1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
|
<pre>Network Working Group J. Vollbrecht
Request for Comments: 4137 Meetinghouse Data Communications
Category: Informational P. Eronen
Nokia
N. Petroni
University of Maryland
Y. Ohba
TARI
August 2005
<span class="h1">State Machines for Extensible Authentication Protocol (EAP)</span>
<span class="h1">Peer and Authenticator</span>
Status of This Memo
This memo provides information for the Internet community. It does
not specify an Internet standard of any kind. Distribution of this
memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2005).
Abstract
This document describes a set of state machines for Extensible
Authentication Protocol (EAP) peer, EAP stand-alone authenticator
(non-pass-through), EAP backend authenticator (for use on
Authentication, Authorization, and Accounting (AAA) servers), and EAP
full authenticator (for both local and pass-through). This set of
state machines shows how EAP can be implemented to support deployment
in either a peer/authenticator or peer/authenticator/AAA Server
environment. The peer and stand-alone authenticator machines are
illustrative of how the EAP protocol defined in <a href="./rfc3748">RFC 3748</a> may be
implemented. The backend and full/pass-through authenticators
illustrate how EAP/AAA protocol support defined in <a href="./rfc3579">RFC 3579</a> may be
implemented. Where there are differences, <a href="./rfc3748">RFC 3748</a> and <a href="./rfc3579">RFC 3579</a> are
authoritative.
The state machines are based on the EAP "Switch" model. This model
includes events and actions for the interaction between the EAP
Switch and EAP methods. A brief description of the EAP "Switch"
model is given in the Introduction section.
The state machine and associated model are informative only.
Implementations may achieve the same results using different methods.
<span class="grey">Vollbrecht, et al. Informational [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
Table of Contents
<a href="#section-1">1</a>. Introduction: The EAP Switch Model ..............................<a href="#page-3">3</a>
<a href="#section-2">2</a>. Specification of Requirements ...................................<a href="#page-4">4</a>
<a href="#section-3">3</a>. Notational Conventions Used in State Diagrams ...................<a href="#page-5">5</a>
<a href="#section-3.1">3.1</a>. Notational Specifics .......................................<a href="#page-5">5</a>
<a href="#section-3.2">3.2</a>. State Machine Symbols ......................................<a href="#page-7">7</a>
<a href="#section-3.3">3.3</a>. Document Authority .........................................<a href="#page-8">8</a>
<a href="#section-4">4</a>. Peer State Machine ..............................................<a href="#page-9">9</a>
<a href="#section-4.1">4.1</a>. Interface between Peer State Machine and Lower Layer .......<a href="#page-9">9</a>
<a href="#section-4.2">4.2</a>. Interface between Peer State Machine and Methods ..........<a href="#page-11">11</a>
<a href="#section-4.3">4.3</a>. Peer State Machine Local Variables ........................<a href="#page-13">13</a>
<a href="#section-4.4">4.4</a>. Peer State Machine Procedures .............................<a href="#page-14">14</a>
<a href="#section-4.5">4.5</a>. Peer State Machine States .................................<a href="#page-15">15</a>
<a href="#section-5">5</a>. Stand-Alone Authenticator State Machine ........................<a href="#page-17">17</a>
5.1. Interface between Stand-Alone Authenticator State
Machine and Lower Layer ...................................<a href="#page-17">17</a>
5.2. Interface between Stand-Alone Authenticator State
Machine and Methods .......................................<a href="#page-19">19</a>
<a href="#section-5.3">5.3</a>. Stand-Alone Authenticator State Machine Local Variables ...<a href="#page-21">21</a>
<a href="#section-5.4">5.4</a>. EAP Stand-Alone Authenticator Procedures ..................<a href="#page-22">22</a>
<a href="#section-5.5">5.5</a>. EAP Stand-Alone Authenticator States ......................<a href="#page-24">24</a>
<a href="#section-6">6</a>. EAP Backend Authenticator ......................................<a href="#page-26">26</a>
6.1. Interface between Backend Authenticator State
Machine and Lower Layer ...................................<a href="#page-26">26</a>
6.2. Interface between Backend Authenticator State
Machine and Methods .......................................<a href="#page-28">28</a>
<a href="#section-6.3">6.3</a>. Backend Authenticator State Machine Local Variables .......<a href="#page-28">28</a>
<a href="#section-6.4">6.4</a>. EAP Backend Authenticator Procedures ......................<a href="#page-28">28</a>
<a href="#section-6.5">6.5</a>. EAP Backend Authenticator States ..........................<a href="#page-29">29</a>
<a href="#section-7">7</a>. EAP Full Authenticator .........................................<a href="#page-29">29</a>
7.1. Interface between Full Authenticator State Machine
and Lower Layer ...........................................<a href="#page-30">30</a>
7.2. Interface between Full Authenticator State Machine
and Methods ...............................................<a href="#page-31">31</a>
<a href="#section-7.3">7.3</a>. Full Authenticator State Machine Local Variables ..........<a href="#page-32">32</a>
<a href="#section-7.4">7.4</a>. EAP Full Authenticator Procedures .........................<a href="#page-32">32</a>
<a href="#section-7.5">7.5</a>. EAP Full Authenticator States .............................<a href="#page-32">32</a>
<a href="#section-8">8</a>. Implementation Considerations ..................................<a href="#page-34">34</a>
<a href="#section-8.1">8.1</a>. Robustness ................................................<a href="#page-34">34</a>
<a href="#section-8.2">8.2</a>. Method/Method and Method/Lower-Layer Interfaces ...........<a href="#page-35">35</a>
8.3. Peer State Machine Interoperability with Deployed
Implementations ...........................................<a href="#page-35">35</a>
<a href="#section-9">9</a>. Security Considerations ........................................<a href="#page-35">35</a>
<a href="#section-10">10</a>. Acknowledgements ..............................................<a href="#page-36">36</a>
<a href="#section-11">11</a>. References ....................................................<a href="#page-37">37</a>
<a href="#section-11.1">11.1</a>. Normative References ....................................<a href="#page-37">37</a>
<a href="#section-11.2">11.2</a>. Informative References ..................................<a href="#page-37">37</a>
<span class="grey">Vollbrecht, et al. Informational [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
Appendix. ASCII Versions of State Diagrams ........................<a href="#page-38">38</a>
<a href="#appendix-A.1">A.1</a>. EAP Peer State Machine (Figure 3) .......................<a href="#page-38">38</a>
<a href="#appendix-A.2">A.2</a>. EAP Stand-Alone Authenticator State Machine (Figure 4) ..41
<a href="#appendix-A.3">A.3</a>. EAP Backend Authenticator State Machine (Figure 5) ......<a href="#page-44">44</a>
<a href="#appendix-A.4">A.4</a>. EAP Full Authenticator State Machine (Figures 6 and 7) ..47
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction: The EAP Switch Model</span>
This document offers a proposed state machine for RFCs [<a href="./rfc3748" title=""Extensible Authentication Protocol (EAP)"">RFC3748</a>] and
[<a href="./rfc3579" title=""RADIUS (Remote Authentication Dial In User Service) Support For Extensible Authentication Protocol (EAP)"">RFC3579</a>]. There are state machines for the peer, the stand-alone
authenticator, a backend authenticator, and a full/pass-through
authenticator. Accompanying each state machine diagram is a
description of the variables, the functions, and the states in the
diagram. Whenever possible, the same notation has been used in each
of the state machines.
An EAP authentication consists of one or more EAP methods in sequence
followed by an EAP Success or EAP Failure sent from the authenticator
to the peer. The EAP switches control negotiation of EAP methods and
sequences of methods.
Peer Peer | Authenticator Auth
Method | Method
\ | /
\ | /
Peer | Auth
EAP <-----|----------> EAP
Switch | Switch
Figure 1: EAP Switch Model
At both the peer and authenticator, one or more EAP methods exist.
The EAP switches select which methods each is willing to use, and
negotiate between themselves to pick a method or sequence of methods.
Note that the methods may also have state machines. The details of
these are outside the scope of this paper.
<span class="grey">Vollbrecht, et al. Informational [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
Peer | Authenticator | Backend
| / Local |
| / Method |
Peer | Auth | Backend
EAP -|-----> EAP | --> EAP
Switch | Switch | / Server
| \ | /
| \ pass-through |
| |
Figure 2: EAP Pass-Through Model
The Full/Pass-Through state machine allows an NAS or edge device to
pass EAP Response messages to a backend server where the
authentication method resides. This paper includes a state machine
for the EAP authenticator that supports both local and pass-through
methods as well as a state machine for the backend authenticator
existing at the AAA server. A simple stand-alone authenticator is
also provided to show a basic, non-pass-through authenticator's
behavior.
This document describes a set of state machines that can manage EAP
authentication from the peer to an EAP method on the authenticator or
from the peer through the authenticator pass-through method to the
EAP method on the backend EAP server.
Some environments where EAP is used, such as PPP, may support peer-
to-peer operation. That is, both parties act as peers and
authenticators at the same time, in two simultaneous and independent
EAP conversations. In this case, the implementation at each node has
to perform demultiplexing of incoming EAP packets. EAP packets with
code set to Response are delivered to the authenticator state
machine, and EAP packets with code set to Request, Success, or
Failure are delivered to the peer state machine.
The state diagrams presented in this document have been coordinated
with the diagrams in [<a href="#ref-1X-2004" title=""Standard for Local and Metropolitan Area Networks: Port-Based Network Access Control"">1X-2004</a>]. The format of the diagrams is
adapted from the format therein. The interface between the state
machines defined here and the IEEE 802.1X-2004 state machines is also
explained in <a href="#appendix-F">Appendix F</a> of [<a href="#ref-1X-2004" title=""Standard for Local and Metropolitan Area Networks: Port-Based Network Access Control"">1X-2004</a>].
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Specification of Requirements</span>
In this document, several words are used to signify the requirements
of the specification. These words are often capitalized. The key
words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" are to be
interpreted as described in [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
<span class="grey">Vollbrecht, et al. Informational [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Notational Conventions Used in State Diagrams</span>
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. Notational Specifics</span>
The following state diagrams have been completed based on the
conventions specified in [<a href="#ref-1X-2004" title=""Standard for Local and Metropolitan Area Networks: Port-Based Network Access Control"">1X-2004</a>], section 8.2.1. The complete text
is reproduced here:
State diagrams are used to represent the operation of the protocol
by a number of cooperating state machines, each comprising a group
of connected, mutually exclusive states. Only one state of each
machine can be active at any given time.
Each state is represented in the state diagram as a rectangular
box, divided into two parts by a horizontal line. The upper part
contains the state identifier, written in uppercase letters. The
lower part contains any procedures that are executed upon entry to
the state.
All permissible transitions between states are represented by
arrows, the arrowhead denoting the direction of the possible
transition. Labels attached to arrows denote the condition(s)
that must be met in order for the transition to take place. All
conditions are expressions that evaluate to TRUE or FALSE; if a
condition evaluates to TRUE, then the condition is met. The label
UCT denotes an unconditional transition (i.e., UCT always
evaluates to TRUE). A transition that is global in nature (i.e.,
a transition that occurs from any of the possible states if the
condition attached to the arrow is met) is denoted by an open
arrow; i.e., no specific state is identified as the origin of the
transition. When the condition associated with a global
transition is met, it supersedes all other exit conditions
including UCT. The special global condition BEGIN supersedes all
other global conditions, and once asserted it remains asserted
until all state blocks have executed to the point that variable
assignments and other consequences of their execution remain
unchanged.
On entry to a state, the procedures defined for the state (if any)
are executed exactly once, in the order that they appear on the
page. Each action is deemed to be atomic; i.e., execution of a
procedure completes before the next sequential procedure starts to
execute. No procedures execute outside a state block. The
procedures in only one state block execute at a time, even if the
conditions for execution of state blocks in different state
machines are satisfied, and all procedures in an executing state
block complete execution before the transition to and execution of
any other state block occurs. That is, the execution of any state
<span class="grey">Vollbrecht, et al. Informational [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
block appears to be atomic with respect to the execution of any
other state block, and the transition condition to that state from
the previous state is TRUE when execution commences. The order of
execution of state blocks in different state machines is undefined
except as constrained by their transition conditions. A variable
that is set to a particular value in a state block retains this
value until a subsequent state block executes a procedure that
modifies the value.
On completion of all the procedures within a state, all exit
conditions for the state (including all conditions associated with
global transitions) are evaluated continuously until one of the
conditions is met. The label ELSE denotes a transition that
occurs if none of the other conditions for transitions from the
state are met (i.e., ELSE evaluates to TRUE if all other possible
exit conditions from the state evaluate to FALSE). Where two or
more exit conditions with the same level of precedence become TRUE
simultaneously, the choice as to which exit condition causes the
state transition to take place is arbitrary.
Where it is necessary to split a state machine description across
more than one diagram, a transition between two states that appear
on different diagrams is represented by an exit arrow drawn with
dashed lines, plus a reference to the diagram that contains the
destination state. Similarly, dashed arrows and a dashed state
box are used on the destination diagram to show the transition to
the destination state. In a state machine that has been split in
this way, any global transitions that can cause entry to states
defined in one of the diagrams are deemed potential exit
conditions for all the states of the state machine, regardless of
which diagram the state boxes appear in.
Should a conflict exist between the interpretation of a state
diagram and either the corresponding global transition tables or
the textual description associated with the state machine, the
state diagram takes precedence. The interpretation of the special
symbols and operators used in the state diagrams is as defined in
<a href="#section-3.2">Section 3.2</a>; these symbols and operators are derived from the
notation of the C++ programming language, ISO/IEC 14882. If a
boolean variable is described in this clause as being set, it has
or is assigned the value TRUE; if it is described as being reset
or clear, it has the value FALSE.
In addition to the above notation, there are a couple of
clarifications specific to this document. First, all boolean
variables are initialized to FALSE before the state machine execution
begins. Second, the following notational shorthand is specific to
this document:
<span class="grey">Vollbrecht, et al. Informational [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
<variable> = <expression1> | <expression2> | ...
Execution of a statement of this form will result in <variable>
having a value of exactly one of the expressions. The logic for
which of those expressions gets executed is outside of the state
machine and could be environmental, configurable, or based on
another state machine, such as that of the method.
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. State Machine Symbols</span>
( )
Used to force the precedence of operators in Boolean expressions
and to delimit the argument(s) of actions within state boxes.
;
Used as a terminating delimiter for actions within state boxes.
If a state box contains multiple actions, the order of execution
follows the normal English language conventions for reading text.
=
Assignment action. The value of the expression to the right of
the operator is assigned to the variable to the left of the
operator. If this operator is used to define multiple assignments
(e.g., a = b = X), the action causes the value of the expression
following the right-most assignment operator to be assigned to all
the variables that appear to the left of the right-most assignment
operator.
!
Logical NOT operator.
&&
Logical AND operator.
||
Logical OR operator.
if...then...
Conditional action. If the Boolean expression following the "if"
evaluates to TRUE, then the action following the "then" is
executed.
<span class="grey">Vollbrecht, et al. Informational [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
{ statement 1, ... statement N }
Compound statement. Braces are used to group statements that are
executed together as if they were a single statement.
!=
Inequality. Evaluates to TRUE if the expression to the left of
the operator is not equal in value to the expression to the right.
==
Equality. Evaluates to TRUE if the expression to the left of the
operator is equal in value to the expression to the right.
>
Greater than. Evaluates to TRUE if the value of the expression to
the left of the operator is greater than the value of the
expression to the right.
<=
Less than or equal to. Evaluates to TRUE if the value of the
expression to the left of the operator is either less than or
equal to the value of the expression to the right.
++
Increment the preceding integer operator by 1.
+
Arithmetic addition operator.
&
Bitwise AND operator.
<span class="h3"><a class="selflink" id="section-3.3" href="#section-3.3">3.3</a>. Document Authority</span>
Should a conflict exist between the interpretation of a state diagram
and either the corresponding global transition tables or the textual
description associated with the state machine, the state diagram
takes precedence. When a discrepancy occurs between any part of this
document (text or diagram) and any of the related documents
([<a href="./rfc3748" title=""Extensible Authentication Protocol (EAP)"">RFC3748</a>], [<a href="./rfc3579" title=""RADIUS (Remote Authentication Dial In User Service) Support For Extensible Authentication Protocol (EAP)"">RFC3579</a>], etc.), the latter (the other document) is
considered authoritative and takes precedence.
<span class="grey">Vollbrecht, et al. Informational [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Peer State Machine</span>
The following is a diagram of the EAP peer state machine. Also
included is an explanation of the primitives and procedures
referenced in the diagram, as well as a clarification of notation.
(see the .pdf version for missing diagram or
refer to <a href="#appendix-A.1">Appendix A.1</a> if reading the .txt version)
Figure 3: EAP Peer State Machine
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. Interface between Peer State Machine and Lower Layer</span>
The lower layer presents messages to the EAP peer state machine by
storing the packet in eapReqData and setting the eapReq signal to
TRUE. Note that despite the name of the signal, the lower layer does
not actually inspect the contents of the EAP packet (it could be a
Success or Failure message instead of a Request).
When the EAP peer state machine has finished processing the message,
it sets either eapResp or eapNoResp. If it sets eapResp, the
corresponding response packet is stored in eapRespData. The lower
layer is responsible for actually transmitting this message. When
the EAP peer state machine authentication is complete, it will set
eapSuccess or eapFailure to indicate to the lower layer that the
authentication has succeeded or failed.
<span class="h4"><a class="selflink" id="section-4.1.1" href="#section-4.1.1">4.1.1</a>. Variables (Lower Layer to Peer)</span>
eapReq (boolean)
Set to TRUE in lower layer, FALSE in peer state machine.
Indicates that a request is available in the lower layer.
eapReqData (EAP packet)
Set in lower layer when eapReq is set to TRUE. The contents of
the available request.
portEnabled (boolean)
Indicates that the EAP peer state machine should be ready for
communication. This is set to TRUE when the EAP conversation is
started by the lower layer. If at any point the communication
port or session is not available, portEnabled is set to FALSE, and
the state machine transitions to DISABLED. To avoid unnecessary
resets, the lower layer may dampen link down indications when it
believes that the link is only temporarily down and that it will
<span class="grey">Vollbrecht, et al. Informational [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
soon be back up (see <a href="./rfc3748#section-7.12">[RFC3748], Section 7.12</a>). In this case,
portEnabled may not always be equal to the "link up" flag of the
lower layer.
idleWhile (integer)
Outside timer used to indicate how much time remains before the
peer will time out while waiting for a valid request.
eapRestart (boolean)
Indicates that the lower layer would like to restart
authentication.
altAccept (boolean)
Alternate indication of success, as described in [<a href="./rfc3748" title=""Extensible Authentication Protocol (EAP)"">RFC3748</a>].
altReject (boolean)
Alternate indication of failure, as described in [<a href="./rfc3748" title=""Extensible Authentication Protocol (EAP)"">RFC3748</a>].
<span class="h4"><a class="selflink" id="section-4.1.2" href="#section-4.1.2">4.1.2</a>. Variables (peer to lower layer)</span>
eapResp (boolean)
Set to TRUE in peer state machine, FALSE in lower layer.
Indicates that a response is to be sent.
eapNoResp (boolean)
Set to TRUE in peer state machine, FALSE in lower layer.
Indicates that the request has been processed, but that there is
no response to send.
eapSuccess (boolean)
Set to TRUE in peer state machine, FALSE in lower layer.
Indicates that the peer has reached the SUCCESS state.
eapFail (boolean)
Set to TRUE in peer state machine, FALSE in lower layer.
Indicates that the peer has reached the FAILURE state.
<span class="grey">Vollbrecht, et al. Informational [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
eapRespData (EAP packet)
Set in peer state machine when eapResp is set to TRUE. The EAP
packet that is the response to send.
eapKeyData (EAP key)
Set in peer state machine when keying material becomes available.
Set during the METHOD state. Note that this document does not
define the structure of the type "EAP key". We expect that it
will be defined in [<a href="#ref-Keying" title=""Extensible Authentication Protocol (EAP) Key Management Framework"">Keying</a>].
eapKeyAvailable (boolean)
Set to TRUE in the SUCCESS state if keying material is available.
The actual key is stored in eapKeyData.
<span class="h4"><a class="selflink" id="section-4.1.3" href="#section-4.1.3">4.1.3</a>. Constants</span>
ClientTimeout (integer)
Configurable amount of time to wait for a valid request before
aborting, initialized by implementation-specific means (e.g., a
configuration setting).
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. Interface between Peer State Machine and Methods</span>
IN: eapReqData (includes reqId)
OUT: ignore, eapRespData, allowNotifications, decision
IN/OUT: methodState, (method-specific state)
The following describes the interaction between the state machine and
EAP methods.
If methodState==INIT, the method starts by initializing its own
method-specific state.
Next, the method must decide whether to process the packet or to
discard it silently. If the packet appears to have been sent by
someone other than the legitimate authenticator (for instance, if
message integrity check fails) and the method is capable of treating
such situations as non-fatal, the method can set ignore=TRUE. In
this case, the method should not modify any other variables.
If the method decides to process the packet, it behaves as follows.
<span class="grey">Vollbrecht, et al. Informational [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
o It updates its own method-specific state.
o If the method has derived keying material it wants to export, it
stores the keying material to eapKeyData.
o It creates a response packet (with the same identifier as the
request) and stores it to eapRespData.
o It sets ignore=FALSE.
Next, the method must update methodState and decision according to
the following rules.
methodState=CONT: The method always continues at this point (and the
peer wants to continue it). The decision variable is always set
to FAIL.
methodState=MAY_CONT: At this point, the authenticator can decide
either to continue the method or to end the conversation. The
decision variable tells us what to do if the conversation ends.
If the current situation does not satisfy the peer's security
policy (that is, if the authenticator now decides to allow access,
the peer will not use it), set decision=FAIL. Otherwise, set
decision=COND_SUCC.
methodState=DONE: The method never continues at this point (or the
peer sees no point in continuing it).
If either (a) the authenticator has informed us that it will not
allow access, or (b) we're not willing to talk to this
authenticator (e.g., our security policy is not satisfied), set
decision=FAIL. (Note that this state can occur even if the method
still has additional messages left, if continuing it cannot change
the peer's decision to success).
If both (a) the server has informed us that it will allow access,
and the next packet will be EAP Success, and (b) we're willing to
use this access, set decision=UNCOND_SUCC.
Otherwise, we do not know what the server's decision is, but are
willing to use the access if the server allows. In this case, set
decision=COND_SUCC.
Finally, the method must set the allowNotifications variable. If the
new methodState is either CONT or MAY_CONT, and if the method
specification does not forbid the use of Notification messages, set
allowNotifications=TRUE. Otherwise, set allowNotifications=FALSE.
<span class="grey">Vollbrecht, et al. Informational [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
<span class="h3"><a class="selflink" id="section-4.3" href="#section-4.3">4.3</a>. Peer State Machine Local Variables</span>
<span class="h4"><a class="selflink" id="section-4.3.1" href="#section-4.3.1">4.3.1</a>. Long-Term (Maintained between Packets)</span>
selectMethod (EAP type)
Set in GET_METHOD state. The method that the peer believes is
currently "in progress"
methodState (enumeration)
As described above.
lastId (integer)
0-255 or NONE. Set in SEND_RESPONSE state. The EAP identifier
value of the last request.
lastRespData (EAP packet)
Set in SEND_RESPONSE state. The EAP packet last sent from the
peer.
decision (enumeration)
As described above.
NOTE: EAP type can be normal type (0..253,255), or an extended type
consisting of type 254, Vendor-Id, and Vendor-Type.
<span class="h4"><a class="selflink" id="section-4.3.2" href="#section-4.3.2">4.3.2</a>. Short-Term (Not Maintained between Packets)</span>
rxReq (boolean)
Set in RECEIVED state. Indicates that the current received packet
is an EAP request.
rxSuccess (boolean)
Set in RECEIVED state. Indicates that the current received packet
is an EAP Success.
rxFailure (boolean)
Set in RECEIVED state. Indicates that the current received packet
is an EAP Failure.
<span class="grey">Vollbrecht, et al. Informational [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
reqId (integer)
Set in RECEIVED state. The identifier value associated with the
current EAP request.
reqMethod (EAP type)
Set in RECEIVED state. The method type of the current EAP
request.
ignore (boolean)
Set in METHOD state. Indicates whether the method has decided to
drop the current packet.
<span class="h3"><a class="selflink" id="section-4.4" href="#section-4.4">4.4</a>. Peer State Machine Procedures</span>
NOTE: For method procedures, the method uses its internal state in
addition to the information provided by the EAP layer. The only
arguments that are explicitly shown as inputs to the procedures are
those provided to the method by EAP. Those inputs provided by the
method's internal state remain implicit.
parseEapReq()
Determine the code, identifier value, and type of the current
request. In the case of a parsing error (e.g., the length field
is longer than the received packet), rxReq, rxSuccess, and
rxFailure will all be set to FALSE. The values of reqId and
reqMethod may be undefined as a result. Returns three booleans,
one integer, and one EAP type.
processNotify()
Process the contents of Notification Request (for instance,
display it to the user or log it). The return value is undefined.
buildNotify()
Create the appropriate notification response. Returns an EAP
packet.
processIdentity()
Process the contents of Identity Request. Return value is
undefined.
<span class="grey">Vollbrecht, et al. Informational [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
buildIdentity()
Create the appropriate identity response. Returns an EAP packet.
m.check()
Method-specific procedure to test for the validity of a message.
Returns a boolean.
m.process()
Method procedure to parse and process a request for that method.
Returns a methodState enumeration, a decision enumeration, and a
boolean.
m.buildResp()
Method procedure to create a response message. Returns an EAP
packet.
m.getKey()
Method procedure to obtain key material for use by EAP or lower
layers. Returns an EAP key.
<span class="h3"><a class="selflink" id="section-4.5" href="#section-4.5">4.5</a>. Peer State Machine States</span>
DISABLED
This state is reached whenever service from the lower layer is
interrupted or unavailable. Immediate transition to INITIALIZE
occurs when the port becomes enabled.
INITIALIZE
Initializes variables when the state machine is activated.
IDLE
The state machine spends most of its time here, waiting for
something to happen.
RECEIVED
This state is entered when an EAP packet is received. The packet
header is parsed here.
<span class="grey">Vollbrecht, et al. Informational [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
GET_METHOD
This state is entered when a request for a new type comes in.
Either the correct method is started, or a Nak response is built.
METHOD
The method processing happens here. The request from the
authenticator is processed, and an appropriate response packet is
built.
SEND_RESPONSE
This state signals the lower layer that a response packet is ready
to be sent.
DISCARD
This state signals the lower layer that the request was discarded,
and no response packet will be sent at this time.
IDENTITY
Handles requests for Identity method and builds a response.
NOTIFICATION
Handles requests for Notification method and builds a response.
RETRANSMIT
Retransmits the previous response packet.
SUCCESS
A final state indicating success.
FAILURE
A final state indicating failure.
<span class="grey">Vollbrecht, et al. Informational [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Stand-Alone Authenticator State Machine</span>
The following is a diagram of the stand-alone EAP authenticator state
machine. This diagram should be used for those interested in a
self-contained, or non-pass-through, authenticator. Included is an
explanation of the primitives and procedures referenced in the
diagram, as well as a clarification of notation.
(see the .pdf version for missing diagram or
refer to <a href="#appendix-A.2">Appendix A.2</a> if reading the .txt version)
Figure 4: EAP Stand-Alone Authenticator State Machine
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. Interface between Stand-Alone Authenticator State Machine and</span>
<span class="h3"> Lower Layer</span>
The lower layer presents messages to the EAP authenticator state
machine by storing the packet in eapRespData and setting the eapResp
signal to TRUE.
When the EAP authenticator state machine has finished processing the
message, it sets one of the signals eapReq, eapNoReq, eapSuccess, and
eapFail. If it sets eapReq, eapSuccess, or eapFail, the
corresponding request (or success/failure) packet is stored in
eapReqData. The lower layer is responsible for actually transmitting
this message.
<span class="h4"><a class="selflink" id="section-5.1.1" href="#section-5.1.1">5.1.1</a>. Variables (Lower Layer to Stand-Alone Authenticator)</span>
eapResp (boolean)
Set to TRUE in lower layer, FALSE in authenticator state machine.
Indicates that an EAP response is available for processing.
eapRespData (EAP packet)
Set in lower layer when eapResp is set to TRUE. The EAP packet to
be processed.
portEnabled (boolean)
Indicates that the EAP authenticator state machine should be ready
for communication. This is set to TRUE when the EAP conversation
is started by the lower layer. If at any point the communication
port or session is not available, portEnabled is set to FALSE, and
the state machine transitions to DISABLED. To avoid unnecessary
resets, the lower layer may dampen link down indications when it
believes that the link is only temporarily down and that it will
<span class="grey">Vollbrecht, et al. Informational [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
soon be back up (see <a href="./rfc3748#section-7.12">[RFC3748], Section 7.12</a>). In this case,
portEnabled may not always be equal to the "link up" flag of the
lower layer.
retransWhile (integer)
Outside timer used to indicate how long the authenticator has
waited for a new (valid) response.
eapRestart (boolean)
Indicates that the lower layer would like to restart
authentication.
eapSRTT (integer)
Smoothed round-trip time. (See <a href="./rfc3748#section-4.3">[RFC3748], Section 4.3</a>.)
eapRTTVAR (integer)
Round-trip time variation. (See <a href="./rfc3748#section-4.3">[RFC3748], Section 4.3</a>.)
<span class="h4"><a class="selflink" id="section-5.1.2" href="#section-5.1.2">5.1.2</a>. Variables (Stand-Alone Authenticator To Lower Layer)</span>
eapReq (boolean)
Set to TRUE in authenticator state machine, FALSE in lower layer.
Indicates that a new EAP request is ready to be sent.
eapNoReq (boolean)
Set to TRUE in authenticator state machine, FALSE in lower layer.
Indicates the most recent response has been processed, but there
is no new request to send.
eapSuccess (boolean)
Set to TRUE in authenticator state machine, FALSE in lower layer.
Indicates that the state machine has reached the SUCCESS state.
eapFail (boolean)
Set to TRUE in authenticator state machine, FALSE in lower layer.
Indicates that the state machine has reached the FAILURE state.
<span class="grey">Vollbrecht, et al. Informational [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
eapTimeout (boolean)
Set to TRUE in the TIMEOUT_FAILURE state if the authenticator has
reached its maximum number of retransmissions without receiving a
response.
eapReqData (EAP packet)
Set in authenticator state machine when eapReq, eapSuccess, or
eapFail is set to TRUE. The actual EAP request to be sent (or
success/failure).
eapKeyData (EAP key)
Set in authenticator state machine when keying material becomes
available. Set during the METHOD state. Note that this document
does not define the structure of the type "EAP key". We expect
that it will be defined in [<a href="#ref-Keying" title=""Extensible Authentication Protocol (EAP) Key Management Framework"">Keying</a>].
eapKeyAvailable (boolean)
Set to TRUE in the SUCCESS state if keying material is available.
The actual key is stored in eapKeyData.
<span class="h4"><a class="selflink" id="section-5.1.3" href="#section-5.1.3">5.1.3</a>. Constants</span>
MaxRetrans (integer)
Configurable maximum for how many retransmissions should be
attempted before aborting.
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. Interface between Stand-Alone Authenticator State Machine and</span>
<span class="h3"> Methods</span>
IN: eapRespData, methodState
OUT: ignore, eapReqData
IN/OUT: currentId, (method-specific state), (policy)
The following describes the interaction between the state machine and
EAP methods.
m.init (in: -, out: -)
<span class="grey">Vollbrecht, et al. Informational [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
When the method is first started, it must initialize its own method-
specific state, possibly using some information from Policy (e.g.,
identity).
m.buildReq (in: integer, out: EAP packet)
Next, the method creates a new EAP Request packet, with the given
identifier value, and updates its method-specific state accordingly.
m.getTimeout (in: -, out: integer or NONE)
The method can also provide a hint for retransmission timeout with
m.getTimeout.
m.check (in: EAP packet, out: boolean)
When a new EAP Response is received, the method must first decide
whether to process the packet or to discard it silently. If the
packet looks like it was not sent by the legitimate peer (e.g., if it
has an invalid Message Integrity Check (MIC), which should never
occur), the method can indicate this by returning FALSE. In this
case, the method should not modify its own method-specific state.
m.process (in: EAP packet, out: -)
m.isDone (in: -, out: boolean)
m.getKey (in: -, out: EAP key or NONE)
Next, the method processes the EAP Response and updates its own
method-specific state. Now the options are to continue the
conversation (send another request) or to end this method.
If the method wants to end the conversation, it
o Tells Policy about the outcome of the method and possibly other
information.
o If the method has derived keying material it wants to export,
returns it from m.getKey().
o Indicates that the method wants to end by returning TRUE from
m.isDone().
Otherwise, the method continues by sending another request, as
described earlier.
<span class="grey">Vollbrecht, et al. Informational [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
<span class="h3"><a class="selflink" id="section-5.3" href="#section-5.3">5.3</a>. Stand-Alone Authenticator State Machine Local Variables</span>
<span class="h4"><a class="selflink" id="section-5.3.1" href="#section-5.3.1">5.3.1</a>. Long-Term (Maintained between Packets)</span>
currentMethod (EAP type)
EAP type, IDENTITY, or NOTIFICATION.
currentId (integer)
0-255 or NONE. Usually updated in PROPOSE_METHOD state.
Indicates the identifier value of the currently outstanding EAP
request.
methodState (enumeration)
As described above.
retransCount (integer)
Reset in SEND_REQUEST state and updated in RETRANSMIT state.
Current number of retransmissions.
lastReqData (EAP packet)
Set in SEND_REQUEST state. EAP packet containing the last sent
request.
methodTimeout (integer)
Method-provided hint for suitable retransmission timeout, or NONE.
<span class="h4"><a class="selflink" id="section-5.3.2" href="#section-5.3.2">5.3.2</a>. Short-Term (Not Maintained between Packets)</span>
rxResp (boolean)
Set in RECEIVED state. Indicates that the current received packet
is an EAP response.
respId (integer)
Set in RECEIVED state. The identifier from the current EAP
response.
respMethod (EAP type)
Set in RECEIVED state. The method type of the current EAP
response.
<span class="grey">Vollbrecht, et al. Informational [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
ignore (boolean)
Set in METHOD state. Indicates whether the method has decided to
drop the current packet.
decision (enumeration)
Set in SELECT_ACTION state. Temporarily stores the policy
decision to succeed, fail, or continue.
<span class="h3"><a class="selflink" id="section-5.4" href="#section-5.4">5.4</a>. EAP Stand-Alone Authenticator Procedures</span>
NOTE: For method procedures, the method uses its internal state in
addition to the information provided by the EAP layer. The only
arguments that are explicitly shown as inputs to the procedures are
those provided to the method by EAP. Those inputs provided by the
method's internal state remain implicit.
calculateTimeout()
Calculates the retransmission timeout, taking into account the
retransmission count, round-trip time measurements, and method-
specific timeout hint (see <a href="./rfc3748#section-4.3">[RFC3748], Section 4.3</a>). Returns an
integer.
parseEapResp()
Determines the code, identifier value, and type of the current
response. In the case of a parsing error (e.g., the length field
is longer than the received packet), rxResp will be set to FALSE.
The values of respId and respMethod may be undefined as a result.
Returns a boolean, an integer, and an EAP type.
buildSuccess()
Creates an EAP Success Packet. Returns an EAP packet.
buildFailure()
Creates an EAP Failure Packet. Returns an EAP packet.
nextId()
Determines the next identifier value to use, based on the previous
one. Returns an integer.
<span class="grey">Vollbrecht, et al. Informational [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
Policy.update()
Updates all variables related to internal policy state. The
return value is undefined.
Policy.getNextMethod()
Determines the method that should be used at this point in the
conversation based on predefined policy. Policy.getNextMethod()
MUST comply with [<a href="./rfc3748" title=""Extensible Authentication Protocol (EAP)"">RFC3748</a>] (<a href="#section-2.1">Section 2.1</a>), which forbids the use of
sequences of authentication methods within an EAP conversation.
Thus, if an authentication method has already been executed within
an EAP dialog, Policy.getNextMethod() MUST NOT propose another
authentication method within the same EAP dialog. Returns an EAP
type.
Policy.getDecision()
Determines if the policy will allow SUCCESS, FAIL, or is yet to
determine (CONTINUE). Returns a decision enumeration.
m.check()
Method-specific procedure to test for the validity of a message.
Returns a boolean.
m.process()
Method procedure to parse and process a response for that method.
The return value is undefined.
m.init()
Method procedure to initialize state just before use. The return
value is undefined.
m.reset()
Method procedure to indicate that the method is ending in the
middle of or before completion. The return value is undefined.
m.isDone()
Method procedure to check for method completion. Returns a
boolean.
<span class="grey">Vollbrecht, et al. Informational [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
m.getTimeout()
Method procedure to determine an appropriate timeout hint for that
method. Returns an integer.
m.getKey()
Method procedure to obtain key material for use by EAP or lower
layers. Returns an EAP key.
m.buildReq()
Method procedure to produce the next request. Returns an EAP
packet.
<span class="h3"><a class="selflink" id="section-5.5" href="#section-5.5">5.5</a>. EAP Stand-Alone Authenticator States</span>
DISABLED
The authenticator is disabled until the port is enabled by the
lower layer.
INITIALIZE
Initializes variables when the state machine is activated.
IDLE
The state machine spends most of its time here, waiting for
something to happen.
RECEIVED
This state is entered when an EAP packet is received. The packet
header is parsed here.
INTEGRITY_CHECK
A method state in which the integrity of the incoming packet from
the peer is verified by the method.
METHOD_RESPONSE
A method state in which the incoming packet is processed.
METHOD_REQUEST
A method state in which a new request is formulated if necessary.
<span class="grey">Vollbrecht, et al. Informational [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
PROPOSE_METHOD
A state in which the authenticator decides which method to try
next in the authentication.
SELECT_ACTION
Between methods, the state machine re-evaluates whether its policy
is satisfied and succeeds, fails, or remains undecided.
SEND_REQUEST
This state signals the lower layer that a request packet is ready
to be sent.
DISCARD
This state signals the lower layer that the response was
discarded, and no new request packet will be sent at this time.
NAK
This state processes Nak responses from the peer.
RETRANSMIT
Retransmits the previous request packet.
SUCCESS
A final state indicating success.
FAILURE
A final state indicating failure.
TIMEOUT_FAILURE
A final state indicating failure because no response has been
received. Because no response was received, no new message
(including failure) should be sent to the peer. Note that this is
different from the FAILURE state, in which a message indicating
failure is sent to the peer.
<span class="grey">Vollbrecht, et al. Informational [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. EAP Backend Authenticator</span>
When operating in pass-through mode, there are conceptually two parts
to the authenticator: the part that passes packets through, and the
backend that actually implements the EAP method. The following
diagram shows a state machine for the backend part of this model when
using a AAA server. Note that this diagram is identical to Figure 4
except that no retransmit is included in the IDLE state because with
RADIUS, retransmit is handled by the NAS. Also, a PICK_UP_METHOD
state and variable in INITIALIZE state are added to allow the Method
to "pick up" a method started in a NAS. Included is an explanation
of the primitives and procedures referenced in the diagram, many of
which are the same as above. Note that the "lower layer" in this
case is some AAA protocol (e.g., RADIUS).
(see the .pdf version for missing diagram or
refer to <a href="#appendix-A.3">Appendix A.3</a> if reading the .txt version)
Figure 5: EAP Backend Authenticator State Machine
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. Interface between Backend Authenticator State Machine and Lower</span>
<span class="h3"> Layer</span>
The lower layer presents messages to the EAP backend authenticator
state machine by storing the packet in aaaEapRespData and setting the
aaaEapResp signal to TRUE.
When the EAP backend authenticator state machine has finished
processing the message, it sets one of the signals aaaEapReq,
aaaEapNoReq, aaaSuccess, and aaaFail. If it sets eapReq, eapSuccess,
or eapFail, the corresponding request (or success/failure) packet is
stored in aaaEapReqData. The lower layer is responsible for actually
transmitting this message.
<span class="h4"><a class="selflink" id="section-6.1.1" href="#section-6.1.1">6.1.1</a>. Variables (AAA Interface to Backend Authenticator)</span>
aaaEapResp (boolean)
Set to TRUE in lower layer, FALSE in authenticator state machine.
Usually indicates that an EAP response, stored in aaaEapRespData,
is available for processing by the AAA server. If aaaEapRespData
is set to NONE, it indicates that the AAA server should send the
initial EAP request.
aaaEapRespData (EAP packet)
Set in lower layer when eapResp is set to TRUE. The EAP packet to
be processed, or NONE.
<span class="grey">Vollbrecht, et al. Informational [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
backendEnabled (boolean)
Indicates that there is a valid link to use for the communication.
If at any point the port is not available, backendEnabled is set
to FALSE, and the state machine transitions to DISABLED.
<span class="h4"><a class="selflink" id="section-6.1.2" href="#section-6.1.2">6.1.2</a>. Variables (Backend Authenticator to AAA Interface)</span>
aaaEapReq (boolean)
Set to TRUE in authenticator state machine, FALSE in lower layer.
Indicates that a new EAP request is ready to be sent.
aaaEapNoReq (boolean)
Set to TRUE in authenticator state machine, FALSE in lower layer.
Indicates that the most recent response has been processed, but
there is no new request to send.
aaaSuccess (boolean)
Set to TRUE in authenticator state machine, FALSE in lower layer.
Indicates that the state machine has reached the SUCCESS state.
aaaFail (boolean)
Set to TRUE in authenticator state machine, FALSE in lower layer.
Indicates that the state machine has reached the FAILURE state.
aaaEapReqData (EAP packet)
Set in authenticator state machine when aaaEapReq, aaaSuccess, or
aaaFail is set to TRUE. The actual EAP request to be sent (or
success/failure).
aaaEapKeyData (EAP key)
Set in authenticator state machine when keying material becomes
available. Set during the METHOD_RESPONSE state. Note that this
document does not define the structure of the type "EAP key". We
expect that it will be defined in [<a href="#ref-Keying" title=""Extensible Authentication Protocol (EAP) Key Management Framework"">Keying</a>].
aaaEapKeyAvailable (boolean)
Set to TRUE in the SUCCESS state if keying material is available.
The actual key is stored in aaaEapKeyData.
<span class="grey">Vollbrecht, et al. Informational [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
aaaMethodTimeout (integer)
Method-provided hint for suitable retransmission timeout, or NONE.
(Note that this hint is for the EAP retransmissions done by the
pass-through authenticator, not for retransmissions of AAA
packets.)
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>. Interface between Backend Authenticator State Machine and</span>
<span class="h3"> Methods</span>
The backend method interface is almost the same as in stand-alone
authenticator described in <a href="#section-5.2">Section 5.2</a>. The only difference is that
some methods on the backend may support "picking up" a conversation
started by the pass-through. That is, the EAP Request packet was
sent by the pass-through, but the backend must process the
corresponding EAP Response. Usually only the Identity method
supports this, but others are possible.
When "picking up" a conversation, m.initPickUp() is called instead of
m.init(). Next, m.process() must examine eapRespData and update its
own method-specific state to match what it would have been if it had
actually sent the corresponding request. (Obviously, this only works
for methods that can determine what the initial request contained;
Identity and EAP-TLS are good examples.)
After this, the processing continues as described in <a href="#section-5.2">Section 5.2</a>.
<span class="h3"><a class="selflink" id="section-6.3" href="#section-6.3">6.3</a>. Backend Authenticator State Machine Local Variables</span>
For definitions of the variables used in the Backend Authenticator,
see <a href="#section-5.3">Section 5.3</a>.
<span class="h3"><a class="selflink" id="section-6.4" href="#section-6.4">6.4</a>. EAP Backend Authenticator Procedures</span>
Most of the procedures of the backend authenticator have already been
defined in <a href="#section-5.4">Section 5.4</a>. This section contains definitions for those
not existent in the stand-alone version, as well as those that are
defined differently.
NOTE: For method procedures, the method uses its internal state in
addition to the information provided by the EAP layer. The only
arguments that are explicitly shown as inputs to the procedures are
those provided to the method by EAP. Those inputs provided by the
method's internal state remain implicit.
<span class="grey">Vollbrecht, et al. Informational [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
Policy.doPickUp()
Notifies the policy that an already-chosen method is being picked
up and will be completed. Returns a boolean.
m.initPickUp()
Method procedure to initialize state when continuing from an
already-started method. The return value is undefined.
<span class="h3"><a class="selflink" id="section-6.5" href="#section-6.5">6.5</a>. EAP Backend Authenticator States</span>
Most of the states of the backend authenticator have already been
defined in <a href="#section-5.5">Section 5.5</a>. This section contains definitions for those
not existent in the stand-alone version, as well as those that are
defined differently.
PICK_UP_METHOD
Sets an initial state for a method that is being continued and
that was started elsewhere.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. EAP Full Authenticator</span>
The following two diagrams show the state machine for a complete
authenticator. The first diagram is identical to the stand-alone
state machine, shown in Figure 4, with the exception that the
SELECT_ACTION state has an added transition to PASSTHROUGH. The
second diagram also keeps most of the logic, except the four method
states, and it shows how the state machine works once it goes to
pass-through mode.
The first diagram is largely a reproduction of that found above, with
the added hooks for a transition to PASSTHROUGH mode.
(see the .pdf version for missing diagram or
refer to <a href="#appendix-A.4">Appendix A.4</a> if reading the .txt version)
Figure 6: EAP Full Authenticator State Machine (Part 1)
The second diagram describes the functionality necessary for an
authenticator operating in pass-through mode. This section of the
diagram is the counterpart of the backend diagram above.
(see the .pdf version for missing diagram or
refer to <a href="#appendix-A.4">Appendix A.4</a> if reading the .txt version)
Figure 7: EAP Full Authenticator State Machine (Part 2)
<span class="grey">Vollbrecht, et al. Informational [Page 29]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-30" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
<span class="h3"><a class="selflink" id="section-7.1" href="#section-7.1">7.1</a>. Interface between Full Authenticator State Machine and Lower</span>
<span class="h3"> Layers</span>
The full authenticator is unique in that it interfaces to multiple
lower layers in order to support pass-through mode. The interface to
the primary EAP transport layer is the same as described in <a href="#section-5">Section</a>
<a href="#section-5">5</a>. The following describes the interface to the second lower layer,
which represents an interface to AAA. Note that there is not
necessarily a direct interaction between the EAP layer and the AAA
layer, as in the case of [<a href="#ref-1X-2004" title=""Standard for Local and Metropolitan Area Networks: Port-Based Network Access Control"">1X-2004</a>].
<span class="h4"><a class="selflink" id="section-7.1.1" href="#section-7.1.1">7.1.1</a>. Variables (AAA Interface to Full Authenticator)</span>
aaaEapReq (boolean)
Set to TRUE in lower layer, FALSE in authenticator state machine.
Indicates that a new EAP request is available from the AAA server.
aaaEapNoReq (boolean)
Set to TRUE in lower layer, FALSE in authenticator state machine.
Indicates that the most recent response has been processed, but
that there is no new request to send.
aaaSuccess (boolean)
Set to TRUE in lower layer. Indicates that the AAA backend
authenticator has reached the SUCCESS state.
aaaFail (boolean)
Set to TRUE in lower layer. Indicates that the AAA backend
authenticator has reached the FAILURE state.
aaaEapReqData (EAP packet)
Set in the lower layer when aaaEapReq, aaaSuccess, or aaaFail is
set to TRUE. The actual EAP request to be sent (or success/
failure).
aaaEapKeyData (EAP key)
Set in lower layer when keying material becomes available from the
AAA server. Note that this document does not define the structure
of the type "EAP key". We expect that it will be defined in
[<a href="#ref-Keying" title=""Extensible Authentication Protocol (EAP) Key Management Framework"">Keying</a>].
<span class="grey">Vollbrecht, et al. Informational [Page 30]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-31" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
aaaEapKeyAvailable (boolean)
Set to TRUE in the lower layer if keying material is available.
The actual key is stored in aaaEapKeyData.
aaaMethodTimeout (integer)
Method-provided hint for suitable retransmission timeout, or NONE.
(Note that this hint is for the EAP retransmissions done by the
pass-through authenticator, not for retransmissions of AAA
packets.)
<span class="h4"><a class="selflink" id="section-7.1.2" href="#section-7.1.2">7.1.2</a>. Variables (full authenticator to AAA interface)</span>
aaaEapResp (boolean)
Set to TRUE in authenticator state machine, FALSE in the lower
layer. Indicates that an EAP response is available for processing
by the AAA server.
aaaEapRespData (EAP packet)
Set in authenticator state machine when eapResp is set to TRUE.
The EAP packet to be processed.
aaaIdentity (EAP packet)
Set in authenticator state machine when an IDENTITY response is
received. Makes that identity available to AAA lower layer.
aaaTimeout (boolean)
Set in AAA_IDLE if, after a configurable amount of time, there is
no response from the AAA layer. The AAA layer in the NAS is
itself alive and OK, but for some reason it has not received a
valid Access-Accept/Reject indication from the backend.
<span class="h4"><a class="selflink" id="section-7.1.3" href="#section-7.1.3">7.1.3</a>. Constants</span>
Same as <a href="#section-5">Section 5</a>.
<span class="h3"><a class="selflink" id="section-7.2" href="#section-7.2">7.2</a>. Interface between Full Authenticator State Machine and Methods</span>
Same as stand-alone authenticator (<a href="#section-5.2">Section 5.2</a>).
<span class="grey">Vollbrecht, et al. Informational [Page 31]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-32" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
<span class="h3"><a class="selflink" id="section-7.3" href="#section-7.3">7.3</a>. Full Authenticator State Machine Local Variables</span>
Many of the variables of the full authenticator have already been
defined in <a href="#section-5">Section 5</a>. This section contains definitions for those
not existent in the stand-alone version, as well as those that are
defined differently.
<span class="h4"><a class="selflink" id="section-7.3.1" href="#section-7.3.1">7.3.1</a>. Short-Term (Not Maintained between Packets)</span>
decision (enumeration)
Set in SELECT_ACTION state. Temporarily stores the policy
decision to succeed, fail, continue with a local method, or
continue in pass-through mode.
<span class="h3"><a class="selflink" id="section-7.4" href="#section-7.4">7.4</a>. EAP Full Authenticator Procedures</span>
All the procedures defined in <a href="#section-5">Section 5</a> exist in the full version.
In addition, the following procedures are defined.
getId()
Determines the identifier value chosen by the AAA server for the
current EAP request. The return value is an integer.
<span class="h3"><a class="selflink" id="section-7.5" href="#section-7.5">7.5</a>. EAP Full Authenticator States</span>
All the states defined in <a href="#section-5">Section 5</a> exist in the full version. In
addition, the following states are defined.
INITIALIZE_PASSTHROUGH
Initializes variables when the pass-through portion of the state
machine is activated.
IDLE2
The state machine waits for a response from the primary lower
layer, which transports EAP traffic from the peer.
IDLE
The state machine spends most of its time here, waiting for
something to happen.
<span class="grey">Vollbrecht, et al. Informational [Page 32]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-33" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
RECEIVED2
This state is entered when an EAP packet is received and the
authenticator is in PASSTHROUGH mode. The packet header is parsed
here.
AAA_REQUEST
The incoming EAP packet is parsed for sending to the AAA server.
AAA_IDLE
Idle state that tells the AAA layer that it has a response and
then waits for a new request, a no-request signal, or
success/failure.
AAA_RESPONSE
State in which the request from the AAA interface is processed
into an EAP request.
SEND_REQUEST2
This state signals the lower layer that a request packet is ready
to be sent.
DISCARD2
This state signals the lower layer that the response was
discarded, and that no new request packet will be sent at this
time.
RETRANSMIT2
Retransmits the previous request packet.
SUCCESS2
A final state indicating success.
FAILURE2
A final state indicating failure.
<span class="grey">Vollbrecht, et al. Informational [Page 33]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-34" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
TIMEOUT_FAILURE2
A final state indicating failure because no response has been
received. Because no response was received, no new message
(including failure) should be sent to the peer. Note that this is
different from the FAILURE2 state, in which a message indicating
failure is sent to the peer.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Implementation Considerations</span>
<span class="h3"><a class="selflink" id="section-8.1" href="#section-8.1">8.1</a>. Robustness</span>
In order to deal with erroneous cases that are not directly related
to the protocol behavior, implementations may need additional
considerations to provide robustness against errors.
For example, an implementation of a state machine may spend a
significant amount of time in a particular state performing the
procedure defined for the state without returning a response. If
such an implementation is made on a multithreading system, the
procedure may be performed in a separate thread so that the
implementation can perform appropriate action without blocking on the
state for a long time (or forever if the procedure never completes
due to, e.g., a non-responding user or a bug in an application
callback function).
The following states are identified as the possible places of
blocking:
o IDENTITY state in the peer state machine. It may take some time
to process Identity request when a user input is needed for
obtaining an identity from the user. The user may never input an
identity. An implementation may define an additional state
transition from IDENTITY state to FAILURE state so that
authentication can fail if no identity is obtained from the user
before ClientTimeout timer expires.
o METHOD state in the peer state machine and in METHOD_RESPONSE
state in the authenticator state machines. It may take some time
to perform method-specific procedures in these states. An
implementation may define an additional state transition from
METHOD state and METHOD_RESPONSE state to FAILURE or
TIMEOUT_FAILURE state so that authentication can fail if no method
processing result is obtained from the method before methodTimeout
timer expires.
<span class="grey">Vollbrecht, et al. Informational [Page 34]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-35" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
<span class="h3"><a class="selflink" id="section-8.2" href="#section-8.2">8.2</a>. Method/Method and Method/Lower-Layer Interfaces</span>
Implementations may define additional interfaces to pass method-
specific information between methods and lower layers. These
interfaces are beyond the scope of this document.
<span class="h3"><a class="selflink" id="section-8.3" href="#section-8.3">8.3</a>. Peer State Machine Interoperability with Deployed Implementations</span>
Number of deployed EAP authenticator implementations, mainly in
RADIUS authentication servers, have been observed to increment the
Identifier field incorrectly when generating EAP Success and EAP
Failure packets which is against the MUST requirement in <a href="./rfc3748#section-4.2">RFC 3748
section 4.2</a>. The peer state machine is based on <a href="./rfc3748">RFC 3748</a>, and as
such it will discard such EAP Success and EAP Failure packets.
As a workaround for the potential interoperability issue with
existing implementations, conditions for peer state machine
transitions from RECEIVED state to SUCCESS and FAILURE states MAY be
changed from "(reqId == lastId)" to "((reqId == lastId) || (reqId ==
(lastId + 1) & 255))". However, because this behavior does not
conform to <a href="./rfc3748">RFC 3748</a>, such a workaround is not recommended, and if
included, it should be implemented as an optional workaround that can
be disabled.
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. Security Considerations</span>
This document's intent is to describe the EAP state machine fully.
To this end, any security concerns with this document are likely a
reflection of security concerns with EAP itself.
An accurate state machine can help reduce implementation errors.
Although [<a href="./rfc3748" title=""Extensible Authentication Protocol (EAP)"">RFC3748</a>] remains the normative protocol description, this
state machine should help in this regard.
As noted in [<a href="./rfc3748" title=""Extensible Authentication Protocol (EAP)"">RFC3748</a>], some security concerns arise because of the
following EAP packets:
1. EAP-Request/Response Identity
2. EAP-Response/NAK
3. EAP-Success/Failure
Because these packets are not cryptographically protected by
themselves, an attacker can modify or insert them without immediate
detection by the peer or authenticator.
Following Figure 3 specification, an attacker may cause denial of
service by:
<span class="grey">Vollbrecht, et al. Informational [Page 35]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-36" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
o Sending an EAP-Failure to the peer before the peer has started an
EAP authentication method. As long as the peer has not modified
the methodState variable (initialized to NONE), the peer MUST
accept an EAP-Failure.
o Forcing the peer to engage in endless EAP-Request/Response
Identity exchanges before it has started an EAP authentication
method. As long as the peer has not modified the selectedMethod
variable (initialized to NONE), the peer MUST accept an EAP-
Request/Identity and respond to it with an EAP-Response/Identity.
Following Figure 4 specification, an attacker may cause denial of
service by:
o Sending a NAK to the authenticator after the authenticator first
proposes an EAP authentication method to the peer. When the
methodState variable has the value PROPOSED, the authenticator is
obliged to process a NAK that is received in response to its first
packet of an EAP authentication method.
There MAY be some cases when it is desired to prevent such attacks.
This can be done by modifying initial values of some variables of the
EAP state machines. However, such modifications are NOT RECOMMENDED.
There is a trade-off between mitigating these denial-of-service
attacks and being able to deal with EAP peers and authenticators in
general. For instance, if a NAK is ignored when it is sent to the
authenticator after it has just proposed an EAP authentication method
to the peer, then a legitimate peer that is not able or willing to
process the proposed EAP authentication method would fail without an
opportunity to negotiate another EAP method.
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. Acknowledgements</span>
The work in this document was done as part of the EAP Design Team.
It was done primarily by Nick Petroni, John Vollbrecht, Pasi Eronen,
and Yoshihiro Ohba. Nick started this work with Bryan Payne and Chuk
Seng at the University of Maryland. John Vollbrecht of Meetinghouse
Data Communications started independently with help from Dave Spence
at Interlink Networks. John and Nick collaborated to create a common
document, and then were joined by Pasi Eronen of Nokia, who has made
major contributions in creating coherent state machines, and by
Yoshihiro Ohba of Toshiba, who insisted on including pass-through
documentation and provided significant support for understanding
implementation issues.
<span class="grey">Vollbrecht, et al. Informational [Page 36]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-37" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
In addition, significant response and conversation has come from the
design team, especially Jari Arkko of Ericsson and Bernard Aboba of
Microsoft, as well as the rest of the team. It has also been
reviewed by IEEE 802.1, and has had input from Jim Burns of
Meetinghouse and Paul Congdon of Hewlett Packard.
<span class="h2"><a class="selflink" id="section-11" href="#section-11">11</a>. References</span>
<span class="h3"><a class="selflink" id="section-11.1" href="#section-11.1">11.1</a>. Normative References</span>
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
[<a id="ref-RFC3579">RFC3579</a>] Aboba, B. and P. Calhoun, "RADIUS (Remote Authentication
Dial In User Service) Support For Extensible
Authentication Protocol (EAP)", <a href="./rfc3579">RFC 3579</a>, September 2003.
[<a id="ref-RFC3748">RFC3748</a>] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
Levkowetz, Ed., "Extensible Authentication Protocol
(EAP)", <a href="./rfc3748">RFC 3748</a>, June 2004.
<span class="h3"><a class="selflink" id="section-11.2" href="#section-11.2">11.2</a>. Informative References</span>
[<a id="ref-Keying">Keying</a>] Aboba, B., Simon, D., Arkko, J., Eronen, P., Levkowetz,
H., "Extensible Authentication Protocol (EAP) Key
Management Framework", Work in Progress, July 2005.
[<a id="ref-1X-2004">1X-2004</a>] Institute of Electrical and Electronics Engineers,
"Standard for Local and Metropolitan Area Networks:
Port-Based Network Access Control", IEEE 802.1X-2004,
December 2004.
<span class="grey">Vollbrecht, et al. Informational [Page 37]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-38" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
<span class="h2"><a class="selflink" id="appendix-A" href="#appendix-A">Appendix A</a>. ASCII versions of state diagrams</span>
This appendix contains the state diagrams in ASCII format. Please
use the PDF version whenever possible; it is much easier to
understand.
The notation is as follows: state name and pseudocode executed when
entering it are shown on the left; outgoing transitions with their
conditions are shown on the right.
<span class="h3"><a class="selflink" id="appendix-A.1" href="#appendix-A.1">A.1</a>. EAP Peer State Machine (Figure 3)</span>
---------------------------------------------------------------------
(global transitions) | !portEnabled | DISABLED
|------------------------+--------------
| eapRestart && | INITIALIZE
| portEnabled |
-----------------------------+------------------------+--------------
DISABLED | portEnabled | INITIALIZE
-----------------------------+------------------------+--------------
INITIALIZE | |
| |
selectedMethod = NONE | |
methodState = NONE | |
allowNotifications = TRUE | |
decision = FAIL | UCT | IDLE
idleWhile = ClientTimeout | |
lastId = NONE | |
eapSuccess = FALSE | |
eapFail = FALSE | |
eapKeyData = NONE | |
eapKeyAvailable = FALSE | |
eapRestart = FALSE | |
-----------------------------+------------------------+--------------
IDLE | eapReq | RECEIVED
|------------------------+--------------
| (altAccept && |
| decision != FAIL) || |
| (idleWhile == 0 && | SUCCESS
| decision == |
| UNCOND_SUCC) |
|------------------------+--------------
<span class="grey">Vollbrecht, et al. Informational [Page 38]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-39" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
|------------------------+--------------
| altReject || |
| (idleWhile == 0 && |
| decision != |
| UNCOND_SUCC) || | FAILURE
| (altAccept && |
| methodState != CONT && |
| decision == FAIL) |
-----------------------------+------------------------+--------------
RECEIVED | rxReq && | METHOD
| (reqId != lastId) && |
(rxReq,rxSuccess,rxFailure, | (reqMethod == |
reqId,reqMethod) = | selectedMethod) && |
parseEapReq(eapReqData) | (methodState != DONE) |
|------------------------+--------------
| rxReq && |
| (reqId != lastId) && |
| (selectedMethod == |
| NONE) && | GET_METHOD
| (reqMethod != |
| IDENTITY) && |
| (reqMethod != |
| NOTIFICATION) |
|------------------------+--------------
| rxReq && |
| (reqId != lastId) && |
| (selectedMethod == | IDENTITY
| NONE) && |
| (reqMethod == |
| IDENTITY) |
|------------------------+--------------
| rxReq && |
| (reqId != lastId) && |
| (reqMethod == | NOTIFICATION
| NOTIFICATION) && |
| allowNotifications |
|------------------------+--------------
| rxReq && | RETRANSMIT
| (reqId == lastId) |
|------------------------+--------------
| rxSuccess && |
| (reqId == lastId) && | SUCCESS
| (decision != FAIL) |
|------------------------+--------------
<span class="grey">Vollbrecht, et al. Informational [Page 39]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-40" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
|------------------------+--------------
| (methodState!=CONT) && |
| ((rxFailure && |
| decision != |
| UNCOND_SUCC) || | FAILURE
| (rxSuccess && |
| decision == FAIL)) && |
| (reqId == lastId) |
|------------------------+--------------
| else | DISCARD
-----------------------------+------------------------+--------------
METHOD | |
| |
ignore = m.check(eapReqData) | ignore | DISCARD
if (!ignore) { | |
(methodState, decision, | |
allowNotifications) = |------------------------+--------------
m.process(eapReqData) | |
/* methodState is CONT, | |
MAY_CONT, or DONE */ | (methodState==DONE) && | FAILURE
/* decision is FAIL, | (decision == FAIL) |
COND_SUCC, or | |
UNCOND_SUCC */ | |
eapRespData = |------------------------+--------------
m.buildResp(reqId) | |
if (m.isKeyAvailable()) | else | SEND_RESPONSE
eapKeyData = m.getKey() | |
} | |
-----------------------------+------------------------+--------------
GET_METHOD | |
| selectedMethod == |
if (allowMethod(reqMethod)) {| reqMethod | METHOD
selectedMethod = reqMethod | |
methodState = INIT | |
} else { |------------------------+--------------
eapRespData = | |
buildNak(reqId) | else | SEND_RESPONSE
} | |
-----------------------------+------------------------+--------------
IDENTITY | |
| |
processIdentity(eapReqData) | UCT | SEND_RESPONSE
eapRespData = | |
buildIdentity(reqId) | |
-----------------------------+------------------------+--------------
<span class="grey">Vollbrecht, et al. Informational [Page 40]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-41" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
-----------------------------+------------------------+--------------
NOTIFICATION | |
| |
processNotify(eapReqData) | UCT | SEND_RESPONSE
eapRespData = | |
buildNotify(reqId) | |
-----------------------------+------------------------+--------------
RETRANSMIT | |
| UCT | SEND_RESPONSE
eapRespData = lastRespData | |
-----------------------------+------------------------+--------------
DISCARD | |
| UCT | IDLE
eapReq = FALSE | |
eapNoResp = TRUE | |
-----------------------------+------------------------+--------------
SEND_RESPONSE | |
| |
lastId = reqId | |
lastRespData = eapRespData | UCT | IDLE
eapReq = FALSE | |
eapResp = TRUE | |
idleWhile = ClientTimeout | |
-----------------------------+------------------------+--------------
SUCCESS | |
| |
if (eapKeyData != NONE) | |
eapKeyAvailable = TRUE | |
eapSuccess = TRUE | |
-----------------------------+------------------------+--------------
FAILURE | |
| |
eapFail = TRUE | |
---------------------------------------------------------------------
Figure 8
<span class="h3"><a class="selflink" id="appendix-A.2" href="#appendix-A.2">A.2</a>. EAP Stand-Alone Authenticator State Machine (Figure 4)</span>
---------------------------------------------------------------------
(global transitions) | !portEnabled | DISABLED
|---------------------+----------------
| eapRestart && | INITIALIZE
| portEnabled |
------------------------------+---------------------+----------------
DISABLED | portEnabled | INITIALIZE
------------------------------+---------------------+----------------
<span class="grey">Vollbrecht, et al. Informational [Page 41]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-42" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
------------------------------+---------------------+----------------
INITIALIZE | |
| |
currentId = NONE | |
eapSuccess = FALSE | |
eapFail = FALSE | UCT | SELECT_ACTION
eapTimeout = FALSE | |
eapKeyData = NONE | |
eapKeyAvailable = FALSE | |
eapRestart = FALSE | |
------------------------------+---------------------+----------------
IDLE | |
| retransWhile == 0 | RETRANSMIT
retransWhile = | |
calculateTimeout( |---------------------+----------------
retransCount, eapSRTT, | eapResp | RECEIVED
eapRTTVAR, methodTimeout) | |
------------------------------+---------------------+----------------
RETRANSMIT | |
| retransCount > | TIMEOUT_FAILURE
retransCount++ | MaxRetrans |
if (retransCount<=MaxRetrans){| |
eapReqData = lastReqData |---------------------+----------------
eapReq = TRUE | else | IDLE
} | |
------------------------------+---------------------+----------------
RECEIVED | rxResp && |
| (respId == |
(rxResp,respId,respMethod)= | currentId) && |
parseEapResp(eapRespData) | (respMethod == NAK |
| || | NAK
| respMethod == |
| EXPANDED_NAK) && |
| (methodState == |
| PROPOSED) |
|---------------------+----------------
| rxResp && |
| (respId == |
| currentId) && | INTEGRITY_CHECK
| (respMethod == |
| currentMethod) |
|---------------------+----------------
| else | DISCARD
------------------------------+---------------------+----------------
<span class="grey">Vollbrecht, et al. Informational [Page 42]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-43" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
------------------------------+---------------------+----------------
NAK | |
| UCT | SELECT_ACTION
m.reset() | |
Policy.update(<...>) | |
------------------------------+---------------------+----------------
SELECT_ACTION | decision == FAILURE | FAILURE
| |
decision = |---------------------+----------------
Policy.getDecision() | decision == SUCCESS | SUCCESS
/* SUCCESS, FAILURE, or |---------------------+----------------
CONTINUE */ | else | PROPOSE_METHOD
------------------------------+---------------------+----------------
INTEGRITY_CHECK | ignore | DISCARD
|---------------------+----------------
ignore = m.check(eapRespData) | !ignore | METHOD_RESPONSE
------------------------------+---------------------+----------------
METHOD_RESPONSE | |
| methodState == END | SELECT_ACTION
m.process(eapRespData) | |
if (m.isDone()) { | |
Policy.update(<...>) |---------------------+----------------
eapKeyData = m.getKey() | |
methodState = END | else | METHOD_REQUEST
} else | |
methodState = CONTINUE | |
------------------------------+---------------------+----------------
PROPOSE_METHOD | |
| |
currentMethod = | |
Policy.getNextMethod() | |
m.init() | UCT | METHOD_REQUEST
if (currentMethod==IDENTITY ||| |
currentMethod==NOTIFICATION)| |
methodState = CONTINUE | |
else | |
methodState = PROPOSED | |
------------------------------+---------------------+----------------
METHOD_REQUEST | |
| |
currentId = nextId(currentId) | UCT | SEND_REQUEST
eapReqData = | |
m.buildReq(currentId) | |
methodTimeout = m.getTimeout()| |
------------------------------+---------------------+----------------
<span class="grey">Vollbrecht, et al. Informational [Page 43]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-44" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
------------------------------+---------------------+----------------
DISCARD | |
| UCT | IDLE
eapResp = FALSE | |
eapNoReq = TRUE | |
------------------------------+---------------------+----------------
SEND_REQUEST | |
| |
retransCount = 0 | UCT | IDLE
lastReqData = eapReqData | |
eapResp = FALSE | |
eapReq = TRUE | |
------------------------------+---------------------+----------------
TIMEOUT_FAILURE | |
| |
eapTimeout = TRUE | |
------------------------------+---------------------+----------------
FAILURE | |
| |
eapReqData = | |
buildFailure(currentId) | |
eapFail = TRUE | |
------------------------------+---------------------+----------------
SUCCESS | |
| |
eapReqData = | |
buildSuccess(currentId) | |
if (eapKeyData != NONE) | |
eapKeyAvailable = TRUE | |
eapSuccess = TRUE | |
---------------------------------------------------------------------
Figure 9
<span class="h3"><a class="selflink" id="appendix-A.3" href="#appendix-A.3">A.3</a>. EAP Backend Authenticator State Machine (Figure 5)</span>
---------------------------------------------------------------------
(global transitions) | !backendEnabled | DISABLED
------------------------------+---------------------+----------------
DISABLED | backendEnabled && | INITIALIZE
| aaaEapResp |
------------------------------+---------------------+----------------
<span class="grey">Vollbrecht, et al. Informational [Page 44]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-45" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
------------------------------+---------------------+----------------
INITIALIZE | !rxResp | SELECT_ACTION
|---------------------+----------------
currentMethod = NONE | rxResp && |
(rxResp,respId,respMethod)= | (respMethod == NAK |
parseEapResp(aaaEapRespData)| || | NAK
if (rxResp) | respMethod == |
currentId = respId | EXPANDED_NAK) |
else |---------------------+----------------
currentId = NONE | else | PICK_UP_METHOD
------------------------------+---------------------+----------------
PICK_UP_METHOD | |
| currentMethod == | SELECT_ACTION
if (Policy.doPickUp( | NONE |
respMethod)) { | |
currentMethod = respMethod |---------------------+----------------
m.initPickUp() | else | METHOD_RESPONSE
} | |
------------------------------+---------------------+----------------
IDLE | aaaEapResp | RECEIVED
------------------------------+---------------------+----------------
RECEIVED | rxResp && |
| (respId == |
(rxResp,respId,respMethod)= | currentId) && |
parseEapResp(aaaEapRespData)| (respMethod == NAK |
| || | NAK
| respMethod == |
| EXPANDED_NAK) && |
| (methodState == |
| PROPOSED) |
|---------------------+----------------
| rxResp && |
| (respId == |
| currentId) && | INTEGRITY_CHECK
| (respMethod == |
| currentMethod) |
|---------------------+----------------
| else | DISCARD
------------------------------+---------------------+----------------
NAK | |
| UCT | SELECT_ACTION
m.reset() | |
Policy.update(<...>) | |
------------------------------+---------------------+----------------
<span class="grey">Vollbrecht, et al. Informational [Page 45]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-46" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
------------------------------+---------------------+----------------
SELECT_ACTION | decision == FAILURE | FAILURE
| |
decision = |---------------------+----------------
Policy.getDecision() | decision == SUCCESS | SUCCESS
/* SUCCESS, FAILURE, or |---------------------+----------------
CONTINUE */ | else | PROPOSE_METHOD
------------------------------+---------------------+----------------
INTEGRITY_CHECK | ignore | DISCARD
| |
ignore = |---------------------+----------------
m.check(aaaEapRespData) | !ignore | METHOD_RESPONSE
------------------------------+---------------------+----------------
METHOD_RESPONSE | |
| methodState == END | SELECT_ACTION
m.process(aaaEapRespData) | |
if (m.isDone()) { | |
Policy.update(<...>) |---------------------+----------------
aaaEapKeyData = m.getKey() | |
methodState = END | else | METHOD_REQUEST
} else | |
methodState = CONTINUE | |
------------------------------+---------------------+----------------
PROPOSE_METHOD | |
| |
currentMethod = | |
Policy.getNextMethod() | |
m.init() | UCT | METHOD_REQUEST
if (currentMethod==IDENTITY ||| |
currentMethod==NOTIFICATION)| |
methodState = CONTINUE | |
else | |
methodState = PROPOSED | |
------------------------------+---------------------+----------------
METHOD_REQUEST | |
| |
currentId = nextId(currentId) | |
aaaEapReqData = | UCT | SEND_REQUEST
m.buildReq(currentId) | |
aaaMethodTimeout = | |
m.getTimeout() | |
------------------------------+---------------------+----------------
DISCARD | |
| UCT | IDLE
aaaEapResp = FALSE | |
aaaEapNoReq = TRUE | |
------------------------------+---------------------+----------------
<span class="grey">Vollbrecht, et al. Informational [Page 46]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-47" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
------------------------------+---------------------+----------------
SEND_REQUEST | |
| UCT | IDLE
aaaEapResp = FALSE | |
aaaEapReq = TRUE | |
------------------------------+---------------------+----------------
FAILURE | |
| |
aaaEapReqData = | |
buildFailure(currentId) | |
aaaEapFail = TRUE | |
------------------------------+---------------------+----------------
SUCCESS | |
| |
aaaEapReqData = | |
buildSuccess(currentId) | |
if (aaaEapKeyData != NONE) | |
aaaEapKeyAvailable = TRUE | |
aaaEapSuccess = TRUE | |
---------------------------------------------------------------------
Figure 10
<span class="h3"><a class="selflink" id="appendix-A.4" href="#appendix-A.4">A.4</a>. EAP Full Authenticator State Machine (Figures 6 and 7)</span>
This state machine contains all the states from EAP stand-alone
authenticator state machine, except that SELECT_ACTION state is
replaced with the following:
---------------------------------------------------------------------
SELECT_ACTION | decision == FAILURE | FAILURE
| |
decision = |---------------------+----------------
Policy.getDecision() | decision == SUCCESS | SUCCESS
/* SUCCESS, FAILURE, CONTINUE,|---------------------+----------------
or PASSTHROUGH */ | decision == | INITIALIZE_
| PASSTHROUGH | PASSTHROUGH
|---------------------+----------------
| else | PROPOSE_METHOD
---------------------------------------------------------------------
Figure 11
And the following new states are added:
---------------------------------------------------------------------
INITIALIZE_PASSTHROUGH | currentId != NONE | AAA_REQUEST
|---------------------+----------------
aaaEapRespData = NONE | currentId == NONE | AAA_IDLE
------------------------------+---------------------+----------------
<span class="grey">Vollbrecht, et al. Informational [Page 47]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-48" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
------------------------------+---------------------+----------------
IDLE2 | |
| retransWhile == 0 | RETRANSMIT2
retransWhile = | |
calculateTimeout( |---------------------+----------------
retransCount, eapSRTT, | eapResp | RECEIVED2
eapRTTVAR, methodTimeout) | |
------------------------------+---------------------+----------------
RETRANSMIT2 | |
| retransCount > | TIMEOUT_
retransCount++ | MaxRetrans | FAILURE2
if (retransCount<=MaxRetrans){| |
eapReqData = lastReqData |---------------------+----------------
eapReq = TRUE | else | IDLE2
} | |
------------------------------+---------------------+----------------
RECEIVED2 | rxResp && |
| (respId == | AAA_REQUEST
(rxResp,respId,respMethod)= | currentId) |
parseEapResp(eapRespData) |---------------------+----------------
| else | DISCARD2
------------------------------+---------------------+----------------
AAA_REQUEST | |
| |
if (respMethod == IDENTITY) { | UCT | AAA_IDLE
aaaIdentity = eapRespData | |
aaaEapRespData = eapRespData | |
------------------------------+---------------------+----------------
AAA_IDLE | aaaEapNoReq | DISCARD2
|---------------------+----------------
aaaFail = FALSE | aaaEapReq | AAA_RESPONSE
aaaSuccess = FALSE |---------------------+----------------
aaaEapReq = FALSE | aaaTimeout | TIMEOUT_
aaaEapNoReq = FALSE | | FAILURE2
aaaEapResp = TRUE |---------------------+----------------
| aaaFail | FAILURE2
|---------------------+----------------
| aaaSuccess | SUCCESS2
------------------------------+---------------------+----------------
AAA_RESPONSE | |
| |
eapReqData = aaaEapReqData | UCT | SEND_REQUEST2
currentId = getId(eapReqData) | |
methodTimeout = | |
aaaMethodTimeout | |
------------------------------+---------------------+----------------
<span class="grey">Vollbrecht, et al. Informational [Page 48]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-49" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
------------------------------+---------------------+----------------
DISCARD2 | |
| UCT | IDLE2
eapResp = FALSE | |
eapNoReq = TRUE | |
------------------------------+---------------------+----------------
SEND_REQUEST2 | |
| |
retransCount = 0 | UCT | IDLE2
lastReqData = eapReqData | |
eapResp = FALSE | |
eapReq = TRUE | |
------------------------------+---------------------+----------------
TIMEOUT_FAILURE2 | |
| |
eapTimeout = TRUE | |
------------------------------+---------------------+----------------
FAILURE2 | |
| |
eapReqData = aaaEapReqData | |
eapFail = TRUE | |
------------------------------+---------------------+----------------
SUCCESS2 | |
| |
eapReqData = aaaEapReqData | |
eapKeyData = aaaEapKeyData | |
eapKeyAvailable = | |
aaaEapKeyAvailable | |
eapSuccess = TRUE | |
---------------------------------------------------------------------
Figure 12
<span class="grey">Vollbrecht, et al. Informational [Page 49]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-50" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
Authors' Addresses
John Vollbrecht
Meetinghouse Data Communications
9682 Alice Hill Drive
Dexter, MI 48130
USA
EMail: jrv@mtghouse.com
Pasi Eronen
Nokia Research Center
P.O. Box 407
FIN-00045 Nokia Group,
Finland
EMail: pasi.eronen@nokia.com
Nick L. Petroni, Jr.
University of Maryland, College Park
A.V. Williams Building
College Park, MD 20742
USA
EMail: npetroni@cs.umd.edu
Yoshihiro Ohba
Toshiba America Research, Inc.
1 Telcordia Drive
Piscataway, NJ 08854
USA
EMail: yohba@tari.toshiba.com
<span class="grey">Vollbrecht, et al. Informational [Page 50]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-51" ></span>
<span class="grey"><a href="./rfc4137">RFC 4137</a> EAP State Machines August 2005</span>
Full Copyright Statement
Copyright (C) The Internet Society (2005).
This document is subject to the rights, licenses and restrictions
contained in <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a>, and except as set forth therein, the authors
retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and <a href="https://www.rfc-editor.org/bcp/bcp79">BCP 79</a>.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
<a href="http://www.ietf.org/ipr">http://www.ietf.org/ipr</a>.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at ietf-
ipr@ietf.org.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Vollbrecht, et al. Informational [Page 51]
</pre>
|