1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
|
<pre>Network Working Group G. Pelletier
Request for Comments: 4019 Ericsson AB
Category: Standards Track April 2005
<span class="h1">RObust Header Compression (ROHC):</span>
<span class="h1">Profiles for User Datagram Protocol (UDP) Lite</span>
Status of This Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2005).
Abstract
This document defines Robust Header Compression (ROHC) profiles for
compression of Real-Time Transport Protocol, User Datagram Protocol-
Lite, and Internet Protocol (RTP/UDP-Lite/IP) packets and UDP-
Lite/IP. These profiles are defined based on their differences with
the profiles for UDP as specified in <a href="./rfc3095">RFC 3095</a>.
Table of Contents
<a href="#section-1">1</a>. Introduction.................................................. <a href="#page-2">2</a>
<a href="#section-2">2</a>. Terminology................................................... <a href="#page-3">3</a>
<a href="#section-3">3</a>. Background.................................................... <a href="#page-3">3</a>
<a href="#section-3.1">3.1</a>. Overview of the UDP-Lite Protocol....................... <a href="#page-3">3</a>
<a href="#section-3.2">3.2</a>. Expected Behaviours of UDP-Lite Flows................... <a href="#page-5">5</a>
<a href="#section-3.2.1">3.2.1</a>. Per-Packet Behavior............................. <a href="#page-5">5</a>
<a href="#section-3.2.2">3.2.2</a>. Inter-Packet Behavior........................... <a href="#page-5">5</a>
<a href="#section-3.2.3">3.2.3</a>. Per-Flow Behavior............................... <a href="#page-5">5</a>
<a href="#section-3.3">3.3</a>. Header Field Classification............................. <a href="#page-5">5</a>
<a href="#section-4">4</a>. Rationale behind the Design of ROHC Profiles for UDP-Lite..... <a href="#page-6">6</a>
<a href="#section-4.1">4.1</a>. Design Motivations...................................... <a href="#page-6">6</a>
<a href="#section-4.2">4.2</a>. ROHC Considerations..................................... <a href="#page-6">6</a>
<a href="#section-5">5</a>. ROHC Profiles for UDP-Lite.................................... <a href="#page-6">6</a>
<a href="#section-5.1">5.1</a>. Context Parameters...................................... <a href="#page-7">7</a>
<a href="#section-5.2">5.2</a>. Initialization.......................................... <a href="#page-8">8</a>
<a href="#section-5.2.1">5.2.1</a>. Initialization of the UDP-Lite Header [<a href="#ref-1" title=""Key words for use in RFCs to Indicate Requirement Levels"">1</a>]....... <a href="#page-8">8</a>
<a href="#section-5.2.2">5.2.2</a>. Compressor and Decompressor Logic............... <a href="#page-9">9</a>
<span class="grey">Pelletier Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc4019">RFC 4019</a> ROHC: Profiles for UDP-Lite April 2005</span>
<a href="#section-5.3">5.3</a>. Packet Formats.......................................... <a href="#page-9">9</a>
<a href="#section-5.3.1">5.3.1</a>. General Packet Format........................... <a href="#page-9">9</a>
<a href="#section-5.3.2">5.3.2</a>. Packet Type CCE: CCE(), CCE(ON), and CCE(OFF)... <a href="#page-10">10</a>
<a href="#section-5.3.2.1">5.3.2.1</a>. Properties of CCE():.................. <a href="#page-11">11</a>
<a href="#section-5.3.2.2">5.3.2.2</a>. Properties of CCE(ON):................ <a href="#page-11">11</a>
<a href="#section-5.3.2.3">5.3.2.3</a>. Properties of CCE(OFF):............... <a href="#page-12">12</a>
<a href="#section-5.4">5.4</a>. Compressor Logic........................................ <a href="#page-12">12</a>
<a href="#section-5.5">5.5</a>. Decompressor Logic...................................... <a href="#page-12">12</a>
<a href="#section-5.6">5.6</a>. Additional Mode Transition Logic........................ <a href="#page-13">13</a>
<a href="#section-5.7">5.7</a>. The CONTEXT_MEMORY Feedback Option...................... <a href="#page-13">13</a>
<a href="#section-5.8">5.8</a>. Constant IP-ID.......................................... <a href="#page-13">13</a>
<a href="#section-6">6</a>. Security Considerations....................................... <a href="#page-14">14</a>
<a href="#section-7">7</a>. IANA Considerations........................................... <a href="#page-14">14</a>
<a href="#section-8">8</a>. Acknowledgments............................................... <a href="#page-15">15</a>
<a href="#section-9">9</a>. References.................................................... <a href="#page-15">15</a>
<a href="#section-9.1">9.1</a>. Normative References.................................... <a href="#page-15">15</a>
<a href="#section-9.2">9.2</a>. Informative References.................................. <a href="#page-15">15</a>
<a href="#appendix-A">Appendix A</a>. Detailed Classification of Header Fields............. <a href="#page-17">17</a>
<a href="#appendix-B">Appendix B</a>. Detailed Format of the CCE Packet Type............... <a href="#page-20">20</a>
Author's Address.................................................. <a href="#page-22">22</a>
Full Copyright Statement.......................................... <a href="#page-23">23</a>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
The ROHC WG has developed a header compression framework on top of
which various profiles can be defined for different protocol sets or
compression strategies. Due to the demands of the cellular industry
for an efficient way to transport voice over IP over wireless, ROHC
[<a href="#ref-2" title=""RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed"">2</a>] has mainly focused on compression of IP/UDP/RTP headers, which
are generous in size, especially compared to the payloads often
carried by packets with these headers.
ROHC RTP has become a very efficient, robust, and capable compression
scheme, able to compress the headers down to a total size of one
octet only. Also, transparency is guaranteed to an extremely high
extent, even when residual bit errors are present in compressed
headers delivered to the decompressor.
UDP-Lite [<a href="#ref-4" title=""The Lightweight User Datagram Protocol (UDP-Lite)"">4</a>] is a transport protocol similar to the UDP protocol [<a href="#ref-7" title=""User Datagram Protocol"">7</a>].
UDP-Lite is useful for applications designed with the capability to
tolerate errors in the payload, for which receiving damaged data is
better than dealing with the loss of entire packets. This may be
particularly suitable when packets are transported over link
technologies in which data can be partially damaged, such as wireless
links.
<span class="grey">Pelletier Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc4019">RFC 4019</a> ROHC: Profiles for UDP-Lite April 2005</span>
Although these transport protocols are very similar, ROHC profiles
must be defined separately for robust compression of UDP-Lite headers
because UDP-Lite does not share the same protocol identifier with
UDP. Also, the UDP-Lite Checksum Coverage field does not share the
semantics of the corresponding UDP Length field, and as a consequence
it cannot always be inferred anymore.
This document defines two ROHC profiles for efficient compression of
UDP-Lite headers. The objective of this document is to provide
simple modifications to the corresponding ROHC profiles for UDP,
specified in <a href="./rfc3095">RFC 3095</a> [<a href="#ref-2" title=""RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed"">2</a>]. In addition, the ROHC profiles for UDP-
Lite support some of the mechanisms defined in the profile for
compression of IP headers [<a href="#ref-3" title=""RObust Header Compression (ROHC): A Compression Profile for IP"">3</a>] (ROHC IP-Only). This specification
includes support for compression of multiple IP headers and for
compressing IP-ID fields with constant behavior, as well as improved
mode transition logic and a feedback option for decompressors with
limited memory resources.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Terminology</span>
In this document, the key words "MUST", "MUST NOT", "REQUIRED",
"SHALL", "SHALL NOT", "SHOULD, "SHOULD NOT", "RECOMMENDED", "MAY",
and "OPTIONAL" are to be interpreted as described in <a href="./rfc2119">RFC 2119</a> [<a href="#ref-1" title=""Key words for use in RFCs to Indicate Requirement Levels"">1</a>].
ROHC RTP : RTP/UDP/IP profile 0x0001 defined in <a href="./rfc3095">RFC 3095</a> [<a href="#ref-2" title=""RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed"">2</a>].
ROHC UDP : UDP/IP profile 0x0002 defined in <a href="./rfc3095">RFC 3095</a> [<a href="#ref-2" title=""RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed"">2</a>].
ROHC UDP-Lite : UDP-Lite/IP profile defined in this document.
ROHC RTP/UDP-Lite: RTP/UDP-Lite/IP profile defined in this document.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Background</span>
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. Overview of the UDP-Lite Protocol</span>
UDP-Lite is a transport protocol defined as an independent variant of
the UDP transport protocol. UDP-Lite is very similar to UDP, and it
allows applications that can tolerate errors in the payload to use a
checksum with an optional partial coverage. This is particularly
useful with IPv6 [<a href="#ref-6" title=""Internet Protocol, Version 6 (IPv6) Specification"">6</a>], in which the use of the transport-layer
checksum is mandatory.
UDP-Lite replaces the Length field of the UDP header with a Checksum
Coverage field. This field indicates the number of octets covered by
the 16-bit checksum, which is applied on a per-packet basis. The
coverage area always includes the UDP-Lite header and may cover the
entire packet, in which case UDP-Lite becomes semantically identical
to UDP. UDP-Lite and UDP do not share the same protocol identifier.
<span class="grey">Pelletier Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc4019">RFC 4019</a> ROHC: Profiles for UDP-Lite April 2005</span>
The UDP-Lite header format:
0 15 16 31
+--------+--------+--------+--------+
| Source | Destination |
| Port | Port |
+--------+--------+--------+--------+
| Checksum | |
| Coverage | Checksum |
+--------+--------+--------+--------+
| |
: Payload :
| |
+-----------------------------------+
Like the UDP checksum, the UDP-Lite checksum is an end-to-end
mechanism against erroneous delivery of error sensitive data. This
checksum is mandatory with IPv6 [<a href="#ref-5" title=""Internet Protocol"">5</a>] for both protocols. However,
unlike its UDP counterpart, the UDP-Lite checksum may not be
transmitted as all zeroes and cannot be disabled for IPv4 [<a href="#ref-5" title=""Internet Protocol"">5</a>]. For
UDP, if the checksum is disabled (IPv4 only), the Checksum field
maintains a constant value and is normally not sent by the header
compression scheme. If the UDP checksum is enabled (mandatory for
IPv6), such an unpredictable field cannot be compressed and is sent
uncompressed. The UDP Length field, however, is always redundant and
can be provided by the IP module. Header compression schemes do not
normally transmit any bits of information for this field, as its
value can be inferred from the link layer.
For UDP-Lite, the checksum also has unpredictable values, and this
field must always be included as-is in the compressed header for both
IPv4 and IPv6. Furthermore, as the UDP Length field is redefined as
the Checksum Coverage field by UDP-Lite, this leads to different
properties for this field from a header-compression perspective.
The following summarizes the relationship between UDP and UDP-Lite:
- UDP-Lite and UDP have different protocol identifiers.
- The UDP-Lite checksum cannot be disabled for IPv4.
- UDP-Lite redefines the UDP Length field as the Checksum Coverage
field, with different semantics.
- UDP-Lite is semantically equivalent to UDP when the Checksum
Coverage field indicates the total length of the packet.
The next section provides a more detailed discussion of the behavior
of the Checksum Coverage field of UDP-Lite in relation to header
compression.
<span class="grey">Pelletier Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc4019">RFC 4019</a> ROHC: Profiles for UDP-Lite April 2005</span>
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. Expected Behaviours of UDP-Lite Flows</span>
<span class="h4"><a class="selflink" id="section-3.2.1" href="#section-3.2.1">3.2.1</a>. Per-Packet Behavior</span>
As mentioned in the previous section, the checksum coverage value is
applied independently of other packets that may belong to the same
flow. Specifically, the value of the checksum coverage may indicate
that the UDP-Lite packet is either entirely covered by the checksum
or covered up to some boundary less than the packet size but
including the UDP-Lite header.
<span class="h4"><a class="selflink" id="section-3.2.2" href="#section-3.2.2">3.2.2</a>. Inter-Packet Behavior</span>
In relation to each other, UDP-Lite packets may exhibit one of three
possible change patterns, where within a sequence of packets the
value of the Checksum Coverage field is
1. changing, while covering the entire packet;
2. unchanging, covering up to a fixed boundary within the packet; or
3. changing, but it does not follow any specific pattern.
The first pattern above corresponds to the semantics of UDP, when the
UDP checksum is enabled. For this case, the checksum coverage field
varies according to the packet length and may be inferred from the IP
header, as is the UDP Length field value.
The second pattern corresponds to the case where the coverage is the
same from one packet to another within a particular sequence. For
this case, the Checksum Coverage field may be a static value defined
in the context, and it does not have to be sent in the compressed
header. For the third case, no useful change pattern can be
identified from packet to packet for the value of the checksum
coverage field, and it must be included in the compressed header.
<span class="h4"><a class="selflink" id="section-3.2.3" href="#section-3.2.3">3.2.3</a>. Per-Flow behavior</span>
It can be expected that any one of the above change patterns for
sequences of packets may be predominant at any time during the
lifetime of the UDP-Lite flow. A flow that predominantly follows the
first two change patterns described above may provide opportunities
for compressing the Checksum Coverage field for most of the packets.
<span class="h3"><a class="selflink" id="section-3.3" href="#section-3.3">3.3</a>. Header Field Classification</span>
In relation to the header field classification of <a href="./rfc3095">RFC 3095</a> [<a href="#ref-2" title=""RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed"">2</a>], the
first two patterns represent the case where the value of the Checksum
Coverage field behavior is fixed and may be either INFERRED (pattern
<span class="grey">Pelletier Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc4019">RFC 4019</a> ROHC: Profiles for UDP-Lite April 2005</span>
1) or STATIC (pattern 2). Pattern 3 is for the case where the value
varies unpredictably, the field is CHANGING, and the value must be
sent along with every packet.
Additional information regarding the analysis of the behavior of the
UDP-Lite fields may be found in <a href="#appendix-A">Appendix A</a>.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Rationale behind the Design of ROHC Profiles for UDP-Lite</span>
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. Design Motivations</span>
Simplicity is a strong motivation for the design of the UDP-Lite
header compression profiles. The profiles defined for UDP-Lite
should entail only a few simple modifications to the corresponding
profiles defined for UDP in <a href="./rfc3095">RFC 3095</a> [<a href="#ref-2" title=""RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed"">2</a>]. In addition, it is
desirable to include some of the improvements found in the ROHC IP-
Only profile [<a href="#ref-3" title=""RObust Header Compression (ROHC): A Compression Profile for IP"">3</a>]. Finally, whenever UDP-Lite is used in a manner
that is semantically identical to UDP, the compression efficiency
should be similar.
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. ROHC Considerations</span>
The simplest approach to the definition of ROHC profiles for UDP-Lite
is to treat the Checksum Coverage field as an irregular value, and to
send it uncompressed for every packet. This may be achieved simply
by adding the field to the definition of the general packet format
[<a href="#ref-2" title=""RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed"">2</a>]. However, then the compression efficiency would always be less
than for UDP.
Some care should be given to achieve compression efficiency for UDP-
Lite similar to that for UDP when the Checksum Coverage field behaves
like the UDP Length field. This requires the possibility to infer
the Checksum Coverage field when it is equal to the length of the
packet. Otherwise, this would put the UDP-Lite protocol at a
disadvantage over links where header compression is used, when its
behavior is made similar to the semantics of UDP.
A mechanism to detect the presence of the Checksum Coverage field in
compressed headers is thus needed. This is achieved by defining a
new packet type with the identifiers left unused in <a href="./rfc3095">RFC 3095</a> [<a href="#ref-2" title=""RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed"">2</a>].
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. ROHC Profiles for UDP-Lite</span>
This section defines two ROHC profiles:
- RTP/UDP-Lite/IP compression (profile 0x0007)
- UDP-Lite/IP compression (profile 0x0008)
<span class="grey">Pelletier Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc4019">RFC 4019</a> ROHC: Profiles for UDP-Lite April 2005</span>
These profiles build on the specifications found in <a href="./rfc3095">RFC 3095</a> [<a href="#ref-2" title=""RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed"">2</a>],
with as little modification as possible. Unless it is explicitly
stated otherwise, the profiles defined herein follow the
specifications of ROHC UDP and ROHC RTP, respectively.
Note also that this document reuses the notation found in [<a href="#ref-2" title=""RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed"">2</a>].
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. Context Parameters</span>
As described in [<a href="#ref-2" title=""RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed"">2</a>], information about previous packets is maintained
in a context. This includes information describing the packet stream
and compression parameters. Although the UDP and UDP-Lite protocols
share many commonalities, the differences in semantics as described
earlier render the following parameter inapplicable:
The parameter context(UDP Checksum)
The UDP-Lite checksum cannot be disabled, as opposed to UDP. The
parameter context(UDP Checksum) defined in [<a href="#ref-2" title=""RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed"">2</a>] (<a href="#section-5.7">section 5.7</a>) is
therefore not used for compression of UDP-Lite.
In addition, the UDP-Lite checksum is always sent as-is in every
compressed packet. However, the Checksum Coverage field may not
always be sent in each compressed packet, and the following context
parameter is used to indicate whether the field is sent:
The parameter context(UDP-Lite Coverage Field Present)
Whether the UDP-Lite Checksum Coverage field is present or not in
the general packet format (see <a href="#section-5.3.1">section 5.3.1</a>) is controlled by the
value of the Coverage Field Present (CFP) flag in the context.
If context(CFP) is nonzero, the Checksum Coverage field is not
compressed, and it is present within compressed packets. If
context(CFP) is zero, the Checksum Coverage field is compressed,
and it is not sent. This is the case when the value of the
Checksum Coverage field follows a stable inter-packet change
pattern; the field has either a constant value or it has a value
equal to the packet length for most packets in a sequence (see
<a href="#section-3.2">section 3.2</a>).
Finally, the following context parameter is needed to indicate
whether the field should be inferred or taken from a value previously
saved in the context:
<span class="grey">Pelletier Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc4019">RFC 4019</a> ROHC: Profiles for UDP-Lite April 2005</span>
The parameter context(UDP-Lite Coverage Field Inferred)
When the UDP-Lite Checksum Coverage field is not present in the
compressed header (CFP=0), whether it is inferred is controlled by
the value of the Coverage Field Inferred (CFI) flag in the context.
If context(CFI) is nonzero, the Checksum Coverage field is inferred
from the packet length, similarly as for the UDP Length field in
ROHC RTP. If context(CFI) is zero, the Checksum Coverage field is
decompressed by using context(UDP-Lite Checksum Coverage).
Therefore, when context(CFI) is updated to a nonzero value, the
value of the Checksum Coverage field stored in the context must
also be updated.
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. Initialization</span>
Unless it is stated otherwise, the mechanisms of ROHC RTP and ROHC
UDP found in [<a href="#ref-2" title=""RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed"">2</a>] are used also for the ROHC RTP/UDP-Lite and the ROHC
UDP-Lite profiles, respectively.
In particular, the considerations of ROHC UDP regarding the UDP SN
taking the role of the RTP Sequence Number apply to ROHC UDP-Lite.
Also, the static context for ROHC UDP-Lite may be initialized by
reusing an existing context belonging to a stream compressed by using
ROHC RTP/UDP-Lite (profile 0x0007), similarly as for ROHC UDP.
<span class="h4"><a class="selflink" id="section-5.2.1" href="#section-5.2.1">5.2.1</a>. Initialization of the UDP-Lite Header [<a href="#ref-1" title=""Key words for use in RFCs to Indicate Requirement Levels"">1</a>]</span>
The structure of the IR and IR-DYN packets and the initialization
procedures are the same as for the ROHC profiles for UDP [<a href="#ref-2" title=""RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed"">2</a>], with
the exception of the dynamic part as specified for UDP. A 2-octet
field containing the checksum coverage is added before the Checksum
field. This affects the format of dynamic chains in both IR and IR-
DYN packets.
Dynamic part:
+---+---+---+---+---+---+---+---+
/ Checksum Coverage / 2 octets
+---+---+---+---+---+---+---+---+
/ Checksum / 2 octets
+---+---+---+---+---+---+---+---+
CRC-DYNAMIC: Checksum Coverage field, Checksum field (octets 5 - 8).
CRC-STATIC: All other fields (octets 1 - 4).
<span class="grey">Pelletier Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc4019">RFC 4019</a> ROHC: Profiles for UDP-Lite April 2005</span>
<span class="h4"><a class="selflink" id="section-5.2.2" href="#section-5.2.2">5.2.2</a>. Compressor and Decompressor Logic</span>
The following logic must be used by both the compressor and the
decompressor for assigning values to the parameters context(CFP) and
context(CFI) during initialization:
Context(CFP)
During context initialization, the value of context(CFP) MUST be
set to a nonzero value if the Checksum Coverage field differs from
the length of the UDP-Lite packet, for any one IR or IR-DYN packet
sent (compressor) or received (decompressor); otherwise, the value
MUST be set to zero.
Context(CFI)
During context initialization, the value of context(CFI) MUST be
set to a nonzero value if the Checksum Coverage field is equal to
the length of the UDP-Lite packet within an IR or an IR-DYN packet
sent (compressor) or received (decompressor); otherwise, the value
MUST be set to zero.
<span class="h3"><a class="selflink" id="section-5.3" href="#section-5.3">5.3</a>. Packet Formats</span>
The general packet format, as defined in <a href="./rfc3095">RFC 3095</a> [<a href="#ref-2" title=""RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed"">2</a>], is modified to
include an additional field for the UDP-Lite checksum coverage. A
packet type is also defined to handle the specific semantics and
characteristics of this field.
<span class="h4"><a class="selflink" id="section-5.3.1" href="#section-5.3.1">5.3.1</a>. General Packet Format</span>
The general packet format of a compressed ROHC UDP-Lite header is
similar to the compressed ROHC RTP header ([<a href="#ref-2" title=""RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed"">2</a>], section 5.7), with
modifications to the Checksum field, as well as additional fields for
handling multiple IP headers and for the UDP-Lite checksum coverage:
<span class="grey">Pelletier Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc4019">RFC 4019</a> ROHC: Profiles for UDP-Lite April 2005</span>
--- --- --- --- --- --- --- ---
: List of : variable, given by static chain
/ dynamic chains / (does not include SN)
: for additional IP headers : see also [<a href="#ref-3" title=""RObust Header Compression (ROHC): A Compression Profile for IP"">3</a>], section 3.2.
--- --- --- --- --- --- --- ---
: : 2 octets,
+ UDP-Lite Checksum Coverage + if context(CFP) = 1 or
: : if packet type = CCE (see 5.3.2)
--- --- --- --- --- --- --- ---
: :
+ UDP-Lite Checksum + 2 octets
: :
--- --- --- --- --- --- --- ---
The list of dynamic header chains carries the dynamic header part for
each IP header in excess of the initial two, if there is any (as
indicated by the presence of corresponding header parts in the static
chain). Note that there is no sequence number at the end of the
chain, as SN is present within compressed base headers.
The order of the fields following the optional extension of the
general ROHC packet format is the same as the order between the
fields in the uncompressed header.
When the CRC is calculated, the Checksum Coverage field is CRC-
DYNAMIC.
<span class="h4"><a class="selflink" id="section-5.3.2" href="#section-5.3.2">5.3.2</a>. Packet Type CCE: CCE(), CCE(ON), and CCE(OFF)</span>
The ROHC profiles for UDP-Lite define a packet type to handle the
various possible change patterns of the checksum coverage. This
packet type may be used to manipulate the context values that control
the presence of the Checksum Coverage field within the general packet
format (i.e., context(CFP)) and how the field is decompressed (i.e.,
context(CFI)). The 2-octet Checksum Coverage field is always present
within the format of this packet (see <a href="#section-5.3.1">section 5.3.1</a>).
This type of packet is named Checksum Coverage Extension, or CCE, and
its updating properties depend on the final two bits of the packet
type octet (see format below). A naming scheme of the form
CCE(<some_property>) is used to uniquely identify the properties of a
particular CCE packet.
Although this packet type defines its own format, it may be
considered as an extension mechanism for packets of type 2, 1, or 0
[<a href="#ref-2" title=""RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed"">2</a>]. This is achieved by substitution of the packet type identifier
of the first octet of the base header (the "outer" identifier) with
<span class="grey">Pelletier Standards Track [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc4019">RFC 4019</a> ROHC: Profiles for UDP-Lite April 2005</span>
one of the unused packet types from <a href="./rfc3095">RFC 3095</a> [<a href="#ref-2" title=""RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed"">2</a>]. The substituted
identifier is then moved to the first octet of the remainder of the
base header (the "inner" identifier).
The format of the ROHC UDP-Lite CCE packet type is as follows:
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| 1 1 1 1 1 0 F | K | Outer packet type identifier
+===+===+===+===+===+===+===+===+
: : (with inner type identifier)
/ Inner Base header / variable number of bits, given by
: : the inner packet type identifier
+---+---+---+---+---+---+---+---+
F,K: F,K = 00 is reserved at framework level (IR-DYN);
F,K = 01 indicates CCE();
F,K = 10 indicates CCE(ON);
F,K = 11 indicates CCE(OFF).
Updating properties: The updating properties of the inner packet
type carried within any of the CCE packets are always
maintained. CCE(ON) and CCE(OFF) MUST NOT be used to extend
R-0 and R-1* headers. In addition, CCE(ON) always updates
context(CFP); CCE(OFF) always updates context(CFP),
context(CFI), and context(UDP-Lite Checksum Coverage).
<a href="#appendix-B">Appendix B</a> provides an expanded view of the resulting format of the
CCE packet type.
<span class="h5"><a class="selflink" id="section-5.3.2.1" href="#section-5.3.2.1">5.3.2.1</a>. Properties of CCE()</span>
Aside from the updating properties of the inner packet type carried
within CCE(), this packet does not update any other context values.
CCE() thus is mode-agnostic; e.g., it can extend any of packet types
2, 1, and 0, regardless of the current mode of operation [<a href="#ref-2" title=""RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed"">2</a>].
CCE() may be used when the checksum coverage deviates from the change
pattern assumed by the compressor, where the field could previously
be compressed. This packet is useful if the occurrence of such
deviations is rare.
<span class="h5"><a class="selflink" id="section-5.3.2.2" href="#section-5.3.2.2">5.3.2.2</a>. Properties of CCE(ON)</span>
In addition to the updating properties of the inner packet type,
CCE(ON) updates context(CFP) to a nonzero value; i.e., it effectively
turns on the presence of the Checksum Coverage field within the
<span class="grey">Pelletier Standards Track [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc4019">RFC 4019</a> ROHC: Profiles for UDP-Lite April 2005</span>
general packet format. This is useful when the predominant change
pattern of the checksum coverage precludes its compression.
CCE(ON) can extend any of the context-updating packets of type 2, 1,
and 0; that is, packets with a compressed header containing a CRC
[<a href="#ref-2" title=""RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed"">2</a>]. Specifically, R-0 and R-1* headers MUST NOT be extended by
using CCE(ON).
<span class="h5"><a class="selflink" id="section-5.3.2.3" href="#section-5.3.2.3">5.3.2.3</a>. Properties of CCE(OFF)</span>
In addition to the updating properties of the inner packet type,
CCE(OFF) updates context(CFP) to a value of zero; i.e., it
effectively turns off the presence of the Checksum Coverage field
within the general packet format. This is useful when the change
pattern of the checksum coverage seldom deviates from the pattern
assumed by the compressor.
CCE(OFF) also updates context(CFI) to a nonzero value, if field(UDP-
Lite Checksum Coverage) is equal to the packet length; otherwise, it
must be set to zero. Note that when context(CFI) is updated by using
packet type CCE(OFF), a match of field(Checksum Coverage) with the
packet length always has precedence over a match with
context(Checksum Coverage). Finally, context(UDP-Lite Checksum
Coverage) is also updated by CCE(OFF).
Similarly to CCE(ON), CCE(OFF) can extend any of the context updating
packets of type 2, 1, and 0 [<a href="#ref-2" title=""RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed"">2</a>].
<span class="h3"><a class="selflink" id="section-5.4" href="#section-5.4">5.4</a>. Compressor Logic</span>
If hdr(UDP-Lite Checksum Coverage) is different from context(UDP-Lite
Checksum Coverage) and different from the packet length when
context(CFP) is zero, the Checksum Coverage field cannot be
compressed. In addition, if hdr(UDP-Lite Checksum Coverage) is
different from the packet length when context(CFP) is zero and
context(CFI) is nonzero, the Checksum Coverage field cannot be
compressed by either. For both cases, the field must be sent
uncompressed using a CCE packet, or the context must be reinitialized
by using an IR packet.
<span class="h3"><a class="selflink" id="section-5.5" href="#section-5.5">5.5</a>. Decompressor Logic</span>
For packet types other than IR, IR-DYN, and CCE that are received
when the value of context(CFP) is zero, the Checksum Coverage field
must be decompressed by using the value stored in the context if the
value of context(CFI) is zero; otherwise, the field is inferred from
the length of the UDP-Lite packet derived from the IP module.
<span class="grey">Pelletier Standards Track [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc4019">RFC 4019</a> ROHC: Profiles for UDP-Lite April 2005</span>
<span class="h3"><a class="selflink" id="section-5.6" href="#section-5.6">5.6</a>. Additional Mode Transition Logic</span>
The profiles defined in this document allow the compressor to decline
a mode transition requested by the decompressor. This is achieved by
redefining the Mode parameter for the value mode = 0 (in packet types
UOR-2, IR, and IR-DYN) as follows (see also [<a href="#ref-3" title=""RObust Header Compression (ROHC): A Compression Profile for IP"">3</a>], section 3.4):
Mode: Compression mode. 0 = (C)ancel Mode Transition
Upon receiving the Mode parameter set to 0, the decompressor MUST
stay in its current mode of operation and SHOULD refrain from sending
further mode transition requests for the declined mode.
<span class="h3"><a class="selflink" id="section-5.7" href="#section-5.7">5.7</a>. The CONTEXT_MEMORY Feedback Option</span>
This feedback option informs the compressor that the decompressor
does not have sufficient memory resources to handle the context of
the packet stream required by the current compressed structure.
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| Opt Type = 9 | Opt Len = 0 |
+---+---+---+---+---+---+---+---+
When receiving a CONTEXT_MEMORY option, the compressor SHOULD take
actions to compress the packet stream in a way that requiring less
decompressor memory resources or stop compressing the packet stream.
<span class="h3"><a class="selflink" id="section-5.8" href="#section-5.8">5.8</a>. Constant IP-ID</span>
The profiles for UDP-Lite support compression of the IP-ID field with
constant behavior, with the addition of the Static IP Identifier
(SID) flag within the dynamic part of the chain used to initialize
the IPv4 header, as follows (see also [<a href="#ref-3" title=""RObust Header Compression (ROHC): A Compression Profile for IP"">3</a>], section 3.3):
Dynamic part:
+---+---+---+---+---+---+---+---+
| Type of Service |
+---+---+---+---+---+---+---+---+
| Time to Live |
+---+---+---+---+---+---+---+---+
/ Identification / 2 octets
+---+---+---+---+---+---+---+---+
| DF|RND|NBO|SID| 0 |
+---+---+---+---+---+---+---+---+
/ Generic extension header list / variable length
+---+---+---+---+---+---+---+---+
<span class="grey">Pelletier Standards Track [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc4019">RFC 4019</a> ROHC: Profiles for UDP-Lite April 2005</span>
SID: Static IP Identifier.
For IR and IR-DYN packets:
The logic is the same as that for the respective ROHC
profiles for UDP, with the addition that field (SID)
must be kept in the context.
For compressed headers other than IR and IR-DYN:
If value(RND) = 0 and context(SID) = 0, hdr(IP-ID) is
compressed by using Offset IP-ID encoding (see [<a href="#ref-2" title=""RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed"">2</a>], <a href="#section-4.5.5">section</a>
<a href="#section-4.5.5">4.5.5</a>) using p = 0 and default-slope(IP-ID offset) = 0.
If value(RND) = 0 and context(SID) = 1, hdr(IP-ID) is constant
and compressed away; hdr(IP-ID) is the value of context(IP-ID).
If value(RND) = 1, IP-ID is the uncompressed hdr(IP-ID). IP-ID
is then passed as additional octets at the end of the
compressed header, after any extensions.
Note: Only IR and IR-DYN packets can update context(SID).
Note: All other fields are the same as for the respective ROHC
profiles for UDP [<a href="#ref-2" title=""RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed"">2</a>].
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Security Considerations</span>
The security considerations of <a href="./rfc3095">RFC 3095</a> [<a href="#ref-2" title=""RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed"">2</a>] apply integrally to this
document, without modification.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. IANA Considerations</span>
ROHC profile identifiers 0x0007 (ROHC RTP/UDP-Lite) and 0x0008 (ROHC
UDP-Lite) have been reserved by the IANA for the profiles defined in
this document (<a href="./rfc4019">RFC 4019</a>).
Two ROHC profile identifiers must be reserved by the IANA for the
profiles defined in this document. Since profile number 0x0006 is
being saved for the TCP/IP (ROHC-TCP) profile, profile numbers 0x0007
and 0x0008 are the most suitable unused identifiers available, and
should thus be used. As for previous ROHC profiles, profile numbers
0xnn07 and 0xnn08 must also be reserved for future variants of these
profiles. The registration suggested for the "RObust Header
Compression (ROHC) Profile Identifiers" name space:
<span class="grey">Pelletier Standards Track [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc4019">RFC 4019</a> ROHC: Profiles for UDP-Lite April 2005</span>
OLD: 0x0006-0xnn7F To be Assigned by IANA
NEW: 0xnn06 To be Assigned by IANA
0x0007 ROHC RTP/UDP-Lite [<a href="./rfc4019">RFC4019</a>]
0xnn07 Reserved
0x0008 ROHC UDP-Lite [<a href="./rfc4019">RFC4019</a>]
0xnn08 Reserved
0x0009-0xnn7F To be Assigned by IANA
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Acknowledgments</span>
The author would like to thank Lars-Erik Jonsson, Kristofer Sandlund,
Mark West, Richard Price, Gorry Fairhurst, Fredrik Linstroem and Mats
Nordberg for useful reviews and discussions around this document.
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. References</span>
<span class="h3"><a class="selflink" id="section-9.1" href="#section-9.1">9.1</a>. Normative References</span>
[<a id="ref-1">1</a>] Bradner, S., "Key words for use in RFCs to Indicate Requirement
Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
[<a id="ref-2">2</a>] Bormann, C., Burmeister, C., Degermark, M., Fukushima, H.,
Hannu, H., Jonsson, L-E., Hakenberg, R., Koren, T., Le, K., Liu,
Z., Martensson, A., Miyazaki, A., Svanbro, K., Wiebke, T.,
Yoshimura, T., and H. Zheng, "RObust Header Compression (ROHC):
Framework and four profiles: RTP, UDP, ESP, and uncompressed",
<a href="./rfc3095">RFC 3095</a>, July 2001.
[<a id="ref-3">3</a>] Jonsson, L-E. and G. Pelletier, "RObust Header Compression
(ROHC): A Compression Profile for IP", <a href="./rfc3843">RFC 3843</a>, June 2004.
[<a id="ref-4">4</a>] Larzon, L-A., Degermark, M., Pink, S., Jonsson, L-E., and G.
Fairhurst, "The Lightweight User Datagram Protocol (UDP-Lite)",
<a href="./rfc3828">RFC 3828</a>, July 2004.
<span class="h3"><a class="selflink" id="section-9.2" href="#section-9.2">9.2</a>. Informative References</span>
[<a id="ref-5">5</a>] Postel, J., "Internet Protocol", STD 5, <a href="./rfc791">RFC 791</a>, September 1981.
[<a id="ref-6">6</a>] Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6)
Specification", <a href="./rfc2460">RFC 2460</a>, December 1998.
[<a id="ref-7">7</a>] Postel, J., "User Datagram Protocol", STD 6, <a href="./rfc768">RFC 768</a>, August
1980.
<span class="grey">Pelletier Standards Track [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc4019">RFC 4019</a> ROHC: Profiles for UDP-Lite April 2005</span>
[<a id="ref-8">8</a>] Schulzrinne, H., Casner, S., Frederick, R., and V. Jacobson,
"RTP: A Transport Protocol for Real-Time Applications", STD 64,
<a href="./rfc3550">RFC 3550</a>, July 2003.
<span class="grey">Pelletier Standards Track [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc4019">RFC 4019</a> ROHC: Profiles for UDP-Lite April 2005</span>
<span class="h2"><a class="selflink" id="appendix-A" href="#appendix-A">Appendix A</a>. Detailed Classification of Header Fields</span>
This section summarizes the difference from the classification found
in the corresponding appendix in <a href="./rfc3095">RFC 3095</a> [<a href="#ref-2" title=""RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed"">2</a>] and similarly provides
conclusions about how the various header fields should be handled by
the header compression scheme to optimize compression and
functionality. These conclusions are separated based on the behavior
of the UDP-Lite Checksum Coverage field and use the expected change
patterns described in <a href="#section-3.2">section 3.2</a> of this document.
<span class="h3"><a class="selflink" id="appendix-A.1" href="#appendix-A.1">A.1</a>. UDP-Lite Header Fields</span>
The following table summarizes a possible classification for the UDP-
Lite header fields in comparison with the classification for UDP,
using the same classes as in <a href="./rfc3095">RFC 3095</a> [<a href="#ref-2" title=""RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed"">2</a>].
Header fields of UDP-Lite and UDP:
+-------------------+-------------+
| UDP-Lite | UDP |
+-------------------+--------+-------------------+-------------+
| Header | Size | Class | Class |
| Field | (bits) | | |
+-------------------+--------+-------------------+-------------+
| Source Port | 16 | STATIC-DEF | STATIC-DEF |
| Destination Port | 16 | STATIC-DEF | STATIC-DEF |
| Checksum Coverage | 16 | INFERRED | |
| | | STATIC | |
| | | CHANGING | |
| Length | 16 | | INFERRED |
| Checksum | 16 | CHANGING | CHANGING |
+-------------------+--------+-------------------+-------------+
Source and Destination Port
Same as for UDP. Specifically, these fields are part of the
definition of a stream and must thus be constant for all packets in
the stream. The fields are therefore classified as STATIC-DEF.
Checksum Coverage
This field specifies which part of the UDP-Lite datagram is covered
by the checksum. It may have a value of zero or be equal to the
datagram length if the checksum covers the entire datagram, or it
may have any value between eight octets and the length of the
datagram to specify the number of octets protected by the checksum,
<span class="grey">Pelletier Standards Track [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc4019">RFC 4019</a> ROHC: Profiles for UDP-Lite April 2005</span>
calculated from the first octet of the UDP-Lite header. The value
of this field may vary for each packet, and this makes the value
unpredictable from a header-compression perspective.
Checksum
The information used for the calculation of the UDP-Lite checksum
is governed by the value of the checksum coverage and minimally
includes the UDP-Lite header. The checksum is a changing field
that must always be sent as-is.
The total size of the fields in each class, for each expected change
pattern (see <a href="#section-3.2">section 3.2</a>), is summarized in the tables below:
Pattern 1:
+------------+---------------+
| Class | Size (octets) |
+------------+---------------+
| INFERRED | 2 | Checksum Coverage
| STATIC-DEF | 4 | Source Port / Destination Port
| CHANGING | 2 | Checksum
+------------+---------------+
Pattern 2:
+------------+---------------+
| Class | Size (octets) |
+------------+---------------+
| STATIC-DEF | 4 | Source Port / Destination Port
| STATIC | 2 | Checksum Coverage
| CHANGING | 2 | Checksum
+------------+---------------+
Pattern 3:
+------------+---------------+
| Class | Size (octets) |
+------------+---------------+
| STATIC-DEF | 4 | Source Port / Destination Port
| CHANGING | 4 | Checksum Coverage / Checksum
+------------+---------------+
<span class="grey">Pelletier Standards Track [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc4019">RFC 4019</a> ROHC: Profiles for UDP-Lite April 2005</span>
<span class="h3"><a class="selflink" id="appendix-A.2" href="#appendix-A.2">A.2</a>. Header Compression Strategies for UDP-Lite</span>
The following table revisits the corresponding table (table A.1) for
UDP from [<a href="#ref-2" title=""RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed"">2</a>] (section A.2) and classifies the changing fields based
on the change patterns previously identified in <a href="#section-3.2">section 3.2</a>.
Header compression strategies for UDP-Lite:
+----------+---------+-------------+-----------+-----------+
| Field | Pattern | Value/Delta | Class | Knowledge |
+==========+=========+=============+===========+===========+
| | #1 | Value | CHANGING | INFERRED |
| Checksum |---------+-------------+-----------+-----------+
| Coverage | #2 | Value | RC | UNKNOWN |
| |---------+-------------+-----------+-----------+
| | #3 | Value | IRREGULAR | UNKNOWN |
+----------+---------+-------------+-----------+-----------+
| Checksum | All | Value | IRREGULAR | UNKNOWN |
+----------+---------+-------------+-----------+-----------+
<span class="h4"><a class="selflink" id="appendix-A.2.1" href="#appendix-A.2.1">A.2.1</a>. Transmit initially but be prepared to update</span>
UDP-Lite Checksum Coverage (Patterns #1 and #2)
<span class="h4"><a class="selflink" id="appendix-A.2.2" href="#appendix-A.2.2">A.2.2</a>. Transmit as-is in all packets</span>
UDP-Lite Checksum
UDP-Lite Checksum Coverage (Pattern #3)
<span class="grey">Pelletier Standards Track [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc4019">RFC 4019</a> ROHC: Profiles for UDP-Lite April 2005</span>
<span class="h2"><a class="selflink" id="appendix-B" href="#appendix-B">Appendix B</a>. Detailed Format of the CCE Packet Type</span>
This section provides an expanded view of the format of the CCE
packet, based on the general ROHC RTP compressed header [<a href="#ref-2" title=""RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed"">2</a>] and the
general format of a compressed header of the ROHC IP-Only profile
[<a href="#ref-3" title=""RObust Header Compression (ROHC): A Compression Profile for IP"">3</a>]. The modifications necessary to carry the base header of a
packet of type 2, 1 or 0 [<a href="#ref-2" title=""RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed"">2</a>] within the CCE packet format, along with
the additional fields to properly handle compression of multiple IP
headers, result in the following structure for the CCE packet type:
0 1 2 3 4 5 6 7
--- --- --- --- --- --- --- ---
: Add-CID octet : If for small CIDs and CID 1 - 15
+---+---+---+---+---+---+---+---+
| 1 1 1 1 1 0 F | K | Outer packet type identifier
+---+---+---+---+---+---+---+---+
: :
/ 0, 1, or 2 octets of CID / 1 - 2 octets if large CIDs
: :
+---+---+---+---+---+---+---+---+
| First octet of base header | (with "inner" type indication)
+---+---+---+---+---+---+---+---+
/ Remainder of base header / Variable number of bits
+---+---+---+---+---+---+---+---+
<span class="grey">Pelletier Standards Track [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc4019">RFC 4019</a> ROHC: Profiles for UDP-Lite April 2005</span>
0 1 2 3 4 5 6 7
--- --- --- --- --- --- --- ---
: :
/ Extension / See <a href="./rfc3095">RFC 3095</a> [<a href="#ref-2" title=""RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed"">2</a>], section 5.7.
: :
--- --- --- --- --- --- --- ---
: :
+ IP-ID of outer IPv4 header + See <a href="./rfc3095">RFC 3095</a> [<a href="#ref-2" title=""RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed"">2</a>], section 5.7.
: :
--- --- --- --- --- --- --- ---
/ AH data for outer list / See <a href="./rfc3095">RFC 3095</a> [<a href="#ref-2" title=""RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed"">2</a>], section 5.7.
--- --- --- --- --- --- --- ---
: :
+ GRE checksum + See <a href="./rfc3095">RFC 3095</a> [<a href="#ref-2" title=""RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed"">2</a>], section 5.7.
: :
--- --- --- --- --- --- --- ---
: :
+ IP-ID of inner IPv4 header + See <a href="./rfc3095">RFC 3095</a> [<a href="#ref-2" title=""RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed"">2</a>], section 5.7.
: :
--- --- --- --- --- --- --- ---
/ AH data for inner list / See <a href="./rfc3095">RFC 3095</a> [<a href="#ref-2" title=""RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed"">2</a>], section 5.7.
--- --- --- --- --- --- --- ---
: :
+ GRE checksum + See <a href="./rfc3095">RFC 3095</a> [<a href="#ref-2" title=""RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed"">2</a>], section 5.7.
: :
--- --- --- --- --- --- --- ---
: List of : Variable, given by static chain
/ dynamic chains / (includes no SN).
: for additional IP headers : See [<a href="#ref-3" title=""RObust Header Compression (ROHC): A Compression Profile for IP"">3</a>], section 3.2.
--- --- --- --- --- --- --- ---
: :
+ UDP-Lite Checksum Coverage + 2 octets
: :
+---+---+---+---+---+---+---+---+
: :
+ UDP-Lite Checksum + 2 octets
: :
+---+---+---+---+---+---+---+---+
F,K: F,K = 00 is reserved at framework level (IR-DYN);
F,K = 01 indicates CCE();
F,K = 10 indicates CCE(ON);
F,K = 11 indicates CCE(OFF).
Note that this document does not define (F,K) = 00, as this would
collide with the IR-DYN packet type already reserved at the ROHC
framework level.
<span class="grey">Pelletier Standards Track [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc4019">RFC 4019</a> ROHC: Profiles for UDP-Lite April 2005</span>
Author's Address
Ghyslain Pelletier
Ericsson AB
Box 920
SE-971 28 Lulea, Sweden
Phone: +46 840 429 43
Fax : +46 920 996 21
EMail: ghyslain.pelletier@ericsson.com
<span class="grey">Pelletier Standards Track [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc4019">RFC 4019</a> ROHC: Profiles for UDP-Lite April 2005</span>
Full Copyright Statement
Copyright (C) The Internet Society (2005).
This document is subject to the rights, licenses and restrictions
contained in <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a>, and except as set forth therein, the authors
retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and <a href="https://www.rfc-editor.org/bcp/bcp79">BCP 79</a>.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
<a href="http://www.ietf.org/ipr">http://www.ietf.org/ipr</a>.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at ietf-
ipr@ietf.org.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Pelletier Standards Track [Page 23]
</pre>
|