1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
|
<pre>Network Working Group A. Adams
Request for Comments: 3973 NextHop Technologies
Category: Experimental J. Nicholas
ITT A/CD
W. Siadak
NextHop Technologies
January 2005
<span class="h1">Protocol Independent Multicast - Dense Mode (PIM-DM):</span>
<span class="h1">Protocol Specification (Revised)</span>
Status of This Memo
This memo defines an Experimental Protocol for the Internet
community. It does not specify an Internet standard of any kind.
Discussion and suggestions for improvement are requested.
Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2005).
Abstract
This document specifies Protocol Independent Multicast - Dense Mode
(PIM-DM). PIM-DM is a multicast routing protocol that uses the
underlying unicast routing information base to flood multicast
datagrams to all multicast routers. Prune messages are used to
prevent future messages from propagating to routers without group
membership information.
<span class="grey">Adams, et al. Experimental [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
Table of Contents
<a href="#section-1">1</a>. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-2">2</a>. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-2.1">2.1</a>. Definitions . . . . . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-2.2">2.2</a>. Pseudocode Notation . . . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-3">3</a>. PIM-DM Protocol Overview . . . . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-4">4</a>. Protocol Specification . . . . . . . . . . . . . . . . . . . . <a href="#page-6">6</a>
<a href="#section-4.1">4.1</a>. PIM Protocol State . . . . . . . . . . . . . . . . . . . <a href="#page-7">7</a>
<a href="#section-4.1.1">4.1.1</a>. General Purpose State . . . . . . . . . . . . . <a href="#page-7">7</a>
<a href="#section-4.1.2">4.1.2</a>. (S,G) State . . . . . . . . . . . . . . . . . . <a href="#page-8">8</a>
<a href="#section-4.1.3">4.1.3</a>. State Summarization Macros . . . . . . . . . . . <a href="#page-8">8</a>
<a href="#section-4.2">4.2</a>. Data Packet Forwarding Rules . . . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-4.3">4.3</a>. Hello Messages . . . . . . . . . . . . . . . . . . . . . <a href="#page-11">11</a>
<a href="#section-4.3.1">4.3.1</a>. Sending Hello Messages . . . . . . . . . . . . . <a href="#page-11">11</a>
<a href="#section-4.3.2">4.3.2</a>. Receiving Hello Messages . . . . . . . . . . . . <a href="#page-11">11</a>
<a href="#section-4.3.3">4.3.3</a>. Hello Message Hold Time . . . . . . . . . . . . <a href="#page-12">12</a>
<a href="#section-4.3.4">4.3.4</a>. Handling Router Failures . . . . . . . . . . . . <a href="#page-12">12</a>
<a href="#section-4.3.5">4.3.5</a>. Reducing Prune Propagation Delay on LANs . . . . <a href="#page-13">13</a>
<a href="#section-4.4">4.4</a>. PIM-DM Prune, Join, and Graft Messages . . . . . . . . . <a href="#page-13">13</a>
<a href="#section-4.4.1">4.4.1</a>. Upstream Prune, Join, and Graft Messages . . . . <a href="#page-14">14</a>
4.4.1.1. Transitions from the Forwarding
(F) State . . . . . . . . . . . . . . <a href="#page-17">17</a>
4.4.1.2. Transitions from the Pruned
(P) State . . . . . . . . . . . . . . <a href="#page-18">18</a>
4.4.1.3. Transitions from the AckPending
(AP) State . . . . . . . . . . . . . . <a href="#page-19">19</a>
<a href="#section-4.4.2">4.4.2</a>. Downstream Prune, Join, and Graft Messages . . . <a href="#page-21">21</a>
<a href="#section-4.4.2.1">4.4.2.1</a>. Transitions from the NoInfo State . . <a href="#page-23">23</a>
4.4.2.2. Transitions from the PrunePending
(PP) State . . . . . . . . . . . . . . <a href="#page-24">24</a>
4.4.2.3. Transitions from the Prune
(P) State . . . . . . . . . . . . . . <a href="#page-25">25</a>
<a href="#section-4.5">4.5</a>. State Refresh . . . . . . . . . . . . . . . . . . . . . <a href="#page-26">26</a>
<a href="#section-4.5.1">4.5.1</a>. Forwarding of State Refresh Messages . . . . . . <a href="#page-26">26</a>
<a href="#section-4.5.2">4.5.2</a>. State Refresh Message Origination . . . . . . . <a href="#page-28">28</a>
4.5.2.1. Transitions from the NotOriginator
(NO) State . . . . . . . . . . . . . . <a href="#page-29">29</a>
4.5.2.2. Transitions from the Originator
(O) State . . . . . . . . . . . . . . <a href="#page-29">29</a>
<span class="grey">Adams, et al. Experimental [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
<a href="#section-4.6">4.6</a>. PIM Assert Messages . . . . . . . . . . . . . . . . . . <a href="#page-30">30</a>
<a href="#section-4.6.1">4.6.1</a>. Assert Metrics . . . . . . . . . . . . . . . . . <a href="#page-30">30</a>
<a href="#section-4.6.2">4.6.2</a>. AssertCancel Messages . . . . . . . . . . . . . <a href="#page-31">31</a>
<a href="#section-4.6.3">4.6.3</a>. Assert State Macros . . . . . . . . . . . . . . <a href="#page-32">32</a>
<a href="#section-4.6.4">4.6.4</a>. (S,G) Assert Message State Machine . . . . . . . <a href="#page-32">32</a>
<a href="#section-4.6.4.1">4.6.4.1</a>. Transitions from NoInfo State . . . . <a href="#page-34">34</a>
<a href="#section-4.6.4.2">4.6.4.2</a>. Transitions from Winner State . . . . <a href="#page-35">35</a>
<a href="#section-4.6.4.3">4.6.4.3</a>. Transitions from Loser State . . . . . <a href="#page-36">36</a>
<a href="#section-4.6.5">4.6.5</a>. Rationale for Assert Rules . . . . . . . . . . . <a href="#page-38">38</a>
<a href="#section-4.7">4.7</a>. PIM Packet Formats . . . . . . . . . . . . . . . . . . . <a href="#page-38">38</a>
<a href="#section-4.7.1">4.7.1</a>. PIM Header . . . . . . . . . . . . . . . . . . . <a href="#page-38">38</a>
<a href="#section-4.7.2">4.7.2</a>. Encoded Unicast Address . . . . . . . . . . . . <a href="#page-39">39</a>
<a href="#section-4.7.3">4.7.3</a>. Encoded Group Address . . . . . . . . . . . . . <a href="#page-40">40</a>
<a href="#section-4.7.4">4.7.4</a>. Encoded Source Address . . . . . . . . . . . . . <a href="#page-41">41</a>
<a href="#section-4.7.5">4.7.5</a>. Hello Message Format . . . . . . . . . . . . . . <a href="#page-42">42</a>
<a href="#section-4.7.5.1">4.7.5.1</a>. Hello Hold Time Option . . . . . . . . <a href="#page-43">43</a>
<a href="#section-4.7.5.2">4.7.5.2</a>. LAN Prune Delay Option . . . . . . . . <a href="#page-43">43</a>
<a href="#section-4.7.5.3">4.7.5.3</a>. Generation ID Option . . . . . . . . . <a href="#page-44">44</a>
<a href="#section-4.7.5.4">4.7.5.4</a>. State Refresh Capable Option . . . . . <a href="#page-44">44</a>
<a href="#section-4.7.6">4.7.6</a>. Join/Prune Message Format . . . . . . . . . . . <a href="#page-45">45</a>
<a href="#section-4.7.7">4.7.7</a>. Assert Message Format . . . . . . . . . . . . . <a href="#page-47">47</a>
<a href="#section-4.7.8">4.7.8</a>. Graft Message Format . . . . . . . . . . . . . . <a href="#page-48">48</a>
<a href="#section-4.7.9">4.7.9</a>. Graft Ack Message Format . . . . . . . . . . . . <a href="#page-48">48</a>
<a href="#section-4.7.10">4.7.10</a>. State Refresh Message Format . . . . . . . . . . <a href="#page-48">48</a>
<a href="#section-4.8">4.8</a>. PIM-DM Timers . . . . . . . . . . . . . . . . . . . . . <a href="#page-50">50</a>
<a href="#section-5">5</a>. Protocol Interaction Considerations . . . . . . . . . . . . . <a href="#page-53">53</a>
<a href="#section-5.1">5.1</a>. PIM-SM Interactions . . . . . . . . . . . . . . . . . . <a href="#page-53">53</a>
<a href="#section-5.2">5.2</a>. IGMP Interactions . . . . . . . . . . . . . . . . . . . <a href="#page-54">54</a>
<a href="#section-5.3">5.3</a>. Source Specific Multicast (SSM) Interactions . . . . . . <a href="#page-54">54</a>
<a href="#section-5.4">5.4</a>. Multicast Group Scope Boundary Interactions . . . . . . <a href="#page-54">54</a>
<a href="#section-6">6</a>. IANA Considerations . . . . . . . . . . . . . . . . . . . . . <a href="#page-54">54</a>
<a href="#section-6.1">6.1</a>. PIM Address Family . . . . . . . . . . . . . . . . . . . <a href="#page-54">54</a>
<a href="#section-6.2">6.2</a>. PIM Hello Options . . . . . . . . . . . . . . . . . . . <a href="#page-55">55</a>
<a href="#section-7">7</a>. Security Considerations. . . . . . . . . . . . . . . . . . . . <a href="#page-55">55</a>
<a href="#section-7.1">7.1</a>. Attacks Based on Forged Messages . . . . . . . . . . . . <a href="#page-55">55</a>
<a href="#section-7.2">7.2</a>. Non-cryptographic Authentication Mechanisms . . . . . . <a href="#page-56">56</a>
<a href="#section-7.3">7.3</a>. Authentication Using IPsec . . . . . . . . . . . . . . . <a href="#page-56">56</a>
<a href="#section-7.4">7.4</a>. Denial of Service Attacks . . . . . . . . . . . . . . . <a href="#page-58">58</a>
<a href="#section-8">8</a>. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-58">58</a>
<a href="#section-9">9</a>. References . . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-58">58</a>
<a href="#section-9.1">9.1</a>. Normative References . . . . . . . . . . . . . . . . . . <a href="#page-58">58</a>
<a href="#section-9.2">9.2</a>. Informative References . . . . . . . . . . . . . . . . . <a href="#page-59">59</a>
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-60">60</a>
Full Copyright Statement . . . . . . . . . . . . . . . . . . . . . <a href="#page-61">61</a>
<span class="grey">Adams, et al. Experimental [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
This specification defines a multicast routing algorithm for
multicast groups that are densely distributed across a network. This
protocol does not have a topology discovery mechanism often used by a
unicast routing protocol. It employs the same packet formats sparse
mode PIM (PIM-SM) uses. This protocol is called PIM - Dense Mode.
The foundation of this design was largely built on Deering's early
work on IP multicast routing [<a href="#ref-12" title=""Multicast Routing in a Datagram Internetwork"">12</a>].
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Terminology</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" are to
be interpreted as described in <a href="./rfc2119">RFC 2119</a> [<a href="#ref-11" title=""Key words for use in RFCs to Indicate Requirement Levels"">11</a>] and indicate requirement
levels for compliant PIM-DM implementations.
<span class="h3"><a class="selflink" id="section-2.1" href="#section-2.1">2.1</a>. Definitions</span>
Multicast Routing Information Base (MRIB)
This is the multicast topology table, which is typically derived
from the unicast routing table, or from routing protocols such as
MBGP that carry multicast-specific topology information. PIM-DM
uses the MRIB to make decisions regarding RPF interfaces.
Tree Information Base (TIB)
This is the collection of state maintained by a PIM router and
created by receiving PIM messages and IGMP information from local
hosts. It essentially stores the state of all multicast
distribution trees at that router.
Reverse Path Forwarding (RPF)
RPF is a multicast forwarding mode in which a data packet is
accepted for forwarding only if it is received on an interface used
to reach the source in unicast.
Upstream Interface
Interface toward the source of the datagram. Also known as the RPF
Interface.
Downstream Interface
All interfaces that are not the upstream interface, including the
router itself.
(S,G) Pair
Source S and destination group G associated with an IP packet.
<span class="grey">Adams, et al. Experimental [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
<span class="h3"><a class="selflink" id="section-2.2" href="#section-2.2">2.2</a>. Pseudocode Notation</span>
We use set notation in several places in this specification.
A (+) B
is the union of two sets, A and B.
A (-) B
are the elements of set A that are not in set B.
NULL
is the empty set or list.
Note that operations MUST be conducted in the order specified. This
is due to the fact that (-) is not a true difference operator,
because B is not necessarily a subset of A. That is, A (+) B (-) C =
A (-) C (+) B is not a true statement unless C is a subset of both A
and B.
In addition, we use C-like syntax:
= denotes assignment of a variable.
== denotes a comparison for equality.
!= denotes a comparison for inequality.
Braces { and } are used for grouping.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. PIM-DM Protocol Overview</span>
This section provides an overview of PIM-DM behavior. It is intended
as an introduction to how PIM-DM works and is NOT definitive. For
the definitive specification, see <a href="#section-4">Section 4</a>, Protocol Specification.
PIM-DM assumes that when a source starts sending, all downstream
systems want to receive multicast datagrams. Initially, multicast
datagrams are flooded to all areas of the network. PIM-DM uses RPF
to prevent looping of multicast datagrams while flooding. If some
areas of the network do not have group members, PIM-DM will prune off
the forwarding branch by instantiating prune state.
Prune state has a finite lifetime. When that lifetime expires, data
will again be forwarded down the previously pruned branch.
Prune state is associated with an (S,G) pair. When a new member for
a group G appears in a pruned area, a router can "graft" toward the
source S for the group, thereby turning the pruned branch back into a
forwarding branch.
<span class="grey">Adams, et al. Experimental [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
The broadcast of datagrams followed by pruning of unwanted branches
is often referred to as a flood and prune cycle and is typical of
dense mode protocols.
To minimize repeated flooding of datagrams and subsequent pruning
associated with a particular (S,G) pair, PIM-DM uses a state refresh
message. This message is sent by the router(s) directly connected to
the source and is propagated throughout the network. When received
by a router on its RPF interface, the state refresh message causes an
existing prune state to be refreshed.
Compared with multicast routing protocols with built-in topology
discovery mechanisms (e.g., DVMRP [<a href="#ref-13" title=""Distance Vector Multicast Routing Protocol"">13</a>]), PIM-DM has a simplified
design and is not hard-wired into a specific topology discovery
protocol. However, this simplification does incur more overhead by
causing flooding and pruning to occur on some links that could be
avoided if sufficient topology information were available; i.e., to
decide whether an interface leads to any downstream members of a
particular group. Additional overhead is chosen in favor of the
simplification and flexibility gained by not depending on a specific
topology discovery protocol.
PIM-DM differs from PIM-SM in two essential ways: 1) There are no
periodic joins transmitted, only explicitly triggered prunes and
grafts. 2) There is no Rendezvous Point (RP). This is particularly
important in networks that cannot tolerate a single point of failure.
(An RP is the root of a shared multicast distribution tree. For more
details, see [<a href="#ref-4" title=""Protocol Independent Multicast-Sparse Mode (PIM-SM): Protocol Specification"">4</a>]).
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Protocol Specification</span>
The specification of PIM-DM is broken into several parts:
* <a href="#section-4.1">Section 4.1</a> details the protocol state stored.
* <a href="#section-4.2">Section 4.2</a> specifies the data packet forwarding rules.
* <a href="#section-4.3">Section 4.3</a> specifies generation and processing of Hello messages.
* <a href="#section-4.4">Section 4.4</a> specifies the Join, Prune, and Graft generation and
processing rules.
* <a href="#section-4.5">Section 4.5</a> specifies the State Refresh generation and forwarding
rules.
* <a href="#section-4.6">Section 4.6</a> specifies the Assert generation and processing rules.
* <a href="#section-4.7">Section 4.7</a> gives details on PIM-DM Packet Formats.
* <a href="#section-4.8">Section 4.8</a> summarizes PIM-DM timers and their defaults.
<span class="grey">Adams, et al. Experimental [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. PIM Protocol State</span>
This section specifies all the protocol states that a PIM-DM
implementation should maintain to function correctly. We term this
state the Tree Information Base or TIB, as it holds the state of all
the multicast distribution trees at this router. In this
specification, we define PIM-DM mechanisms in terms of the TIB.
However, only a very simple implementation would actually implement
packet forwarding operations in terms of this state. Most
implementations will use this state to build a multicast forwarding
table, which would then be updated when the relevant state in the TIB
changes.
Unlike PIM-SM, PIM-DM does not maintain a keepalive timer associated
with each (S,G) route. Within PIM-DM, route and state information
associated with an (S,G) entry MUST be maintained as long as any
timer associated with that (S,G) entry is active. When no timer
associated with an (S,G) entry is active, all information concerning
that (S,G) route may be discarded.
Although we precisely specify the state to be kept, this does not
mean that an implementation of PIM-DM has to hold the state in this
form. This is actually an abstract state definition, which is needed
in order to specify the router's behavior. A PIM-DM implementation
is free to hold whatever internal state it requires and will still be
conformant with this specification as long as it results in the same
externally visible protocol behavior as an abstract router that holds
the following state.
<span class="h4"><a class="selflink" id="section-4.1.1" href="#section-4.1.1">4.1.1</a>. General Purpose State</span>
A router stores the following non-group-specific state:
For each interface:
Hello Timer (HT)
State Refresh Capable
LAN Delay Enabled
Propagation Delay (PD)
Override Interval (OI)
Neighbor State:
For each neighbor:
Information from neighbor's Hello
Neighbor's Gen ID.
Neighbor's LAN Prune Delay
Neighbor's Override Interval
Neighbor's State Refresh Capability
Neighbor Liveness Timer (NLT)
<span class="grey">Adams, et al. Experimental [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
<span class="h4"><a class="selflink" id="section-4.1.2" href="#section-4.1.2">4.1.2</a>. (S,G) State</span>
For every source/group pair (S,G), a router stores the following
state:
(S,G) state:
For each interface:
Local Membership:
State: One of {"NoInfo", "Include"}
PIM (S,G) Prune State:
State: One of {"NoInfo" (NI), "Pruned" (P), "PrunePending"
(PP)}
Prune Pending Timer (PPT)
Prune Timer (PT)
(S,G) Assert Winner State:
State: One of {"NoInfo" (NI), "I lost Assert" (L), "I won
Assert" (W)}
Assert Timer (AT)
Assert winner's IP Address
Assert winner's Assert Metric
Upstream interface-specific:
Graft/Prune State:
State: One of {"NoInfo" (NI), "Pruned" (P), "Forwarding" (F),
"AckPending" (AP) }
GraftRetry Timer (GRT)
Override Timer (OT)
Prune Limit Timer (PLT)
Originator State:
Source Active Timer (SAT)
State Refresh Timer (SRT)
<span class="h4"><a class="selflink" id="section-4.1.3" href="#section-4.1.3">4.1.3</a>. State Summarization Macros</span>
Using the state defined above, the following "macros" are defined and
will be used in the descriptions of the state machines and pseudocode
in the following sections.
The most important macros are those defining the outgoing interface
list (or "olist") for the relevant state.
immediate_olist(S,G) = pim_nbrs (-) prunes(S,G) (+)
(pim_include(*,G) (-) pim_exclude(S,G) ) (+)
pim_include(S,G) (-) lost_assert(S,G) (-)
boundary(G)
<span class="grey">Adams, et al. Experimental [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
olist(S,G) = immediate_olist(S,G) (-) RPF_interface(S)
The macros pim_include(*,G) and pim_include(S,G) indicate the
interfaces to which traffic might or might not be forwarded because
of hosts that are local members on those interfaces.
pim_include(*,G) = {all interfaces I such that:
local_receiver_include(*,G,I)}
pim_include(S,G) = {all interfaces I such that:
local_receiver_include(S,G,I)}
pim_exclude(S,G) = {all interfaces I such that:
local_receiver_exclude(S,G,I)}
The macro RPF_interface(S) returns the RPF interface for source S.
That is to say, it returns the interface used to reach S as indicated
by the MRIB.
The macro local_receiver_include(S,G,I) is true if the IGMP module or
other local membership mechanism ([<a href="#ref-1" title=""Host extensions for IP multicasting"">1</a>], [<a href="#ref-2" title=""Internet Group Management Protocol, Version 2"">2</a>], [<a href="#ref-3" title=""Internet Group Management Protocol, Version 3"">3</a>], [<a href="#ref-6" title=""Multicast Listener Discovery (MLD) for IPv6"">6</a>]) has determined
that there are local members on interface I that seek to receive
traffic sent specifically by S to G.
The macro local_receiver_include(*,G,I) is true if the IGMP module or
other local membership mechanism has determined that there are local
members on interface I that seek to receive all traffic sent to G.
Note that this determination is expected to account for membership
joins initiated on or by the router.
The macro local_receiver_exclude(S,G,I) is true if
local_receiver_include(*,G,I) is true but none of the local members
seek to receive traffic from S.
The set pim_nbrs is the set of all interfaces on which the router has
at least one active PIM neighbor.
The set prunes(S,G) is the set of all interfaces on which the router
has received Prune(S,G) messages:
prunes(S,G) = {all interfaces I such that
DownstreamPState(S,G,I) is in Pruned state}
<span class="grey">Adams, et al. Experimental [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
The set lost_assert(S,G) is the set of all interfaces on which the
router has lost an (S,G) Assert.
lost_assert(S,G) = {all interfaces I such that
lost_assert(S,G,I) == TRUE}
boundary(G) = {all interfaces I with an administratively scoped
boundary for group G}
The following pseudocode macro definitions are also used in many
places in the specification. Basically RPF' is the RPF neighbor
toward a source unless a PIM-DM Assert has overridden the normal
choice of neighbor.
neighbor RPF'(S,G) {
if ( I_Am_Assert_loser(S, G, RPF_interface(S) )) {
return AssertWinner(S, G, RPF_interface(S) )
} else {
return MRIB.next_hop( S )
}
}
The macro I_Am_Assert_loser(S, G, I) is true if the Assert state
machine (in <a href="#section-4.6">Section 4.6</a>) for (S,G) on interface I is in the "I am
Assert Loser" state.
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. Data Packet Forwarding Rules</span>
The PIM-DM packet forwarding rules are defined below in pseudocode.
iif is the incoming interface of the packet. S is the source address
of the packet. G is the destination address of the packet (group
address). RPF_interface(S) is the interface the MRIB indicates would
be used to route packets to S.
First, an RPF check MUST be performed to determine whether the packet
should be accepted based on TIB state and the interface on which that
the packet arrived. Packets that fail the RPF check MUST NOT be
forwarded, and the router will conduct an assert process for the
(S,G) pair specified in the packet. Packets for which a route to the
source cannot be found MUST be discarded.
If the RPF check has been passed, an outgoing interface list is
constructed for the packet. If this list is not empty, then the
packet MUST be forwarded to all listed interfaces. If the list is
empty, then the router will conduct a prune process for the (S,G)
pair specified in the packet.
<span class="grey">Adams, et al. Experimental [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
Upon receipt of a data packet from S addressed to G on interface iif:
if (iif == RPF_interface(S) AND UpstreamPState(S,G) != Pruned) {
oiflist = olist(S,G)
} else {
oiflist = NULL
}
forward packet on all interfaces in oiflist
This pseudocode employs the following "macro" definition:
UpstreamPState(S,G) is the state of the Upstream(S,G) state machine
in <a href="#section-4.4.1">Section 4.4.1</a>.
<span class="h3"><a class="selflink" id="section-4.3" href="#section-4.3">4.3</a>. Hello Messages</span>
This section describes the generation and processing of Hello
messages.
<span class="h4"><a class="selflink" id="section-4.3.1" href="#section-4.3.1">4.3.1</a>. Sending Hello Messages</span>
PIM-DM uses Hello messages to detect other PIM routers. Hello
messages are sent periodically on each PIM enabled interface. Hello
messages are multicast to the ALL-PIM-ROUTERS group. When PIM is
enabled on an interface or when a router first starts, the Hello
Timer (HT) MUST be set to random value between 0 and
Triggered_Hello_Delay. This prevents synchronization of Hello
messages if multiple routers are powered on simultaneously.
After the initial Hello message, a Hello message MUST be sent every
Hello_Period. A single Hello timer MAY be used to trigger sending
Hello messages on all active interfaces. The Hello Timer SHOULD NOT
be reset except when it expires.
<span class="h4"><a class="selflink" id="section-4.3.2" href="#section-4.3.2">4.3.2</a>. Receiving Hello Messages</span>
When a Hello message is received, the receiving router SHALL record
the receiving interface, the sender, and any information contained in
recognized options. This information is retained for a number of
seconds in the Hold Time field of the Hello Message. If a new Hello
message is received from a particular neighbor N, the Neighbor
Liveness Timer (NLT(N,I)) MUST be reset to the newly received Hello
Holdtime. If a Hello message is received from a new neighbor, the
receiving router SHOULD send its own Hello message after a random
delay between 0 and Triggered_Hello_Delay.
<span class="grey">Adams, et al. Experimental [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
<span class="h4"><a class="selflink" id="section-4.3.3" href="#section-4.3.3">4.3.3</a>. Hello Message Hold Time</span>
The Hold Time in the Hello Message should be set to a value that can
reasonably be expected to keep the Hello active until a new Hello
message is received. On most links, this will be 3.5 times the value
of Hello_Period.
If the Hold Time is set to '0xffff', the receiving router MUST NOT
time out that Hello message. This feature might be used for on-
demand links to avoid keeping the link up with periodic Hello
messages.
If a Hold Time of '0' is received, the corresponding neighbor state
expires immediately. When a PIM router takes an interface down or
changes IP address, a Hello message with a zero Hold Time SHOULD be
sent immediately (with the old IP address if the IP address is
changed) to cause any PIM neighbors to remove the old information
immediately.
<span class="h4"><a class="selflink" id="section-4.3.4" href="#section-4.3.4">4.3.4</a>. Handling Router Failures</span>
If a Hello message is received from an active neighbor with a
different Generation ID (GenID), the neighbor has restarted and may
not contain the correct (S,G) state. A Hello message SHOULD be sent
after a random delay between 0 and Triggered_Hello_Delay (see 4.8)
before any other messages are sent. If the neighbor is downstream,
the router MAY replay the last State Refresh message for any (S,G)
pairs for which it is the Assert Winner indicating Prune and Assert
status to the downstream router. These State Refresh messages SHOULD
be sent out immediately after the Hello message. If the neighbor is
the upstream neighbor for an (S,G) entry, the router MAY cancel its
Prune Limit Timer to permit sending a prune and reestablishing a
Pruned state in the upstream router.
Upon startup, a router MAY use any State Refresh messages received
within Hello_Period of its first Hello message on an interface to
establish state information. The State Refresh source will be the
RPF'(S), and Prune status for all interfaces will be set according to
the Prune Indicator bit in the State Refresh message. If the Prune
Indicator is set, the router SHOULD set the PruneLimitTimer to
Prune_Holdtime and set the PruneTimer on all downstream interfaces to
the State Refresh's Interval times two. The router SHOULD then
propagate the State Refresh as described in <a href="#section-4.5.1">Section 4.5.1</a>.
<span class="grey">Adams, et al. Experimental [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
<span class="h4"><a class="selflink" id="section-4.3.5" href="#section-4.3.5">4.3.5</a>. Reducing Prune Propagation Delay on LANs</span>
If all routers on a LAN support the LAN Prune Delay option, then the
PIM routers on that LAN will use the values received to adjust their
J/P_Override_Interval on that interface and the interface is LAN
Delay Enabled. Briefly, to avoid synchronization of Prune Override
(Join) messages when multiple downstream routers share a multi-access
link, sending of these messages is delayed by a small random amount
of time. The period of randomization is configurable and has a
default value of 3 seconds.
Each router on the LAN expresses its view of the amount of
randomization necessary in the Override Interval field of the LAN
Prune Delay option. When all routers on a LAN use the LAN Prune
Delay Option, all routers on the LAN MUST set their Override_Interval
to the largest Override value on the LAN.
The LAN Delay inserted by a router in the LAN Prune Delay option
expresses the expected message propagation delay on the link and
SHOULD be configurable by the system administrator. When all routers
on a link use the LAN Prune Delay Option, all routers on the LAN MUST
set Propagation Delay to the largest LAN Delay on the LAN.
PIM implementers should enforce a lower bound on the permitted values
for this delay to allow for scheduling and processing delays within
their router. Such delays may cause received messages to be
processed later and triggered messages to be sent later than
intended. Setting this LAN Prune Delay to too low a value may result
in temporary forwarding outages, because a downstream router will not
be able to override a neighbor's prune message before the upstream
neighbor stops forwarding.
<span class="h3"><a class="selflink" id="section-4.4" href="#section-4.4">4.4</a>. PIM-DM Prune, Join, and Graft Messages</span>
This section describes the generation and processing of PIM-DM Join,
Prune, and Graft messages. Prune messages are sent toward the
upstream neighbor for S to indicate that traffic from S addressed to
group G is not desired. In the case of downstream routers A and B,
where A wishes to continue receiving data and B does not, A will send
a Join in response to B's Prune to override the Prune. This is the
only situation in PIM-DM in which a Join message is used. Finally, a
Graft message is used to re-join a previously pruned branch to the
delivery tree.
<span class="grey">Adams, et al. Experimental [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
<span class="h4"><a class="selflink" id="section-4.4.1" href="#section-4.4.1">4.4.1</a>. Upstream Prune, Join, and Graft Messages</span>
The Upstream(S,G) state machine for sending Prune, Graft, and Join
messages is given below. There are three states.
Forwarding (F)
This is the starting state of the Upsteam(S,G) state machine.
The state machine is in this state if it just started or if
oiflist(S,G) != NULL.
Pruned (P)
The set, olist(S,G), is empty. The router will not forward data
from S addressed to group G.
AckPending (AP)
The router was in the Pruned(P) state, but a transition has
occurred in the Downstream(S,G) state machine for one of this
(S,G) entry's outgoing interfaces, indicating that traffic from S
addressed to G should again be forwarded. A Graft message has
been sent to RPF'(S), but a Graft Ack message has not yet been
received.
In addition, there are three state-machine-specific timers:
GraftRetry Timer (GRT(S,G))
This timer is set when a Graft is sent upstream. If a
corresponding GraftAck is not received before the timer expires,
then another Graft is sent, and the GraftRetry Timer is reset.
The timer is stopped when a Graft Ack message is received. This
timer is normally set to Graft_Retry_Period (see 4.8).
Override Timer (OT(S,G))
This timer is set when a Prune(S,G) is received on the upstream
interface where olist(S,G) != NULL. When the timer expires, a
Join(S,G) message is sent on the upstream interface. This timer
is normally set to t_override (see 4.8).
Prune Limit Timer (PLT(S,G))
This timer is used to rate-limit Prunes on a LAN. It is only
used when the Upstream(S,G) state machine is in the Pruned state.
A Prune cannot be sent if this timer is running. This timer is
normally set to t_limit (see 4.8).
<span class="grey">Adams, et al. Experimental [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
+-------------+ +-------------+
| | olist == NULL | |
| Forward |----------------------->| Pruned |
| | | |
+-------------+ +-------------+
^ | ^ |
| | | |
| |RPF`(S) Changes olist == NULL| |
| | | |
| | +-------------+ | |
| +-------->| |----------+ |
| | AckPending | |
+-------------| |<-------------+
Rcv GraftAck OR +-------------+ olist != NULL
Rcv State Refresh
With (P==0) OR
S Directly Connect
Figure 1: Upstream Interface State Machine
In tabular form, the state machine is defined as follows:
+-------------------------------+--------------------------------------+
| | Previous State |
| +------------+------------+------------+
| Event | Forwarding | Pruned | AckPending |
+-------------------------------+------------+------------+------------+
| Data packet arrives on | ->P Send | ->P Send | N/A |
| RPF_Interface(S) AND | Prune(S,G) | Prune(S,G) | |
| olist(S,G) == NULL AND |Set PLT(S,G)|Set PLT(S,G)| |
| PLT(S,G) not running | | | |
+-------------------------------+------------+------------+------------+
| State Refresh(S,G) received | ->F Set | ->P Reset |->AP Set |
| from RPF`(S) AND | OT(S,G) | PLT(S,G) | OT(S,G) |
| Prune Indicator == 1 | | | |
+-------------------------------+------------+------------+------------+
| State Refresh(S,G) received | ->F | ->P Send |->F Cancel |
| from RPF`(S) AND | | Prune(S,G) | GRT(S,G) |
| Prune Indicator == 0 AND | |Set PLT(S,G)| |
| PLT(S,G) not running | | | |
+-------------------------------+------------+------------+------------+
<span class="grey">Adams, et al. Experimental [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
+-------------------------------+--------------------------------------+
| | Previous State |
+ +------------+------------+------------+
| Event | Forwarding | Pruned | AckPending |
+-------------------------------+------------+------------+------------+
| See Join(S,G) to RPF'(S) | ->F Cancel | ->P |->AP Cancel |
| | OT(S,G) | | OT(S,G) |
+-------------------------------+------------+------------+------------+
| See Prune(S,G) | ->F Set | ->P |->AP Set |
| | OT(S,G) | | OT(S,G) |
+-------------------------------+------------+------------+------------+
| OT(S,G) Expires | ->F Send | N/A |->AP Send |
| | Join(S,G) | | Join(S,G) |
+-------------------------------+------------+------------+------------+
| olist(S,G)->NULL | ->P Send | N/A |->P Send |
| | Prune(S,G) | | Prune(S,G) |
| |Set PLT(S,G)| |Set PLT(S,G)|
| | | | Cancel |
| | | | GRT(S,G) |
+-------------------------------+------------+------------+------------+
| olist(S,G)->non-NULL | N/A | ->AP Send | N/A |
| | | Graft(S,G) | |
| | |Set GRT(S,G)| |
+-------------------------------+------------+------------+------------+
| RPF'(S) Changes AND | ->AP Send | ->AP Send |->AP Send |
| olist(S,G) != NULL | Graft(S,G) | Graft(S,G) | Graft(S,G) |
| |Set GRT(S,G)|Set GRT(S,G)|Set GRT(S,G)|
+-------------------------------+------------+------------+------------+
| RPF'(S) Changes AND | ->P | ->P Cancel |->P Cancel |
| olist(S,G) == NULL | | PLT(S,G) | GRT(S,G) |
+-------------------------------+------------+------------+------------+
| S becomes directly connected | ->F | ->P |->F Cancel |
| | | | GRT(S,G) |
+-------------------------------+------------+------------+------------+
| GRT(S,G) Expires | N/A | N/A |->AP Send |
| | | | Graft(S,G) |
| | | |Set GRT(S,G)|
+-------------------------------+------------+------------+------------+
| Receive GraftAck(S,G) from | ->F | ->P |->F Cancel |
| RPF'(S) | | | GRT(S,G) |
+-------------------------------+------------+------------+------------+
The transition event "RcvGraftAck(S,G)" implies receiving a Graft Ack
message targeted to this router's address on the incoming interface
for the (S,G) entry. If the destination address is not correct, the
state transitions in this state machine must not occur.
<span class="grey">Adams, et al. Experimental [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
<span class="h5"><a class="selflink" id="section-4.4.1.1" href="#section-4.4.1.1">4.4.1.1</a>. Transitions from the Forwarding (F) State</span>
When the Upstream(S,G) state machine is in the Forwarding (F) state,
the following events may trigger a transition:
Data Packet arrives on RPF_Interface(S) AND olist(S,G) == NULL AND
S NOT directly connected
The Upstream(S,G) state machine MUST transition to the Pruned (P)
state, send a Prune(S,G) to RPF'(S), and set PLT(S,G) to t_limit
seconds.
State Refresh(S,G) Received from RPF'(S)
The Upstream(S,G) state machine remains in a Forwarding state.
If the received State Refresh has the Prune Indicator bit set to
one, this router must override the upstream router's Prune state
after a short random interval. If OT(S,G) is not running and the
Prune Indicator bit equals one, the router MUST set OT(S,G) to
t_override seconds.
See Join(S,G) to RPF'(S)
This event is only relevant if RPF_interface(S) is a shared
medium. This router sees another router on RPF_interface(S) send
a Join(S,G) to RPF'(S,G). If the OT(S,G) is running, then it
means that the router had scheduled a Join to override a
previously received Prune. Another router has responded more
quickly with a Join, so the local router SHOULD cancel its
OT(S,G), if it is running. The Upstream(S,G) state machine
remains in the Forwarding (F) state.
See Prune(S,G) AND S NOT directly connected
This event is only relevant if RPF_interface(S) is a shared
medium. This router sees another router on RPF_interface(S) send
a Prune(S,G). As this router is in Forwarding state, it must
override the Prune after a short random interval. If OT(S,G) is
not running, the router MUST set OT(S,G) to t_override seconds.
The Upstream(S,G) state machine remains in Forwarding (F) state.
OT(S,G) Expires AND S NOT directly connected
The OverrideTimer (OT(S,G)) expires. The router MUST send a
Join(S,G) to RPF'(S) to override a previously detected prune.
The Upstream(S,G) state machine remains in the Forwarding (F)
state.
olist(S,G) -> NULL AND S NOT directly connected
The Upstream(S,G) state machine MUST transition to the Pruned (P)
state, send a Prune(S,G) to RPF'(S), and set PLT(S,G) to t_limit
seconds.
<span class="grey">Adams, et al. Experimental [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
RPF'(S) Changes AND olist(S,G) is non-NULL AND S NOT directly
connected
Unicast routing or Assert state causes RPF'(S) to change,
including changes to RPF_Interface(S). The Upstream(S,G) state
machine MUST transition to the AckPending (AP) state, unicast a
Graft to the new RPF'(S), and set the GraftRetry Timer (GRT(S,G))
to Graft_Retry_Period.
RPF'(S) Changes AND olist(S,G) is NULL
Unicast routing or Assert state causes RPF'(S) to change,
including changes to RPF_Interface(S). The Upstream(S,G) state
machine MUST transition to the Pruned (P) state.
<span class="h5"><a class="selflink" id="section-4.4.1.2" href="#section-4.4.1.2">4.4.1.2</a>. Transitions from the Pruned (P) State</span>
When the Upstream(S,G) state machine is in the Pruned (P) state, the
following events may trigger a transition:
Data arrives on RPF_interface(S) AND PLT(S,G) not running AND S NOT
directly connected
Either another router on the LAN desires traffic from S addressed
to G or a previous Prune was lost. To prevent generating a
Prune(S,G) in response to every data packet, the PruneLimit Timer
(PLT(S,G)) is used. Once the PLT(S,G) expires, the router needs
to send another prune in response to a data packet not received
directly from the source. A Prune(S,G) MUST be sent to RPF'(S),
and the PLT(S,G) MUST be set to t_limit.
State Refresh(S,G) Received from RPF'(S)
The Upstream(S,G) state machine remains in a Pruned state. If
the State Refresh has its Prune Indicator bit set to zero and
PLT(S,G) is not running, a Prune(S,G) MUST be sent to RPF'(S),
and the PLT(S,G) MUST be set to t_limit. If the State Refresh
has its Prune Indicator bit set to one, the router MUST reset
PLT(S,G) to t_limit.
See Prune(S,G) to RPF'(S)
A Prune(S,G) is seen on RPF_interface(S) to RPF'(S). The
Upstream(S,G) state machine stays in the Pruned (P) state. The
router MAY reset its PLT(S,G) to the value in the Holdtime field
of the received message if it is greater than the current value
of the PLT(S,G).
olist(S,G)->non-NULL AND S NOT directly connected
The set of interfaces defined by the olist(S,G) macro becomes
non-empty, indicating that traffic from S addressed to group G
must be forwarded. The Upstream(S,G) state machine MUST cancel
PLT(S,G), transition to the AckPending (AP) state and unicast a
<span class="grey">Adams, et al. Experimental [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
Graft message to RPF'(S). The Graft Retry Timer (GRT(S,G)) MUST
be set to Graft_Retry_Period.
RPF'(S) Changes AND olist(S,G) == non-NULL AND S NOT directly
connected
Unicast routing or Assert state causes RPF'(S) to change,
including changes to RPF_Interface(S). The Upstream(S,G) state
machine MUST cancel PLT(S,G), transition to the AckPending (AP)
state, send a Graft unicast to the new RPF'(S), and set the
GraftRetry Timer (GRT(S,G)) to Graft_Retry_Period.
RPF'(S) Changes AND olist(S,G) == NULL AND S NOT directly connected
Unicast routing or Assert state causes RPF'(S) to change,
including changes to RPF_Interface(S). The Upstream(S,G) state
machine stays in the Pruned (P) state and MUST cancel the
PLT(S,G) timer.
S becomes directly connected
Unicast routing changed so that S is directly connected. The
Upstream(S,G) state machine remains in the Pruned (P) state.
<span class="h5"><a class="selflink" id="section-4.4.1.3" href="#section-4.4.1.3">4.4.1.3</a>. Transitions from the AckPending (AP) State</span>
When the Upstream(S,G) state machine is in the AckPending (AP) state,
the following events may trigger a transition:
State Refresh(S,G) Received from RPF'(S) with Prune Indicator == 1
The Upstream(S,G) state machine remains in an AckPending state.
The router must override the upstream router's Prune state after
a short random interval. If OT(S,G) is not running and the Prune
Indicator bit equals one, the router MUST set OT(S,G) to
t_override seconds.
State Refresh(S,G) Received from RPF'(S) with Prune Indicator == 0
The router MUST cancel its GraftRetry Timer (GRT(S,G)) and
transition to the Forwarding (F) state.
See Join(S,G) to RPF'(S,G)
This event is only relevant if RPF_interface(S) is a shared
medium. This router sees another router on RPF_interface(S) send
a Join(S,G) to RPF'(S,G). If the OT(S,G) is running, then it
means that the router had scheduled a Join to override a
previously received Prune. Another router has responded more
quickly with a Join, so the local router SHOULD cancel its
OT(S,G), if it is running. The Upstream(S,G) state machine
remains in the AckPending (AP) state.
<span class="grey">Adams, et al. Experimental [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
See Prune(S,G)
This event is only relevant if RPF_interface(S) is a shared
medium. This router sees another router on RPF_interface(S) send
a Prune(S,G). As this router is in AckPending (AP) state, it
must override the Prune after a short random interval. If
OT(S,G) is not running, the router MUST set OT(S,G) to t_override
seconds. The Upstream(S,G) state machine remains in AckPending
(AP) state.
OT(S,G) Expires
The OverrideTimer (OT(S,G)) expires. The router MUST send a
Join(S,G) to RPF'(S). The Upstream(S,G) state machine remains in
the AckPending (AP) state.
olist(S,G) -> NULL
The set of interfaces defined by the olist(S,G) macro becomes
null, indicating that traffic from S addressed to group G should
no longer be forwarded. The Upstream(S,G) state machine MUST
transition to the Pruned (P) state. A Prune(S,G) MUST be
multicast to the RPF_interface(S), with RPF'(S) named in the
upstream neighbor field. The GraftRetry Timer (GRT(S,G)) MUST be
cancelled, and PLT(S,G) MUST be set to t_limit seconds.
RPF'(S) Changes AND olist(S,G) does not become NULL AND S NOT
directly connected
Unicast routing or Assert state causes RPF'(S) to change,
including changes to RPF_Interface(S). The Upstream(S,G) state
machine stays in the AckPending (AP) state. A Graft MUST be
unicast to the new RPF'(S) and the GraftRetry Timer (GRT(S,G))
reset to Graft_Retry_Period.
RPF'(S) Changes AND olist(S,G) == NULL AND S NOT directly connected
Unicast routing or Assert state causes RPF'(S) to change,
including changes to RPF_Interface(S). The Upstream(S,G) state
machine MUST transition to the Pruned (P) state. The GraftRetry
Timer (GRT(S,G)) MUST be cancelled.
S becomes directly connected
Unicast routing has changed so that S is directly connected. The
GraftRetry Timer MUST be cancelled, and the Upstream(S,G) state
machine MUST transition to the Forwarding(F) state.
<span class="grey">Adams, et al. Experimental [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
GRT(S,G) Expires
The GraftRetry Timer (GRT(S,G)) expires for this (S,G) entry.
The Upstream(S,G) state machine stays in the AckPending (AP)
state. Another Graft message for (S,G) SHOULD be unicast to
RPF'(S) and the GraftRetry Timer (GRT(S,G)) reset to
Graft_Retry_Period. It is RECOMMENDED that the router retry a
configured number of times before ceasing retries.
See GraftAck(S,G) from RPF'(S)
A GraftAck is received from RPF'(S). The GraftRetry Timer MUST
be cancelled, and the Upstream(S,G) state machine MUST transition
to the Forwarding(F) state.
<span class="h4"><a class="selflink" id="section-4.4.2" href="#section-4.4.2">4.4.2</a>. Downstream Prune, Join, and Graft Messages</span>
The Prune(S,G) Downstream state machine for receiving Prune, Join and
Graft messages on interface I is given below. This state machine
MUST always be in the NoInfo state on the upstream interface. It
contains three states.
NoInfo(NI)
The interface has no (S,G) Prune state, and neither the Prune
timer (PT(S,G,I)) nor the PrunePending timer ((PPT(S,G,I)) is
running.
PrunePending(PP)
The router has received a Prune(S,G) on this interface from a
downstream neighbor and is waiting to see whether the prune will
be overridden by another downstream router. For forwarding
purposes, the PrunePending state functions exactly like the
NoInfo state.
Pruned(P)
The router has received a Prune(S,G) on this interface from a
downstream neighbor, and the Prune was not overridden. Data from
S addressed to group G is no longer being forwarded on this
interface.
In addition, there are two timers:
PrunePending Timer (PPT(S,G,I))
This timer is set when a valid Prune(S,G) is received. Expiry of
the PrunePending Timer (PPT(S,G,I)) causes the interface to
transition to the Pruned state.
<span class="grey">Adams, et al. Experimental [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
Prune Timer (PT(S,G,I))
This timer is set when the PrunePending Timer (PT(S,G,I))
expires. Expiry of the Prune Timer (PT(S,G,I)) causes the
interface to transition to the NoInfo (NI) state, thereby
allowing data from S addressed to group G to be forwarded on the
interface.
+-------------+ +-------------+
| | PPT Expires | |
|PrunePending |----------------------->| Pruned |
| | | |
+-------------+ +-------------+
| ^ |
| | |
| |Rcv Prune |
| | |
| | +-------------+ |
| +---------| | |
| | NoInfo |<-------------+
+------------>| | Rcv Join/Graft OR
Rcv Join/Graft OR +-------------+ PT Expires OR
RPF_Interface(S)->I RPF_Interface(S)->I
Figure 2: Downstream Interface State Machine
<span class="grey">Adams, et al. Experimental [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
In tabular form, the state machine is as follows:
+-------------------------------+--------------------------------------+
| | Previous State |
+ +------------+------------+------------+
| Event | No Info | PrunePend | Pruned |
+-------------------------------+------------+------------+------------+
| Receive Prune(S,G) |->PP Set |->PP |->P Reset |
| | PPT(S,G,I) | | PT(S,G,I) |
+-------------------------------+------------+------------+------------+
| Receive Join(S,G) |->NI |->NI Cancel |->NI Cancel |
| | | PPT(S,G,I) | PT(S,G,I) |
+-------------------------------+------------+------------+------------+
| Receive Graft(S,G) |->NI Send |->NI Send |->NI Send |
| | GraftAck | GraftAck | GraftAck |
| | | Cancel | Cancel |
| | | PPT(S,G,I) | PT(S,G,I) |
+-------------------------------+------------+------------+------------+
| PPT(S,G) Expires | N/A |->P Set | N/A |
| | | PT(S,G,I) | |
+-------------------------------+------------+------------+------------+
| PT(S,G) Expires | N/A | N/A |->NI |
+-------------------------------+------------+------------+------------+
| RPF_Interface(S) becomes I |->NI |->NI Cancel |->NI Cancel |
| | | PPT(S,G,I) | PT(S,G,I) |
+-------------------------------+------------+------------+------------+
| Send State Refresh(S,G) out I |->NI |->PP |->P Reset |
| | | | PT(S,G,I) |
+-------------------------------+------------+------------+------------+
The transition events "Receive Graft(S,G)", "Receive Prune(S,G)", and
"Receive Join(S,G)" denote receiving a Graft, Prune, or Join message
in which this router's address on I is contained in the message's
upstream neighbor field. If the upstream neighbor field does not
match this router's address on I, then these state transitions in
this state machine must not occur.
<span class="h5"><a class="selflink" id="section-4.4.2.1" href="#section-4.4.2.1">4.4.2.1</a>. Transitions from the NoInfo State</span>
When the Prune(S,G) Downstream state machine is in the NoInfo (NI)
state, the following events may trigger a transition:
Receive Prune(S,G)
A Prune(S,G) is received on interface I with the upstream
neighbor field set to the router's address on I. The Prune(S,G)
Downstream state machine on interface I MUST transition to the
PrunePending (PP) state. The PrunePending Timer (PPT(S,G,I))
MUST be set to J/P_Override_Interval if the router has more than
<span class="grey">Adams, et al. Experimental [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
one neighbor on I. If the router has only one neighbor on
interface I, then it SHOULD set the PPT(S,G,I) to zero,
effectively transitioning immediately to the Pruned (P) state.
Receive Graft(S,G)
A Graft(S,G) is received on the interface I with the upstream
neighbor field set to the router's address on I. The Prune(S,G)
Downstream state machine on interface I stays in the NoInfo (NI)
state. A GraftAck(S,G) MUST be unicast to the originator of the
Graft(S,G) message.
<span class="h5"><a class="selflink" id="section-4.4.2.2" href="#section-4.4.2.2">4.4.2.2</a>. Transitions from the PrunePending (PP) State</span>
When the Prune(S,G) downstream state machine is in the PrunePending
(PP) state, the following events may trigger a transition.
Receive Join(S,G)
A Join(S,G) is received on interface I with the upstream neighbor
field set to the router's address on I. The Prune(S,G)
Downstream state machine on interface I MUST transition to the
NoInfo (NI) state. The PrunePending Timer (PPT(S,G,I)) MUST be
cancelled.
Receive Graft(S,G)
A Graft(S,G) is received on interface I with the upstream
neighbor field set to the router's address on I. The Prune(S,G)
Downstream state machine on interface I MUST transition to the
NoInfo (NI) state and MUST unicast a Graft Ack message to the
Graft originator. The PrunePending Timer (PPT(S,G,I)) MUST be
cancelled.
PPT(S,G,I) Expires
The PrunePending Timer (PPT(S,G,I)) expires, indicating that no
neighbors have overridden the previous Prune(S,G) message. The
Prune(S,G) Downstream state machine on interface I MUST
transition to the Pruned (P) state. The Prune Timer (PT(S,G,I))
is started and MUST be initialized to the received
Prune_Hold_Time minus J/P_Override_Interval. A PruneEcho(S,G)
MUST be sent on I if I has more than one PIM neighbor. A
PruneEcho(S,G) is simply a Prune(S,G) message multicast by the
upstream router to a LAN, with itself as the Upstream Neighbor.
Its purpose is to add additional reliability so that if a Join
that should have overridden the Prune is lost locally on the LAN,
the PruneEcho(S,G) may be received and trigger a new Join
message. A PruneEcho(S,G) is OPTIONAL on an interface with only
one PIM neighbor. In addition, the router MUST evaluate any
possible transitions in the Upstream(S,G) state machine.
<span class="grey">Adams, et al. Experimental [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
RPF_Interface(S) becomes interface I
The upstream interface for S has changed. The Prune(S,G)
Downstream state machine on interface I MUST transition to the
NoInfo (NI) state. The PrunePending Timer (PPT(S,G,I)) MUST be
cancelled.
<span class="h5"><a class="selflink" id="section-4.4.2.3" href="#section-4.4.2.3">4.4.2.3</a>. Transitions from the Prune (P) State</span>
When the Prune(S,G) Downstream state machine is in the Pruned (P)
state, the following events may trigger a transition.
Receive Prune(S,G)
A Prune(S,G) is received on the interface I with the upstream
neighbor field set to the router's address on I. The Prune(S,G)
Downstream state machine on interface I remains in the Pruned (P)
state. The Prune Timer (PT(S,G,I)) SHOULD be reset to the
holdtime contained in the Prune(S,G) message if it is greater
than the current value.
Receive Join(S,G)
A Join(S,G) is received on the interface I with the upstream
neighbor field set to the router's address on I. The Prune(S,G)
downstream state machine on interface I MUST transition to the
NoInfo (NI) state. The Prune Timer (PT(S,G,I)) MUST be
cancelled. The router MUST evaluate any possible transitions in
the Upstream(S,G) state machine.
Receive Graft(S,G)
A Graft(S,G) is received on interface I with the upstream
neighbor field set to the router's address on I. The Prune(S,G)
Downstream state machine on interface I MUST transition to the
NoInfo (NI) state and send a Graft Ack back to the Graft's
source. The Prune Timer (PT(S,G,I)) MUST be cancelled. The
router MUST evaluate any possible transitions in the
Upstream(S,G) state machine.
PT(S,G,I) Expires
The Prune Timer (PT(S,G,I)) expires, indicating that it is again
time to flood data from S addressed to group G onto interface I.
The Prune(S,G) Downstream state machine on interface I MUST
transition to the NoInfo (NI) state. The router MUST evaluate
any possible transitions in the Upstream(S,G) state machine.
RPF_Interface(S) becomes interface I
The upstream interface for S has changed. The Prune(S,G)
Downstream state machine on interface I MUST transition to the
NoInfo (NI) state. The PruneTimer (PT(S,G,I)) MUST be cancelled.
<span class="grey">Adams, et al. Experimental [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
Send State Refresh(S,G) out interface I
The router has refreshed the Prune(S,G) state on interface I.
The router MUST reset the Prune Timer (PT(S,G,I)) to the Holdtime
from an active Prune received on interface I. The Holdtime used
SHOULD be the largest active one but MAY be the most recently
received active Prune Holdtime.
<span class="h3"><a class="selflink" id="section-4.5" href="#section-4.5">4.5</a>. State Refresh</span>
This section describes the major portions of the state refresh
mechanism.
<span class="h4"><a class="selflink" id="section-4.5.1" href="#section-4.5.1">4.5.1</a>. Forwarding of State Refresh Messages</span>
When a State Refresh message, SRM, is received, it is forwarded
according to the following pseudo-code.
if (iif != RPF_interface(S))
return;
if (RPF'(S) != srcaddr(SRM))
return;
if (StateRefreshRateLimit(S,G) == TRUE)
return;
for each interface I in pim_nbrs {
if (TTL(SRM) == 0 OR (TTL(SRM) - 1) < Threshold(I))
continue; /* Out of TTL, skip this interface */
if (boundary(I,G))
continue; /* This interface is scope boundary, skip it */
if (I == iif)
continue; /* This is the incoming interface, skip it */
if (lost_assert(S,G,I) == TRUE)
continue; /* Let the Assert Winner do State Refresh */
Copy SRM to SRM'; /* Make a copy of SRM to forward */
if (I contained in prunes(S,G)) {
set Prune Indicator bit of SRM' to 1;
if StateRefreshCapable(I) == TRUE
set PT(S,G) to largest active holdtime read from a Prune
message accepted on I;
<span class="grey">Adams, et al. Experimental [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
} else {
set Prune Indicator bit of SRM' to 0;
}
set srcaddr(SRM') to my_addr(I);
set TTL of SRM' to TTL(SRM) - 1;
set metric of SRM' to metric of unicast route used to reach S;
set pref of SRM' to preference of unicast route used to reach S;
set mask of SRM' to mask of route used to reach S;
if (AssertState == NoInfo) {
set Assert Override of SRM' to 1;
} else {
set Assert Override of SRM' to 0;
}
transmit SRM' on I;
}
The pseudocode above employs the following macro definitions.
Boundary(I,G) is TRUE if an administratively scoped boundary for
group G is configured on interface I.
StateRefreshCapable(I) is TRUE if all neighbors on an interface use
the State Refresh option.
StateRefreshRateLimit(S,G) is TRUE if the time elapsed since the last
received StateRefresh(S,G) is less than the configured
RefreshLimitInterval.
TTL(SRM) returns the TTL contained in the State Refresh Message, SRM.
This is different from the TTL contained in the IP header.
Threshold(I) returns the minimum TTL that a packet must have before
it can be transmitted on interface I.
srcaddr(SRM) returns the source address contained in the network
protocol (e.g., IPv4) header of the State Refresh Message, SRM.
my_addr(I) returns this node's network (e.g., IPv4) address on
interface I.
<span class="grey">Adams, et al. Experimental [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
<span class="h4"><a class="selflink" id="section-4.5.2" href="#section-4.5.2">4.5.2</a>. State Refresh Message Origination</span>
This section describes the origination of State Refresh messages.
These messages are generated periodically by the PIM-DM router
directly connected to a source. One Origination(S,G) state machine
exists per (S,G) entry in a PIM-DM router.
The Origination(S,G) state machine has the following states:
NotOriginator(NO)
This is the starting state of the Origination(S,G) state machine.
While in this state, a router will not originate State Refresh
messages for the (S,G) pair.
Originator(O)
When in this state the router will periodically originate State
Refresh messages. Only routers directly connected to S may
transition to this state.
In addition, there are two state machine specific timers:
State Refresh Timer (SRT(S,G))
This timer controls when State Refresh messages are generated.
The timer is initially set when that Origination(S,G) state
machine transitions to the O state. It is cancelled when the
Origination(S,G) state machine transitions to the NO state. This
timer is normally set to StateRefreshInterval (see 4.8).
Source Active Timer (SAT(S,G))
This timer is first set when the Origination(S,G) state machine
transitions to the O state and is reset on the receipt of every
data packet from S addressed to group G. When it expires, the
Origination(S,G) state machine transitions to the NO state. This
timer is normally set to SourceLifetime (see 4.8).
+-------------+ Rcv Directly From S +-------------+
| |----------------------->| |
|NotOriginator| | Originator |
| |<-----------------------| |
+-------------+ SAT Expires OR +-------------+
S NOT Direct Connect
Figure 3: State Refresh State Machine
<span class="grey">Adams, et al. Experimental [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
In tabular form, the state machine is defined as follows:
+----------------------------------------------------------------------+
| | Previous State |
| +---------------+-------------------+
| Event | NotOriginator | Originator |
+----------------------------------+---------------+-------------------+
| Receive Data from S AND | ->O | ->O Reset |
| S directly connected | Set SRT(S,G) | SAT(S,G) |
| | Set SAT(S,G) | |
+----------------------------------+---------------+-------------------+
| SRT(S,G) Expires | N/A | ->O Send |
| | | StateRefresh(S,G) |
| | | Reset SRT(S,G) |
+----------------------------------+---------------+-------------------+
| SAT(S,G) Expires | N/A | ->NO Cancel |
| | | SRT(S,G) |
+----------------------------------+---------------+-------------------+
| S no longer directly connected | ->NO | ->NO |
| | | Cancel SRT(S,G) |
| | | Cancel SAT(S,G) |
+----------------------------------+---------------+-------------------+
<span class="h5"><a class="selflink" id="section-4.5.2.1" href="#section-4.5.2.1">4.5.2.1</a>. Transitions from the NotOriginator (NO) State</span>
When the Originating(S,G) state machine is in the NotOriginator (NO)
state, the following event may trigger a transition:
Data Packet received from directly connected Source S addressed to
group G
The router MUST transition to an Originator (O) state, set
SAT(S,G) to SourceLifetime, and set SRT(S,G) to
StateRefreshInterval. The router SHOULD record the TTL of the
packet for use in State Refresh messages.
<span class="h5"><a class="selflink" id="section-4.5.2.2" href="#section-4.5.2.2">4.5.2.2</a>. Transitions from the Originator (O) State</span>
When the Originating(S,G) state machine is in the Originator (O)
state, the following events may trigger a transition:
Receive Data Packet from S addressed to G
The router remains in the Originator (O) state and MUST reset
SAT(S,G) to SourceLifetime. The router SHOULD increase its
recorded TTL to match the TTL of the packet, if the packet's TTL
is larger than the previously recorded TTL. A router MAY record
the TTL based on an implementation specific sampling policy to
avoid examining the TTL of every multicast packet it handles.
<span class="grey">Adams, et al. Experimental [Page 29]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-30" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
SRT(S,G) Expires
The router remains in the Originator (O) state and MUST reset
SRT(S,G) to StateRefreshInterval. The router MUST also generate
State Refresh messages for transmission, as described in the
State Refresh Forwarding rules (<a href="#section-4.5.1">Section 4.5.1</a>), except for the
TTL. If the TTL of data packets from S to G are being recorded,
then the TTL of each State Refresh message is set to the highest
recorded TTL. Otherwise, the TTL is set to the configured State
Refresh TTL. Let I denote the interface over which a State
Refresh message is being sent. If the Prune(S,G) Downstream
state machine is in the Pruned (P) state, then the Prune-
Indicator bit MUST be set to 1 in the State Refresh message being
sent over I. Otherwise, the Prune-Indicator bit MUST be set to 0.
SAT(S,G) Expires
The router MUST cancel the SRT(S,G) timer and transition to the
NotOriginator (NO) state.
S is no longer directly connected
The router MUST transition to the NotOriginator (NO) state and
cancel both the SAT(S,G) and SRT(S,G).
<span class="h3"><a class="selflink" id="section-4.6" href="#section-4.6">4.6</a>. PIM Assert Messages</span>
<span class="h4"><a class="selflink" id="section-4.6.1" href="#section-4.6.1">4.6.1</a>. Assert Metrics</span>
Assert metrics are defined as follows:
struct assert_metric {
metric_preference;
route_metric;
ip_address;
};
When assert_metrics are compared, the metric_preference and
route_metric field are compared in order, where the first lower value
wins. If all fields are equal, the IP address of the router that
sourced the Assert message is used as a tie-breaker, with the highest
IP address winning.
<span class="grey">Adams, et al. Experimental [Page 30]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-31" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
An Assert metric for (S,G) to include in (or compare against) an
Assert message sent on interface I should be computed by using the
following pseudocode:
assert_metric
my_assert_metric(S,G,I) {
if (CouldAssert(S,G,I) == TRUE) {
return spt_assert_metric(S,G,I)
} else {
return infinite_assert_metric()
}
}
spt_assert_metric(S,I) gives the Assert metric we use if we're
sending an Assert based on active (S,G) forwarding state:
assert_metric
spt_assert_metric(S,I) {
return {0,MRIB.pref(S),MRIB.metric(S),my_addr(I)}
}
MRIB.pref(X) and MRIB.metric(X) are the routing preference and
routing metrics associated with the route to a particular (unicast)
destination X, as determined by the MRIB. my_addr(I) is simply the
router's network (e.g., IP) address associated with the local
interface I.
infinite_assert_metric() gives the Assert metric we need to send an
Assert but doesn't match (S,G) forwarding state:
assert_metric
infinite_assert_metric() {
return {1,infinity,infinity,0}
}
<span class="h4"><a class="selflink" id="section-4.6.2" href="#section-4.6.2">4.6.2</a>. AssertCancel Messages</span>
An AssertCancel(S,G) message is simply an Assert message for (S,G)
with infinite metric. The Assert winner sends this message when it
changes its upstream interface to this interface. Other routers will
see this metric, causing those with forwarding state to send their
own Asserts and re-establish an Assert winner.
AssertCancel messages are simply an optimization. The original
Assert timeout mechanism will eventually allow a subnet to become
consistent; the AssertCancel mechanism simply causes faster
convergence. No special processing is required for an AssertCancel
message, as it is simply an Assert message from the current winner.
<span class="grey">Adams, et al. Experimental [Page 31]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-32" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
<span class="h4"><a class="selflink" id="section-4.6.3" href="#section-4.6.3">4.6.3</a>. Assert State Macros</span>
The macro lost_assert(S,G,I), is used in the olist computations of
<a href="#section-4.1.3">Section 4.1.3</a>, and is defined as follows:
bool lost_assert(S,G,I) {
if ( RPF_interface(S) == I ) {
return FALSE
} else {
return (AssertWinner(S,G,I) != me AND
(AssertWinnerMetric(S,G,I) is better than
spt_assert_metric(S,G,I)))
}
}
AssertWinner(S,G,I) defaults to NULL, and AssertWinnerMetric(S,G,I)
defaults to Infinity when in the NoInfo state.
<span class="h4"><a class="selflink" id="section-4.6.4" href="#section-4.6.4">4.6.4</a>. (S,G) Assert Message State Machine</span>
The (S,G) Assert state machine for interface I is shown in Figure 4.
There are three states:
NoInfo (NI)
This router has no (S,G) Assert state on interface I.
I am Assert Winner (W)
This router has won an (S,G) Assert on interface I. It is now
responsible for forwarding traffic from S destined for G via
interface I.
I am Assert Loser (L)
This router has lost an (S,G) Assert on interface I. It must not
forward packets from S destined for G onto interface I.
In addition, an Assert Timer (AT(S,G,I)) is used to time out the
Assert state.
<span class="grey">Adams, et al. Experimental [Page 32]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-33" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
+-------------+ +-------------+
| | Rcv Pref Assert or SR | |
| Winner |----------------------->| Loser |
| | | |
+-------------+ +-------------+
^ | ^ |
| | Rcv Pref Assert or| |
| |AT Expires OR State Refresh| |
| |CouldAssert->FALSE | |
| | | |
| | +-------------+ | |
| +-------->| |----------+ |
| | No Info | |
+-------------| |<-------------+
Rcv Data from dnstrm +-------------+ Rcv Inf Assert from Win OR
OR Rcv Inferior Assert Rcv Inf SR from Winner OR
OR Rcv Inferior SR AT Expires OR
CouldAssert Changes OR
Winner's NLT Expires
Figure 4: Assert State Machine
In tabular form, the state machine is defined as follows:
+-------------------------------+--------------------------------------+
| | Previous State |
| +------------+------------+------------+
| Event | No Info | Winner | Loser |
+-------------------------------+------------+------------+------------+
| An (S,G) Data packet received | ->W Send | ->W Send | ->L |
| on downstream interface | Assert(S,G)| Assert(S,G)| |
| | Set | Set | |
| | AT(S,G,I) | AT(S,G,I) | |
+-------------------------------+--------------------------------------+
| Receive Inferior (Assert OR | N/A | N/A |->NI Cancel |
| State Refresh) from Assert | | | AT(S,G,I) |
| Winner | | | |
+-------------------------------+--------------------------------------+
| Receive Inferior (Assert OR | ->W Send | ->W Send | ->L |
| State Refresh) from non-Assert| Assert(S,G)| Assert(S,G)| |
| Winner AND CouldAssert==TRUE | Set | Set | |
| | AT(S,G,I) | AT(S,G,I) | |
+-------------------------------+--------------------------------------+
<span class="grey">Adams, et al. Experimental [Page 33]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-34" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
+-------------------------------+--------------------------------------+
| | Previous State |
| +------------+------------+------------+
| Event | No Info | Winner | Loser |
+-------------------------------+------------+------------+------------+
| Receive Preferred Assert OR | ->L Send | ->L Send | ->L Set |
| State Refresh | Prune(S,G) | Prune(S,G) | AT(S,G,I) |
| | Set | Set | |
| | AT(S,G,I) | AT(S,G,I) | |
+-------------------------------+--------------------------------------+
| Send State Refresh | ->NI | ->W Reset | N/A |
| | | AT(S,G,I) | |
+-------------------------------+--------------------------------------+
| AT(S,G) Expires | N/A | ->NI | ->NI |
+-------------------------------+--------------------------------------+
| CouldAssert -> FALSE | ->NI |->NI Cancel |->NI Cancel |
| | | AT(S,G,I) | AT(S,G,I) |
+-------------------------------+--------------------------------------+
| CouldAssert -> TRUE | ->NI | N/A |->NI Cancel |
| | | | AT(S,G,I) |
+-------------------------------+--------------------------------------+
| Winner's NLT(N,I) Expires | N/A | N/A |->NI Cancel |
| | | | AT(S,G,I) |
+-------------------------------+--------------------------------------+
| Receive Prune(S,G), Join(S,G) | ->NI | ->W | ->L Send |
| or Graft(S,G) | | | Assert(S,G)|
+-------------------------------+--------------------------------------+
Terminology: A "preferred assert" is one with a better metric than
the current winner. An "inferior assert" is one with a worse metric
than my_assert_metric(S,G,I).
The state machine uses the following macro:
CouldAssert(S,G,I) = (RPF_interface(S) != I)
<span class="h5"><a class="selflink" id="section-4.6.4.1" href="#section-4.6.4.1">4.6.4.1</a>. Transitions from NoInfo State</span>
In the NoInfo state, the following events may trigger transitions:
An (S,G) data packet arrives on downstream interface I
An (S,G) data packet arrived on a downstream interface. It is
optimistically assumed that this router will be the Assert winner
for this (S,G). The Assert state machine MUST transition to the
"I am Assert Winner" state, send an Assert(S,G) to interface I,
store its own address and metric as the Assert Winner, and set
the Assert_Timer (AT(S,G,I) to Assert_Time, thereby initiating
the Assert negotiation for (S,G).
<span class="grey">Adams, et al. Experimental [Page 34]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-35" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
Receive Inferior (Assert OR State Refresh) AND
CouldAssert(S,G,I)==TRUE
An Assert or State Refresh is received for (S,G) that is inferior
to our own assert metric on interface I. The Assert state machine
MUST transition to the "I am Assert Winner" state, send an
Assert(S,G) to interface I, store its own address and metric as
the Assert Winner, and set the Assert Timer (AT(S,G,I)) to
Assert_Time.
Receive Preferred Assert or State Refresh
The received Assert or State Refresh has a better metric than
this router's, and therefore the Assert state machine MUST
transition to the "I am Assert Loser" state and store the Assert
Winner's address and metric. If the metric was received in an
Assert, the router MUST set the Assert Timer (AT(S,G,I)) to
Assert_Time. If the metric was received in a State Refresh, the
router MUST set the Assert Timer (AT(S,G,I)) to three times the
received State Refresh Interval. If CouldAssert(S,G,I) == TRUE,
the router MUST also multicast a Prune(S,G) to the Assert winner
with a Prune Hold Time equal to the Assert Timer and evaluate any
changes in its Upstream(S,G) state machine.
<span class="h5"><a class="selflink" id="section-4.6.4.2" href="#section-4.6.4.2">4.6.4.2</a>. Transitions from Winner State</span>
When in "I am Assert Winner" state, the following events trigger
transitions:
An (S,G) data packet arrives on downstream interface I
An (S,G) data packet arrived on a downstream interface. The
Assert state machine remains in the "I am Assert Winner" state.
The router MUST send an Assert(S,G) to interface I and set the
Assert Timer (AT(S,G,I) to Assert_Time.
Receive Inferior Assert or State Refresh
An (S,G) Assert is received containing a metric for S that is
worse than this router's metric for S. Whoever sent the Assert
is in error. The router MUST send an Assert(S,G) to interface I
and reset the Assert Timer (AT(S,G,I)) to Assert_Time.
Receive Preferred Assert or State Refresh
An (S,G) Assert or State Refresh is received that has a better
metric than this router's metric for S on interface I. The
Assert state machine MUST transition to "I am Assert Loser" state
and store the new Assert Winner's address and metric. If the
metric was received in an Assert, the router MUST set the Assert
Timer (AT(S,G,I)) to Assert_Time. If the metric was received in
a State Refresh, the router MUST set the Assert Timer (AT(S,G,I))
to three times the State Refresh Interval. The router MUST also
<span class="grey">Adams, et al. Experimental [Page 35]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-36" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
multicast a Prune(S,G) to the Assert winner, with a Prune Hold
Time equal to the Assert Timer, and evaluate any changes in its
Upstream(S,G) state machine.
Send State Refresh
The router is sending a State Refresh(S,G) message on interface
I. The router MUST set the Assert Timer (AT(S,G,I)) to three
times the State Refresh Interval contained in the State
Refresh(S,G) message.
AT(S,G,I) Expires
The (S,G) Assert Timer (AT(S,G,I)) expires. The Assert state
machine MUST transition to the NoInfo (NI) state.
CouldAssert(S,G,I) -> FALSE
This router's RPF interface changed, making CouldAssert(S,G,I)
false. This router can no longer perform the actions of the
Assert winner, so the Assert state machine MUST transition to
NoInfo (NI) state, send an AssertCancel(S,G) to interface I,
cancel the Assert Timer (AT(S,G,I)), and remove itself as the
Assert Winner.
<span class="h5"><a class="selflink" id="section-4.6.4.3" href="#section-4.6.4.3">4.6.4.3</a>. Transitions from Loser State</span>
When in "I am Assert Loser" state, the following transitions can
occur:
Receive Inferior Assert or State Refresh from Current Winner
An Assert or State Refresh is received from the current Assert
winner that is worse than this router's metric for S (typically,
the winner's metric became worse). The Assert state machine MUST
transition to NoInfo (NI) state and cancel AT(S,G,I). The router
MUST delete the previous Assert Winner's address and metric and
evaluate any possible transitions to its Upstream(S,G) state
machine. Usually this router will eventually re-assert and win
when data packets from S have started flowing again.
Receive Preferred Assert or State Refresh
An Assert or State Refresh is received that has a metric better
than or equal to that of the current Assert winner. The Assert
state machine remains in Loser (L) state. If the metric was
received in an Assert, the router MUST set the Assert Timer
(AT(S,G,I)) to Assert_Time. If the metric was received in a
State Refresh, the router MUST set the Assert Timer (AT(S,G,I))
to three times the received State Refresh Interval. If the
metric is better than the current Assert Winner, the router MUST
<span class="grey">Adams, et al. Experimental [Page 36]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-37" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
store the address and metric of the new Assert Winner, and if
CouldAssert(S,G,I) == TRUE, the router MUST multicast a
Prune(S,G) to the new Assert winner.
AT(S,G,I) Expires
The (S,G) Assert Timer (AT(S,G,I)) expires. The Assert state
machine MUST transition to NoInfo (NI) state. The router MUST
delete the Assert Winner's address and metric. If CouldAssert ==
TRUE, the router MUST evaluate any possible transitions to its
Upstream(S,G) state machine.
CouldAssert -> FALSE
CouldAssert has become FALSE because interface I has become the
RPF interface for S. The Assert state machine MUST transition to
NoInfo (NI) state, cancel AT(S,G,I), and delete information
concerning the Assert Winner on I.
CouldAssert -> TRUE
CouldAssert has become TRUE because interface I used to be the
RPF interface for S, and now it is not. The Assert state machine
MUST transition to NoInfo (NI) state, cancel AT(S,G,I), and
delete information concerning the Assert Winner on I.
Current Assert Winner's NeighborLiveness Timer Expires
The current Assert winner's NeighborLiveness Timer (NLT(N,I)) has
expired. The Assert state machine MUST transition to the NoInfo
(NI) state, delete the Assert Winner's address and metric, and
evaluate any possible transitions to its Upstream(S,G) state
machine.
Receive Prune(S,G), Join(S,G), or Graft(S,G)
A Prune(S,G), Join(S,G), or Graft(S,G) message was received on
interface I with its upstream neighbor address set to the
router's address on I. The router MUST send an Assert(S,G) on
the receiving interface I to initiate an Assert negotiation. The
Assert state machine remains in the Assert Loser(L) state. If a
Graft(S,G) was received, the router MUST respond with a
GraftAck(S,G).
<span class="grey">Adams, et al. Experimental [Page 37]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-38" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
<span class="h4"><a class="selflink" id="section-4.6.5" href="#section-4.6.5">4.6.5</a>. Rationale for Assert Rules</span>
The following is a summary of the rules for generating and processing
Assert messages. It is not intended to be definitive (the state
machines and pseudocode provide the definitive behavior). Instead,
it provides some rationale for the behavior.
1. The Assert winner for (S,G) must act as the local forwarder for
(S,G) on behalf of all downstream members.
2. PIM messages are directed to the RPF' neighbor and not to the
regular RPF neighbor.
3. An Assert loser that receives a Prune(S,G), Join(S,G), or
Graft(S,G) directed to it initiates a new Assert negotiation so
that the downstream router can correct its RPF'(S).
4. An Assert winner for (S,G) sends a cancelling assert when it is
about to stop forwarding on an (S,G) entry. Example: If a router
is being taken down, then a canceling assert is sent.
<span class="h3"><a class="selflink" id="section-4.7" href="#section-4.7">4.7</a>. PIM Packet Formats</span>
All PIM-DM packets use the same format as PIM-SM packets. In the
event of a discrepancy, PIM-SM [<a href="#ref-4" title=""Protocol Independent Multicast-Sparse Mode (PIM-SM): Protocol Specification"">4</a>] should be considered the
definitive specification. All PIM control messages have IP protocol
number 103. All PIM-DM messages MUST be sent with a TTL of 1. All
PIM-DM messages except Graft and Graft Ack messages MUST be sent to
the ALL-PIM-ROUTERS group. Graft messages SHOULD be unicast to the
RPF'(S). Graft Ack messages MUST be unicast to the sender of the
Graft.
The IPv4 ALL-PIM-ROUTERS group is 224.0.0.13. The IPv6 ALL-PIM-
ROUTERS group is 'ff02::d'.
<span class="h4"><a class="selflink" id="section-4.7.1" href="#section-4.7.1">4.7.1</a>. PIM Header</span>
All PIM control messages have the following header:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|PIM Ver| Type | Reserved | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
PIM Ver PIM version number is 2.
<span class="grey">Adams, et al. Experimental [Page 38]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-39" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
Type
Types for specific PIM messages. Available types are as follows:
0 = Hello
1 = Register (PIM-SM only)
2 = Register Stop (PIM-SM only)
3 = Join/Prune
4 = Bootstrap (PIM-SM only)
5 = Assert
6 = Graft
7 = Graft Ack
8 = Candidate RP Advertisement (PIM-SM only)
9 = State Refresh
Reserved
Set to zero on transmission. Ignored upon receipt.
Checksum
The checksum is the standard IP checksum; i.e., the 16 bit one's
complement of the one's complement sum of the entire PIM message.
For computing checksum, the checksum field is zeroed.
For IPv6, the checksum also includes the IPv6 "pseudo-header", as
specified in <a href="./rfc2460#section-8.1">RFC 2460, Section 8.1</a> [<a href="#ref-5" title=""Internet Protocol, Version 6 (IPv6) Specification"">5</a>].
<span class="h4"><a class="selflink" id="section-4.7.2" href="#section-4.7.2">4.7.2</a>. Encoded Unicast Address</span>
An Encoded Unicast Address has the following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Addr Family | Encoding Type | Unicast Address
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...
Addr Family
The PIM Address Family of the 'Unicast Address' field of this
address. Values 0 - 127 are as assigned by the IANA for Internet
Address Families in [<a href="#ref-9" title=""Address Family Numbers"">9</a>]. Values 128 - 250 are reserved to be
assigned by the IANA for PIM specific Address Families. Values 251
- 255 are designated for private use. As there is no assignment
authority for this space; collisions should be expected.
Encoding Type
The type of encoding used with a specific Address Family. The
value '0' is reserved for this field and represents the native
encoding of the Address Family.
<span class="grey">Adams, et al. Experimental [Page 39]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-40" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
Unicast Address
The unicast address as represented by the given Address Family and
Encoding Type.
<span class="h4"><a class="selflink" id="section-4.7.3" href="#section-4.7.3">4.7.3</a>. Encoded Group Address</span>
An Encoded Group address has the following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Addr Family | Encoding Type |B| Reserved |Z| Mask Len |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Group Multicast Address
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...
Addr Family
As described above.
Encoding Type
As described above.
B
Indicates that the group range should use Bidirectional PIM [<a href="#ref-16" title=""Bi- directional Protocol Independent Multicast"">16</a>].
Transmitted as zero; ignored upon receipt.
Reserved
Transmitted as zero. Ignored upon receipt.
Z
Indicates that the group range is an admin scope zone. This is
used in the Bootstrap Router Mechanism [<a href="#ref-18" title=""Bootstrap Router (BSR) Mechanism for PIM Sparse Mode"">18</a>] only. For all other
purposes, this bit is set to zero and ignored on receipt.
Mask Len
The mask length field is 8 bits. The value is the number of
contiguous left justified one bits used as a mask, which, combined
with the address, describes a range of addresses. It is less than
or equal to the address length in bits for the given Address Family
and Encoding Type. If the message is sent for a single address
then the mask length MUST equal the address length. PIM-DM routers
MUST only send for a single address.
Group Multicast Address
The address of the multicast group.
<span class="grey">Adams, et al. Experimental [Page 40]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-41" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
<span class="h4"><a class="selflink" id="section-4.7.4" href="#section-4.7.4">4.7.4</a>. Encoded Source Address</span>
An Encoded Source address has the following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Addr Family | Encoding Type | Rsrvd |S|W|R| Mask Len |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source Address
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...
Addr Family
As described above.
Encoding Type
As described above.
Rsrvd
Reserved. Transmitted as zero. Ignored upon receipt.
S
The Sparse Bit. Set to 0 for PIM-DM. Ignored upon receipt.
W
The Wild Card Bit. Set to 0 for PIM-DM. Ignored upon receipt.
R
The Rendezvous Point Tree bit. Set to 0 for PIM-DM. Ignored upon
receipt.
Mask Len
As described above. PIM-DM routers MUST only send for a single
source address.
Source Address
The source address.
<span class="grey">Adams, et al. Experimental [Page 41]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-42" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
<span class="h4"><a class="selflink" id="section-4.7.5" href="#section-4.7.5">4.7.5</a>. Hello Message Format</span>
The PIM Hello message, as defined by PIM-SM [<a href="#ref-4" title=""Protocol Independent Multicast-Sparse Mode (PIM-SM): Protocol Specification"">4</a>], has the following
format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|PIM Ver| Type | Reserved | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Option Type | Option Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Option Value |
| ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| . |
| . |
| . |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Option Type | Option Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Option Value |
| ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
PIM Ver, Type, Reserved, Checksum
Described above.
Option Type
The type of option given in the Option Value field. Available
types are as follows:
0 Reserved
1 Hello Hold Time
2 LAN Prune Delay
3 - 16 Reserved
17 To be assigned by IANA
18 Deprecated and SHOULD NOT be used
19 DR Priority (PIM-SM Only)
20 Generation ID
21 State Refresh Capable
22 Bidir Capable
23 - 65000 To be assigned by IANA
65001 - 65535 Reserved for Private Use [<a href="#ref-9" title=""Address Family Numbers"">9</a>]
Unknown options SHOULD be ignored.
<span class="grey">Adams, et al. Experimental [Page 42]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-43" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
<span class="h5"><a class="selflink" id="section-4.7.5.1" href="#section-4.7.5.1">4.7.5.1</a>. Hello Hold Time Option</span>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 1 | Length = 2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Hold Time |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Hold Time is the number of seconds a receiver MUST keep the neighbor
reachable. If the Hold Time is set to '0xffff', the receiver of this
message never times out the neighbor. This may be used with dial-
on-demand links to avoid keeping the link up with periodic Hello
messages. Furthermore, if the Holdtime is set to '0', the
information is timed out immediately. The Hello Hold Time option
MUST be used by PIM-DM routers.
<span class="h5"><a class="selflink" id="section-4.7.5.2" href="#section-4.7.5.2">4.7.5.2</a>. LAN Prune Delay Option</span>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 2 | Length = 4 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|T| LAN Prune Delay | Override Interval |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The LAN_Prune_Delay option is used to tune the prune propagation
delay on multi-access LANs. The T bit is used by PIM-SM and SHOULD
be set to 0 by PIM-DM routers and ignored upon receipt. The LAN
Delay and Override Interval fields are time intervals in units of
milliseconds and are used to tune the value of the J/P Override
Interval and its derived timer values. <a href="#section-4.3.5">Section 4.3.5</a> describes how
these values affect the behavior of a router. The LAN Prune Delay
SHOULD be used by PIM-DM routers.
<span class="grey">Adams, et al. Experimental [Page 43]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-44" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
<span class="h5"><a class="selflink" id="section-4.7.5.3" href="#section-4.7.5.3">4.7.5.3</a>. Generation ID Option</span>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 20 | Length = 4 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Generation ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Generation ID is a random value for the interface on which the Hello
message is sent. The Generation ID is regenerated whenever PIM
forwarding is started or restarted on the interface. The Generation
ID option MAY be used by PIM-DM routers.
<span class="h5"><a class="selflink" id="section-4.7.5.4" href="#section-4.7.5.4">4.7.5.4</a>. State Refresh Capable Option</span>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 21 | Length = 4 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Version = 1 | Interval | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Interval field is the router's configured State Refresh Interval
in seconds. The Reserved field is set to zero and ignored upon
receipt. The State Refresh Capable option MUST be used by State
Refresh capable PIM-DM routers.
<span class="grey">Adams, et al. Experimental [Page 44]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-45" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
<span class="h4"><a class="selflink" id="section-4.7.6" href="#section-4.7.6">4.7.6</a>. Join/Prune Message Format</span>
PIM Join/Prune messages, as defined in PIM-SM [<a href="#ref-4" title=""Protocol Independent Multicast-Sparse Mode (PIM-SM): Protocol Specification"">4</a>], have the following
format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|PIM Ver| Type | Reserved | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Upstream Neighbor Address (Encoded Unicast Format) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved | Num Groups | Hold Time |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Multicast Group Address 1 (Encoded Group Format) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Number of Joined Sources | Number of Pruned Sources |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Joined Source Address 1 (Encoded Source Format) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| . |
| . |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Joined Source Address n (Encoded Source Format) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Pruned Source Address 1 (Encoded Source Format) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| . |
| . |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Pruned Source Address n (Encoded Source Format) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| . |
| . |
| . |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Multicast Group Address m (Encoded Group Format) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Number of Joined Sources | Number of Pruned Sources |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Joined Source Address 1 (Encoded Source Format) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| . |
| . |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
<span class="grey">Adams, et al. Experimental [Page 45]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-46" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Joined Source Address n (Encoded Source Format) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Pruned Source Address 1 (Encoded Source Format) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| . |
| . |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Pruned Source Address n (Encoded Source Format) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
PIM Ver, Type, Reserved, Checksum
Described above.
Upstream Neighbor Address
The address of the upstream neighbor. The format for this address
is given in the Encoded Unicast address in <a href="#section-4.7.2">Section 4.7.2</a>. PIM-DM
routers MUST set this field to the RPF next hop.
Reserved
Transmitted as zero. Ignored upon receipt.
Hold Time
The number of seconds a receiving PIM-DM router MUST keep a Prune
state alive, unless removed by a Join or Graft message. If the
Hold Time is '0xffff', the receiver MUST NOT remove the Prune state
unless a corresponding Join or Graft message is received. The Hold
Time is ignored in Join messages.
Number of Groups
Number of multicast group sets contained in the message.
Multicast Group Address
The multicast group address in the Encoded Multicast address format
given in <a href="#section-4.7.3">Section 4.7.3</a>.
Number of Joined Sources
Number of Join source addresses listed for a given group.
Number of Pruned Sources
Number of Prune source addresses listed for a given group.
<span class="grey">Adams, et al. Experimental [Page 46]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-47" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
Join Source Address 1..n
This list contains the sources from which the sending router wishes
to continue to receive multicast messages for the given group on
this interface. The addresses use the Encoded Source address
format given in <a href="#section-4.7.4">Section 4.7.4</a>.
Prune Source Address 1..n
This list contains the sources from which the sending router does
not wish to receive multicast messages for the given group on this
interface. The addresses use the Encoded Source address format
given in <a href="#section-4.7.4">Section 4.7.4</a>.
<span class="h4"><a class="selflink" id="section-4.7.7" href="#section-4.7.7">4.7.7</a>. Assert Message Format</span>
PIM Assert Messages, as defined in PIM-SM [<a href="#ref-4" title=""Protocol Independent Multicast-Sparse Mode (PIM-SM): Protocol Specification"">4</a>], have the following
format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|PIM Ver| Type | Reserved | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Multicast Group Address (Encoded Group Format) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source Address (Encoded Unicast Format) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|R| Metric Preference |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Metric |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
PIM Ver, Type, Reserved, Checksum
Described above.
Multicast Group Address
The multicast group address in the Encoded Multicast address format
given in <a href="#section-4.7.3">Section 4.7.3</a>.
Source Address
The source address in the Encoded Unicast address format given in
<a href="#section-4.7.2">Section 4.7.2</a>.
R
The Rendezvous Point Tree bit. Set to 0 for PIM-DM. Ignored upon
receipt.
<span class="grey">Adams, et al. Experimental [Page 47]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-48" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
Metric Preference
The preference value assigned to the unicast routing protocol that
provided the route to the source.
Metric
The cost metric of the unicast route to the source. The metric is
in units applicable to the unicast routing protocol used.
<span class="h4"><a class="selflink" id="section-4.7.8" href="#section-4.7.8">4.7.8</a>. Graft Message Format</span>
PIM Graft messages use the same format as Join/Prune messages, except
that the Type field is set to 6. The source address MUST be in the
Join section of the message. The Hold Time field SHOULD be zero and
SHOULD be ignored when a Graft is received.
<span class="h4"><a class="selflink" id="section-4.7.9" href="#section-4.7.9">4.7.9</a>. Graft Ack Message Format</span>
PIM Graft Ack messages are identical in format to the received Graft
message, except that the Type field is set to 7. The Upstream
Neighbor Address field SHOULD be set to the sender of the Graft
message and SHOULD be ignored upon receipt.
<span class="h4"><a class="selflink" id="section-4.7.10" href="#section-4.7.10">4.7.10</a>. State Refresh Message Format</span>
PIM State Refresh Messages have the following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|PIM Ver| Type | Reserved | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Multicast Group Address (Encoded Group Format) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source Address (Encoded Unicast Format) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Originator Address (Encoded Unicast Format) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|R| Metric Preference |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Metric |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Masklen | TTL |P|N|O|Reserved | Interval |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
PIM Ver, Type, Reserved, Checksum
Described above.
<span class="grey">Adams, et al. Experimental [Page 48]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-49" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
Multicast Group Address
The multicast group address in the Encoded Multicast address format
given in <a href="#section-4.7.3">Section 4.7.3</a>.
Source Address
The address of the data source in the Encoded Unicast address
format given in <a href="#section-4.7.2">Section 4.7.2</a>.
Originator Address
The address of the first hop router in the Encoded Unicast address
format given in <a href="#section-4.7.2">Section 4.7.2</a>.
R
The Rendezvous Point Tree bit. Set to 0 for PIM-DM. Ignored upon
receipt.
Metric Preference
The preference value assigned to the unicast routing protocol that
provided the route to the source.
Metric
The cost metric of the unicast route to the source. The metric is
in units applicable to the unicast routing protocol used.
Masklen
The length of the address mask of the unicast route to the source.
TTL
Time To Live of the State Refresh message. Decremented each time
the message is forwarded. Note that this is different from the IP
Header TTL, which is always set to 1.
P
Prune indicator flag. This MUST be set to 1 if the State Refresh
is to be sent on a Pruned interface. Otherwise, it MUST be set to
0.
N
Prune Now flag. This SHOULD be set to 1 by the State Refresh
originator on every third State Refresh message and SHOULD be
ignored upon receipt. This is for compatibility with earlier
versions of state refresh.
O
Assert Override flag. This SHOULD be set to 1 by upstream routers
on a LAN if the Assert Timer (AT(S,G)) is not running and SHOULD be
ignored upon receipt. This is for compatibility with earlier
versions of state refresh.
<span class="grey">Adams, et al. Experimental [Page 49]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-50" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
Reserved
Set to zero and ignored upon receipt.
Interval
Set by the originating router to the interval (in seconds) between
consecutive State Refresh messages for this (S,G) pair.
<span class="h3"><a class="selflink" id="section-4.8" href="#section-4.8">4.8</a>. PIM-DM Timers</span>
PIM-DM maintains the following timers. All timers are countdown
timers -- they are set to a value and count down to zero, at which
point they typically trigger an action. Of course they can just as
easily be implemented as count-up timers, where the absolute expiry
time is stored and compared against a real-time clock, but the
language in this specification assumes that they count downward
towards zero.
Global Timers
Hello Timer: HT
Per interface (I):
Per neighbor (N):
Neighbor Liveness Timer: NLT(N,I)
Per (S,G) Pair:
(S,G) Assert Timer: AT(S,G,I)
(S,G) Prune Timer: PT(S,G,I)
(S,G) PrunePending Timer: PPT(S,G,I)
Per (S,G) Pair:
(S,G) Graft Retry Timer: GRT(S,G)
(S,G) Upstream Override Timer: OT(S,G)
(S,G) Prune Limit Timer: PLT(S,G)
(S,G) Source Active Timer: SAT(S,G)
(S,G) State Refresh Timer: SRT(S,G)
<span class="grey">Adams, et al. Experimental [Page 50]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-51" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
When timer values are started or restarted, they are set to default
values. The following tables summarize those default values.
Timer Name: Hello Timer (HT)
+----------------------+--------+--------------------------------------+
| Value Name | Value | Explanation |
+----------------------+--------+--------------------------------------+
|Hello_Period | 30 sec | Periodic interval for hello messages |
+----------------------+--------+--------------------------------------+
|Triggered_Hello_Delay | 5 sec | Random interval for initial Hello |
| | | message on bootup or triggered Hello |
| | | message to a rebooting neighbor |
+----------------------+--------+--------------------------------------+
Hello messages are sent on every active interface once every
Hello_Period seconds. At system power-up, the timer is initialized
to rand(0,Triggered_Hello_Delay) to prevent synchronization. When a
new or rebooting neighbor is detected, a responding Hello is sent
within rand(0,Triggered_Hello_Delay).
Timer Name: Neighbor Liveness Timer (NLT(N,I))
+-------------------+-----------------+--------------------------------+
| Value Name | Value | Explanation |
+-------------------+-----------------+--------------------------------+
| Hello Holdtime | From message | Hold Time from Hello Message |
+-------------------+-----------------+--------------------------------+
Timer Name: PrunePending Timer (PPT(S,G,I))
+-----------------------+---------------+------------------------------+
| Value Name | Value | Explanation |
+-----------------------+---------------+------------------------------+
| J/P_Override_Interval | OI(I) + PD(I) | Short time after a Prune to |
| | | allow other routers on the |
| | | LAN to send a Join |
+-----------------------+---------------+------------------------------+
The J/P_Override_Interval is the sum of the interface's
Override_Interval (OI(I)) and Propagation_Delay (PD(I)). If all
routers on a LAN are using the LAN Prune Delay option, both
parameters MUST be set to the largest value on the LAN. Otherwise,
the Override_Interval (OI(I)) MUST be set to 2.5 seconds, and the
Propagation_Delay (PD(I)) MUST be set to 0.5 seconds.
<span class="grey">Adams, et al. Experimental [Page 51]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-52" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
Timer Name: Prune Timer (PT(S,G,I))
+----------------+----------------+------------------------------------+
| Value Name | Value | Explanation |
+----------------+----------------+------------------------------------+
| Prune Holdtime | From message | Hold Time read from Prune Message |
+----------------+----------------+------------------------------------+
Timer Name: Assert Timer (AT(S,G,I))
+--------------------------+---------+---------------------------------+
| Value Name | Value | Explanation |
+--------------------------+---------+---------------------------------+
| Assert Time | 180 sec | Period after last assert before |
| | | assert state is timed out |
+--------------------------+---------+---------------------------------+
Note that, for historical reasons, the Assert message lacks a
Holdtime field. Thus, changing the Assert Time from the default
value is not recommended. If all members of a LAN are state refresh
enabled, the Assert Time will be three times the received
RefreshInterval(S,G).
Timer Name: Graft Retry Timer (GRT(S,G))
+--------------------+-------+-----------------------------------------+
| Value Name | Value | Explanation |
+--------------------+-------+-----------------------------------------+
| Graft_Retry_Period | 3 sec | In the absence of receipt of a GraftAck |
| | | message, the time before retransmission |
| | | of a Graft message |
+--------------------+-------+-----------------------------------------+
Timer Name: Upstream Override Timer (OT(S,G))
+------------+----------------+----------------------------------------+
| Value Name | Value | Explanation |
+------------+----------------+----------------------------------------|
| t_override | rand(0, OI(I)) | Randomized delay to prevent response |
| | | implosion when sending a join message |
| | | to override someone else's prune |
+------------+----------------+----------------------------------------+
t_override is a random value between 0 and the interface's
Override_Interval (OI(I)). If all routers on a LAN are using the LAN
Prune Delay option, the Override_Interval (OI(I)) MUST be set to the
largest value on the LAN. Otherwise, the Override_Interval (OI(I))
MUST be set to 2.5 seconds.
<span class="grey">Adams, et al. Experimental [Page 52]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-53" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
Timer Name: Prune Limit Timer (PLT(S,G))
+------------+--------------------+------------------------------------+
| Value Name | Value | Explanation |
+------------+--------------------+------------------------------------|
| t_limit | Default: 210 secs | Used to prevent Prune storms on a |
| | | LAN |
+------------+--------------------+------------------------------------+
Timer Name: Source Active Timer (SAT(S,G))
+----------------+-------------------+---------------------------------+
| Value Name | Value | Explanation |
+----------------+-------------------+---------------------------------+
| SourceLifetime | Default: 210 secs | Period of time after receiving |
| | | a multicast message a directly |
| | | attached router will continue |
| | | to send State Refresh messages |
+----------------+-------------------+---------------------------------+
Timer Name: State Refresh Timer (SRT(S,G))
+-----------------+------------------+---------------------------------+
| Value Name | Value | Explanation |
+-----------------+------------------+---------------------------------+
| RefreshInterval | Default: 60 secs | Interval between successive |
| | | state refresh messages |
+-----------------+------------------+---------------------------------+
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Protocol Interaction Considerations</span>
PIM-DM is designed to be independent of underlying unicast routing
protocols and will interact only to the extent needed to perform RPF
checks. It is generally assumed that multicast area and autonomous
system boundaries will correspond to the same boundaries for unicast
routing, though a deployment that does not follow this assumption is
not precluded by this specification.
In general, PIM-DM interactions with other multicast routing
protocols should be in compliance with <a href="./rfc2715">RFC 2715</a> [<a href="#ref-7" title=""Interoperability Rules for Multicast Routing Protocols"">7</a>]. Other specific
interactions are noted below.
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. PIM-SM Interactions</span>
PIM-DM is not intended to interact directly with PIM-SM, even though
they share a common packet format. It is particularly important to
note that a router cannot differentiate between a PIM-DM neighbor and
a PIM-SM neighbor based on Hello messages.
<span class="grey">Adams, et al. Experimental [Page 53]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-54" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
In the event that a PIM-DM router becomes a neighbor of a PIM-SM
router, the two will effectively form a simplex link, with the PIM-DM
router sending all multicast messages to the PIM-SM router while the
PIM-SM router sends no multicast messages to the PIM-DM router.
The common packet format permits a hybrid PIM-SM/DM implementation
that would use PIM-SM when a rendezvous point is known and PIM-DM
when one is not. Such an implementation is outside the scope of this
document.
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. IGMP Interactions</span>
PIM-DM will forward received multicast data packets to neighboring
host group members in all cases except when the PIM-DM router is in
an Assert Loser state on that interface. Note that a PIM Prune
message is not permitted to prevent the delivery of messages to a
network with group members.
A PIM-DM Router MAY use the DR Priority option described in PIM-SM
[<a href="#ref-14" title=""Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised)"">14</a>] to elect an IGMP v1 querier.
<span class="h3"><a class="selflink" id="section-5.3" href="#section-5.3">5.3</a>. Source Specific Multicast (SSM) Interactions</span>
PIM-DM makes no special considerations for SSM [<a href="#ref-15" title=""Source Specific Multicast for IP"">15</a>]. All Prunes and
Grafts within the protocol are for a specific source, so no
additional checks have to be made.
<span class="h3"><a class="selflink" id="section-5.4" href="#section-5.4">5.4</a>. Multicast Group Scope Boundary Interactions</span>
Although multicast group scope boundaries are generally identical to
routing area boundaries, it is conceivable that a routing area might
be partitioned for a particular multicast group. PIM-DM routers MUST
NOT send any messages concerning a particular group across that
group's scope boundary.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. IANA Considerations</span>
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. PIM Address Family</span>
The PIM Address Family field was chosen to be 8 bits as a tradeoff
between packet format and use of the IANA assigned numbers. When the
PIM packet format was designed, only 15 values were assigned for
Address Families, and large numbers of new Address Families were not
envisioned; 8 bits seemed large enough. However, the IANA assigns
Address Families in a 16 bit value. Therefore, the PIM Address
Family is allocated as follows:
<span class="grey">Adams, et al. Experimental [Page 54]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-55" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
Values 0 - 127 are designated to have the same meaning as IANA
assigned Address Family Numbers [<a href="#ref-9" title=""Address Family Numbers"">9</a>].
Values 128 - 250 are designated to be assigned by the IANA based on
IESG approval, as defined in [<a href="#ref-8" title="">8</a>].
Values 251 - 255 are designated for Private Use, as defined in [<a href="#ref-8" title="">8</a>].
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>. PIM Hello Options</span>
Values 17 - 65000 are to be assigned by the IANA. Since the space is
large, they may be assigned as First Come First Served, as defined in
[<a href="#ref-8" title="">8</a>]. Assignments are valid for one year and may be renewed.
Permanent assignments require a specification, as defined in [<a href="#ref-8" title="">8</a>].
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Security Considerations</span>
The IPsec authentication header [<a href="#ref-10" title=""Security Architecture for the Internet Protocol"">10</a>] MAY be used to provide data
integrity protection and groupwise data origin authentication of PIM
protocol messages. Authentication of PIM messages can protect
against unwanted behaviors caused by unauthorized or altered PIM
messages. In any case, a PIM router SHOULD NOT accept and process
PIM messages from neighbors unless a valid Hello message has been
received from that neighbor.
Note that PIM-DM has no rendezvous point, and therefore no single
point of failure that may be vulnerable. Because PIM-DM uses unicast
routes provided by an unknown routing protocol, it may suffer
collateral effects if the unicast routing protocol is attacked.
<span class="h3"><a class="selflink" id="section-7.1" href="#section-7.1">7.1</a>. Attacks Based on Forged Messages</span>
The extent of possible damage depends on the type of counterfeit
messages accepted. We next consider the impact of possible
forgeries. A forged PIM-DM message is link local and can only reach a
LAN if it was sent by a local host or if it was allowed onto the LAN
by a compromised or non-compliant router.
1. A forged Hello message can cause multicast traffic to be delivered
to links where there are no legitimate requestors, potentially
wasting bandwidth on that link. On a multi-access LAN, the
effects are limited without the capability to forge a Join
message, as other routers will Prune the link if the traffic is
not desired.
2. A forged Join/Prune message can cause multicast traffic to be
delivered to links where there are no legitimate requestors,
potentially wasting bandwidth on that link. A forged Prune
<span class="grey">Adams, et al. Experimental [Page 55]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-56" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
message on a multi-access LAN is generally not a significant
attack in PIM, because any legitimately joined router on the LAN
would override the Prune with a Join before the upstream router
stops forwarding data to the LAN.
3. A forged Graft message can cause multicast traffic to be delivered
to links where there are no legitimate requestors, potentially
wasting bandwidth on that link. In principle, Graft messages
could be sent multiple hops because they are unicast to the
upstream router. This should not be a problem, as the remote
forger should have no way to get a Hello message to the target of
the attack. Without a valid Hello message, the receiving router
SHOULD NOT accept the Graft.
4. A forged GraftAck message has no impact, as it will be ignored
unless the router has recently sent a Graft to its upstream
router.
5. By forging an Assert message on a multi-access LAN, an attacker
could cause the legitimate forwarder to stop forwarding traffic to
the LAN. Such a forgery would prevent any hosts downstream of
that LAN from receiving traffic.
6. A forged State Refresh message on a multi-access LAN would have
the same impact as a forged Assert message, having the same
general functions. In addition, forged State Refresh messages
would be propagated downstream and might be used in a denial of
service attack. Therefore, a PIM-DM router SHOULD rate limit
State Refresh messages propagated.
<span class="h3"><a class="selflink" id="section-7.2" href="#section-7.2">7.2</a>. Non-cryptographic Authentication Mechanisms</span>
A PIM-DM router SHOULD provide an option to limit the set of
neighbors from which it will accept PIM-DM messages. Either static
configuration of IP addresses or an IPSec security association may be
used. All options that restrict the range of addresses from which
packets are accepted MUST default to allowing all packets.
Furthermore, a PIM router SHOULD NOT accept protocol messages from a
router from which it has not yet received a valid Hello message.
<span class="h3"><a class="selflink" id="section-7.3" href="#section-7.3">7.3</a>. Authentication Using IPsec</span>
The IPSec [<a href="#ref-10" title=""Security Architecture for the Internet Protocol"">10</a>] transport mode using the Authentication Header (AH) is
the recommended method to prevent the above attacks in PIM. The
specific AH authentication algorithm and parameters, including the
choice of authentication algorithm and the choice of key, are
configured by the network administrator. The Encapsulating Security
<span class="grey">Adams, et al. Experimental [Page 56]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-57" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
Payload (ESP) MAY also be used to provide both encryption and
authentication of PIM protocol messages. When IPsec authentication
is used, a PIM router SHOULD reject (drop without processing) any
unauthorized PIM protocol messages.
To use IPSec, the administrator of a PIM network configures each PIM
router with one or more Security Associations and associated Security
Parameters Indices that are used by senders to authenticate PIM
protocol messages and are used by receivers to authenticate received
PIM protocol messages. This document does not describe protocols for
establishing Security Associations. It assumes that manual
configuration of Security Associations is performed, but it does not
preclude the use of some future negotiation protocol such as GDOI
[<a href="#ref-17" title=""The Group Domain of Interpretation"">17</a>] to establish Security Associations.
The network administrator defines a Security Association (SA) and
Security Parameters Index (SPI) to be used to authenticate all PIM-DM
protocol messages from each router on each link in a PIM-DM domain.
In order to avoid the problem of allocating individual keys for each
neighbor on a link to each individual router, it is acceptable to
establish only one authentication key for all PIM-DM routers on a
link. This will not specifically authenticate the individual router
sending the message, but will ensure that the sender is a PIM-DM
router on that link. If this method is used, the receiver of the
message MUST ignore the received sequence number, thus disabling
anti-replay mechanisms. The effects of disabling anti-replay
mechanisms are essentially the same as the effects of forged
messages, described in <a href="#section-7.1">Section 7.1</a>, with the additional protection
that the forger can only reuse legitimate messages.
The Security Policy Database at a PIM-DM router should be configured
to ensure that all incoming and outgoing PIM-DM packets use the SA
associated with the interface to which the packet is sent. Note
that, according to [<a href="#ref-10" title=""Security Architecture for the Internet Protocol"">10</a>], there is nominally a different Security
Association Database (SAD) for each router interface. Thus, the
selected Security Association for an inbound PIM-DM packet can vary
depending on the interface on which the packet arrived. This fact
allows the network administrator to use different authentication
methods for each link, even though the destination address is the
same for most PIM-DM packets, regardless of interface.
<span class="grey">Adams, et al. Experimental [Page 57]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-58" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
<span class="h3"><a class="selflink" id="section-7.4" href="#section-7.4">7.4</a>. Denial of Service Attacks</span>
There are a number of possible denial of service attacks against PIM
that can be caused by generating false PIM protocol messages or even
by generating false data traffic. Authenticating PIM protocol
traffic prevents some, but not all, of these attacks. The possible
attacks include the following:
* Sending packets to many different group addresses quickly can
amount to a denial of service attack in and of itself. These
messages will initially be flooded throughout the network before
they are pruned back. The maintenance of state machines and State
Refresh messages will be a continual drain on network resources.
* Forged State Refresh messages sent quickly could be propagated by
downstream routers, creating a potential denial of service attack.
Therefore, a PIM-DM router SHOULD limit the rate of State Refresh
messages propagated.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Acknowledgments</span>
The major features of PIM-DM were originally designed by Stephen
Deering, Deborah Estrin, Dino Farinacci, Van Jacobson, Ahmed Helmy,
David Meyer, and Liming Wei. Additional features for state refresh
were designed by Dino Farinacci, Isidor Kouvelas, and Kurt Windisch.
This revision was undertaken to incorporate some of the lessons
learned during the evolution of the PIM-SM specification and early
deployments of PIM-DM.
Thanks the PIM Working Group for their comments.
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. References</span>
<span class="h3"><a class="selflink" id="section-9.1" href="#section-9.1">9.1</a>. Normative References</span>
[<a id="ref-1">1</a>] Deering, S., "Host extensions for IP multicasting", STD 5, <a href="./rfc1112">RFC</a>
<a href="./rfc1112">1112</a>, August 1989.
[<a id="ref-2">2</a>] Fenner, W., "Internet Group Management Protocol, Version 2", <a href="./rfc2236">RFC</a>
<a href="./rfc2236">2236</a>, November 1997.
[<a id="ref-3">3</a>] Cain, B., Deering, S., Kouvelas, I., Fenner, B., and A.
Thyagarajan, "Internet Group Management Protocol, Version 3",
<a href="./rfc3376">RFC 3376</a>, October 2002.
<span class="grey">Adams, et al. Experimental [Page 58]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-59" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
[<a id="ref-4">4</a>] Estrin, D., Farinacci, D., Helmy, A., Thaler, D., Deering, S.,
Handley, M., Jacobson, V., Liu, C., Sharma, P., and L. Wei,
"Protocol Independent Multicast-Sparse Mode (PIM-SM): Protocol
Specification", <a href="./rfc2362">RFC 2362</a>, June 1998.
[<a id="ref-5">5</a>] Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6)
Specification", <a href="./rfc2460">RFC 2460</a>, December 1998.
[<a id="ref-6">6</a>] Deering, S., Fenner, W., and B. Haberman, "Multicast Listener
Discovery (MLD) for IPv6", <a href="./rfc2710">RFC 2710</a>, October 1999.
[<a id="ref-7">7</a>] Thaler, D., "Interoperability Rules for Multicast Routing
Protocols", <a href="./rfc2715">RFC 2715</a>, October 1999.
[<a id="ref-8">8</a>] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA
Considerations Section in RFCs", <a href="https://www.rfc-editor.org/bcp/bcp26">BCP 26</a>, <a href="./rfc2434">RFC 2434</a>, October 1998.
[<a id="ref-9">9</a>] IANA, "Address Family Numbers", linked from
<a href="http://www.iana.org/numbers.html">http://www.iana.org/numbers.html</a>.
[<a id="ref-10">10</a>] Kent, S. and R. Atkinson, "Security Architecture for the
Internet Protocol", <a href="./rfc2401">RFC 2401</a>, November 1998.
[<a id="ref-11">11</a>] Bradner, S., "Key words for use in RFCs to Indicate Requirement
Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
<span class="h3"><a class="selflink" id="section-9.2" href="#section-9.2">9.2</a>. Informative References</span>
[<a id="ref-12">12</a>] Deering, S.E., "Multicast Routing in a Datagram Internetwork",
Ph.D. Thesis, Electrical Engineering Dept., Stanford University,
December 1991.
[<a id="ref-13">13</a>] Waitzman, D., Partridge, C., and S. Deering, "Distance Vector
Multicast Routing Protocol", <a href="./rfc1075">RFC 1075</a>, November 1988.
[<a id="ref-14">14</a>] Fenner, W., Handley, M., Holbrook, H., and I. Kouvelas,
"Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol
Specification (Revised)", Work in Progress.
[<a id="ref-15">15</a>] Holbrook, H. and B. Cain, <a style="text-decoration: none" href='https://www.google.com/search?sitesearch=datatracker.ietf.org%2Fdoc%2Fhtml%2F&q=inurl:draft-+%22Source+Specific+Multicast+for+IP%22'>"Source Specific Multicast for IP"</a>,
Work in Progress.
[<a id="ref-16">16</a>] Handley, M., Kouvelas, I., Speakman, T., and L. Vicisano, "Bi-
directional Protocol Independent Multicast", Work in Progress.
[<a id="ref-17">17</a>] Baugher, M., Weis, B., Hardjono, T., and H. Harney, "The Group
Domain of Interpretation", <a href="./rfc3547">RFC 3547</a>, July 2003.
<span class="grey">Adams, et al. Experimental [Page 59]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-60" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
[<a id="ref-18">18</a>] Fenner, W., Handley, M., Kermode, R., and D. Thaler, "Bootstrap
Router (BSR) Mechanism for PIM Sparse Mode", Work in Progress.
Authors' Addresses
Andrew Adams
NextHop Technologies
825 Victors Way, Suite 100
Ann Arbor, MI 48108-2738
EMail: ala@nexthop.com
Jonathan Nicholas
ITT Industries
Aerospace/Communications Division
100 Kingsland Rd
Clifton, NJ 07014
EMail: jonathan.nicholas@itt.com
William Siadak
NextHop Technologies
825 Victors Way, Suite 100
Ann Arbor, MI 48108-2738
EMail: wfs@nexthop.com
<span class="grey">Adams, et al. Experimental [Page 60]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-61" ></span>
<span class="grey"><a href="./rfc3973">RFC 3973</a> PIM - Dense Mode January 2005</span>
Full Copyright Statement
Copyright (C) The Internet Society (2005).
This document is subject to the rights, licenses and restrictions
contained in <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a>, and except as set forth therein, the authors
retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the IETF's procedures with respect to rights in IETF Documents can
be found in <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and <a href="https://www.rfc-editor.org/bcp/bcp79">BCP 79</a>.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
<a href="http://www.ietf.org/ipr">http://www.ietf.org/ipr</a>.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at ietf-
ipr@ietf.org.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Adams, et al. Experimental [Page 61]
</pre>
|