 Packet |
+-----------+----------------//-------------------+
Fig. 3: Optional Headers in an IPv6 FC Sequence
<span class="grey">DeSanti Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc3831">RFC 3831</a> IPv6 over Fibre Channel July 2004</span>
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. FC Classes of Service</span>
This specification uses FC Class 3. IPv6 packets carrying Neighbor
Discovery [<a href="#ref-DISC" title=""Neighbor Discovery for IP Version 6 (IPv6)"">DISC</a>] messages MUST be encapsulated in Class 3 FC frames.
Other IPv6 packets SHOULD use Class 3 as well. The use of other
Classes of service is outside the scope of this specification.
<span class="h3"><a class="selflink" id="section-4.3" href="#section-4.3">4.3</a>. FC Header Code Points</span>
The fields of the Fibre Channel Header are depicted in figure 4. The
D_ID and S_ID fields contain respectively the destination N_Port_ID
and the source N_Port_ID. To encapsulate IPv6 over Fibre Channel the
following code points MUST be used:
- R_CTL: 0x04 (Device_Data frame with Unsolicited Data Information
Category [<a href="#ref-FC-FS" title=""Fibre Channel - Framing and Signaling (FC-FS)"">FC-FS</a>])
- TYPE: 0x05 (IP over Fibre Channel)
- CS_CTL/Prio: 0x0
- DF_CTL: 0x20 (Network_Header) for the first FC frame of an IPv6
Sequence, 0x00 for the following FC frames. If the FC ESP_Header
is used, then 0x60 for the first FC frame of an IPv6 Sequence,
0x40 for the following FC frames.
- F_CTL, SEQ_ID, SEQ_CNT, OX_ID, RX_ID, Parameter: see <a href="#section-10">section 10</a>,
<a href="#section-11">section 11</a>, and [<a href="#ref-FC-FS" title=""Fibre Channel - Framing and Signaling (FC-FS)"">FC-FS</a>] for additional requirements.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| R_CTL | D_ID |
+---------------+---------------+---------------+---------------+
| CS_CTL/Prio | S_ID |
+---------------+---------------+---------------+---------------+
| TYPE | F_CTL |
+---------------+---------------+---------------+---------------+
| SEQ_ID | DF_CTL | SEQ_CNT |
+---------------+---------------+---------------+---------------+
| OX_ID | RX_ID |
+---------------+---------------+---------------+---------------+
| Parameter |
+---------------+---------------+---------------+---------------+
Fig. 4: FC Header Format
<span class="grey">DeSanti Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc3831">RFC 3831</a> IPv6 over Fibre Channel July 2004</span>
<span class="h3"><a class="selflink" id="section-4.4" href="#section-4.4">4.4</a>. FC Network_Header</span>
The fields of the FC Network_Header are depicted in figure 5. For
use with IPv6 the N_Port_Names formats MUST be one of 0x1, 0x2, 0x5,
0xC, 0xD, 0xE, 0xF. IPv6 support for other Name_Identifier formats
is outside the scope of this specification.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+- Destination N_Port_Name -+
| |
+---------------------------------------------------------------+
| |
+- Source N_Port_Name -+
| |
+---------------------------------------------------------------+
Fig. 5: FC Network_Header Format
<span class="h3"><a class="selflink" id="section-4.5" href="#section-4.5">4.5</a>. LLC/SNAP Header</span>
The fields of the LLC/SNAP Header [<a href="#ref-IEEE-LLC" title=""IEEE Standard for Local and Metropolitan Area Networks: Overview and Architecture"">IEEE-LLC</a>] are depicted in figure
6. To encapsulate IPv6 over Fibre Channel the following code points
MUST be used:
- DSAP: 0xAA
- SSAP: 0xAA
- CTRL: 0x03
- OUI: 0x00-00-00
- PID: 0x86-DD
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| DSAP | SSAP | CTRL | OUI |
+---------------+---------------+---------------+---------------+
| OUI | PID |
+---------------+---------------+---------------+---------------+
Fig. 6: LLC/SNAP Header Format
<span class="h3"><a class="selflink" id="section-4.6" href="#section-4.6">4.6</a>. Bit and Byte Ordering</span>
IPv6 packets are mapped to the FC-4 level using the big-endian byte
ordering that corresponds to the standard network byte order or
canonical form.
<span class="grey">DeSanti Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc3831">RFC 3831</a> IPv6 over Fibre Channel July 2004</span>
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Maximum Transfer Unit</span>
The default MTU size for IPv6 [<a href="#ref-IPv6" title=""Internet Protocol, Version 6 (IPv6) Specification"">IPv6</a>] packets over Fibre Channel is
65280 octets. This size may be reduced by a Router Advertisement
[<a href="#ref-DISC" title=""Neighbor Discovery for IP Version 6 (IPv6)"">DISC</a>] containing an MTU option that specifies a smaller MTU, or by
manual configuration of each Nx_Port. However, as required by
[<a href="#ref-IPv6" title=""Internet Protocol, Version 6 (IPv6) Specification"">IPv6</a>], the MTU MUST NOT be lower than 1280 octets. If a Router
Advertisement received on an Nx_Port has an MTU option specifying an
MTU larger than 65280, or larger than a manually configured value,
that MTU option MAY be logged to system management but MUST be
otherwise ignored.
As the default MTU size far exceeds the message sizes typically used
in the Internet, an IPv6 over FC implementation SHOULD implement Path
MTU Discovery [<a href="#ref-PMTUD" title=""Path MTU Discovery for IP version 6"">PMTUD</a>], or at least maintain different MTU values for
on-link and off-link destinations.
For correct operation in a routed environment, it is critically
important to configure an appropriate MTU option in Router
Advertisements.
For correct operation when mixed media (e.g., Ethernet and Fibre
Channel) are bridged together, the smallest MTU of all the media must
be advertised by routers in an MTU option. If there are no routers
present, this MTU must be manually configured in each node which is
connected to a medium with a default MTU larger than the smallest
MTU.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Stateless Address Autoconfiguration</span>
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. IPv6 Interface Identifier and Address Prefix</span>
The IPv6 Interface ID [<a href="#ref-AARCH" title=""Internet Protocol Version 6 (IPv6) Addressing Architecture"">AARCH</a>] for an Nx_Port is based on the EUI-64
address [<a href="#ref-EUI64" title=""Guidelines For 64-bit Global Identifier (EUI-64)"">EUI64</a>] derived from the Nx_Port's N_Port_Name. The IPv6
Interface Identifier is obtained by complementing the Universal/Local
bit of the OUI field of the derived EUI-64 address.
[<a id="ref-FC-FS">FC-FS</a>] specifies a method to map format 0x1 (IEEE 48 bit address),
or 0x2 (IEEE Extended), or 0x5 (IEEE Registered) FC Name_Identifiers
in EUI-64 addresses. This allows the usage of these Name_Identifiers
to support IPv6. [<a href="#ref-FC-FS" title=""Fibre Channel - Framing and Signaling (FC-FS)"">FC-FS</a>] also defines EUI-64 mapped FC
Name_Identifiers (formats 0xC, 0xD, 0xE, and 0xF), that are derived
from an EUI-64 address. It is possible to reverse this address
mapping to obtain the original EUI-64 address in order to support
IPv6.
<span class="grey">DeSanti Standards Track [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc3831">RFC 3831</a> IPv6 over Fibre Channel July 2004</span>
Stateless address autoconfiguration MUST be performed as specified in
[<a href="#ref-ACONF" title=""IPv6 Stateless Address Autoconfiguration"">ACONF</a>]. An IPv6 Address Prefix used for stateless address
autoconfiguration of an Nx_Port MUST have a length of 64 bits.
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>. Generating an Interface ID from a Format 1 N_Port_Name</span>
The Name_Identifier format 0x1 is depicted in figure 7.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0 0 0 1| 0x000 | OUI |
+-------+-------+---------------+---------------+---------------+
| OUI | VSID |
+---------------+---------------+---------------+---------------+
Fig. 7: Format 0x1 Name_Identifier
The EUI-64 address derived from this Name_Identifier has the format
depicted in figure 8 [<a href="#ref-FC-FS" title=""Fibre Channel - Framing and Signaling (FC-FS)"">FC-FS</a>].
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| OUI with complemented U/L bit |0 0 0 1| VSID |
+---------------+---------------+-------+-------+-------+-------+
| VSID | 0x000 |
+---------------+---------------+-------+-------+---------------+
Fig. 8: EUI-64 Address from a Format 0x1 Name_Identifier
The IPv6 Interface Identifier is obtained from this EUI-64 address by
complementing the U/L bit in the OUI field. So the OUI in the IPv6
Interface ID is exactly as in the FC Name_Identifier. The resulting
IPv6 Interface Identifier has local scope [<a href="#ref-AARCH" title=""Internet Protocol Version 6 (IPv6) Addressing Architecture"">AARCH</a>] and the format
depicted in figure 9.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| OUI |0 0 0 1| VSID |
+---------------+---------------+-------+-------+-------+-------+
| VSID | 0x000 |
+---------------+---------------+-------+-------+---------------+
Fig. 9: IPv6 Interface ID from a Format 0x1 Name_Identifier
<span class="grey">DeSanti Standards Track [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc3831">RFC 3831</a> IPv6 over Fibre Channel July 2004</span>
As an example, the FC Name_Identifier 0x10-00-34-63-46-AB-CD-EF
generates the IPv6 Interface Identifier 3463:461A:BCDE:F000.
<span class="h3"><a class="selflink" id="section-6.3" href="#section-6.3">6.3</a>. Generating an Interface ID from a Format 2 N_Port_Name</span>
The Name_Identifier format 0x2 is depicted in figure 10.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0 0 1 0| Vendor Specific | OUI |
+-------+-------+---------------+---------------+---------------+
| OUI | VSID |
+---------------+---------------+---------------+---------------+
Fig. 10: Format 0x2 Name_Identifier
The EUI-64 address derived from this Name_Identifier has the format
depicted in figure 11 [<a href="#ref-FC-FS" title=""Fibre Channel - Framing and Signaling (FC-FS)"">FC-FS</a>].
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| OUI with complemented U/L bit |0 0 1 0| VSID |
+---------------+-----------------------+-------+-------+-------+
| VSID | Vendor Specific |
+---------------+-----------------------+-------+---------------+
Fig. 11: EUI-64 Address from a Format 0x2 Name_Identifier
The IPv6 Interface Identifier is obtained from this EUI-64 address by
complementing the U/L bit in the OUI field. So the OUI in the IPv6
Interface ID is exactly as in the FC Name_Identifier. The resulting
IPv6 Interface Identifier has local scope [<a href="#ref-AARCH" title=""Internet Protocol Version 6 (IPv6) Addressing Architecture"">AARCH</a>] and the format
depicted in figure 12.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| OUI |0 0 1 0| VSID |
+---------------+-----------------------+-------+-------+-------+
| VSID | Vendor Specific |
+---------------+-----------------------+-------+---------------+
Fig. 12: IPv6 Interface ID from a Format 0x2 Name_Identifier
As an example, the FC Name_Identifier 0x27-89-34-63-46-AB-CD-EF
generates the IPv6 Interface Identifier 3463:462A:BCDE:F789.
<span class="grey">DeSanti Standards Track [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc3831">RFC 3831</a> IPv6 over Fibre Channel July 2004</span>
<span class="h3"><a class="selflink" id="section-6.4" href="#section-6.4">6.4</a>. Generating an Interface ID from a Format 5 N_Port_Name</span>
The Name_Identifier format 0x5 is depicted in figure 13.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0 1 0 1| OUI | VSID |
+-------+-------+---------------+---------------+-------+-------+
| VSID |
+---------------+---------------+---------------+---------------+
Fig. 13: Format 0x5 Name_Identifier
The EUI-64 address derived from this Name_Identifier has the format
depicted in figure 14 [<a href="#ref-FC-FS" title=""Fibre Channel - Framing and Signaling (FC-FS)"">FC-FS</a>].
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| OUI with complemented U/L bit |0 1 0 1| VSID |
+---------------+---------------+---------------+-------+-------+
| VSID |
+---------------+---------------+---------------+---------------+
Fig. 14: EUI-64 Address from a Format 0x5 Name_Identifier
The IPv6 Interface Identifier is obtained from this EUI-64 address
complementing the U/L bit in the OUI field. So the OUI in the IPv6
Interface ID is exactly as in the FC Name_Identifier. The resulting
IPv6 Interface Identifier has local scope [<a href="#ref-AARCH" title=""Internet Protocol Version 6 (IPv6) Addressing Architecture"">AARCH</a>] and the format
depicted in figure 15.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| OUI |0 1 0 1| VSID |
+---------------+---------------+---------------+-------+-------+
| VSID |
+---------------+---------------+---------------+---------------+
Fig. 15: IPv6 Interface ID from a Format 0x5 Name_Identifier
As an example, the FC Name_Identifier 0x53-46-34-6A-BC-DE-F7-89
generates the IPv6 Interface Identifier 3463:465A:BCDE:F789.
<span class="grey">DeSanti Standards Track [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc3831">RFC 3831</a> IPv6 over Fibre Channel July 2004</span>
<span class="h3"><a class="selflink" id="section-6.5" href="#section-6.5">6.5</a>. Generating an Interface ID from an EUI-64 mapped N_Port_Name</span>
The EUI-64 mapped Name_Identifiers formats (formats 0xC through 0xF)
are derived from an EUI-64 address by compressing the OUI field of
such addresses. The compression is performed by removing from the
OUI the Universal/Local and Individual/Group bits, and by putting
bits 0 to 5 of the OUI in the first octet of the Name_Identifier, and
bits 8 to 23 of the OUI in the second and third octet of the
Name_Identifier, as shown in figure 16.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|1 1| OUI[0..5] | OUI[8..23] | VSID |
+---+-----------+---------------+---------------+---------------+
| VSID |
+---------------+---------------+---------------+---------------+
Fig. 16: EUI-64 Mapped Name_Identifiers Format
The EUI-64 address used to generate the Name_Identifier shown in
figure 16 has the format depicted in figure 17.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| OUI[0..5] |0 0| OUI[8..23] | VSID |
+-----------+---+---------------+---------------+---------------+
| VSID |
+---------------+---------------+---------------+---------------+
Fig. 17: EUI-64 Address from an EUI-64 Mapped Name_Identifier
The IPv6 Interface Identifier is obtained from this EUI-64 address by
complementing the U/L bit in the OUI field. The resulting IPv6
Interface Identifier has global scope [<a href="#ref-AARCH" title=""Internet Protocol Version 6 (IPv6) Addressing Architecture"">AARCH</a>] and the format depicted
in figure 18.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| OUI[0..5] |1 0| OUI[8..23] | VSID |
+-----------+---+---------------+---------------+---------------+
| VSID |
+---------------+---------------+---------------+---------------+
Fig. 18: IPv6 Interface ID from an EUI-64 Mapped Name_Identifier
<span class="grey">DeSanti Standards Track [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc3831">RFC 3831</a> IPv6 over Fibre Channel July 2004</span>
As an example, the FC Name_Identifier 0xCD-63-46-AB-01-25-78-9A
generates the IPv6 Interface Identifier 3663:46AB:0125:789A.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Link-Local Addresses</span>
The IPv6 link-local address [<a href="#ref-AARCH" title=""Internet Protocol Version 6 (IPv6) Addressing Architecture"">AARCH</a>] for an Nx_Port is formed by
appending the Interface Identifier, as defined in <a href="#section-6">section 6</a>, to the
prefix FE80::/64. The resulting address is depicted in figure 19.
10 bits 54 bits 64 bits
+----------+-----------------------+----------------------------+
|1111111010| (zeros) | Interface Identifier |
+----------+-----------------------+----------------------------+
Fig. 19: IPv6 link-local Address Format
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Address Mapping for Unicast</span>
An Nx_Port has two kinds of Fibre Channel addresses:
- a non-volatile 64-bit address, called N_Port_Name;
- a volatile 24-bit address, called N_Port_ID.
The N_Port_Name is used to uniquely identify the Nx_Port, while the
N_Port_ID is used to route frames to the Nx_Port. Both FC addresses
are required to resolve an IPv6 unicast address. The fact that the
N_Port_ID is volatile implies that an Nx_Port MUST validate the
mapping between its N_Port_Name and N_Port_ID when certain Fibre
Channel events occur (see <a href="#appendix-B">Appendix B</a>).
The procedure for mapping IPv6 unicast addresses into Fibre Channel
link-layer addresses uses the Neighbor Discovery Protocol [<a href="#ref-DISC" title=""Neighbor Discovery for IP Version 6 (IPv6)"">DISC</a>].
The Source/Target Link-layer Address option has the format depicted
in figure 20 when the link layer is Fibre Channel.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length = 2 | Reserved |
+---------------+---------------+---------------+---------------+
| |
+- N_Port_Name -+
| |
+---------------+---------------+---------------+---------------+
| Reserved | N_Port_ID |
+---------------+---------------+---------------+---------------+
Fig. 20: Source/Target Link-layer Address option for Fibre Channel
<span class="grey">DeSanti Standards Track [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc3831">RFC 3831</a> IPv6 over Fibre Channel July 2004</span>
Type: 1 for Source Link-layer address.
2 for Target Link-layer address.
Length: 2 (in units of 8 octets).
N_Port_Name: This field contains the Nx_Port's N_Port_Name.
N_Port_ID: This field contains the Nx_Port's N_Port_ID.
Reserved fields MUST be zero when transmitting, and MUST be ignored
when receiving.
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. Address Mapping for Multicast</span>
By default, all best-effort IPv6 multicast packets MUST be mapped to
FC Sequences addressed to the broadcast N_Port_ID 0xFF-FF-FF. In
particular, datagrams addressed to all-nodes multicast address,
all-routers multicast address, and solicited-node multicast addresses
[<a href="#ref-AARCH" title=""Internet Protocol Version 6 (IPv6) Addressing Architecture"">AARCH</a>] MUST be sent as Class 3 FC Sequences addressed to the
broadcast N_Port_ID 0xFF-FF-FF. In this case, the Destination
N_Port_Name field of the FC Network_Header MUST be set to the value
0x10-00-FF-FF-FF-FF-FF-FF. <a href="#appendix-A">Appendix A</a> specifies how to transmit a
Class 3 broadcast FC Sequence over various Fibre Channel topologies.
An Nx_Port supporting IPv6 MUST be able to map a received broadcast
Class 3 Device_Data FC frame to an implicit Port Login context in
order to handle IPv6 multicast packets. The receive data field size
of this implicit Port Login MUST be the same across all the Nx_Ports
connected to the same Fabric, otherwise FC broadcast transmission
does not work. In order to reduce the need for FC Sequence
segmentation, the receive data field size of this implicit Port Login
SHOULD be 1024 octets. This receive data field size requirement
applies to broadcast Device_Data FC frames, not to ELSs.
Receiving an FC Sequence carrying an IPv6 multicast packet MAY
trigger some additional processing by the Nx_Port if that IPv6 packet
requires a unicast reply. In this case, if a valid Port Login to the
Nx_Port that sent the IPv6 multicast packet does not exist, the
Nx_Port MUST perform such a Port Login, and then use it for the
unicast IPv6 reply. In the case of Neighbor Discovery messages
[<a href="#ref-DISC" title=""Neighbor Discovery for IP Version 6 (IPv6)"">DISC</a>], the N_Port_ID to which the Port Login is directed is taken
from the N_Port_ID field of the Source/Target Link-layer Address
option.
As an example, an Nx_Port processes a received broadcast FC Sequence
carrying an IPv6 multicast unsolicited router advertisement [<a href="#ref-DISC" title=""Neighbor Discovery for IP Version 6 (IPv6)"">DISC</a>]
simply by passing the carried IPv6 packet to the IPv6 layer.
Instead, if a received broadcast FC Sequence carries an IPv6
multicast solicitation message [<a href="#ref-DISC" title=""Neighbor Discovery for IP Version 6 (IPv6)"">DISC</a>] requiring a unicast reply, and
<span class="grey">DeSanti Standards Track [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc3831">RFC 3831</a> IPv6 over Fibre Channel July 2004</span>
no valid Port Login exists with the Nx_Port sender of the multicast
packet, then a Port Login MUST be performed in order to send the
unicast reply message. If a received broadcast FC Sequence carries
an IPv6 multicast solicitation message [<a href="#ref-DISC" title=""Neighbor Discovery for IP Version 6 (IPv6)"">DISC</a>] requiring a multicast
reply, the reply is sent to the broadcast N_Port_ID 0xFF-FF-FF.
Best-effort IPv6 multicast for other multicast group addresses MAY
use Fibre Channel Multicast Groups [<a href="#ref-FC-FS" title=""Fibre Channel - Framing and Signaling (FC-FS)"">FC-FS</a>], if supported by the
particular FC topology and implementation.
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. Sequence Management</span>
FC Sequences are REQUIRED to be non-streamed. In order to avoid
missing FC frame aliasing by Sequence_ID reuse, an Nx_Port supporting
IPv6 is REQUIRED to use continuously increasing SEQ_CNT [<a href="#ref-FC-FS" title=""Fibre Channel - Framing and Signaling (FC-FS)"">FC-FS</a>].
Each Exchange MUST start with SEQ_CNT = 0 in the first frame, and
every frame transmitted after that MUST increment the previous
SEQ_CNT by one. Any frames received from the other N_Port in the
Exchange shall have no effect on the transmitted SEQ_CNT.
<span class="h2"><a class="selflink" id="section-11" href="#section-11">11</a>. Exchange Management</span>
To transfer IPv6 packets, each Nx_Port MUST have a dedicated Exchange
for sending data to each Nx_Port in the network and a dedicated
Exchange for receiving data from each Nx_Port.
An Exchange Responder is not required to assign RX_IDs. If an RX_ID
of 0xFFFF is assigned, the Exchange Responder is identifying
Exchanges based on S_ID / D_ID / OX_ID only.
When an Exchange is created between two Nx_Ports for unicast IPv6
packets, it remains active while the Nx_Ports are logged in with each
other. Each FC broadcast and ELS [<a href="#ref-FC-FS" title=""Fibre Channel - Framing and Signaling (FC-FS)"">FC-FS</a>] SHOULD use a separate short
lived Exchange.
For IPv6, Exchanges MUST NOT transfer Sequence Initiative, because
they are used in a unidirectional mode. The Sequence Initiative bit
in the F_CTL field of the FC Header [<a href="#ref-FC-FS" title=""Fibre Channel - Framing and Signaling (FC-FS)"">FC-FS</a>] MUST be set to 0.
The mechanism for aging or expiring exchanges based on activity,
timeout, or other methods is outside the scope of this document.
The Exchange Originator MAY terminate Exchanges by setting the F_CTL
LS bit [<a href="#ref-FC-FS" title=""Fibre Channel - Framing and Signaling (FC-FS)"">FC-FS</a>]. Exchanges MAY be torn down by the Exchange
Originator or Exchange Responder by using the ABTS (Abort Sequence)
protocol [<a href="#ref-FC-FS" title=""Fibre Channel - Framing and Signaling (FC-FS)"">FC-FS</a>]. IPv6 Exchanges SHOULD NOT be terminated by Logout,
since this may terminate active Exchanges on other FC-4s [<a href="#ref-FC-FS" title=""Fibre Channel - Framing and Signaling (FC-FS)"">FC-FS</a>].
<span class="grey">DeSanti Standards Track [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc3831">RFC 3831</a> IPv6 over Fibre Channel July 2004</span>
<span class="h2"><a class="selflink" id="section-12" href="#section-12">12</a>. Security Considerations</span>
IPv6 does not introduce any additional security concerns beyond those
that already exist within the Fibre Channel protocols. Zoning
techniques based on FC Name Server masking (soft zoning) do not work
with IPv6, because IPv6 over Fibre Channel does not use the FC Name
Server. The FC ESP_Header [<a href="#ref-FC-FS" title=""Fibre Channel - Framing and Signaling (FC-FS)"">FC-FS</a>] may be used to secure the FC
frames composing FC Sequences carrying IPv6 packets. All the
techniques defined to secure IPv6 traffic at the IPv6 layer may be
used in a Fibre Channel environment.
<span class="h2"><a class="selflink" id="section-13" href="#section-13">13</a>. Acknowledgments</span>
The author would like to acknowledge the authors of [<a href="#ref-IPFC" title=""IP and ARP over Fibre Channel"">IPFC</a>], [<a href="#ref-ETHER" title=""Transmission of IPv6 Packets over Ethernet Networks"">ETHER</a>],
and [<a href="#ref-IPv6-1394" title=""Transmission of IPv6 Packets over IEEE 1394 Networks"">IPv6-1394</a>], since some part of this document has been derived
from them, as well as the ANSI INCITS T11.3 Task Group members who
reviewed this document.
<span class="h2"><a class="selflink" id="section-14" href="#section-14">14</a>. References</span>
<span class="h3"><a class="selflink" id="section-14.1" href="#section-14.1">14.1</a>. Normative References</span>
[<a id="ref-FC-FS">FC-FS</a>] ANSI INCITS 373-2003, "Fibre Channel - Framing and
Signaling (FC-FS)".
[<a id="ref-FC-AL-2">FC-AL-2</a>] ANSI INCITS 332-1999, "Fibre Channel - Arbitrated Loop-2
(FC-AL-2)".
[<a id="ref-IPv6">IPv6</a>] Deering, S. and R. Hinden, "Internet Protocol, Version 6
(IPv6) Specification", <a href="./rfc2460">RFC 2460</a>, December 1998.
[<a id="ref-AARCH">AARCH</a>] Hinden, R. and S. Deering, "Internet Protocol Version 6
(IPv6) Addressing Architecture", <a href="./rfc3513">RFC 3513</a>, April 2003.
[<a id="ref-ACONF">ACONF</a>] Thomson, S. and T. Narten, "IPv6 Stateless Address
Autoconfiguration", <a href="./rfc2462">RFC 2462</a>, December 1998.
[<a id="ref-DISC">DISC</a>] Narten, T., Nordmark, E., and W. Simpson, "Neighbor
Discovery for IP Version 6 (IPv6)", <a href="./rfc2461">RFC 2461</a>, December
1998.
[<a id="ref-PMTUD">PMTUD</a>] McCann, J., Deering, S., and J. Mogul, "Path MTU
Discovery for IP version 6", <a href="./rfc1981">RFC 1981</a>, August 1996.
[<a id="ref-IEEE-LLC">IEEE-LLC</a>] IEEE Std 802-2001, "IEEE Standard for Local and
Metropolitan Area Networks: Overview and Architecture".
<span class="grey">DeSanti Standards Track [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc3831">RFC 3831</a> IPv6 over Fibre Channel July 2004</span>
[<a id="ref-KEYWORDS">KEYWORDS</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
<span class="h3"><a class="selflink" id="section-14.2" href="#section-14.2">14.2</a>. Informative References</span>
[<a id="ref-IPFC">IPFC</a>] Rajagopal, M., Bhagwat, R., and W. Rickard, "IP and ARP
over Fibre Channel", <a href="./rfc2625">RFC 2625</a>, June 1999.
[<a id="ref-AH">AH</a>] Kent, S. and R. Atkinson, "IP Authentication Header", <a href="./rfc2402">RFC</a>
<a href="./rfc2402">2402</a>, November 1998.
[<a id="ref-ESP">ESP</a>] Kent, S. and R. Atkinson, "IP Encapsulating Security
Payload (ESP)", <a href="./rfc2406">RFC 2406</a>, November 1998.
[<a id="ref-EUI64">EUI64</a>] "Guidelines For 64-bit Global Identifier (EUI-64)",
<a href="http://standards.ieee.org/db/oui/tutorials/EUI64.html">http://standards.ieee.org/db/oui/tutorials/EUI64.html</a>
[<a id="ref-ETHER">ETHER</a>] Crawford, M., "Transmission of IPv6 Packets over Ethernet
Networks", <a href="./rfc2464">RFC 2464</a>, December 1998.
[<a id="ref-IPv6-1394">IPv6-1394</a>] Fujisawa, K. and A. Onoe, "Transmission of IPv6 Packets
over IEEE 1394 Networks", <a href="./rfc3146">RFC 3146</a>, October 2001.
<span class="grey">DeSanti Standards Track [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc3831">RFC 3831</a> IPv6 over Fibre Channel July 2004</span>
<span class="h2"><a class="selflink" id="appendix-A" href="#appendix-A">A</a>. Transmission of a Broadcast FC Sequence over FC Topologies</span>
<span class="h3"><a class="selflink" id="appendix-A.1" href="#appendix-A.1">A.1</a>. Point-to-Point Topology</span>
No particular mechanisms are required for this case. The Nx_Port
connected at the other side of the cable receives the broadcast FC
Sequence having D_ID 0xFFFFFF.
<span class="h3"><a class="selflink" id="appendix-A.2" href="#appendix-A.2">A.2</a>. Private Loop Topology</span>
An NL_Port attached to a private loop MUST transmit a Class 3
broadcast FC Sequence by using the OPN(fr) primitive signal
[<a href="#ref-FC-AL-2" title=""Fibre Channel - Arbitrated Loop-2 (FC-AL-2)"">FC-AL-2</a>].
a) The source NL_Port first sends an Open Broadcast Replicate
(OPN(fr)) primitive signal, forcing all the NL_Ports in the loop
(except itself) to replicate the frames that they receive while
examining the FC Header's D_ID field.
b) The source NL_Port then removes the OPN(fr) signal when it returns
to it.
c) The source NL_Port then sends the Class 3 broadcast FC Sequence
having D_ID 0xFFFFFF.
<span class="h3"><a class="selflink" id="appendix-A.3" href="#appendix-A.3">A.3</a>. Public Loop Topology</span>
An NL_Port attached to a public loop MUST NOT use the OPN(fr)
primitive signal. Rather, it MUST send the Class 3 broadcast FC
Sequence having D_ID 0xFFFFFF to the FL_Port at AL_PA = 0x00
[<a href="#ref-FC-AL-2" title=""Fibre Channel - Arbitrated Loop-2 (FC-AL-2)"">FC-AL-2</a>].
The Fabric propagates the broadcast to all other FC_Ports [<a href="#ref-FC-FS" title=""Fibre Channel - Framing and Signaling (FC-FS)"">FC-FS</a>],
including the FL_Port which the broadcast arrives on. This includes
all F_Ports, and other FL_Ports.
Each FL_Port propagates the broadcast by using the primitive signal
OPN(fr), in order to prepare the loop to receive the broadcast
sequence.
<span class="h3"><a class="selflink" id="appendix-A.4" href="#appendix-A.4">A.4</a>. Fabric Topology</span>
An N_Port connected to an F_Port MUST transmit the Class 3 broadcast
FC Sequence having D_ID 0xFFFFFF to the F_Port. The Fabric
propagates the broadcast to all other FC_Ports [<a href="#ref-FC-FS" title=""Fibre Channel - Framing and Signaling (FC-FS)"">FC-FS</a>].
<span class="grey">DeSanti Standards Track [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc3831">RFC 3831</a> IPv6 over Fibre Channel July 2004</span>
<span class="h2"><a class="selflink" id="appendix-B" href="#appendix-B">B</a>. Validation of the <N_Port_Name, N_Port_ID> mapping</span>
<span class="h3"><a class="selflink" id="appendix-B.1" href="#appendix-B.1">B.1</a>. Overview</span>
At all times, the <N_Port_Name, N_Port_ID> mapping must be valid
before use.
After an FC link interruption occurs, the N_Port_ID of an Nx_Port may
change, as well as the N_Port_IDs of all other Nx_Ports that have
previously performed Port Login with this Nx_Port. Because of this,
address validation is required after a LIP in a loop topology
[<a href="#ref-FC-AL-2" title=""Fibre Channel - Arbitrated Loop-2 (FC-AL-2)"">FC-AL-2</a>] or after NOS/OLS in a point-to-point topology [<a href="#ref-FC-FS" title=""Fibre Channel - Framing and Signaling (FC-FS)"">FC-FS</a>].
N_Port_IDs do not change as a result of Link Reset (LR) [<a href="#ref-FC-FS" title=""Fibre Channel - Framing and Signaling (FC-FS)"">FC-FS</a>], thus
address validation is not required in this case.
<span class="h3"><a class="selflink" id="appendix-B.2" href="#appendix-B.2">B.2</a>. FC Layer Address Validation in a Point-to-Point Topology</span>
No validation is required after LR. In a point-to-point topology,
NOS/OLS causes implicit Logout of each N_Port and after a NOS/OLS
each N_Port must again perform a Port Login [<a href="#ref-FC-FS" title=""Fibre Channel - Framing and Signaling (FC-FS)"">FC-FS</a>].
<span class="h3"><a class="selflink" id="appendix-B.3" href="#appendix-B.3">B.3</a>. FC Layer Address Validation in a Private Loop Topology</span>
After a LIP [<a href="#ref-FC-AL-2" title=""Fibre Channel - Arbitrated Loop-2 (FC-AL-2)"">FC-AL-2</a>], an NL_Port must not transmit any data to
another NL_Port until the address of the other port has been
validated. The validation consists of completing either ADISC or
PDISC [<a href="#ref-FC-FS" title=""Fibre Channel - Framing and Signaling (FC-FS)"">FC-FS</a>].
For a requester, this specification prohibits PDISC and requires
ADISC. As a responder, an implementation may need to respond to both
ADISC and PDISC for compatibility with other FC specifications.
If the three FC addresses (N_Port_ID, N_Port_Name, Node_Name) of a
logged remote NL_Port exactly match the values prior to the LIP, then
any active Exchange with that NL_Port may continue.
If any of the three FC addresses has changed, then the remote NL_Port
must be logged out.
If an NL_Port's N_Port_ID changes after a LIP, then all active logged
in NL_Ports must be logged out.
<span class="grey">DeSanti Standards Track [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc3831">RFC 3831</a> IPv6 over Fibre Channel July 2004</span>
<span class="h3"><a class="selflink" id="appendix-B.4" href="#appendix-B.4">B.4</a>. FC Layer Address Validation in a Public Loop Topology</span>
A FAN ELS may be sent by the Fabric to all known previously logged in
NL_Ports following an initialization event. Therefore, after a LIP
[<a href="#ref-FC-AL-2" title=""Fibre Channel - Arbitrated Loop-2 (FC-AL-2)"">FC-AL-2</a>], NL_Ports may wait for this notification to arrive, or they
may perform an FLOGI.
If the F_Port_Name and Fabric_Name contained in the FAN ELS or FLOGI
response exactly match the values before the LIP and if the AL_PA
[<a href="#ref-FC-AL-2" title=""Fibre Channel - Arbitrated Loop-2 (FC-AL-2)"">FC-AL-2</a>] obtained by the NL_Port is the same as the one before the
LIP, then the port may resume all Exchanges. If not, then FLOGI must
be performed with the Fabric and all logged in Nx_Ports must be
logged out.
A public loop NL_Port must perform the private loop validation as
specified in section B.3 to any NL_Port on the local loop that has an
N_Port_ID of the form 0x00-00-XX.
<span class="h3"><a class="selflink" id="appendix-B.5" href="#appendix-B.5">B.5</a>. FC Layer Address Validation in a Fabric Topology</span>
No validation is required after LR (link reset).
After NOS/OLS, an N_Port must perform FLOGI. If, after FLOGI, the
N_Port's N_Port_ID, the F_Port_Name, and the Fabric_Name are the same
as before the NOS/OLS, then the N_Port may resume all Exchanges. If
not, all logged in Nx_Ports must be logged out [<a href="#ref-FC-FS" title=""Fibre Channel - Framing and Signaling (FC-FS)"">FC-FS</a>].
<span class="h2"><a class="selflink" id="appendix-C" href="#appendix-C">C</a>. Fibre Channel Bit and Byte Numbering Guidance</span>
Both Fibre Channel and IETF standards use the same byte transmission
order. However, the bit numbering is different.
Fibre Channel bit numbering can be observed if the data structure
heading shown in figure 21 is cut and pasted at the top of the
figures present in this document.
3 2 1 0
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Fig. 21: Fibre Channel Bit Numbering
<span class="grey">DeSanti Standards Track [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc3831">RFC 3831</a> IPv6 over Fibre Channel July 2004</span>
Author's Address
Claudio DeSanti
Cisco Systems, Inc.
170 W. Tasman Dr.
San Jose, CA 95134
USA
Phone: +1 408 853-9172
EMail: cds@cisco.com
<span class="grey">DeSanti Standards Track [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc3831">RFC 3831</a> IPv6 over Fibre Channel July 2004</span>
Full Copyright Statement
Copyright (C) The Internet Society (2004). This document is subject
to the rights, licenses and restrictions contained in <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a>, and
except as set forth therein, the authors retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and <a href="https://www.rfc-editor.org/bcp/bcp79">BCP 79</a>.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
<a href="http://www.ietf.org/ipr">http://www.ietf.org/ipr</a>.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at ietf-
ipr@ietf.org.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
DeSanti Standards Track [Page 24]
</pre>
|