1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
|
<pre>Network Working Group V. Devarapalli
Request for Comments: 3963 Nokia
Category: Standards Track R. Wakikawa
Keio University
A. Petrescu
Motorola
P. Thubert
Cisco Systems
January 2005
<span class="h1">Network Mobility (NEMO) Basic Support Protocol</span>
Status of This Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2005).
Abstract
This document describes the Network Mobility (NEMO) Basic Support
protocol that enables Mobile Networks to attach to different points
in the Internet. The protocol is an extension of Mobile IPv6 and
allows session continuity for every node in the Mobile Network as the
network moves. It also allows every node in the Mobile Network to be
reachable while moving around. The Mobile Router, which connects the
network to the Internet, runs the NEMO Basic Support protocol with
its Home Agent. The protocol is designed so that network mobility is
transparent to the nodes inside the Mobile Network.
<span class="grey">Devarapalli, et al. Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc3963">RFC 3963</a> NEMO Basic Support Protocol January 2005</span>
Table of Contents
<a href="#section-1">1</a>. Introduction . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-3">3</a>
<a href="#section-2">2</a>. Terminology. . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-3">3</a>. Overview of the NEMO Protocol. . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-4">4</a>. Message Formats. . . . . . . . . . . . . . . . . . . . . . . <a href="#page-7">7</a>
<a href="#section-4.1">4.1</a>. Binding Update. . . . . . . . . . . . . . . . . . . . . <a href="#page-7">7</a>
<a href="#section-4.2">4.2</a>. Binding Acknowledgement . . . . . . . . . . . . . . . . <a href="#page-7">7</a>
<a href="#section-4.3">4.3</a>. Mobile Network Prefix Option. . . . . . . . . . . . . . <a href="#page-8">8</a>
<a href="#section-5">5</a>. Mobile Router Operation. . . . . . . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-5.1">5.1</a>. Data Structures . . . . . . . . . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-5.2">5.2</a>. Sending Binding Updates . . . . . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-5.3">5.3</a>. Receiving Binding Acknowledgements. . . . . . . . . . . <a href="#page-11">11</a>
<a href="#section-5.4">5.4</a>. Error Processing . . . . . . . . . . . . . . . . . . . <a href="#page-12">12</a>
<a href="#section-5.4.1">5.4.1</a>. Implicit Mode. . . . . . . . . . . . . . . . . . <a href="#page-12">12</a>
<a href="#section-5.4.2">5.4.2</a>. Explicit Mode. . . . . . . . . . . . . . . . . . <a href="#page-12">12</a>
<a href="#section-5.5">5.5</a>. Establishment of Bi-directional Tunnel . . . . . . . . <a href="#page-13">13</a>
<a href="#section-5.6">5.6</a>. Neighbor Discovery for Mobile Router . . . . . . . . . <a href="#page-13">13</a>
<a href="#section-5.7">5.7</a>. Multicast Groups for Mobile Router . . . . . . . . . . <a href="#page-14">14</a>
<a href="#section-5.8">5.8</a>. Returning Home . . . . . . . . . . . . . . . . . . . . <a href="#page-14">14</a>
<a href="#section-6">6</a>. Home Agent Operation . . . . . . . . . . . . . . . . . . . . <a href="#page-15">15</a>
<a href="#section-6.1">6.1</a>. Data Structures . . . . . . . . . . . . . . . . . . . . <a href="#page-15">15</a>
<a href="#section-6.1.1">6.1.1</a>. Binding Cache. . . . . . . . . . . . . . . . . . <a href="#page-15">15</a>
<a href="#section-6.1.2">6.1.2</a>. Prefix Table . . . . . . . . . . . . . . . . . . <a href="#page-15">15</a>
<a href="#section-6.2">6.2</a>. Mobile Network Prefix Registration . . . . . . . . . . <a href="#page-16">16</a>
<a href="#section-6.3">6.3</a>. Advertising Mobile Network Reachability . . . . . . . . <a href="#page-17">17</a>
<a href="#section-6.4">6.4</a>. Establishment of Bi-directional Tunnel . . . . . . . . <a href="#page-18">18</a>
<a href="#section-6.5">6.5</a>. Forwarding Packets . . . . . . . . . . . . . . . . . . <a href="#page-18">18</a>
<a href="#section-6.6">6.6</a>. Sending Binding Acknowledgements . . . . . . . . . . . <a href="#page-19">19</a>
<a href="#section-6.7">6.7</a>. Mobile Network Prefix De-Registration . . . . . . . . . <a href="#page-19">19</a>
<a href="#section-7">7</a>. Modifications to Dynamic Home Agent Address Discovery. . . . <a href="#page-20">20</a>
<a href="#section-7.1">7.1</a>. Modified Dynamic Home Agent Discovery Request . . . . . <a href="#page-20">20</a>
7.2. Modified Dynamic Home Agent Discovery Address Request . 20
<a href="#section-7.3">7.3</a>. Modified Home Agent Information Option . . . . . . . . <a href="#page-21">21</a>
<a href="#section-8">8</a>. Support for Dynamic Routing Protocols. . . . . . . . . . . . <a href="#page-22">22</a>
<a href="#section-9">9</a>. Security Considerations. . . . . . . . . . . . . . . . . . . <a href="#page-23">23</a>
<a href="#section-10">10</a>. IANA Considerations. . . . . . . . . . . . . . . . . . . . . <a href="#page-24">24</a>
<a href="#section-11">11</a>. Contributors . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-25">25</a>
<a href="#section-12">12</a>. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . <a href="#page-25">25</a>
<a href="#section-13">13</a>. References . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-25">25</a>
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-27">27</a>
<a href="#appendix-A">A</a>. Examples of NEMO Basic Support Operation. . . . . . . . . <a href="#page-27">27</a>
B. Running Link State Routing Protocol with NEMO Basic
Support . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-30">30</a>
<a href="#appendix-B.1">B.1</a>. Tunnel Interface Considerations. . . . . . . . . . . <a href="#page-30">30</a>
<a href="#appendix-B.2">B.2</a>. OSPF Area Considerations . . . . . . . . . . . . . . <a href="#page-30">30</a>
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-32">32</a>
Full Copyright Statement . . . . . . . . . . . . . . . . . . . . <a href="#page-33">33</a>
<span class="grey">Devarapalli, et al. Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc3963">RFC 3963</a> NEMO Basic Support Protocol January 2005</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
This document describes protocol extensions to Mobile IPv6 (MIPv6)
[<a href="#ref-1" title=""Mobility Support in IPv6"">1</a>] to enable support for network mobility. The extensions are
backward compatible with Mobile IPv6. In particular, a NEMO-
compliant Home Agent can operate as a Mobile IPv6 Home Agent. The
solution described here satisfies the goals and requirements
identified in [<a href="#ref-11" title=""Network Mobility Support Goals and Requirements"">11</a>] for network mobility.
The NEMO Basic Support ensures session continuity for all the nodes
in the Mobile Network, even as the Mobile Router changes its point of
attachment to the Internet. It also provides connectivity and
reachability for all nodes in the Mobile Network as it moves. The
solution supports both mobile nodes and hosts that do not support
mobility in the Mobile Network.
Within the context of this document, the definition of a Mobile
Router extends that of a Mobile IPv6 [<a href="#ref-1" title=""Mobility Support in IPv6"">1</a>] Mobile Node, by adding
routing capability routing between its point of attachment (Care-of
Address) and a subnet that moves with the Mobile Router.
The solution described in this document proposes a bi-directional
tunnel between the Mobile Router and its Home Agent. This tunnel is
set up when the Mobile Router sends a successful Binding Update to
its Home Agent, informing the Home Agent of its current point of
attachment.
All traffic between the nodes in the Mobile Network and Correspondent
Nodes passes through the Home Agent. This document does not describe
route optimization of this traffic.
The terminology document [<a href="#ref-10" title=""Network Mobility Support Terminology"">10</a>] describes Nested Mobility as a scenario
where a Mobile Router allows another Mobile Router to attach to its
Mobile Network. There could be arbitrary levels of nested mobility.
The operation of each Mobile Router remains the same whether the
Mobile Router attaches to another Mobile Router or to a fixed Access
Router on the Internet. The solution described here does not place
any restriction on the number of levels for nested mobility. But
note that this might introduce significant overhead on the data
packets as each level of nesting introduces another IPv6 header
encapsulation.
This document does not discuss multihoming for Mobile Routers.
<span class="grey">Devarapalli, et al. Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc3963">RFC 3963</a> NEMO Basic Support Protocol January 2005</span>
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Terminology</span>
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a> [<a href="#ref-7" title=""Key words for use in RFCs to Indicate Requirement Levels"">7</a>].
Network Mobility - related terminology is defined in [<a href="#ref-9" title=""Mobility Related Terminology"">9</a>] and [<a href="#ref-10" title=""Network Mobility Support Terminology"">10</a>].
This document in addition defines the following terms.
Mobile Network Prefix
An IPv6 prefix delegated to a Mobile Router and advertised in
the Mobile Network. More than one Mobile Network Prefix could
be advertised in a Mobile Network.
Prefix Table
A list of Mobile Network Prefixes indexed by the Home Address
of a Mobile Router. The Home Agent manages and uses Prefix
Table to determine which Mobile Network Prefixes belong to a
particular Mobile Router.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Overview of the NEMO Protocol</span>
A Mobile Network is a network segment or subnet that can move and
attach to arbitrary points in the routing infrastructure. A Mobile
Network can only be accessed via specific gateways called Mobile
Routers that manage its movement. Mobile Networks have at least one
Mobile Router serving them. A Mobile Router does not distribute the
Mobile Network routes to the infrastructure at its point of
attachment (i.e., in the visited network). Instead, it maintains a
bi-directional tunnel to a Home Agent that advertises an aggregation
of Mobile Networks to the infrastructure. The Mobile Router is also
the default gateway for the Mobile Network.
A Mobile Network can also comprise of multiple and nested subnets. A
router without mobility support may be permanently attached to a
Mobile Network for local distribution. Also, Mobile Routers may be
attached to Mobile Networks owned by different Mobile Routers and may
form a graph. In particular, with Basic NEMO Support, each Mobile
Router is attached to another Mobile Network by a single interface.
If loops are avoided, the graph is a tree.
A Mobile Router has a unique Home Address through which it is
reachable when it is registered with its Home Agent. The Home
Address is configured from a prefix aggregated and advertised by its
Home Agent. The prefix could be either the prefix advertised on the
home link or the prefix delegated to the Mobile Router. The Mobile
<span class="grey">Devarapalli, et al. Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc3963">RFC 3963</a> NEMO Basic Support Protocol January 2005</span>
Router can have more than one Home Address if there are multiple
prefixes in the home link. The Mobile Router also advertises one or
more prefixes in the Mobile Network attached to it. The actual
mechanism for assigning these prefixes to a given Mobile Router is
outside the scope of this specification.
When the Mobile Router moves away from the home link and attaches to
a new access router, it acquires a Care-of Address from the visited
link. The Mobile Router can at any time act either as a Mobile Host
or as a Mobile Router. It acts as a Mobile Host as defined in [<a href="#ref-1" title=""Mobility Support in IPv6"">1</a>]
for sessions it originates and provides connectivity to the Mobile
Network. As soon as the Mobile Router acquires a Care-of Address, it
immediately sends a Binding Update to its Home Agent as described in
[<a href="#ref-1" title=""Mobility Support in IPv6"">1</a>]. When the Home Agent receives this Binding Update, it creates a
cache entry binding the Mobile Router's Home Address to its Care-of
Address at the current point of attachment.
If the Mobile Router seeks to act as a Mobile Router and provide
connectivity to nodes in the Mobile Network, it indicates this to the
Home Agent by setting a flag (R) in the Binding Update. It MAY also
include information about the Mobile Network Prefix in the Binding
Update by using one of the modes described in <a href="#section-5.2">section 5.2</a>, so that
the Home Agent can forward packets meant for nodes in the Mobile
Network to the Mobile Router. A new Mobility Header Option for
carrying prefix information is described in <a href="#section-4.3">section 4.3</a>. If the
Mobile Network has more than one IPv6 prefix and wants the Home Agent
to setup forwarding for all of these prefixes, it includes multiple
prefix information options in a single Binding Update. The Home
Agent sets up forwarding for each of these prefixes to the Mobile
Router's Care-of Address. In some scenarios the Home Agent would
already know which prefixes belong to a Mobile Router by an alternate
mechanism such as static configuration. In these scenarios, the
Mobile Router does not include any prefix information in the Binding
Update. The Home Agent sets up forwarding for all prefixes owned by
the Mobile Router when it receives a Binding Update from the Mobile
Router with the Mobile Router Flag (R) set.
The Home Agent acknowledges the Binding Update by sending a Binding
Acknowledgement to the Mobile Router. A positive acknowledgement
with the Mobile Router Flag (R) set means that the Home Agent has set
up forwarding for the Mobile Network. Once the binding process
finishes, a bi-directional tunnel is established between the Home
Agent and the Mobile Router. The tunnel end points are the Mobile
Router's Care-of Address and the Home Agent's address. If a packet
with a source address belonging to the Mobile Network Prefix is
received from the Mobile Network, the Mobile Router reverse-tunnels
the packet to the Home Agent through this tunnel. This reverse-
tunneling is done by using IP-in-IP encapsulation [<a href="#ref-3" title=""Generic Packet Tunneling in IPv6 Specification"">3</a>]. The Home
<span class="grey">Devarapalli, et al. Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc3963">RFC 3963</a> NEMO Basic Support Protocol January 2005</span>
Agent decapsulates this packet and forwards it to the Correspondent
Node. For traffic originated by itself, the Mobile Router can use
either reverse tunneling or route optimization, as specified in [<a href="#ref-1" title=""Mobility Support in IPv6"">1</a>].
When a Correspondent Node sends a data packet to a node in the Mobile
Network, the packet is routed to the Home Agent that currently has
the binding for the Mobile Router. The Mobile Router's network
prefix would be aggregated at the Home Agent, which would advertise
the resulting aggregation. Alternatively, the Home Agent may receive
the data packets destined to the Mobile Network by advertising routes
to the Mobile Network Prefix. The actual mechanism by which these
routes are advertised is outside the scope of this document. When
the Home Agent receives a data packet meant for a node in the Mobile
Network, it tunnels the packet to the Mobile Router's current Care-of
Address. The Mobile Router decapsulates the packet and forwards it
onto the interface where the Mobile Network is connected. Before
decapsulating the tunneled packet, the Mobile Router has to check
whether the Source address on the outer IPv6 header is the Home
Agent's address. This check is not necessary if the packet is
protected by IPsec in tunnel mode. The Mobile Router also has to
make sure that the destination address on the inner IPv6 header
belongs to a prefix used in the Mobile Network before forwarding the
packet to the Mobile Network. If it does not, the Mobile Router
should drop the packet.
The Mobile Network could include nodes that do not support mobility
and nodes that do. A node in the Mobile Network can also be a fixed
or a Mobile Router. The protocol described here ensures complete
transparency of network mobility to the nodes in the Mobile Network.
Mobile Nodes that attach to the Mobile Network treat it as a normal
IPv6 access network and run the Mobile IPv6 protocol.
The Mobile Router and the Home Agent can run a routing protocol
through the bi-directional tunnel. In this case, the Mobile Router
need not include prefix information in the Binding Update. Instead,
the Home Agent uses the routing protocol updates to set up forwarding
for the Mobile Network. When the routing protocol is running, the
bi-directional tunnel must be treated as a tunnel interface. The
tunnel interface is included in the list of interfaces on which
routing protocol is active. The Mobile Router should be configured
not to send any routing protocol messages on its egress interface
when it is away from the home link and connected to a visited link.
Finally, the Home Agent may be configured with static routes to the
Mobile Network Prefix via the Mobile Router's Home Address. In this
case, the routes are set independently of the binding flows and the
returning home of a Mobile Router. The benefit is that such movement
does not induce additional signalling in the form of routing updates
<span class="grey">Devarapalli, et al. Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc3963">RFC 3963</a> NEMO Basic Support Protocol January 2005</span>
in the home network. The drawback is that the routes are present
even if the related Mobile Routers are not reachable (at home or
bound) at a given point of time.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Message Formats</span>
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. Binding Update</span>
A new flag (R) is included in the Binding Update to indicate to the
Home Agent whether the Binding Update is coming from a Mobile Router
and not from a mobile node. The rest of the Binding Update format
remains the same as defined in [<a href="#ref-1" title=""Mobility Support in IPv6"">1</a>].
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sequence # |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|A|H|L|K|M|R| Reserved | Lifetime |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Mobile Router Flag (R)
The Mobile Router Flag is set to indicate to the Home Agent
that the Binding Update is from a Mobile Router. If the flag
is set to 0, the Home Agent assumes that the Mobile Router is
behaving as a Mobile Node, and it MUST NOT forward packets
destined for the Mobile Network to the Mobile Router.
Mobility Options
A variable length field that can include zero or more mobility
options. This document defines a new mobility option in
addition to what is defined in [<a href="#ref-1" title=""Mobility Support in IPv6"">1</a>].
For descriptions of the other fields in the message, see [<a href="#ref-1" title=""Mobility Support in IPv6"">1</a>].
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. Binding Acknowledgement</span>
A new flag (R) is included in the Binding Acknowledgement to indicate
that the Home Agent that processed the corresponding Binding Update
supports Mobile Routers. The flag is set only if the corresponding
Binding Update had the Mobile Router Flag (R) set to 1. The rest of
the Binding Acknowledgement format remains the same, as defined in
[<a href="#ref-1" title=""Mobility Support in IPv6"">1</a>].
<span class="grey">Devarapalli, et al. Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc3963">RFC 3963</a> NEMO Basic Support Protocol January 2005</span>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Status |K|R| Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sequence # | Lifetime |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Mobile Router Flag (R)
The Mobile Router Flag is set to indicate that the Home Agent
that processed the Binding Update supports Mobile Routers. It
is set to 1 only if the corresponding Binding Update had the
Mobile Router Flag set to 1.
For descriptions of the other fields in the message, see [<a href="#ref-1" title=""Mobility Support in IPv6"">1</a>].
This document also introduces the following new Binding
Acknowledgement status values. The values shown below are decimal
values.
140 Mobile Router Operation not permitted
141 Invalid Prefix
142 Not Authorized for Prefix
143 Forwarding Setup failed (prefixes missing)
Status values less than 128 indicate that the Binding Update was
processed successfully by the receiving nodes. Values greater than
128 indicate that the Binding Update was rejected by the Home Agent.
<span class="h3"><a class="selflink" id="section-4.3" href="#section-4.3">4.3</a>. Mobile Network Prefix Option</span>
The Mobile Network Prefix Option is included in the Binding Update to
indicate the prefix information for the Mobile Network to the Home
Agent. There could be multiple Mobile Network Prefix Options if the
Mobile Router has more than one IPv6 prefix in the Mobile Network and
wants the Home Agent to forward packets for each of these prefixes to
the Mobile Router's current location.
The Mobile Network Prefix Option has an alignment requirement of
8n+4. Its format is as follows.
<span class="grey">Devarapalli, et al. Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc3963">RFC 3963</a> NEMO Basic Support Protocol January 2005</span>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | Reserved | Prefix Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ Mobile Network Prefix +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type
6
Length
Eight-bit unsigned integer indicating the length in octets of
the option, excluding the type and length fields. Set to 18.
Reserved
This field is unused for now. The value MUST be initialized to
0 by the sender and MUST be ignored by the receiver.
Prefix Length
Eight-bit unsigned integer indicating the prefix length of the
IPv6 prefix contained in the option.
Mobile Network Prefix
A sixteen-byte field containing the Mobile Network Prefix
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Mobile Router Operation</span>
Mobile Router operation is derived largely from the combined
behaviors of a host, of a router [<a href="#ref-5" title=""Internet Protocol, Version 6 (IPv6) Specification"">5</a>], and of a Mobile Node [<a href="#ref-1" title=""Mobility Support in IPv6"">1</a>].
A Mobile Node can act in two ways: (1) as a Mobile Host, in which
case the Home Agent doesn't maintain any prefix information related
to the Mobile Host's Home Address but does maintain a binding cache
entry related to the Mobile Host's Home Address, and (2) as a Mobile
Router, in which case, in addition to maintaining the binding cache
entry corresponding to the Mobile Router Home Address, the Home Agent
<span class="grey">Devarapalli, et al. Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc3963">RFC 3963</a> NEMO Basic Support Protocol January 2005</span>
maintains forwarding information related to prefixes assigned to the
Mobile Network. The distinction between the two modes is represented
by the value of the Mobile Router Flag (R).
A Mobile Router MUST implement all requirements for IPv6 Mobile Nodes
as described in section 8.5 of [<a href="#ref-1" title=""Mobility Support in IPv6"">1</a>].
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. Data Structures</span>
Like a Mobile Host, a Mobile Router also maintains a Binding Update
List, described in <a href="#section-11.1">section 11.1</a> of the Mobile IPv6 specification [<a href="#ref-1" title=""Mobility Support in IPv6"">1</a>].
The Binding Update list is a conceptual data structure that records
information sent in the Binding Updates. There is one entry per each
destination to which the Mobile Router is currently sending Binding
Updates.
This document introduces a new Prefix Information field in the
Binding Update list structure. This field is used to store any
prefix information that the Mobile Router includes in the Binding
Update. If the Mobile Router sets the Mobile Router Flag (R) in the
Binding Update but does not include any prefix information in it this
field is set to null. The Mobile Router does not include prefix
information in the Binding Update in the implicit mode or when it,
runs a dynamic routing protocol with its Home Agent.
As does a Mobile Host, a Mobile Router stores the information
regarding status of flags of the Binding Update in the corresponding
Binding Update List entry. This document introduces a new Mobile
Router Flag (R) for this entry. The status of this flag is stored in
the Binding Update list whenever a Binding Update is sent.
A Mobile Router also maintains a Home Agent list populated according
to the same procedure as a Mobile Host.
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. Sending Binding Updates</span>
A Mobile Router sends Binding Updates to its Home Agent, as described
in [<a href="#ref-1" title=""Mobility Support in IPv6"">1</a>]. If the Mobile Router is not running a routing protocol as
described in <a href="#section-8">section 8</a>, it uses one of the following modes to tell
the Home Agent to determine which prefixes belong to the Mobile
Router. In both modes, the Mobile Router sets the Mobile Router Flag
(R).
Implicit:
In this mode, the Mobile Router does not include a Mobile
Network Prefix Option in the Binding Update. The Home Agent
can use any mechanism (not defined in this document) to
<span class="grey">Devarapalli, et al. Standards Track [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc3963">RFC 3963</a> NEMO Basic Support Protocol January 2005</span>
determine the Mobile Network Prefix(es) owned by the Mobile
Router and to set up forwarding for the Mobile Network. One
example would be manual configuration at the Home Agent mapping
the Mobile Router's Home Address to the information required
for setting up forwarding for the Mobile Network.
Explicit:
In this mode, the Mobile Router includes one or more Mobile
Network Prefix Options in the Binding Update. These options
contain information about the Mobile Network Prefix(es)
configured on the Mobile Network.
A Mobile Router MUST implement at least one mode and MAY implement
both. In the latter case, local configuration on the Mobile Router
decides which mode to use. This is out of scope for this document.
If the Mobile Router Flag is set, the Home Registration Flag (H) MUST
be set.
If the Mobile Router has a valid binding cache entry at the Home
Agent, subsequent Binding Updates for the same Home Address should
have the same value as the value in the binding cache for the Mobile
Router Flag (R). In explicit mode, the Mobile Router MUST include
prefix information in all Binding Updates, including those sent to
refresh existing binding cache entries, if it wants forwarding
enabled for the corresponding Mobile Network Prefixes.
<span class="h3"><a class="selflink" id="section-5.3" href="#section-5.3">5.3</a>. Receiving Binding Acknowledgements</span>
The Mobile Router receives Binding Acknowledgements from the Home
Agent corresponding to the Binding Updates it sent. If the Binding
Acknowledgement status is set to 0 (Binding Update accepted) and the
Mobile Router Flag (R) is set to 1, the Mobile Router assumes that
the Home Agent has successfully processed the Binding Update and has
set up forwarding for the Mobile Network. The Mobile Router can then
start using the bi-directional tunnel to reverse-tunnel traffic from
the Mobile Network. If the Mobile Router Flag (R) is not set, then
the Mobile Router concludes that its current Home Agent does not
support Mobile Routers and it performs Dynamic Home Agent Address
Discovery again to discover Home Agents that do. The Mobile Router
MUST also de-register with the Home Agent that did not support it
before attempting registration with another.
<span class="grey">Devarapalli, et al. Standards Track [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc3963">RFC 3963</a> NEMO Basic Support Protocol January 2005</span>
<span class="h3"><a class="selflink" id="section-5.4" href="#section-5.4">5.4</a>. Error Processing</span>
If the Binding Acknowledgement status is set to a value between 128
and 139, the Mobile Router takes necessary actions as described in
the Mobile IPv6 specification [<a href="#ref-1" title=""Mobility Support in IPv6"">1</a>]. For the Binding Acknowledgement
status values defined in this document, the following sections
explain the Mobile Router's behavior.
<span class="h4"><a class="selflink" id="section-5.4.1" href="#section-5.4.1">5.4.1</a>. Implicit Mode</span>
In Implicit mode, the Mobile Router interprets only error statuses
140 (Mobile Router Operation not permitted) and 143 (Forwarding Setup
failed). The Mobile Router MUST treat Binding Acknowledgements with
statuses '141' and '142' as fatal errors, since they should not be
sent by the Home Agent in implicit mode.
If the Binding Acknowledgement from the Home Agent has the status
140, the Mobile Router SHOULD send a Binding Update to another Home
Agent on the same home link. If no Home Agent replies positively,
the Mobile Router MUST refrain from sending Binding Updates with the
Mobile Router Flag set to any Home Agent on the home link, and it
must log the information.
If the Binding Acknowledgement has the status 143, the Mobile Router
SHOULD send a Binding Update to another Home Agent on the same home
link. If no Home Agent replies positively, the Mobile Router SHOULD
refrain from sending this Binding Update to any Home Agent on the
home link, and MAY send Binding Updates in Explicit mode to a Home
Agent on the same home link.
<span class="h4"><a class="selflink" id="section-5.4.2" href="#section-5.4.2">5.4.2</a>. Explicit Mode</span>
If the Mobile Router sent a Binding Update to the Home Agent in
explicit mode, then the Mobile Router interprets only error statuses
140 (Mobile Router Operation not permitted), 141 (Invalid Prefix),
and 142 (Not Authorized for Prefix). The Mobile Router MUST treat
Binding Acknowledgements with status '143' as a fatal error, since it
should not be sent by the Home Agent in explicit mode.
If the Binding Acknowledgement from the Home Agent has the status
140, the Mobile Router SHOULD send a Binding Update to another Home
Agent on the same home link. If no Home Agent replies positively,
then the Mobile Router MUST refrain from sending Binding Updates with
the Mobile Router Flag set to any Home Agent on the home link, and it
must log the information.
If the Binding Acknowledgement has the status 141 or 142, the Mobile
Router SHOULD send a Binding Update to another Home Agent on the same
<span class="grey">Devarapalli, et al. Standards Track [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc3963">RFC 3963</a> NEMO Basic Support Protocol January 2005</span>
home link. If no Home Agent replies positively, then the Mobile
Router SHOULD refrain from sending Binding Updates to any Home Agent
on the home link. The Mobile Router MUST also stop advertising the
prefix in the Mobile Network and try to obtain new IPv6 prefix
information for the Mobile Network. It would do this by the same
means that it initially got assigned the current Mobile Network
Prefix. Alternatively, the Mobile Router MAY send Binding Updates in
Implicit mode to a Home Agent on the same home link.
If by the end of this Error Processing procedure, as described in
sections <a href="#section-5.4.1">5.4.1</a> and <a href="#section-5.4.2">5.4.2</a>, the Mobile Router has tried every available
mode and still has not received a positive Binding Acknowledgement,
the Mobile Router MUST stop sending Binding Updates with the Mobile
Router Flag set for this Home Address and it must log the
information.
In all cases above, the Mobile Router MUST conclude that the Home
Agent did not create a binding cache entry for the Mobile Router's
Home Address.
<span class="h3"><a class="selflink" id="section-5.5" href="#section-5.5">5.5</a>. Establishment of Bi-directional Tunnel</span>
When a successful Binding Acknowledgement is received, the Mobile
Router sets up its endpoint of the bi-directional tunnel.
The bi-directional tunnel between the Mobile Router and the Home
Agent allows packets to flow in both directions, while the Mobile
Router is connected to a visited link. The bi-directional tunnel is
created by merging two unidirectional tunnels, as described in <a href="./rfc2473">RFC</a>
<a href="./rfc2473">2473</a> [<a href="#ref-3" title=""Generic Packet Tunneling in IPv6 Specification"">3</a>]. The tunnel from the Mobile Router to the Home Agent has
the Care-of address of the Mobile Router as the tunnel entry point
and the Home Agent's address as the tunnel exit point. The tunnel
from the Home Agent to the Mobile Router has the Home Agent's address
and the Mobile Router's Care-of Address as the tunnel entry point and
exit point, respectively. All IPv6 traffic to and from the Mobile
Network is sent through this bi-directional tunnel.
A Mobile Router uses the Tunnel Hop Limit normally assigned to
routers (not to hosts). Please refer to [<a href="#ref-3" title=""Generic Packet Tunneling in IPv6 Specification"">3</a>] for more details.
<span class="h3"><a class="selflink" id="section-5.6" href="#section-5.6">5.6</a>. Neighbor Discovery for Mobile Router</span>
When the Mobile Router is at home, it MAY be configured to send
Router Advertisements and to reply to Router Solicitations on the
interface attached to the home link. The value of the Router
Lifetime field SHOULD be set to 0 to prevent other nodes from
configuring the Mobile Router as the default router.
<span class="grey">Devarapalli, et al. Standards Track [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc3963">RFC 3963</a> NEMO Basic Support Protocol January 2005</span>
A Mobile Router SHOULD NOT send unsolicited Router Advertisements and
SHOULD NOT reply to Router Solicitations on any egress interface when
that interface is attached to a visited link. However, the Mobile
Router SHOULD reply with Neighbor Advertisements to Neighbor
Solicitations received on the egress interface, for addresses valid
on the visited link.
A router typically ignores Router Advertisements sent by other
routers on a link. However, a Mobile Router MUST NOT ignore Router
Advertisements received on the egress interface. The received Router
Advertisements MAY be used for address configuration, default router
selection, or movement detection.
<span class="h3"><a class="selflink" id="section-5.7" href="#section-5.7">5.7</a>. Multicast Groups for Mobile Router</span>
When at home, the Mobile Router joins the multicast group All Routers
Address with scopes 1 interface-local (on the home-advertising
interface), and 2 link-local, on any of its egress interfaces. When
in a visited network, the Mobile Router MUST NOT join the above
multicast groups on the corresponding interface.
<span class="h3"><a class="selflink" id="section-5.8" href="#section-5.8">5.8</a>. Returning Home</span>
When the Mobile Router detects that it has returned to its home link,
it MUST de-register with its Home Agent. The Mobile Router MUST
implement and follow the returning-home procedures defined for a
mobile node in [<a href="#ref-1" title=""Mobility Support in IPv6"">1</a>]. In addition, the Mobile Router MAY start
behaving as a router on its egress interface, especially as follows:
- The Mobile Router MAY send Router Advertisements on its egress
interfaces, but the router lifetime SHOULD be set to 0 so that
hosts on the home link do not pick the Mobile Router as the
default router.
- The Mobile Router MAY join the All Routers Address multicast group
on the home link.
- The Mobile Router MAY send routing protocol messages on its egress
interface if it is configured to run a dynamic routing protocol.
When the Mobile Router sends a de-registration Binding Update in
Explicit mode, it SHOULD NOT include any Mobile Network Prefix
options in the Binding Update. When the Home Agent removes a binding
cache entry, it deletes all associated Mobile Network Prefix routes.
<span class="grey">Devarapalli, et al. Standards Track [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc3963">RFC 3963</a> NEMO Basic Support Protocol January 2005</span>
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Home Agent Operation</span>
For a Mobile Router to operate correctly, the Home Agent MUST satisfy
all the requirements listed in section 8.4 of [<a href="#ref-1" title=""Mobility Support in IPv6"">1</a>]. The Home Agent
MUST implement both modes described in <a href="#section-5.2">section 5.2</a> of this document.
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. Data Structures</span>
<span class="h4"><a class="selflink" id="section-6.1.1" href="#section-6.1.1">6.1.1</a>. Binding Cache</span>
The Home Agent maintains Binding Cache Entries for each Mobile Router
currently registered with the Home Agent. The Binding Cache is a
conceptual data structure described in detail in [<a href="#ref-1" title=""Mobility Support in IPv6"">1</a>].
The Home Agent might need to store the Mobile Network Prefixes
associated with a Mobile Router in the corresponding Binding Cache
Entry. This is required if the Binding Update that created the
Binding Cache Entry contained explicit prefix information. This
information can be used later to clean up routes installed in
explicit mode, when the Binding Cache Entry is removed, and to
maintain the routing table, for instance, should the routes be
removed manually.
The Home Agent also stores the status of the Mobile Router Flag (R)
in the Binding Cache entry.
<span class="h4"><a class="selflink" id="section-6.1.2" href="#section-6.1.2">6.1.2</a>. Prefix Table</span>
The Home Agent SHOULD be able to prevent a Mobile Router from
claiming Mobile Network Prefixes belonging to another Mobile Router.
The Home Agent can prevent such attacks if it maintains a Prefix
Table and verifies the prefix information provided by the Mobile
Router against Prefix Table entries. The Prefix Table SHOULD be used
by the Home Agent when it processes a Binding Update in explicit
mode. It is not required when a dynamic routing protocol is run
between the Mobile Router and the Home Agent.
Each entry in the Prefix Table contains the following fields:
- The Home Address of the Mobile Router. This field is used as the
key for searching the pre-configured Prefix Table.
- The Mobile Network Prefix of the Mobile Router associated with the
Home Address.
<span class="grey">Devarapalli, et al. Standards Track [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc3963">RFC 3963</a> NEMO Basic Support Protocol January 2005</span>
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>. Mobile Network Prefix Registration</span>
The Home Agent processes the Binding Update as described in <a href="#section-10.3.1">section</a>
<a href="#section-10.3.1">10.3.1</a> of the Mobile IPv6 specification [<a href="#ref-1" title=""Mobility Support in IPv6"">1</a>]. This section describes
the processing of the Binding Update if the Mobile Router (R) Flag is
set. The Home Agent performs the following check.
- The Home Registration (H) Flag MUST be set. If it is not, the
Home Agent MUST reject the Binding Update and send a Binding
Acknowledgement with status set to 140. Note: The basic support
does not allow sending a Binding Update for a Mobile Network
Prefix to correspondent nodes (for route optimization).
- Mobile IPv6 specification [<a href="#ref-1" title=""Mobility Support in IPv6"">1</a>] requires that the Home Address in
the Binding Update be configured from a prefix advertised on the
home link. Otherwise the Binding Update is rejected with status
value 132 [<a href="#ref-1" title=""Mobility Support in IPv6"">1</a>]. This specification relaxes this requirement so
that the Home Agent rejects the Binding Update only if the Home
Address does not belong to the prefix that the Home Agent is
configured to serve.
If the Home Agent has a valid binding cache entry for the Mobile
Router, and if the Binding Update has the Mobile Router Flag (R) set
to a value different from that in the existing binding cache entry,
then the Home Agent MUST reject the Binding Update and send a Binding
Acknowledgement with status set to 139 (Registration type change
disallowed). However, if the Binding Update is a de-registration
Binding Update, the Home Agent ignores the value of the Mobile Router
Flag (R).
If the Lifetime specified in the Binding Update is 0 or the specified
Care-of address matches the Home Address in the Binding Update, then
this is a request to delete the cached binding for the home address
and specified Mobile Network Prefixes. The Binding Update is
processed as described in <a href="#section-6.7">section 6.7</a>.
If the Home Agent does not reject the Binding Update as invalid, and
if a dynamic routing protocol is not run between the Home Agent and
the Mobile Router as described in <a href="#section-8">section 8</a>, then the Home Agent
retrieves the Mobile Network Prefix information as described below.
- If a Mobile Network Prefix Option is present in the Binding
Update, the prefix information for the Mobile Network Prefix is
retrieved from the Mobile Network Prefix field and the Prefix
Length field of the option. If the Binding Update contains more
than one option, the Home Agent MUST set up forwarding for all the
Mobile Network Prefixes. If the Home Agent fails to set up
forwarding to all the prefixes listed in the Binding Update, then
<span class="grey">Devarapalli, et al. Standards Track [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc3963">RFC 3963</a> NEMO Basic Support Protocol January 2005</span>
it MUST NOT forward traffic to any of the prefixes. Furthermore,
it MUST reject the Binding Update and send a Binding
Acknowledgement with status set to 141 (Invalid Prefix).
If the Home Agent verifies the prefix information with the Prefix
Table and the check fails, the Home Agent MUST discard the Binding
Update and send a Binding Acknowledgement with status set to 142
(Not Authorized for Prefix).
- If there is no option in the Binding Update carrying prefix
information, the Home Agent uses manual pre-configured information
to determine the prefixes assigned to the Mobile Router and to set
up forwarding for the Mobile Network. If there is no information
that the Home Agent can use, it MUST reject the Binding Update and
send a Binding Acknowledgement with status set to 143 (Forwarding
Setup failed).
If the Home Agent has a valid binding cache entry for the Mobile
Router, it should compare the list of prefixes in the Binding Update
against the prefixes stored in the binding cache entry. If the
binding cache entry contains prefixes that do not appear in the
Binding Update, the Home Agent MUST disable forwarding for these
Mobile Network Prefixes.
If all checks are passed, the Home Agent creates a binding cache
entry for Mobile Router's Home Address or updates the entry if it
already exists. Otherwise, the Home Agent MUST NOT register the
binding of the Mobile Router's Home Address.
The Home Agent defends the Mobile Router's Home Address through Proxy
Neighbor Discovery by multicasting a Neighbor Advertisement message
onto the home link on behalf of the Mobile Router. All fields in the
Proxy Neighbor Advertisement message should be set the same way they
would be by the Mobile Router if it sent this Neighbor Advertisement
while at home, as described in [<a href="#ref-6" title=""Neighbor Discovery for IP Version 6 (IPv6)"">6</a>]. There is an exception: If the
Mobile Router (R) Flag has been set in the Binding Update, the Router
(R) bit in the Advertisement MUST be set.
The Home Agent also creates a bi-directional tunnel to the Mobile
Router for the requested Mobile Network Prefix or updates an existing
bi-directional tunnel as described in <a href="#section-6.4">section 6.4</a>.
<span class="h3"><a class="selflink" id="section-6.3" href="#section-6.3">6.3</a>. Advertising Mobile Network Reachability</span>
To receive packets meant for the Mobile Network, the Home Agent
advertises reachability to the Mobile Network. If the Home Link is
configured with an aggregated prefix and the Mobile Network Prefix is
aggregated under that prefix, then the routing changes related to the
<span class="grey">Devarapalli, et al. Standards Track [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc3963">RFC 3963</a> NEMO Basic Support Protocol January 2005</span>
Mobile Network may be restricted to the Home Link. If the Home Agent
is the only default router on the Home Link, routes to the Mobile
Network Prefix are aggregated naturally under the Home Agent, which
does not have to do anything special.
If the Home Agent receives routing updates through a dynamic routing
protocol from the Mobile Router, it can be configured to propagate
those routes on the relevant interfaces.
<span class="h3"><a class="selflink" id="section-6.4" href="#section-6.4">6.4</a>. Establishment of Bi-directional Tunnel</span>
The implementation of the bi-directional tunnels and the mechanism
for attaching them to the IP stack are outside the scope of this
specification. However, all implementations MUST be capable of the
following operations:
- The Home Agent can tunnel packets meant for the Mobile Network
prefix to the Mobile Router's current location, the Care-of
Address.
- The Home Agent can accept packets tunneled by the Mobile Router
with the source address of the outer IPv6 header set to the Mobile
Router's Care-of Address.
<span class="h3"><a class="selflink" id="section-6.5" href="#section-6.5">6.5</a>. Forwarding Packets</span>
When the Home Agent receives a data packet destined for the Mobile
Network, it MUST forward the packet to the Mobile Router through the
bi-directional tunnel. The Home Agent uses either the routing table,
the Binding Cache, or a combination to route packets to the Mobile
Network. This is implementation specific. Two examples are shown
below.
1. The Home Agent maintains a route to the Mobile Network Prefix with
the next hop set to the Mobile Router's Home Address. When the
Home Agent tries to forward the packet to the next hop, it finds a
binding cache entry for the home address. Then the Home Agent
extracts the Mobile Router's Care-of address and tunnels the
packet to the Care-of address.
2. The Home Agent maintains a route to the Mobile Network Prefix with
the outgoing interface set to the bi-directional tunnel interface
between the Home Agent and the Mobile Router. For this purpose,
the Home Agent MUST treat this tunnel as a tunnel interface. When
the packets are forwarded through the tunnel interface, they are
encapsulated automatically, with the source address and
<span class="grey">Devarapalli, et al. Standards Track [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc3963">RFC 3963</a> NEMO Basic Support Protocol January 2005</span>
destination address in the outer IPv6 header set to the Home
Agent's address and the Mobile Router's Care-of address,
respectively.
<span class="h3"><a class="selflink" id="section-6.6" href="#section-6.6">6.6</a>. Sending Binding Acknowledgements</span>
A Home Agent serving a Mobile Router sends Binding Acknowledgements
with the same rules it uses for sending Binding Acknowledgements to
Mobile Hosts [<a href="#ref-1" title=""Mobility Support in IPv6"">1</a>], with the following enhancements.
The Home Agent sets the status code in the Binding Acknowledgement to
0 (Binding Update accepted) to indicate to the Mobile Router that it
successfully processed the Binding Update. It also sets the Mobile
Router Flag (R) to indicate to the Mobile Router that it has set up
forwarding for the Mobile Network.
If the Home Agent is not configured to support Mobile Routers, it
sets the status code in the Binding Acknowledgement to 140 (Mobile
Router Operation not permitted).
If one or more prefixes received in the Binding Update are invalid
and the Home Agent cannot set up forwarding for the prefixes, the
Home Agent sets the status code in the Binding Acknowledgement to 141
(Invalid Prefix) to indicate this to the Mobile Router.
If the Mobile Router is not authorized to use this Home Address to
forward packets for one or more prefixes present in the Binding
Update, the Home Agent sets the status code in the Binding
Acknowledgement to 142 (Not Authorized for Prefix) to indicate this.
The Home Agent sets the status code to 143 (Forwarding Setup failed)
if it is unable to determine the information needed to set up
forwarding for the Mobile Network. This is used in the Implicit
mode, in which the Mobile Router does not include any prefix
information in the Binding Update.
<span class="h3"><a class="selflink" id="section-6.7" href="#section-6.7">6.7</a>. Mobile Network Prefix De-registration</span>
When the Home Agent successfully processes the de-registration BU, it
deletes the Binding Cache Entry for the Mobile Router's Home Address
and stops proxying the Home Address. This is described in detail in
the Mobile IPv6 specification [<a href="#ref-1" title=""Mobility Support in IPv6"">1</a>].
In addition, the Home Agent removes the bi-directional tunnel and
stops forwarding packets to the Mobile Network. The Home Agent
should keep all necessary information to clean up whichever routes it
installed, whether they come from an implicit or explicit source.
<span class="grey">Devarapalli, et al. Standards Track [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc3963">RFC 3963</a> NEMO Basic Support Protocol January 2005</span>
In Explicit mode, the Home Agent MUST ignore any Mobile Network
Prefix Options present in the de-registration Binding Update.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Modifications to Dynamic Home Agent Address Discovery</span>
This document extends the Dynamic Home Agent Address Discovery
(DHAAD) defined in [<a href="#ref-1" title=""Mobility Support in IPv6"">1</a>] so that Mobile Routers only attempt
registration with Home Agents that support them.
<span class="h3"><a class="selflink" id="section-7.1" href="#section-7.1">7.1</a>. Modified Dynamic Home Agent Discovery Address Request</span>
A new flag (R) (Support for Mobile Routers) is introduced in the
DHAAD Request message, defined in [<a href="#ref-1" title=""Mobility Support in IPv6"">1</a>]. The Mobile Router sets this
flag to indicate that it wants to discover Home Agents supporting
Mobile Routers.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Code | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Identifier |R| Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Mobile Router Support Flag (R)
A one-bit flag that when set indicates that the Mobile Router
wants to discover Home Agents supporting Mobile Routers.
For a description of the other fields in the message, see [<a href="#ref-1" title=""Mobility Support in IPv6"">1</a>].
<span class="h3"><a class="selflink" id="section-7.2" href="#section-7.2">7.2</a>. Modified Dynamic Home Agent Discovery Address Request</span>
A new flag (R) (Support for Mobile Routers) is introduced in the
DHAAD Reply message, defined in [<a href="#ref-1" title=""Mobility Support in IPv6"">1</a>]. If a Home Agent receives a
Dynamic Home Agent Discovery request message with the Mobile Router
Support Flag set, it MUST reply with a list of Home Agents supporting
Mobile Routers. The Mobile Router Support Flag MUST be set if there
is at least one Home Agent supporting Mobile Routers. If none of the
Home Agents support Mobile Routers, the Home Agent MAY reply with a
list of Home Agents that only support Mobile IPv6 Mobile Nodes. In
this case, the Mobile Router Support Flag MUST be set to 0.
<span class="grey">Devarapalli, et al. Standards Track [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc3963">RFC 3963</a> NEMO Basic Support Protocol January 2005</span>
The modified message format is as follows.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Code | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Identifier |R| Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Mobile Router Support Flag (R)
A one-bit flag that when set indicates that the Home Agents
listed in this message support Mobile Routers.
For a description of the other fields in the message, see [<a href="#ref-1" title=""Mobility Support in IPv6"">1</a>].
<span class="h3"><a class="selflink" id="section-7.3" href="#section-7.3">7.3</a>. Modified Home Agent Information Option</span>
A new flag (R) (Support for Mobile Routers) is introduced in the Home
Agent Information Option defined in [<a href="#ref-1" title=""Mobility Support in IPv6"">1</a>]. If a Home Agent supports
Mobile Routers, it SHOULD set the flag.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |R| Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Home Agent Preference | Home Agent Lifetime |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Mobile Router Support Flag (R)
A one-bit flag that when set indicates that the Home Agent
supports Mobile Routers.
For a description of the other fields in the message, see [<a href="#ref-1" title=""Mobility Support in IPv6"">1</a>].
<span class="grey">Devarapalli, et al. Standards Track [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc3963">RFC 3963</a> NEMO Basic Support Protocol January 2005</span>
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Support for Dynamic Routing Protocols</span>
In the solution described so far, forwarding to the Mobile Network at
the Home Agent is set up when the Home Agent receives a Binding
Update from the Mobile Router. An alternative to this is for the
Home Agent and the Mobile Router to run an intra-domain routing
protocol such as RIPng [<a href="#ref-12" title=""RIPng for IPv6"">12</a>] and OSPF [<a href="#ref-13" title=""OSPF for IPv6"">13</a>] through the bi-directional
tunnel. The Mobile Router can continue running the same routing
protocol that it ran when attached to the home link.
Support for running a intra-domain routing protocol is optional and
is governed by the configuration on the Mobile Router and the Home
Agent.
This feature is very useful when the Mobile Network is large with
multiple subnets containing different IPv6 prefixes. Routing changes
in the Mobile Network are quickly propagated to the Home Agent.
Routing changes in the home link are quickly propagated to the Mobile
Router.
When the Mobile Router is attached to the home link, it runs a
routing protocol by sending routing updates through its egress
interface. When the Mobile Router moves and attaches to a visited
network, it should stop sending routing updates on the interface by
which it attaches to the visited link. This reduces the chances that
prefixes specific to the Mobile Network will be leaked to the visited
network if routing protocol authentication is not enabled in the
visited network and in the Mobile Network. It is expected that
normal deployment practices will include proper authentication
mechanisms to prevent unauthorized route announcements on both the
home and visited networks. The Mobile Router then starts sending
routing protocol messages through the bi-directional tunnel toward
the Home Agent. Most routing protocols use link-local addresses as
source addresses for the routing information messages. The Mobile
Router is allowed to use link-local addresses for the inner IPv6
header of an encapsulated packet. But these MUST NOT be forwarded to
another link by either the Mobile Router or the Home Agent.
When the Home Agent receives the inner packet, it processes the
encapsulated routing protocol messages and updates its routing table
accordingly. As part of normal routing protocol operation, the next
hop information in these routing entries is filled with the Mobile
Router's link-local address, with the outgoing interface set to the
bi-directional tunnel.
Similarly, the Home Agent sends routing updates through the bi-
directional tunnel to the Mobile Router. The Mobile Router processes
these routing protocol messages and updates its routing table. For
<span class="grey">Devarapalli, et al. Standards Track [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc3963">RFC 3963</a> NEMO Basic Support Protocol January 2005</span>
all routes advertised by the Home Agent, the Mobile Router sets the
outgoing interface to the bi-directional tunnel to the Home Agent.
When the Mobile Router and the Home Agent exchange routes through a
dynamic routing protocol, the Mobile Router SHOULD NOT include Mobile
Network Prefixes in the Binding Update to the Home Agent. Depending
on its configuration, the Home Agent might not add routes based on
the prefix information in the Binding Updates and might use only the
routing protocol updates. Moreover, including prefix information in
both the Binding Updates and the routing protocol updates is
redundant.
As the routing protocol messages from the Home Agent to the Mobile
Router could potentially contain information about the internal
routing structure of the home network, these messages require
authentication and confidentiality protection. Appropriate
authentication and confidentiality protection mechanisms, defined in
[<a href="#ref-14" title=""Authentication/Confidentiality for OSPFv3"">14</a>], MUST be used. For protecting routing protocol messages by
using IPsec ESP [<a href="#ref-4" title=""IP Encapsulating Security Payload (ESP)"">4</a>], the bi-directional tunnel between the Mobile
Router and the Home Agent should be treated as the outgoing
interface, with the Home Agent and Mobile Router's addresses as
source and destination addresses for the inner encapsulated messages.
If a link state routing protocol such as OSPFv3 is run by the Mobile
Router and the Home Agent, the recommendations in <a href="#appendix-B">Appendix B</a> should
be followed.
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. Security Considerations</span>
All signaling messages between the Mobile Router and the Home Agent
MUST be authenticated by IPsec [<a href="#ref-8" title=""Security Architecture for the Internet Protocol"">8</a>]. The use of IPsec to protect
Mobile IPv6 signaling messages is described in detail in the HA-MN
IPsec specification [<a href="#ref-2" title=""Using IPsec to Protect Mobile IPv6 Signaling between Mobile Nodes and Home Agents"">2</a>]. The signaling messages described in this
document extend Mobile IPv6 messages and do not require any changes
to what is described in [<a href="#ref-2" title=""Using IPsec to Protect Mobile IPv6 Signaling between Mobile Nodes and Home Agents"">2</a>].
The Mobile Router has to perform ingress filtering on packets
received from the Mobile Network to ensure that nodes in the Mobile
Network do not use the bi-directional tunnel to launch IP spoofing
attacks. In particular, the Mobile Router SHOULD check that the IP
source addresses in the packets received belong to the Mobile Network
Prefix and are not the same as one of the addresses used by the
Mobile Router. If the Mobile Router receives an IP-in-IP tunneled
packet from a node in the Mobile Network and it has to forward the
decapsulated packet, it SHOULD perform the above mentioned checks on
the source address of the inner packet.
<span class="grey">Devarapalli, et al. Standards Track [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc3963">RFC 3963</a> NEMO Basic Support Protocol January 2005</span>
The Home Agent has to verify that packets received through the bi-
directional tunnel belong to the Mobile Network. This check is
necessary to prevent nodes from using the Home Agent to launch
attacks that would have otherwise been prevented by ingress
filtering. The source address of the outer IPv6 header MUST be set
to the Mobile Router's current Care-of Address. The source address
of the inner IPv6 header MUST be topologically correct with respect
to the IPv6 prefixes used in the Mobile Network.
If the Mobile Router sends a Binding Update with a one or more Mobile
Network Prefix options, the Home Agent MUST be able to verify that
the Mobile Router is authorized for the prefixes before setting up
forwarding for the prefixes.
When the Mobile Router runs a dynamic routing protocol as described
in <a href="#section-8">section 8</a>, it injects routing update messages into the Home Link.
As the routing protocol message could contain information about the
internal routing structure of the home network, these messages
require confidentiality protection. The Mobile Router SHOULD use
confidentiality protection through IPsec ESP as described in [<a href="#ref-14" title=""Authentication/Confidentiality for OSPFv3"">14</a>].
If the bi-directional tunnel between the Mobile Router and the Home
Agent is protected by ESP, in tunnel mode for all IP traffic, then no
additional confidentiality protection specific to the routing
protocol is required.
Home Agents and Mobile Routers may use IPsec ESP to protect payload
packets tunneled between themselves. This is useful to protect
communications against attackers on the path of the tunnel.
Please refer to the Mobile IPv6 specification [<a href="#ref-1" title=""Mobility Support in IPv6"">1</a>] for security
considerations when the Mobile Router operates as a Mobile Host.
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. IANA Considerations</span>
This document defines a new Mobility Header Option, the Mobile
Network Prefix Option as described in <a href="#section-4.3">section 4.3</a>. The type value
for this option MUST be assigned from the same space used by the
mobility options defined in [<a href="#ref-1" title=""Mobility Support in IPv6"">1</a>].
This document also defines the following new Binding Acknowledgement
status values. These status values are defined in <a href="#section-4.2">section 4.2</a> and
MUST be assigned from the same space used for Binding Acknowledgement
status values in [<a href="#ref-1" title=""Mobility Support in IPv6"">1</a>].
- Mobile Router Operation not permitted
- Invalid Prefix
- Not Authorized for Prefix
- Forwarding Setup failed (prefixes missing)
<span class="grey">Devarapalli, et al. Standards Track [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc3963">RFC 3963</a> NEMO Basic Support Protocol January 2005</span>
<span class="h2"><a class="selflink" id="section-11" href="#section-11">11</a>. Contributors</span>
We would like to acknowledge Ludovic Bellier, Claude Castelluccia,
Thierry Ernst [<a href="#ref-15" title=""Network Mobility Support in IPv6"">15</a>], Miguel Catalina-Gallego, Christophe Janneteau,
T.J. Kniveton, Hong-Yon Lach, Jari T. Malinen, Koshiro Mitsuya,
Alexis Olivereau, Charles E. Perkins, and Keisuke Uehara for their
work on earlier proposals for Network Mobility. This document has
inherited a lot of ideas from these proposals.
<span class="h2"><a class="selflink" id="section-12" href="#section-12">12</a>. Acknowledgements</span>
We thank all members of the NEMO Working Group, and of the preceding
MONET BoF, for fruitful discussions on the mailing list and at IETF
meetings.
Kent Leung, Marco Molteni, and Patrick Wetterwald are acknowledged
for their work on Network Mobility for IPv4 and IPv6.
Tim Leinmueller is acknowledged for many insightful remarks and for
<a href="#section-7">section 7</a>.
Jari Arkko, James Kempf, Chan-Wah Ng, and Erik Nordmark are
acknowledged for their thorough review and comments.
Souhwan Jung, Fan Zhao, S. Felix Wu, HyunGon Kim, and SungWon Sohn
are acknowledged for identifying threats related to tunneling between
the Mobile Network and the Home Agent.
<span class="h2"><a class="selflink" id="section-13" href="#section-13">13</a>. References</span>
<span class="h3"><a class="selflink" id="section-13.1" href="#section-13.1">13.1</a>. Normative References</span>
[<a id="ref-1">1</a>] Johnson, D., Perkins, C., and J. Arkko, "Mobility Support in
IPv6", <a href="./rfc3775">RFC 3775</a>, June 2004.
[<a id="ref-2">2</a>] Arkko, J., Devarapalli, V., and F. Dupont, "Using IPsec to
Protect Mobile IPv6 Signaling between Mobile Nodes and Home
Agents", <a href="./rfc3776">RFC 3776</a>, June 2004.
[<a id="ref-3">3</a>] Conta, A. and S. Deering, "Generic Packet Tunneling in IPv6
Specification", <a href="./rfc2473">RFC 2473</a>, December 1998.
[<a id="ref-4">4</a>] Kent, S. and R. Atkinson, "IP Encapsulating Security Payload
(ESP)", <a href="./rfc2406">RFC 2406</a>, November 1998.
[<a id="ref-5">5</a>] Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6)
Specification", <a href="./rfc2460">RFC 2460</a>, December 1998.
<span class="grey">Devarapalli, et al. Standards Track [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc3963">RFC 3963</a> NEMO Basic Support Protocol January 2005</span>
[<a id="ref-6">6</a>] Narten, T., Nordmark, E., and W. Simpson, "Neighbor Discovery
for IP Version 6 (IPv6)", <a href="./rfc2461">RFC 2461</a>, December 1998.
[<a id="ref-7">7</a>] Bradner, S., "Key words for use in RFCs to Indicate Requirement
Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
<span class="h3"><a class="selflink" id="section-13.2" href="#section-13.2">13.2</a>. Informative References</span>
[<a id="ref-8">8</a>] Kent, S. and R. Atkinson, "Security Architecture for the
Internet Protocol", <a href="./rfc2401">RFC 2401</a>, November 1998.
[<a id="ref-9">9</a>] Manner, J. and M. Kojo, Eds., "Mobility Related Terminology",
<a href="./rfc3753">RFC 3753</a>, June 2004.
[<a id="ref-10">10</a>] Ernst, T., and H.-Y. Lach, "Network Mobility Support
Terminology", Work in Progress, October 2004.
[<a id="ref-11">11</a>] Ernst, T., <a style="text-decoration: none" href='https://www.google.com/search?sitesearch=datatracker.ietf.org%2Fdoc%2Fhtml%2F&q=inurl:draft-+%22Network+Mobility+Support+Goals+and+Requirements%22'>"Network Mobility Support Goals and Requirements"</a>,
Work in Progress, October 2004.
[<a id="ref-12">12</a>] Malkin, G. and R. Minnear, "RIPng for IPv6", <a href="./rfc2080">RFC 2080</a>, January
1997.
[<a id="ref-13">13</a>] Coltun, R., Ferguson, D., and J. Moy, "OSPF for IPv6", <a href="./rfc2740">RFC 2740</a>,
December 1999.
[<a id="ref-14">14</a>] Gupta, M. and N. Melam, "Authentication/Confidentiality for
OSPFv3", Work in Progress, December 2004.
[<a id="ref-15">15</a>] Ernst, T., "Network Mobility Support in IPv6", PhD Thesis,
University Joseph Fourier, Grenoble, France. October 2001.
[<a id="ref-16">16</a>] Moy, J., "Extending OSPF to Support Demand Circuits", <a href="./rfc1793">RFC 1793</a>,
April 1995.
[<a id="ref-17">17</a>] Thubert, P., et al., <a style="text-decoration: none" href='https://www.google.com/search?sitesearch=datatracker.ietf.org%2Fdoc%2Fhtml%2F&q=inurl:draft-+%22NEMO+Home+Network+models%22'>"NEMO Home Network models"</a>, Work in
Progress, October 2004.
<span class="grey">Devarapalli, et al. Standards Track [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc3963">RFC 3963</a> NEMO Basic Support Protocol January 2005</span>
<span class="h2"><a class="selflink" id="appendix-A" href="#appendix-A">Appendix A</a>. Examples of NEMO Basic Support Operation</span>
This section tries to illustrate the NEMO protocol by using a Mobile
Router and a Mobile Node belonging to different administrative
domains. The Mobile Router's Mobile Network consists of a Local
Fixed Node (LFN) and a Local Fixed Router (LFR) [<a href="#ref-10" title=""Network Mobility Support Terminology"">10</a>]. The LFR has an
access link to which other Mobile Nodes or Mobile Routers could
attach.
Figure 1 depicts the scenario where both the Mobile Router and the
Mobile Node are at home.
+----+ +-------+
| MN | | HA_MN |
+--+-+ 1:: +---+---+
2+-------------+3
|
|
+-------+2 2:: +-------------------+ 3:: 2+-------+
| CN_MN |------| Internet |------| CN_MR |
+-------+ +-------------------+ +-------+
4:: |
|
2+-------------+3
+--+-+ +---+---+
| MR | | HA_MR |
+--+-+ +-------+
5:: |1
----------
2| |3
+--+-+ +--+-+
| LFN| | LFR|
+--+-+ +--+-+
6:: |1
----------
Figure 1. Mobile Router and Mobile Node at home.
<span class="grey">Devarapalli, et al. Standards Track [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc3963">RFC 3963</a> NEMO Basic Support Protocol January 2005</span>
The Mobile Router then moves away from the home link and attaches to
a visited link. This is shown in Figure 2. The Mobile Router sends
a Binding Update to HA_MR when it attaches to a visited link and
configures a Care-of Address. HA_MR creates a binding cache entry
for the Mobile Router's Home Address and also sets up forwarding for
the prefixes on the Mobile Network.
+----+ +-------+
| MN | | HA_MN |
+--+-+ 1:: +---+---+
2+-------------+3
|
|
+-------+2 2:: +-------------------+ 3:: 2+-------+
| CN_MN |------| Internet |------| CN_MR |
+-------+ ++------------------+ +-------+
| 7:: 4:: | 4::2->7::2
| |
2+ +3
+--+-+ +---+---+
| MR | | HA_MR | 4::2->7::2
+--+-+ +-------+ 5::/prefixlen -> forward
5:: |1 to MR
---------- 6::/prefixlen -> forward
2| |3 to MR
+--+-+ +--+-+
| LFN| | LFR|
+--+-+ +--+-+
6:: |1
----------
Figure 2. Mobile Router on a visited link.
<span class="grey">Devarapalli, et al. Standards Track [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc3963">RFC 3963</a> NEMO Basic Support Protocol January 2005</span>
Figure 3 shows the Mobile Node moving away from its home link and
attaching to the Mobile Router. The Mobile Node configures a Care-of
Address from the prefix advertised on the Mobile Network and sends a
Binding Update to its Home Agent (HA_MN) and to its Correspondent
Node (CN_MN). Both HA_MN and CN_MN create binding cache entries for
the Mobile Node's Home Address.
+-------+
| HA_MN | 1::2->6::2
1:: +---+---+
---------|3
|
|
+-------+2 2:: +-------------------+ 3:: 2+-------+
| CN_MN |------| Internet |------| CN_MR |
+-------+ ++------------------+ +-------+
1::2->6::2 | 7:: 4:: | 4::2->7::2
| |
2+ +3
+--+-+ +---+---+
| MR | | HA_MR | 4::2->7::2
+--+-+ +-------+ 5::/prefixlen -> forward
5:: |1 to MR
---------- 6::/prefixlen -> forward
2| |3 to MR
+--+-+ +--+-+
| LFN| | LFR|
+--+-+ +--+-+
6:: |1
--------+-
|2
+--+-+
| MN |
+----+
Figure 3. Mobile Node attached to Mobile
Router on a visited link
<span class="grey">Devarapalli, et al. Standards Track [Page 29]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-30" ></span>
<span class="grey"><a href="./rfc3963">RFC 3963</a> NEMO Basic Support Protocol January 2005</span>
<span class="h2"><a class="selflink" id="appendix-B" href="#appendix-B">Appendix B</a>. Running Link State Routing Protocol with NEMO Basic Support</span>
The bi-directional tunnel between the Mobile Router and the Home
Agent is used as a virtual interface over which routing protocol
messages are exchanged. When a link state routing protocol is run,
the following recommendations should be followed.
<span class="h3"><a class="selflink" id="appendix-B.1" href="#appendix-B.1">B.1</a>. Tunnel Interface Considerations</span>
If the tunnel interface goes up and down every time the Mobile Router
moves to a new visited network with a high level of mobility and a
sufficient number of Mobile Routers, the amount of interface state
changes will adversely affect the Home Agent's performance. This
also introduces a high level of instability in the home network. To
avoid this, the following should be considered when the bi-
directional tunnel is implemented:
- A tunnel interface is consistently assigned to each Mobile Router,
as long as it has a valid binding cache at the Home Agent.
- Every time the Mobile Router moves and updates the binding cache
entry, the bi-directional tunnel should not be torn down and set
up again. The tunnel end points should be updated dynamically
with the Mobile Router's current Care-of Address.
- With a large number of interfaces, Hello packet processing may
become a burden. Therefore, the tunnel interface should be
treated as On-Demand circuits for OSPF [<a href="#ref-16" title=""Extending OSPF to Support Demand Circuits"">16</a>].
<span class="h3"><a class="selflink" id="appendix-B.2" href="#appendix-B.2">B.2</a>. OSPF Area Considerations</span>
The following should be considered when the Home Network is
configured for running OSPF:
- The entire Home domain SHOULD NOT be configured as a single area
if a Home Agent supports Mobile Routers. At least the home
network should be configured as a separate area.
- The bi-directional tunnel interfaces to the Mobile Routers should
never be included in the same area as the backbone links.
For a more detailed discussion on configuring a home network for NEMO
Basic Support, please see [<a href="#ref-17" title=""NEMO Home Network models"">17</a>].
<span class="grey">Devarapalli, et al. Standards Track [Page 30]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-31" ></span>
<span class="grey"><a href="./rfc3963">RFC 3963</a> NEMO Basic Support Protocol January 2005</span>
One disadvantage of running OSPFv3 with NEMO Basic Support is the
possibility that the Mobile Networks will be told of the topology of
the entire home network, including all the fixed and Mobile Routers.
The only thing the Mobile Routers might really need is a default
route through the Home Agent.
To reduce the amount of routing protocol messages received by a
Mobile Router, one can configure each bi-directional tunnel to a
Mobile Router as a separate area. But this requires that the Home
Agent support a large number of OSPF areas if it supports a large
number of Mobile Routers, and it might not be possible with most
router implementations.
Another option is to configure multiple areas on the Home Link and
group a number of Mobile Routers into each area. This reduces the
number of areas that a Home Agent needs to support but also reduces
the amount of routing protocol traffic that a Mobile Router receives.
<span class="grey">Devarapalli, et al. Standards Track [Page 31]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-32" ></span>
<span class="grey"><a href="./rfc3963">RFC 3963</a> NEMO Basic Support Protocol January 2005</span>
Authors' Addresses
Vijay Devarapalli
Nokia Research Center
313 Fairchild Drive
Mountain View, CA 94043
USA
EMail: vijay.devarapalli@nokia.com
Ryuji Wakikawa
Keio University and WIDE
5322 Endo Fujisawa Kanagawa
252-8520
Japan
EMail: ryuji@sfc.wide.ad.jp
Alexandru Petrescu
Motorola Labs
Parc les Algorithmes Saint Aubin
Gif-sur-Yvette 91193
France
EMail: Alexandru.Petrescu@motorola.com
Pascal Thubert
Cisco Systems Technology Center
Village d'Entreprises Green Side
400, Avenue Roumanille
Biot - Sophia Antipolis 06410
France
EMail: pthubert@cisco.com
<span class="grey">Devarapalli, et al. Standards Track [Page 32]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-33" ></span>
<span class="grey"><a href="./rfc3963">RFC 3963</a> NEMO Basic Support Protocol January 2005</span>
Full Copyright Statement
Copyright (C) The Internet Society (2005).
This document is subject to the rights, licenses and restrictions
contained in <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a>, and except as set forth therein, the authors
retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the IETF's procedures with respect to rights in IETF Documents can
be found in <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and <a href="https://www.rfc-editor.org/bcp/bcp79">BCP 79</a>.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
<a href="http://www.ietf.org/ipr">http://www.ietf.org/ipr</a>.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at ietf-
ipr@ietf.org.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Devarapalli, et al. Standards Track [Page 33]
</pre>
|