1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
|
<pre>Network Working Group E. Mannie
Request for Comments: 3946 Consultant
Category: Standards Track D. Papadimitriou
Alcatel
October 2004
<span class="h1">Generalized Multi-Protocol Label Switching (GMPLS) Extensions for</span>
<span class="h1">Synchronous Optical Network (SONET) and</span>
<span class="h1">Synchronous Digital Hierarchy (SDH) Control</span>
Status of this Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2004).
Abstract
This document is a companion to the Generalized Multi-Protocol Label
Switching (GMPLS) signaling. It defines the Synchronous Optical
Network (SONET)/Synchronous Digital Hierarchy (SDH) technology
specific information needed when using GMPLS signaling.
Table of Contents
<a href="#section-1">1</a>. Introduction ................................................. <a href="#page-2">2</a>
<a href="#section-2">2</a>. SONET and SDH Traffic Parameters ............................. <a href="#page-2">2</a>
<a href="#section-2.1">2.1</a>. SONET/SDH Traffic Parameters ........................... <a href="#page-3">3</a>
<a href="#section-2.2">2.2</a>. RSVP-TE Details ........................................ <a href="#page-9">9</a>
<a href="#section-2.3">2.3</a>. CR-LDP Details ......................................... <a href="#page-9">9</a>
<a href="#section-3">3</a>. SONET and SDH Labels ......................................... <a href="#page-10">10</a>
<a href="#section-4">4</a>. Acknowledgments .............................................. <a href="#page-15">15</a>
<a href="#section-5">5</a>. Security Considerations ...................................... <a href="#page-16">16</a>
<a href="#section-6">6</a>. IANA Considerations .......................................... <a href="#page-16">16</a>
<a href="#section-7">7</a>. References ................................................... <a href="#page-16">16</a>
<a href="#section-7.1">7.1</a>. Normative References ................................... <a href="#page-16">16</a>
Appendix 1 - Signal Type Values Extension for VC-3 ............... <a href="#page-18">18</a>
Annex 1 - Examples ............................................... <a href="#page-18">18</a>
Contributors ..................................................... <a href="#page-21">21</a>
Authors' Addresses ............................................... <a href="#page-25">25</a>
Full Copyright Statement ......................................... <a href="#page-26">26</a>
<span class="grey">Mannie & Papadimitriou Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc3946">RFC 3946</a> GMPLS Extensions for SONET/SDH Control October 2004</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
As described in [<a href="./rfc3945" title=""Generalized Multiprotocol Label Switching (GMPLS) Architecture"">RFC3945</a>], Generalized MPLS (GMPLS) extends MPLS from
supporting packet (Packet Switching Capable - PSC) interfaces and
switching to include support of four new classes of interfaces and
switching: Layer-2 Switch Capable (L2SC), Time-Division Multiplex
(TDM), Lambda Switch Capable (LSC) and Fiber-Switch Capable (FSC). A
functional description of the extensions to MPLS signaling needed to
support the new classes of interfaces and switching is provided in
[<a href="./rfc3471" title=""Generalized Multi-Protocol Label Switching (MPLS) Signaling Functional Description"">RFC3471</a>]. [<a href="./rfc3473" title=""Generalized Multi-Protocol Label Switching (MPLS) Signaling - Resource ReserVation Protocol Traffic Engineering (RSVP-TE) Extensions"">RFC3473</a>] describes RSVP-TE specific formats and
mechanisms needed to support all five classes of interfaces, and CR-
LDP extensions can be found in [<a href="./rfc3472" title=""Generalized Multi-Protocol Label Switching (MPLS) Signaling - Constraint-based Routed Label Distribution Protocol (CR-LDP) Extensions"">RFC3472</a>]. This document presents
details that are specific to Synchronous Optical Network
(SONET)/Synchronous Digital Hierarchy (SDH). Per [<a href="./rfc3471" title=""Generalized Multi-Protocol Label Switching (MPLS) Signaling Functional Description"">RFC3471</a>],
SONET/SDH specific parameters are carried in the signaling protocol
in traffic parameter specific objects.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
Moreover, the reader is assumed to be familiar with the terminology
in ANSI [<a href="#ref-T1.105" title=""Synchronous Optical Network (SONET): Basic Description Including Multiplex Structure, Rates, and Formats"">T1.105</a>], ITU-T [<a href="#ref-G.707" title=""Network Node Interface for the Synchronous Digital Hierarchy"">G.707</a>] as well as [<a href="./rfc3471" title=""Generalized Multi-Protocol Label Switching (MPLS) Signaling Functional Description"">RFC3471</a>], [<a href="./rfc3472" title=""Generalized Multi-Protocol Label Switching (MPLS) Signaling - Constraint-based Routed Label Distribution Protocol (CR-LDP) Extensions"">RFC3472</a>], and
[<a href="./rfc3473" title=""Generalized Multi-Protocol Label Switching (MPLS) Signaling - Resource ReserVation Protocol Traffic Engineering (RSVP-TE) Extensions"">RFC3473</a>]. The following abbreviations are used in this document:
DCC: Data Communications Channel.
LOVC: Lower Order Virtual Container
HOVC: Higher Order Virtual Container
MS: Multiplex Section.
MSOH: Multiplex Section overhead.
POH: Path overhead.
RS: Regenerator Section.
RSOH: Regenerator section overhead.
SDH: Synchronous digital hierarchy.
SOH: Section overhead.
SONET: Synchronous Optical Network.
SPE: Synchronous Payload Envelope.
STM(-N): Synchronous Transport Module (-N) (SDH).
STS(-N): Synchronous Transport Signal-Level N (SONET).
VC-n: Virtual Container-n (SDH).
VTn: Virtual Tributary-n (SONET).
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. SONET and SDH Traffic Parameters</span>
This section defines the GMPLS traffic parameters for SONET/SDH. The
protocol specific formats, for the SONET/SDH-specific RSVP-TE objects
and CR-LDP TLVs are described in sections <a href="#section-2.2">2.2</a> and <a href="#section-2.3">2.3</a> respectively.
<span class="grey">Mannie & Papadimitriou Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc3946">RFC 3946</a> GMPLS Extensions for SONET/SDH Control October 2004</span>
These traffic parameters specify indeed a base set of capabilities
for SONET ANSI [<a href="#ref-T1.105" title=""Synchronous Optical Network (SONET): Basic Description Including Multiplex Structure, Rates, and Formats"">T1.105</a>] and SDH ITU-T [<a href="#ref-G.707" title=""Network Node Interface for the Synchronous Digital Hierarchy"">G.707</a>] such as concatenation
and transparency. Other documents may further enhance this set of
capabilities in the future. For instance, signaling for SDH over PDH
ITU-T G.832 or sub-STM-0 ITU-T G.708 interfaces could be defined.
The traffic parameters defined hereafter (see <a href="#section-2.1">Section 2.1</a>) MUST be
used when the label is encoded as SUKLM as defined in this memo (see
<a href="#section-3">Section 3</a>). They MUST also be used when requesting one of Section/RS
or Line/MS overhead transparent STS-1/STM-0, STS-3*N/STM-N (N=1, 4,
16, 64, 256) signals.
The traffic parameters and label encoding defined in <a href="./rfc3471#section-3.2">[RFC3471],
Section 3.2</a>, MUST be used for fully transparent STS-1/STM-0,
STS-3*N/STM-N (N=1, 4, 16, 64, 256) signal requests. A fully
transparent signal is one for which all overhead is left unmodified
by intermediate nodes, i.e., when all defined Transparency (T) bits
would be set if the traffic parameters defined in <a href="#section-2.1">section 2.1</a> were
used.
<span class="h3"><a class="selflink" id="section-2.1" href="#section-2.1">2.1</a>. SONET/SDH Traffic Parameters</span>
The traffic parameters for SONET/SDH are organized as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Signal Type | RCC | NCC |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| NVC | Multiplier (MT) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Transparency (T) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Profile (P) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Annex 1 lists examples of SONET and SDH signal coding.
Signal Type (ST): 8 bits
This field indicates the type of Elementary Signal that comprises the
requested LSP. Several transforms can be applied successively on the
Elementary Signal to build the Final Signal being actually requested
for the LSP.
Each transform application is optional and must be ignored if zero,
except the Multiplier (MT) that cannot be zero and is ignored if
equal to one.
<span class="grey">Mannie & Papadimitriou Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc3946">RFC 3946</a> GMPLS Extensions for SONET/SDH Control October 2004</span>
Transforms must be applied strictly in the following order:
- First, contiguous concatenation (by using the RCC and NCC fields)
can be optionally applied on the Elementary Signal, resulting in a
contiguously concatenated signal.
- Second, virtual concatenation (by using the NVC field) can be
optionally applied on the Elementary Signal resulting in a
virtually concatenated signal.
- Third, some transparency (by using the Transparency field) can be
optionally specified when requesting a frame as signal rather than
an SPE or VC based signal.
- Fourth, a multiplication (by using the Multiplier field) can be
optionally applied either directly on the Elementary Signal, or on
the contiguously concatenated signal obtained from the first
phase, or on the virtually concatenated signal obtained from the
second phase, or on these signals combined with some transparency.
Permitted Signal Type values for SONET/SDH are:
Value Type (Elementary Signal)
----- ------------------------
1 VT1.5 SPE / VC-11
2 VT2 SPE / VC-12
3 VT3 SPE
4 VT6 SPE / VC-2
5 STS-1 SPE / VC-3
6 STS-3c SPE / VC-4
7 STS-1 / STM-0 (only when requesting transparency)
8 STS-3 / STM-1 (only when requesting transparency)
9 STS-12 / STM-4 (only when requesting transparency)
10 STS-48 / STM-16 (only when requesting transparency)
11 STS-192 / STM-64 (only when requesting transparency)
12 STS-768 / STM-256 (only when requesting transparency)
A dedicated signal type is assigned to a SONET STS-3c SPE instead of
coding it as a contiguous concatenation of three STS-1 SPEs. This is
done in order to provide easy interworking between SONET and SDH
signaling.
Appendix 1 adds one signal type (optional) to the above values.
Requested Contiguous Concatenation (RCC): 8 bits
This field is used to request the optional SONET/SDH contiguous
concatenation of the Elementary Signal.
<span class="grey">Mannie & Papadimitriou Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc3946">RFC 3946</a> GMPLS Extensions for SONET/SDH Control October 2004</span>
This field is a vector of flags. Each flag indicates the support of
a particular type of contiguous concatenation. Several flags can be
set at the same time to indicate a choice.
These flags allow an upstream node to indicate to a downstream node
the different types of contiguous concatenation that it supports.
However, the downstream node decides which one to use according to
its own rules.
A downstream node receiving simultaneously more than one flag chooses
a particular type of contiguous concatenation, if any supported, and
based on criteria that are out of this document scope. A downstream
node that doesn't support any of the concatenation types indicated by
the field must refuse the LSP request. In particular, it must refuse
the LSP request if it doesn't support contiguous concatenation at
all.
When several flags have been set, the upstream node retrieves the
(single) type of contiguous concatenation the downstream node has
selected by looking at the position indicated by the first label and
the number of label(s) as returned by the downstream node (see also
<a href="#section-3">Section 3</a>).
The entire field is set to zero to indicate that no contiguous
concatenation is requested at all (default value). A non-zero field
indicates that some contiguous concatenation is requested.
The following flag is defined:
Flag 1 (bit 1): Standard contiguous concatenation.
Flag 1 indicates that the standard SONET/SDH contiguous concatenation
as defined in [<a href="#ref-T1.105" title=""Synchronous Optical Network (SONET): Basic Description Including Multiplex Structure, Rates, and Formats"">T1.105</a>]/[<a href="#ref-G.707" title=""Network Node Interface for the Synchronous Digital Hierarchy"">G.707</a>] is supported. Note that bit 1 is the
low order bit. Other flags are reserved for extensions, if not used
they must be set to zero when sent, and should be ignored when
received.
See note 1 hereafter in the section on the NCC about the SONET
contiguous concatenation of STS-1 SPEs when the number of components
is a multiple of three.
Number of Contiguous Components (NCC): 16 bits
This field indicates the number of identical SONET SPEs/SDH VCs
(i.e., Elementary Signal) that are requested to be concatenated, as
specified in the RCC field.
<span class="grey">Mannie & Papadimitriou Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc3946">RFC 3946</a> GMPLS Extensions for SONET/SDH Control October 2004</span>
Note 1: when requesting a SONET STS-Nc SPE with N=3*X, the
Elementary Signal to use must always be an STS-3c_SPE signal type
and the value of NCC must always be equal to X. This allows also
facilitating the interworking between SONET and SDH. In
particular, it means that the contiguous concatenation of three
STS-1 SPEs can not be requested because according to this
specification, this type of signal must be coded using the STS-3c
SPE signal type.
Note 2: when requesting a transparent STS-N/STM-N signal
limited to a single contiguously concatenated STS-Nc_SPE/VC-4-Nc,
the signal type must be STS-N/STM-N, RCC with flag 1 and NCC set
to 1.
The NCC value must be consistent with the type of contiguous
concatenation being requested in the RCC field. In particular, this
field is irrelevant if no contiguous concatenation is requested (RCC
= 0), in that case it must be set to zero when sent, and should be
ignored when received. A RCC value different from 0 must imply a
number of contiguous components greater than 1.
Number of Virtual Components (NVC): 16 bits
This field indicates the number of signals that are requested to be
virtually concatenated. These signals are all of the same type by
definition. They are Elementary Signal SPEs/VCs for which signal
types are defined in this document, i.e., VT1.5_SPE/VC-11,
VT2_SPE/VC-12, VT3_SPE, VT6_SPE/VC-2, STS-1_SPE/VC-3 or
STS-3c_SPE/VC-4.
This field is set to 0 (default value) to indicate that no virtual
concatenation is requested.
Multiplier (MT): 16 bits
This field indicates the number of identical signals that are
requested for the LSP, i.e., that form the Final Signal. These
signals can be either identical Elementary Signals, or identical
contiguously concatenated signals, or identical virtually
concatenated signals. Note that all these signals belong thus to the
same LSP.
The distinction between the components of multiple virtually
concatenated signals is done via the order of the labels that are
specified in the signaling. The first set of labels must describe
the first component (set of individual signals belonging to the first
<span class="grey">Mannie & Papadimitriou Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc3946">RFC 3946</a> GMPLS Extensions for SONET/SDH Control October 2004</span>
virtual concatenated signal), the second set must describe the second
component (set of individual signals belonging to the second virtual
concatenated signal) and so on.
This field is set to one (default value) to indicate that exactly one
instance of a signal is being requested. Intermediate and egress
nodes MUST verify that the node itself and the interfaces on which
the LSP will be established can support the requested multiplier
value. If the requested values can not be supported, the receiver
node MUST generate a PathErr/NOTIFICATION message (see <a href="#section-2.2">Section</a>
<a href="#section-2.2">2.2</a>/2.3, respectively).
Zero is an invalid value. If received, the node MUST generate a
PathErr/NOTIFICATION message (see <a href="#section-2.2">Section 2.2</a>/2.3, respectively).
Note 1: when requesting a transparent STS-N/STM-N signal limited to a
single contiguously concatenated STS-Nc-SPE/VC-4-Nc, the multiplier
field MUST be equal to 1 (only valid value).
Transparency (T): 32 bits
This field is a vector of flags that indicates the type of
transparency being requested. Several flags can be combined to
provide different types of transparency. Not all combinations are
necessarily valid. The default value for this field is zero, i.e.,
no transparency requested.
Transparency, as defined from the point of view of this signaling
specification, is only applicable to the fields in the SONET/SDH
frame overheads. In the SONET case, these are the fields in the
Section Overhead (SOH), and the Line Overhead (LOH). In the SDH
case, these are the fields in the Regenerator Section Overhead
(RSOH), the Multiplex Section overhead (MSOH), and the pointer fields
between the two. With SONET, the pointer fields are part of the LOH.
Note as well that transparency is only applicable when using the
following Signal Types: STS-1/STM-0, STS-3/STM-1, STS-12/STM-4,
STS-48/STM-16, STS-192/STM-64 and STS-768/STM-256. At least one
transparency type must be specified when requesting such a signal
type.
Transparency indicates precisely which fields in these overheads must
be delivered unmodified at the other end of the LSP. An ingress LSR
requesting transparency will pass these overhead fields that must be
delivered to the egress LSR without any change. From the ingress and
egress LSRs point of views, these fields must be seen as unmodified.
<span class="grey">Mannie & Papadimitriou Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc3946">RFC 3946</a> GMPLS Extensions for SONET/SDH Control October 2004</span>
Transparency is not applied at the interfaces with the initiating and
terminating LSRs, but is only applied between intermediate LSRs.
The transparency field is used to request an LSP that supports the
requested transparency type; it may also be used to setup the
transparency process to be applied at each intermediate LSR.
The different transparency flags are the following:
Flag 1 (bit 1): Section/Regenerator Section layer.
Flag 2 (bit 2): Line/Multiplex Section layer.
Where bit 1 is the low order bit. Other flags are reserved, they
should be set to zero when sent, and should be ignored when received.
A flag is set to one to indicate that the corresponding transparency
is requested.
Intermediate and egress nodes MUST verify that the node itself and
the interfaces on which the LSP will be established can support the
requested transparency. If the requested flags can not be supported,
the receiver node MUST generate a PathErr/NOTIFICATION message (see
<a href="#section-2.2">Section 2.2</a>/2.3, respectively).
Section/Regenerator Section layer transparency means that the entire
frames must be delivered unmodified. This implies that pointers
cannot be adjusted. When using Section/Regenerator Section layer
transparency all other flags MUST be ignored.
Line/Multiplex Section layer transparency means that the LOH/MSOH
must be delivered unmodified. This implies that pointers cannot be
adjusted.
Profile (P): 32 bits
This field is intended to indicate particular capabilities that must
be supported for the LSP, for example monitoring capabilities.
No standard profile is currently defined and this field SHOULD be set
to zero when transmitted and SHOULD be ignored when received.
In the future TLV based extensions may be created.
<span class="grey">Mannie & Papadimitriou Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc3946">RFC 3946</a> GMPLS Extensions for SONET/SDH Control October 2004</span>
<span class="h3"><a class="selflink" id="section-2.2" href="#section-2.2">2.2</a>. RSVP-TE Details</span>
For RSVP-TE, the SONET/SDH traffic parameters are carried in the
SONET/SDH SENDER_TSPEC and FLOWSPEC objects. The same format is used
both for SENDER_TSPEC object and FLOWSPEC objects. The content of
the objects is defined above in <a href="#section-2.1">Section 2.1</a>. The objects have the
following class and type:
For SONET ANSI T1.105 and SDH ITU-T G.707:
SONET/SDH SENDER_TSPEC object: Class = 12, C-Type = 4
SONET/SDH FLOWSPEC object: Class = 9, C-Type = 4
There is no Adspec associated with the SONET/SDH SENDER_TSPEC.
Either the Adspec is omitted or an int-serv Adspec with the Default
General Characterization Parameters and Guaranteed Service fragment
is used, see [<a href="./rfc2210" title=""The Use of RSVP with IETF Integrated Services"">RFC2210</a>].
For a particular sender in a session the contents of the FLOWSPEC
object received in a Resv message SHOULD be identical to the contents
of the SENDER_TSPEC object received in the corresponding Path
message. If the objects do not match, a ResvErr message with a
"Traffic Control Error/Bad Flowspec value" error SHOULD be generated.
Intermediate and egress nodes MUST verify that the node itself and
the interfaces on which the LSP will be established can support the
requested Signal Type, RCC, NCC, NVC and Multiplier (as defined in
<a href="#section-2.1">Section 2.1</a>). If the requested value(s) can not be supported, the
receiver node MUST generate a PathErr message with a "Traffic Control
Error/ Service unsupported" indication (see [<a href="./rfc2205" title=""Resource ReSerVation Protocol (RSVP) -- Version 1 Functional Specification"">RFC2205</a>]).
In addition, if the MT field is received with a zero value, the node
MUST generate a PathErr message with a "Traffic Control Error/Bad
Tspec value" indication (see [<a href="./rfc2205" title=""Resource ReSerVation Protocol (RSVP) -- Version 1 Functional Specification"">RFC2205</a>]).
Intermediate nodes MUST also verify that the node itself and the
interfaces on which the LSP will be established can support the
requested Transparency (as defined in <a href="#section-2.1">Section 2.1</a>). If the requested
value(s) can not be supported, the receiver node MUST generate a
PathErr message with a "Traffic Control Error/Service unsupported"
indication (see [<a href="./rfc2205" title=""Resource ReSerVation Protocol (RSVP) -- Version 1 Functional Specification"">RFC2205</a>]).
<span class="h3"><a class="selflink" id="section-2.3" href="#section-2.3">2.3</a>. CR-LDP Details</span>
For CR-LDP, the SONET/SDH traffic parameters are carried in the
SONET/SDH Traffic Parameters TLV. The content of the TLV is defined
above in <a href="#section-2.1">Section 2.1</a>. The header of the TLV has the following
format:
<span class="grey">Mannie & Papadimitriou Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc3946">RFC 3946</a> GMPLS Extensions for SONET/SDH Control October 2004</span>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|U|F| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The type field for the SONET/SDH Traffic Parameters TLV is: 0x0838.
Intermediate and egress nodes MUST verify that the node itself and
the interfaces on which the LSP will be established can support the
requested Signal Type, RCC, NCC, NVC and Multiplier (as defined in
<a href="#section-2.1">Section 2.1</a>). If the requested value(s) can not be supported, the
receiver node MUST generate a NOTIFICATION message with a "Resource
Unavailable" status code (see [<a href="./rfc3212" title=""Constraint-Based LSP Setup using LDP"">RFC3212</a>]).
In addition, if the MT field is received with a zero value, the node
MUST generate a NOTIFICATION message with a "Resource Unavailable"
status code (see [<a href="./rfc3212" title=""Constraint-Based LSP Setup using LDP"">RFC3212</a>]).
Intermediate nodes MUST also verify that the node itself and the
interfaces on which the LSP will be established can support the
requested Transparency (as defined in <a href="#section-2.1">Section 2.1</a>). If the requested
value(s) can not be supported, the receiver node MUST generate a
NOTIFICATION message with a "Resource Unavailable" status code (see
[<a href="./rfc3212" title=""Constraint-Based LSP Setup using LDP"">RFC3212</a>]).
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. SONET and SDH Labels</span>
SONET and SDH each define a multiplexing structure. Both structures
are trees whose roots are respectively an STS-N or an STM-N; and
whose leaves are the signals that can be transported via the time-
slots and switched between time-slots within an ingress port and
time-slots within an egress port, i.e., a VTx SPE, an STS-x SPE or a
VC-x. A SONET/SDH label will identify the exact position (i.e.,
first time-slot) of a particular VTx SPE, STS-x SPE or VC-x signal in
a multiplexing structure. SONET and SDH labels are carried in the
Generalized Label per [<a href="./rfc3473" title=""Generalized Multi-Protocol Label Switching (MPLS) Signaling - Resource ReserVation Protocol Traffic Engineering (RSVP-TE) Extensions"">RFC3473</a>] and [<a href="./rfc3472" title=""Generalized Multi-Protocol Label Switching (MPLS) Signaling - Constraint-based Routed Label Distribution Protocol (CR-LDP) Extensions"">RFC3472</a>].
Note that by time-slots we mean the time-slots as they appear
logically and sequentially in the multiplex, not as they appear after
any possible interleaving.
These multiplexing structures will be used as naming trees to create
unique multiplex entry names or labels. The same format of label is
used for SONET and SDH. As explained in [<a href="./rfc3471" title=""Generalized Multi-Protocol Label Switching (MPLS) Signaling Functional Description"">RFC3471</a>], a label does not
identify the "class" to which the label belongs. This is implicitly
determined by the link on which the label is used.
<span class="grey">Mannie & Papadimitriou Standards Track [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc3946">RFC 3946</a> GMPLS Extensions for SONET/SDH Control October 2004</span>
In case of signal concatenation or multiplication, a list of labels
can appear in the Label field of a Generalized Label.
In case of contiguous concatenation, only one label appears in the
Label field. This label identifies the lowest time-slot occupied by
the contiguously concatenated signal. By lowest time-slot we mean
the one having the lowest label (value) when compared as integer
values, i.e., the time-slot occupied by the first component signal of
the concatenated signal encountered when descending the tree.
In case of virtual concatenation, the explicit ordered list of all
labels in the concatenation is given. Each label indicates the first
time-slot occupied by a component of the virtually concatenated
signal. The order of the labels must reflect the order of the
payloads to concatenate (not the physical order of time-slots). The
above representation limits virtual concatenation to remain within a
single (component) link; it imposes as such a restriction compared to
the ANSI [<a href="#ref-T1.105" title=""Synchronous Optical Network (SONET): Basic Description Including Multiplex Structure, Rates, and Formats"">T1.105</a>]/ITU-T [<a href="#ref-G.707" title=""Network Node Interface for the Synchronous Digital Hierarchy"">G.707</a>] recommendations.
The standard definition for virtual concatenation allows each virtual
concatenation components to travel over diverse paths. Within GMPLS,
virtual concatenation components must travel over the same
(component) link if they are part of the same LSP. This is due to
the way that labels are bound to a (component) link. Note however,
that the routing of components on different paths is indeed
equivalent to establishing different LSPs, each one having its own
route. Several LSPs can be initiated and terminated between the same
nodes and their corresponding components can then be associated
together (i.e., virtually concatenated).
In case of multiplication (i.e., using the multiplier transform), the
explicit ordered list of all labels that take part in the Final
Signal is given. In case of multiplication of virtually concatenated
signals, the first set of labels indicates the time-slots occupied by
the first virtually concatenated signal, the second set of labels
indicates the time-slots occupied by the second virtually
concatenated signal, and so on. The above representation limits
multiplication to remain within a single (component) link.
The format of the label for SONET and/or SDH TDM-LSR link is:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| S | U | K | L | M |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
<span class="grey">Mannie & Papadimitriou Standards Track [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc3946">RFC 3946</a> GMPLS Extensions for SONET/SDH Control October 2004</span>
This is an extension of the numbering scheme defined in [<a href="#ref-G.707" title=""Network Node Interface for the Synchronous Digital Hierarchy"">G.707</a>]
sections <a href="#section-7.3.7">7.3.7</a> to <a href="#section-7.3.13">7.3.13</a>, i.e., the (K, L, M) numbering. Note that
the higher order numbering scheme defined in [<a href="#ref-G.707" title=""Network Node Interface for the Synchronous Digital Hierarchy"">G.707</a>] sections <a href="#section-7.3.1">7.3.1</a>
to 7.3.6 is not used here.
Each letter indicates a possible branch number starting at the parent
node in the multiplex structure. Branches are considered as numbered
in increasing order, starting from the top of the multiplexing
structure. The numbering starts at 1, zero is used to indicate a
non-significant or ignored field.
When a field is not significant or ignored in a particular context it
MUST be set to zero when transmitted, and MUST be ignored when
received.
When a hierarchy of SONET/SDH LSPs is used, a higher order LSP with a
given bandwidth can be used to carry lower order LSPs. Remember here
that a higher order LSP is established through a SONET/SDH higher
order path layer network and a lower order LSP, through a SONET/SDH
lower order path layer network (see also ITU-T G.803, <a href="#section-3">Section 3</a> for
the corresponding definitions). In this context, the higher order
SONET/SDH LSP behaves as a "virtual link" with a given bandwidth
(e.g., VC-3), it may also be used as a Forwarding Adjacency. A lower
order SONET/SDH LSP can be established through that higher order LSP.
Since a label is local to a (virtual) link, the highest part of that
label (i.e., the S, U and K fields) is non-significant and is set to
zero, i.e., the label is "0,0,0,L,M". Similarly, if the structure of
the lower order LSP is unknown or not relevant, the lowest part of
that label (i.e., the L and M fields) is non-significant and is set
to zero, i.e., the label is "S,U,K,0,0".
For instance, a VC-3 LSP can be used to carry lower order LSPs. In
that case the labels allocated between the two ends of the VC-3 LSP
for the lower order LSPs will have S, U and K set to zero, i.e.,
non-significant, while L and M will be used to indicate the signal
allocated in that VC-3.
In case of tunneling such as VC-4 containing VC-3 containing
VC-12/VC-11 where the SUKLM structure is not adequate to represent
the full signal structure, a hierarchical approach must be used,
i.e., per layer network signaling.
The possible values of S, U, K, L and M are defined as follows:
1. S=1->N is the index of a particular STS-3/AUG-1 inside an
STS-N/STM-N multiplex. S is only significant for SONET STS-N
(N>1) and SDH STM-N (N>0). S must be 0 and ignored for STS-1 and
STM-0.
<span class="grey">Mannie & Papadimitriou Standards Track [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc3946">RFC 3946</a> GMPLS Extensions for SONET/SDH Control October 2004</span>
2. U=1->3 is the index of a particular STS-1_SPE/VC-3 within an
STS-3/AUG-1. U is only significant for SONET STS-N (N>1) and SDH
STM-N (N>0). U must be 0 and ignored for STS-1 and STM-0.
3. K=1->3 is the index of a particular TUG-3 within a VC-4. K is
only significant for an SDH VC-4 structured in TUG-3s. K must be
0 and ignored in all other cases.
4. L=1->7 is the index of a particular VT_Group/TUG-2 within an
STS-1_SPE/TUG-3 or VC-3. L must be 0 and ignored in all other
cases.
5. M is the index of a particular VT1.5_SPE/VC-11, VT2_SPE/VC-12 or
VT3_SPE within a VT_Group/TUG-2. M=1->2 indicates a specific VT3
SPE inside the corresponding VT Group, these values MUST NOT be
used for SDH since there is no equivalent of VT3 with SDH. M=3->5
indicates a specific VT2_SPE/VC-12 inside the corresponding
VT_Group/TUG-2. M=6->9 indicates a specific VT1.5_SPE/VC-11
inside the corresponding VT_Group/TUG-2.
Note that a label always has to be interpreted according the
SONET/SDH traffic parameters, i.e., a label by itself does not allow
knowing which signal is being requested (a label is context
sensitive).
The label format defined in this section, referred to as SUKLM, MUST
be used for any SONET/SDH signal requests that are not transparent
i.e., when all Transparency (T) bits defined in <a href="#section-2.1">section 2.1</a> are set
to zero. Any transparent STS-1/STM-0/STS-3*N/STM-N (N=1, 4, 16, 64,
256) signal request MUST use a label format as defined in [<a href="./rfc3471" title=""Generalized Multi-Protocol Label Switching (MPLS) Signaling Functional Description"">RFC3471</a>].
The S encoding is summarized in the following table:
S SDH SONET
------------------------------------------------
0 other other
1 1st AUG-1 1st STS-3
2 2nd AUG-1 2nd STS-3
3 3rd AUG-1 3rd STS-3
4 4rd AUG-1 4rd STS-3
: : :
N Nth AUG-1 Nth STS-3
<span class="grey">Mannie & Papadimitriou Standards Track [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc3946">RFC 3946</a> GMPLS Extensions for SONET/SDH Control October 2004</span>
The U encoding is summarized in the following table:
U SDH AUG-1 SONET STS-3
-------------------------------------------------
0 other other
1 1st VC-3 1st STS-1 SPE
2 2nd VC-3 2nd STS-1 SPE
3 3rd VC-3 3rd STS-1 SPE
The K encoding is summarized in the following table:
K SDH VC-4
---------------
0 other
1 1st TUG-3
2 2nd TUG-3
3 3rd TUG-3
The L encoding is summarized in the following table:
L SDH TUG-3 SDH VC-3 SONET STS-1 SPE
-------------------------------------------------
0 other other other
1 1st TUG-2 1st TUG-2 1st VTG
2 2nd TUG-2 2nd TUG-2 2nd VTG
3 3rd TUG-2 3rd TUG-2 3rd VTG
4 4th TUG-2 4th TUG-2 4th VTG
5 5th TUG-2 5th TUG-2 5th VTG
6 6th TUG-2 6th TUG-2 6th VTG
7 7th TUG-2 7th TUG-2 7th VTG
The M encoding is summarized in the following table:
M SDH TUG-2 SONET VTG
-------------------------------------------------
0 other other
1 - 1st VT3 SPE
2 - 2nd VT3 SPE
3 1st VC-12 1st VT2 SPE
4 2nd VC-12 2nd VT2 SPE
5 3rd VC-12 3rd VT2 SPE
6 1st VC-11 1st VT1.5 SPE
7 2nd VC-11 2nd VT1.5 SPE
8 3rd VC-11 3rd VT1.5 SPE
9 4th VC-11 4th VT1.5 SPE
<span class="grey">Mannie & Papadimitriou Standards Track [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc3946">RFC 3946</a> GMPLS Extensions for SONET/SDH Control October 2004</span>
Examples of labels:
Example 1: the label for the STS-3c_SPE/VC-4 in the Sth STS-3/AUG-1
is: S>0, U=0, K=0, L=0, M=0.
Example 2: the label for the VC-3 within the Kth-1 TUG-3 within
the VC-4 in the Sth AUG-1 is: S>0, U=0, K>0, L=0, M=0.
Example 3: the label for the Uth-1 STS-1_SPE/VC-3 within the Sth
STS-3/AUG-1 is: S>0, U>0, K=0, L=0, M=0.
Example 4: the label for the VT6/VC-2 in the Lth-1 VT Group/TUG-2
in the Uth-1 STS-1_SPE/VC-3 within the Sth STS-3/AUG-1 is: S>0,
U>0, K=0, L>0, M=0.
Example 5: the label for the 3rd VT1.5_SPE/VC-11 in the Lth-1 VT
Group/TUG-2 within the Uth-1 STS-1_SPE/VC-3 within the Sth STS-
3/AUG-1 is: S>0, U>0, K=0, L>0, M=8.
Example 6: the label for the STS-12c/VC-4-4c which uses the 9th
STS-3/AUG-1 as its first timeslot is: S=9, U=0, K=0, L=0, M=0.
In case of contiguous concatenation, the label that is used is the
lowest label (value) of the contiguously concatenated signal as
explained before. The higher part of the label indicates where the
signal starts and the lowest part is not significant.
In case of STM-0/STS-1, the values of S, U and K must be equal to
zero according to the field coding rules. For instance, when
requesting a VC-3 in an STM-0 the label is S=0, U=0, K=0, L=0, M=0.
When requesting a VC-11 in a VC-3 in an STM-0 the label is S=0, U=0,
K=0, L>0, M=6..9.
Note: when a Section/RS or Line/MS transparent STS-1/STM-0/STS-
3*N/STM-N (N=1, 4, 16, 64, 256) signal is requested, the SUKLM label
format and encoding is not applicable and the label encoding MUST
follow the rules defined in <a href="./rfc3471#section-3.2">[RFC3471] Section 3.2</a>.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Acknowledgments</span>
Valuable comments and input were received from the CCAMP mailing list
where outstanding discussions took place.
<span class="grey">Mannie & Papadimitriou Standards Track [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc3946">RFC 3946</a> GMPLS Extensions for SONET/SDH Control October 2004</span>
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Security Considerations</span>
This document introduces no new security considerations to either
[<a href="./rfc3473" title=""Generalized Multi-Protocol Label Switching (MPLS) Signaling - Resource ReserVation Protocol Traffic Engineering (RSVP-TE) Extensions"">RFC3473</a>] or [<a href="./rfc3472" title=""Generalized Multi-Protocol Label Switching (MPLS) Signaling - Constraint-based Routed Label Distribution Protocol (CR-LDP) Extensions"">RFC3472</a>]. GMPLS security is described in <a href="./rfc3471#section-11">section 11 of
[RFC3471]</a> and refers to [<a href="./rfc3209" title=""RSVP-TE: Extensions to RSVP for LSP Tunnels"">RFC3209</a>] for RSVP-TE and to [<a href="./rfc3212" title=""Constraint-Based LSP Setup using LDP"">RFC3212</a>] for
CR-LDP.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. IANA Considerations</span>
Three values have been defined by IANA for this document:
Two RSVP C-Types in registry:
<a href="http://www.iana.org/assignments/rsvp-parameters">http://www.iana.org/assignments/rsvp-parameters</a>
- A SONET/SDH SENDER_TSPEC object: Class = 12, C-Type = 4 (see
<a href="#section-2.2">section 2.2</a>).
- A SONET/SDH FLOWSPEC object: Class = 9, C-Type = 4 (see <a href="#section-2.2">section</a>
<a href="#section-2.2">2.2</a>).
One LDP TLV Type in registry:
<a href="http://www.iana.org/assignments/ldp-namespaces">http://www.iana.org/assignments/ldp-namespaces</a>
- A type field for the SONET/SDH Traffic Parameters TLV (see <a href="#section-2.3">section</a>
<a href="#section-2.3">2.3</a>).
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. References</span>
<span class="h3"><a class="selflink" id="section-7.1" href="#section-7.1">7.1</a>. Normative References</span>
[<a id="ref-G.707">G.707</a>] ITU-T Recommendation G.707, "Network Node Interface for
the Synchronous Digital Hierarchy", October 2000.
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
[<a id="ref-RFC2205">RFC2205</a>] Braden, R., Zhang, L., Berson, S., Herzog, S., and S.
Jamin, "Resource ReSerVation Protocol (RSVP) -- Version
1 Functional Specification", <a href="./rfc2205">RFC 2205</a>, September 1997.
[<a id="ref-RFC2210">RFC2210</a>] Wroclawski, J., "The Use of RSVP with IETF Integrated
Services", <a href="./rfc2210">RFC 2210</a>, September 1997.
[<a id="ref-RFC3209">RFC3209</a>] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan,
V., and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
Tunnels", <a href="./rfc3209">RFC 3209</a>, December 2001.
<span class="grey">Mannie & Papadimitriou Standards Track [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc3946">RFC 3946</a> GMPLS Extensions for SONET/SDH Control October 2004</span>
[<a id="ref-RFC3212">RFC3212</a>] Jamoussi, B., Andersson, L., Callon, R., Dantu, R., Wu,
L., Doolan, P., Worster, T., Feldman, N., Fredette, A.,
Girish, M., Gray, E., Heinanen, J., Kilty, T., and A.
Malis, "Constraint-Based LSP Setup using LDP", <a href="./rfc3212">RFC 3212</a>,
January 2002.
[<a id="ref-RFC3471">RFC3471</a>] Berger, L., "Generalized Multi-Protocol Label Switching
(MPLS) Signaling Functional Description", <a href="./rfc3471">RFC 3471</a>,
January 2003.
[<a id="ref-RFC3472">RFC3472</a>] Ashwood-Smith, P. and L. Berger, "Generalized
Multi-Protocol Label Switching (MPLS) Signaling
- Constraint-based Routed Label Distribution Protocol
(CR-LDP) Extensions", <a href="./rfc3472">RFC 3472</a>, January 2003.
[<a id="ref-RFC3473">RFC3473</a>] Berger, L., "Generalized Multi-Protocol Label Switching
(MPLS) Signaling - Resource ReserVation Protocol Traffic
Engineering (RSVP-TE) Extensions", <a href="./rfc3473">RFC 3473</a>, January
2003.
[<a id="ref-RFC3945">RFC3945</a>] Mannie, E., Ed., "Generalized Multiprotocol Label
Switching (GMPLS) Architecture", <a href="./rfc3945">RFC 3945</a>, October 2004.
[<a id="ref-T1.105">T1.105</a>] "Synchronous Optical Network (SONET): Basic Description
Including Multiplex Structure, Rates, and Formats", ANSI
T1.105, October 2000.
<span class="grey">Mannie & Papadimitriou Standards Track [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc3946">RFC 3946</a> GMPLS Extensions for SONET/SDH Control October 2004</span>
Appendix 1 - Signal Type Values Extension for VC-3
This appendix defines the following optional additional Signal Type
value for the Signal Type field of <a href="#section-2.1">section 2.1</a>:
Value Type
----- ---------------------
20 "VC-3 via AU-3 at the end"
According to the ITU-T [<a href="#ref-G.707" title=""Network Node Interface for the Synchronous Digital Hierarchy"">G.707</a>] recommendation a VC-3 in the TU-
3/TUG-3/VC-4/AU-4 branch of the SDH multiplex cannot be structured in
TUG-2s, however a VC-3 in the AU-3 branch can be. In addition, a VC-3
could be switched between the two branches if required.
A VC-3 circuit could be terminated on an ingress interface of an LSR
(e.g., forming a VC-3 forwarding adjacency). This LSR could then want
to demultiplex this VC-3 and switch internal low order LSPs. For
implementation reasons, this could be only possible if the LSR
receives the VC-3 in the AU-3 branch. E.g., for an LSR not able to
switch internally from a TU-3 branch to an AU-3 branch on its
incoming interface before demultiplexing and then switching the
content with its switch fabric.
In that case it is useful to indicate that the VC-3 LSP must be
terminated at the end in the AU-3 branch instead of the TU-3 branch.
This is achieved by using the "VC-3 via AU-3 at the end" signal type.
This information can be used, for instance, by the penultimate LSR to
switch an incoming VC-3 received in any branch to the AU-3 branch on
the outgoing interface to the destination LSR.
The "VC-3 via AU-3 at the end" signal type does not imply that the
VC-3 must be switched via the AU-3 branch at some other places in the
network. The VC-3 signal type just indicates that a VC-3 in any
branch is suitable.
Annex 1 - Examples
This annex defines examples of SONET and SDH signal coding. Their
objective is to help the reader to understand how works the traffic
parameter coding and not to give examples of typical SONET or SDH
signals.
As stated above, signal types are Elementary Signals to which
successive concatenation, multiplication and transparency transforms
can be applied to obtain Final Signals.
<span class="grey">Mannie & Papadimitriou Standards Track [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc3946">RFC 3946</a> GMPLS Extensions for SONET/SDH Control October 2004</span>
1. A VC-4 signal is formed by the application of RCC with value 0,
NCC with value 0, NVC with value 0, MT with value 1 and T with
value 0 to a VC-4 Elementary Signal.
2. A VC-4-7v signal is formed by the application of RCC with value
0, NCC with value 0, NVC with value 7 (virtual concatenation of
7 components), MT with value 1 and T with value 0 to a VC-4
Elementary Signal.
3. A VC-4-16c signal is formed by the application of RCC with flag
1 (standard contiguous concatenation), NCC with value 16, NVC
with value 0, MT with value 1 and T with value 0 to a VC-4
Elementary Signal.
4. An STM-16 signal with Multiplex Section layer transparency is
formed by the application of RCC with value 0, NCC with value 0,
NVC with value 0, MT with value 1 and T with flag 2 to an STM-16
Elementary Signal.
5. An STM-4 signal with Multiplex Section layer transparency is
formed by the application of RCC with flag 0, NCC with value 0,
NVC with value 0, MT with value 1 and T with flag 2 applied to
an STM-4 Elementary Signal.
6. An STM-256 signal with Multiplex Section layer transparency is
formed by the application of RCC with flag 0, NCC with value 0,
NVC with value 0, MT with value 1 and T with flag 2 applied to
an STM-256 Elementary Signal.
7. An STS-1 SPE signal is formed by the application of RCC with
value 0, NCC with value 0, NVC with value 0, MT with value 1 and
T with value 0 to an STS-1 SPE Elementary Signal.
8. An STS-3c SPE signal is formed by the application of RCC with
value 1 (standard contiguous concatenation), NCC with value 1,
NVC with value 0, MT with value 1 and T with value 0 to an STS-
3c SPE Elementary Signal.
9. An STS-48c SPE signal is formed by the application of RCC with
flag 1 (standard contiguous concatenation), NCC with value 16,
NVC with value 0, MT with value 1 and T with value 0 to an STS-
3c SPE Elementary Signal.
10. An STS-1-3v SPE signal is formed by the application of RCC with
value 0, NVC with value 3 (virtual concatenation of 3
components), MT with value 1 and T with value 0 to an STS-1 SPE
Elementary Signal.
<span class="grey">Mannie & Papadimitriou Standards Track [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc3946">RFC 3946</a> GMPLS Extensions for SONET/SDH Control October 2004</span>
11. An STS-3c-9v SPE signal is formed by the application of RCC with
value 1, NCC with value 1, NVC with value 9 (virtual
concatenation of 9 STS-3c), MT with value 1 and T with value 0
to an STS-3c SPE Elementary Signal.
12. An STS-12 signal with Section layer (full) transparency is
formed by the application of RCC with value 0, NVC with value 0,
MT with value 1 and T with flag 1 to an STS-12 Elementary
Signal.
13. 3 x STS-768c SPE signal is formed by the application of RCC with
flag 1, NCC with value 256, NVC with value 0, MT with value 3,
and T with value 0 to an STS-3c SPE Elementary Signal.
14. 5 x VC-4-13v composed signal is formed by the application of RCC
with value 0, NVC with value 13, MT with value 5 and T with
value 0 to a VC-4 Elementary Signal.
The encoding of these examples is summarized in the following table:
Signal ST RCC NCC NVC MT T
--------------------------------------------------------
VC-4 6 0 0 0 1 0
VC-4-7v 6 0 0 7 1 0
VC-4-16c 6 1 16 0 1 0
STM-16 MS transparent 10 0 0 0 1 2
STM-4 MS transparent 9 0 0 0 1 2
STM-256 MS transparent 12 0 0 0 1 2
STS-1 SPE 5 0 0 0 1 0
STS-3c SPE 6 1 1 0 1 0
STS-48c SPE 6 1 16 0 1 0
STS-1-3v SPE 5 0 0 3 1 0
STS-3c-9v SPE 6 1 1 9 1 0
STS-12 Section transparent 9 0 0 0 1 1
3 x STS-768c SPE 6 1 256 0 3 0
5 x VC-4-13v 6 0 0 13 5 0
<span class="grey">Mannie & Papadimitriou Standards Track [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc3946">RFC 3946</a> GMPLS Extensions for SONET/SDH Control October 2004</span>
Contributors
Contributors are listed by alphabetical order:
Stefan Ansorge (Alcatel)
Lorenzstrasse 10
70435 Stuttgart, Germany
EMail: stefan.ansorge@alcatel.de
Peter Ashwood-Smith (Nortel)
PO. Box 3511 Station C,
Ottawa, ON K1Y 4H7, Canada
EMail:petera@nortelnetworks.com
Ayan Banerjee (Calient)
5853 Rue Ferrari
San Jose, CA 95138, USA
EMail: abanerjee@calient.net
Lou Berger (Movaz)
7926 Jones Branch Drive
McLean, VA 22102, USA
EMail: lberger@movaz.com
Greg Bernstein (Ciena)
10480 Ridgeview Court
Cupertino, CA 94014, USA
EMail: greg@ciena.com
Angela Chiu (Celion)
One Sheila Drive, Suite 2
Tinton Falls, NJ 07724-2658
EMail: angela.chiu@celion.com
<span class="grey">Mannie & Papadimitriou Standards Track [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc3946">RFC 3946</a> GMPLS Extensions for SONET/SDH Control October 2004</span>
John Drake (Calient)
5853 Rue Ferrari
San Jose, CA 95138, USA
EMail: jdrake@calient.net
Yanhe Fan (Axiowave)
100 Nickerson Road
Marlborough, MA 01752, USA
EMail: yfan@axiowave.com
Michele Fontana (Alcatel)
Via Trento 30,
I-20059 Vimercate, Italy
EMail: michele.fontana@alcatel.it
Gert Grammel (Alcatel)
Lorenzstrasse, 10
70435 Stuttgart, Germany
EMail: gert.grammel@alcatel.de
Juergen Heiles (Siemens)
Hofmannstr. 51
D-81379 Munich, Germany
EMail: juergen.heiles@siemens.com
Suresh Katukam (Cisco)
1450 N. McDowell Blvd,
Petaluma, CA 94954-6515, USA
EMail: suresh.katukam@cisco.com
Kireeti Kompella (Juniper)
1194 N. Mathilda Ave.
Sunnyvale, CA 94089, USA
EMail: kireeti@juniper.net
<span class="grey">Mannie & Papadimitriou Standards Track [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc3946">RFC 3946</a> GMPLS Extensions for SONET/SDH Control October 2004</span>
Jonathan P. Lang (Calient)
25 Castilian
Goleta, CA 93117, USA
EMail: jplang@calient.net
Fong Liaw (Solas Research)
EMail: fongliaw@yahoo.com
Zhi-Wei Lin (Lucent)
101 Crawfords Corner Rd
Holmdel, NJ 07733-3030, USA
EMail: zwlin@lucent.com
Ben Mack-Crane (Tellabs)
EMail: ben.mack-crane@tellabs.com
Dimitrios Pendarakis (Tellium)
2 Crescent Place, P.O. Box 901
Oceanport, NJ 07757-0901, USA
EMail: dpendarakis@tellium.com
Mike Raftelis (White Rock)
18111 Preston Road
Dallas, TX 75252, USA
Bala Rajagopalan (Tellium)
2 Crescent Place, P.O. Box 901
Oceanport, NJ 07757-0901, USA
EMail: braja@tellium.com
<span class="grey">Mannie & Papadimitriou Standards Track [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc3946">RFC 3946</a> GMPLS Extensions for SONET/SDH Control October 2004</span>
Yakov Rekhter (Juniper)
1194 N. Mathilda Ave.
Sunnyvale, CA 94089, USA
EMail: yakov@juniper.net
Debanjan Saha (Tellium)
2 Crescent Place, P.O. Box 901
Oceanport, NJ 07757-0901, USA
EMail: dsaha@tellium.com
Vishal Sharma (Metanoia)
335 Elan Village Lane
San Jose, CA 95134, USA
EMail: vsharma87@yahoo.com
George Swallow (Cisco)
250 Apollo Drive
Chelmsford, MA 01824, USA
EMail: swallow@cisco.com
Z. Bo Tang (Tellium)
2 Crescent Place, P.O. Box 901
Oceanport, NJ 07757-0901, USA
EMail: btang@tellium.com
Eve Varma (Lucent)
101 Crawfords Corner Rd
Holmdel, NJ 07733-3030, USA
EMail: evarma@lucent.com
Yangguang Xu (Lucent)
21-2A41, 1600 Osgood Street
North Andover, MA 01845, USA
EMail: xuyg@lucent.com
<span class="grey">Mannie & Papadimitriou Standards Track [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc3946">RFC 3946</a> GMPLS Extensions for SONET/SDH Control October 2004</span>
Authors' Addresses
Eric Mannie (Consultant)
Avenue de la Folle Chanson, 2
B-1050 Brussels, Belgium
Phone: +32 2 648-5023
Mobile: +32 (0)495-221775
EMail: eric_mannie@hotmail.com
Dimitri Papadimitriou (Alcatel)
Francis Wellesplein 1,
B-2018 Antwerpen, Belgium
Phone: +32 3 240-8491
EMail: dimitri.papadimitriou@alcatel.be
<span class="grey">Mannie & Papadimitriou Standards Track [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc3946">RFC 3946</a> GMPLS Extensions for SONET/SDH Control October 2004</span>
Full Copyright Statement
Copyright (C) The Internet Society (2004).
This document is subject to the rights, licenses and restrictions
contained in <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a>, and except as set forth therein, the authors
retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the IETF's procedures with respect to rights in IETF Documents can
be found in <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and <a href="https://www.rfc-editor.org/bcp/bcp79">BCP 79</a>.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
<a href="http://www.ietf.org/ipr">http://www.ietf.org/ipr</a>.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at ietf-
ipr@ietf.org.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Mannie & Papadimitriou Standards Track [Page 26]
</pre>
|