1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813
|
<pre>Network Working Group J. Lang, Ed.
Request for Comments: 4204 Sonos, Inc.
Category: Standards Track October 2005
<span class="h1">Link Management Protocol (LMP)</span>
Status of This Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2005).
Abstract
For scalability purposes, multiple data links can be combined to form
a single traffic engineering (TE) link. Furthermore, the management
of TE links is not restricted to in-band messaging, but instead can
be done using out-of-band techniques. This document specifies a link
management protocol (LMP) that runs between a pair of nodes and is
used to manage TE links. Specifically, LMP will be used to maintain
control channel connectivity, verify the physical connectivity of the
data links, correlate the link property information, suppress
downstream alarms, and localize link failures for
protection/restoration purposes in multiple kinds of networks.
Table of Contents
<a href="#section-1">1</a>. Introduction ....................................................<a href="#page-3">3</a>
<a href="#section-1.1">1.1</a>. Terminology ................................................<a href="#page-5">5</a>
<a href="#section-2">2</a>. LMP Overview ....................................................<a href="#page-6">6</a>
<a href="#section-3">3</a>. Control Channel Management ......................................<a href="#page-8">8</a>
<a href="#section-3.1">3.1</a>. Parameter Negotiation ......................................<a href="#page-9">9</a>
<a href="#section-3.2">3.2</a>. Hello Protocol ............................................<a href="#page-10">10</a>
<a href="#section-4">4</a>. Link Property Correlation ......................................<a href="#page-13">13</a>
<a href="#section-5">5</a>. Verifying Link Connectivity ....................................<a href="#page-15">15</a>
<a href="#section-5.1">5.1</a>. Example of Link Connectivity Verification .................<a href="#page-18">18</a>
<a href="#section-6">6</a>. Fault Management ...............................................<a href="#page-19">19</a>
<a href="#section-6.1">6.1</a>. Fault Detection ...........................................<a href="#page-20">20</a>
<a href="#section-6.2">6.2</a>. Fault Localization Procedure ..............................<a href="#page-20">20</a>
<a href="#section-6.3">6.3</a>. Examples of Fault Localization ............................<a href="#page-21">21</a>
<span class="grey">Lang Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
<a href="#section-6.4">6.4</a>. Channel Activation Indication .............................<a href="#page-22">22</a>
<a href="#section-6.5">6.5</a>. Channel Deactivation Indication ...........................<a href="#page-23">23</a>
<a href="#section-7">7</a>. Message_Id Usage ...............................................<a href="#page-23">23</a>
<a href="#section-8">8</a>. Graceful Restart ...............................................<a href="#page-24">24</a>
<a href="#section-9">9</a>. Addressing .....................................................<a href="#page-25">25</a>
<a href="#section-10">10</a>. Exponential Back-off Procedures ...............................<a href="#page-26">26</a>
<a href="#section-10.1">10.1</a>. Operation ...............................................<a href="#page-26">26</a>
<a href="#section-10.2">10.2</a>. Retransmission Algorithm ................................<a href="#page-27">27</a>
<a href="#section-11">11</a>. LMP Finite State Machines .....................................<a href="#page-28">28</a>
<a href="#section-11.1">11.1</a>. Control Channel FSM .....................................<a href="#page-28">28</a>
<a href="#section-11.2">11.2</a>. TE Link FSM .............................................<a href="#page-32">32</a>
<a href="#section-11.3">11.3</a>. Data Link FSM ...........................................<a href="#page-34">34</a>
<a href="#section-12">12</a>. LMP Message Formats ...........................................<a href="#page-38">38</a>
<a href="#section-12.1">12.1</a>. Common Header ...........................................<a href="#page-39">39</a>
<a href="#section-12.2">12.2</a>. LMP Object Format .......................................<a href="#page-41">41</a>
<a href="#section-12.3">12.3</a>. Parameter Negotiation Messages ..........................<a href="#page-42">42</a>
<a href="#section-12.4">12.4</a>. Hello Message (Msg Type = 4) ............................<a href="#page-43">43</a>
<a href="#section-12.5">12.5</a>. Link Verification Messages ..............................<a href="#page-43">43</a>
<a href="#section-12.6">12.6</a>. Link Summary Messages ...................................<a href="#page-47">47</a>
<a href="#section-12.7">12.7</a>. Fault Management Messages ...............................<a href="#page-49">49</a>
<a href="#section-13">13</a>. LMP Object Definitions ........................................<a href="#page-50">50</a>
<a href="#section-13.1">13.1</a>. CCID (Control Channel ID) Class .........................<a href="#page-50">50</a>
<a href="#section-13.2">13.2</a>. NODE_ID Class ...........................................<a href="#page-51">51</a>
<a href="#section-13.3">13.3</a>. LINK_ID Class ...........................................<a href="#page-52">52</a>
<a href="#section-13.4">13.4</a>. INTERFACE_ID Class ......................................<a href="#page-53">53</a>
<a href="#section-13.5">13.5</a>. MESSAGE_ID Class ........................................<a href="#page-54">54</a>
<a href="#section-13.6">13.6</a>. CONFIG Class ............................................<a href="#page-55">55</a>
<a href="#section-13.7">13.7</a>. HELLO Class .............................................<a href="#page-56">56</a>
<a href="#section-13.8">13.8</a>. BEGIN_VERIFY Class ......................................<a href="#page-56">56</a>
<a href="#section-13.9">13.9</a>. BEGIN_VERIFY_ACK Class ..................................<a href="#page-58">58</a>
<a href="#section-13.10">13.10</a>. VERIFY_ID Class ........................................<a href="#page-59">59</a>
<a href="#section-13.11">13.11</a>. TE_LINK Class ..........................................<a href="#page-59">59</a>
<a href="#section-13.12">13.12</a>. DATA_LINK Class ........................................<a href="#page-61">61</a>
<a href="#section-13.13">13.13</a>. CHANNEL_STATUS Class ...................................<a href="#page-65">65</a>
<a href="#section-13.14">13.14</a>. CHANNEL_STATUS_REQUEST Class ...........................<a href="#page-68">68</a>
<a href="#section-13.15">13.15</a>. ERROR_CODE Class .......................................<a href="#page-70">70</a>
<a href="#section-14">14</a>. References ....................................................<a href="#page-71">71</a>
<a href="#section-14.1">14.1</a>. Normative References ....................................<a href="#page-71">71</a>
<a href="#section-14.2">14.2</a>. Informative References ..................................<a href="#page-72">72</a>
<a href="#section-15">15</a>. Security Considerations .......................................<a href="#page-73">73</a>
<a href="#section-15.1">15.1</a>. Security Requirements ...................................<a href="#page-73">73</a>
<a href="#section-15.2">15.2</a>. Security Mechanisms .....................................<a href="#page-74">74</a>
<a href="#section-16">16</a>. IANA Considerations ...........................................<a href="#page-76">76</a>
<a href="#section-17">17</a>. Acknowledgements ..............................................<a href="#page-83">83</a>
<a href="#section-18">18</a>. Contributors ..................................................<a href="#page-83">83</a>
<span class="grey">Lang Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
Networks are being developed with routers, switches, crossconnects,
dense wavelength division multiplexed (DWDM) systems, and add-drop
multiplexors (ADMs) that use a common control plane, e.g.,
Generalized MPLS (GMPLS), to dynamically allocate resources and to
provide network survivability using protection and restoration
techniques. A pair of nodes may have thousands of interconnects,
where each interconnect may consist of multiple data links when
multiplexing (e.g., Frame Relay DLCIs at Layer 2, time division
multiplexed (TDM) slots or wavelength division multiplexed (WDM)
wavelengths at Layer 1) is used. For scalability purposes, multiple
data links may be combined into a single traffic-engineering (TE)
link.
To enable communication between nodes for routing, signaling, and
link management, there must be a pair of IP interfaces that are
mutually reachable. We call such a pair of interfaces a control
channel. Note that "mutually reachable" does not imply that these
two interfaces are (directly) connected by an IP link; there may be
an IP network between the two. Furthermore, the interface over which
the control messages are sent/received may not be the same interface
over which the data flows. This document specifies a link management
protocol (LMP) that runs between a pair of nodes and is used to
manage TE links and verify reachability of the control channel. For
the purposes of this document, such nodes are considered "LMP
neighbors" or simply "neighboring nodes".
In GMPLS, the control channels between two adjacent nodes are no
longer required to use the same physical medium as the data links
between those nodes. For example, a control channel could use a
separate virtual circuit, wavelength, fiber, Ethernet link, an IP
tunnel routed over a separate management network, or a multi-hop IP
network. A consequence of allowing the control channel(s) between
two nodes to be logically or physically diverse from the associated
data links is that the health of a control channel does not
necessarily correlate to the health of the data links, and vice-
versa. Therefore, a clean separation between the fate of the control
channel and data links must be made. New mechanisms must be
developed to manage the data links, both in terms of link
provisioning and fault management.
Among the tasks that LMP accomplishes is checking that the grouping
of links into TE links, as well as the properties of those links, are
the same at both end points of the links -- this is called "link
property correlation". Also, LMP can communicate these link
properties to the IGP module, which can then announce them to other
<span class="grey">Lang Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
nodes in the network. LMP can also tell the signaling module the
mapping between TE links and control channels. Thus, LMP performs a
valuable "glue" function in the control plane.
Note that while the existence of the control network (single or
multi-hop) is necessary for enabling communication, it is by no means
sufficient. For example, if the two interfaces are separated by an
IP network, faults in the IP network may result in the lack of an IP
path from one interface to another, and therefore an interruption of
communication between the two interfaces. On the other hand, not
every failure in the control network affects a given control channel,
hence the need for establishing and managing control channels.
For the purposes of this document, a data link may be considered by
each node that it terminates on as either a 'port' or a 'component
link', depending on the multiplexing capability of the endpoint on
that link; component links are multiplex capable, whereas ports are
not multiplex capable. This distinction is important since the
management of such links (including, for example, resource
allocation, label assignment, and their physical verification) is
different based on their multiplexing capability. For example, a
Frame Relay switch is able to demultiplex an interface into virtual
circuits based on DLCIs; similarly, a SONET crossconnect with OC-192
interfaces may be able to demultiplex the OC-192 stream into four
OC-48 streams. If multiple interfaces are grouped together into a
single TE link using link bundling [<a href="./rfc4201" title=""Link Bundling in MPLS Traffic Engineering (TE)"">RFC4201</a>], then the link resources
must be identified using three levels: Link_Id, component interface
Id, and label identifying virtual circuit, timeslot, etc. Resource
allocation happens at the lowest level (labels), but physical
connectivity happens at the component link level. As another
example, consider the case where an optical switch (e.g., PXC)
transparently switches OC-192 lightpaths. If multiple interfaces are
once again grouped together into a single TE link, then link bundling
[<a href="./rfc4201" title=""Link Bundling in MPLS Traffic Engineering (TE)"">RFC4201</a>] is not required and only two levels of identification are
required: Link_Id and Port_Id. In this case, both resource
allocation and physical connectivity happen at the lowest level
(i.e., port level).
To ensure interworking between data links with different multiplexing
capabilities, LMP-capable devices SHOULD allow sub-channels of a
component link to be locally configured as (logical) data links. For
example, if a Router with 4 OC-48 interfaces is connected through a
4:1 MUX to a cross-connect with OC-192 interfaces, the cross-connect
should be able to configure each sub-channel (e.g., STS-48c SPE if
the 4:1 MUX is a SONET MUX) as a data link.
<span class="grey">Lang Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
LMP is designed to support aggregation of one or more data links into
a TE link (either ports into TE links, or component links into TE
links). The purpose of forming a TE link is to group/map the
information about certain physical resources (and their properties)
into the information that is used by Constrained SPF for the purpose
of path computation, and by GMPLS signaling.
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. Terminology</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
The reader is assumed to be familiar with the terminology in
[<a href="./rfc3471" title=""Generalized MPLS - Signaling Functional Description"">RFC3471</a>], [<a href="./rfc4202" title=""Routing Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)"">RFC4202</a>], and [<a href="./rfc4201" title=""Link Bundling in MPLS Traffic Engineering (TE)"">RFC4201</a>].
Bundled Link:
As defined in [<a href="./rfc4201" title=""Link Bundling in MPLS Traffic Engineering (TE)"">RFC4201</a>], a bundled link is a TE link such that,
for the purpose of GMPLS signaling, a combination of <link
identifier, label> is not sufficient to unambiguously identify the
appropriate resources used by an LSP. A bundled link is composed
of two or more component links.
Control Channel:
A control channel is a pair of mutually reachable interfaces that
are used to enable communication between nodes for routing,
signaling, and link management.
Component Link:
As defined in [<a href="./rfc4201" title=""Link Bundling in MPLS Traffic Engineering (TE)"">RFC4201</a>], a component link is a subset of resources
of a TE Link such that (a) the partition is minimal, and (b)
within each subset a label is sufficient to unambiguously identify
the appropriate resources used by an LSP.
Data Link:
A data link is a pair of interfaces that are used to transfer user
data. Note that in GMPLS, the control channel(s) between two
adjacent nodes are no longer required to use the same physical
medium as the data links between those nodes.
Link Property Correlation:
This is a procedure to correlate the local and remote properties
of a TE link.
<span class="grey">Lang Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
Multiplex Capability:
The ability to multiplex/demultiplex a data stream into sub-rate
streams for switching purposes.
Node_Id:
For a node running OSPF, the LMP Node_Id is the same as the
address contained in the OSPF Router Address TLV. For a node
running IS-IS and advertising the TE Router ID TLV, the Node_Id is
the same as the advertised Router ID.
Port:
An interface that terminates a data link.
TE Link:
As defined in [<a href="./rfc4202" title=""Routing Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)"">RFC4202</a>], a TE link is a logical construct that
represents a way to group/map the information about certain
physical resources (and their properties) that interconnect LSRs
into the information that is used by Constrained SPF for the
purpose of path computation, and by GMPLS signaling.
Transparent:
A device is called X-transparent if it forwards incoming signals
from input to output without examining or modifying the X aspect
of the signal. For example, a Frame Relay switch is network-layer
transparent; an all-optical switch is electrically transparent.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. LMP Overview</span>
The two core procedures of LMP are control channel management and
link property correlation. Control channel management is used to
establish and maintain control channels between adjacent nodes. This
is done using a Config message exchange and a fast keep-alive
mechanism between the nodes. The latter is required if lower-level
mechanisms are not available to detect control channel failures.
Link property correlation is used to synchronize the TE link
properties and verify the TE link configuration.
LMP requires that a pair of nodes have at least one active bi-
directional control channel between them. Each direction of the
control channel is identified by a Control Channel Id (CC_Id), and
the two directions are coupled together using the LMP Config message
exchange. Except for Test messages, which may be limited by the
<span class="grey">Lang Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
transport mechanism for in-band messaging, all LMP packets are run
over UDP with an LMP port number. The link level encoding of the
control channel is outside the scope of this document.
An "LMP adjacency" is formed between two nodes when at least one bi-
directional control channel is established between them. Multiple
control channels may be active simultaneously for each adjacency;
control channel parameters, however, MUST be individually negotiated
for each control channel. If the LMP fast keep-alive is used over a
control channel, LMP Hello messages MUST be exchanged over the
control channel. Other LMP messages MAY be transmitted over any of
the active control channels between a pair of adjacent nodes. One or
more active control channels may be grouped into a logical control
channel for signaling, routing, and link property correlation
purposes.
The link property correlation function of LMP is designed to
aggregate multiple data links (ports or component links) into a TE
link and to synchronize the properties of the TE link. As part of
the link property correlation function, a LinkSummary message
exchange is defined. The LinkSummary message includes the local and
remote Link_Ids, a list of all data links that comprise the TE link,
and various link properties. A LinkSummaryAck or LinkSummaryNack
message MUST be sent in response to the receipt of a LinkSummary
message indicating agreement or disagreement on the link properties.
LMP messages are transmitted reliably using Message_Ids and
retransmissions. Message_Ids are carried in MESSAGE_ID objects. No
more than one MESSAGE_ID object may be included in an LMP message.
For control-channel-specific messages, the Message_Id is within the
scope of the control channel over which the message is sent. For
TE-link-specific messages, the Message_Id is within the scope of the
LMP adjacency. The value of the Message_Id is monotonically
increasing and wraps when the maximum value is reached.
In this document, two additional LMP procedures are defined: link
connectivity verification and fault management. These procedures are
particularly useful when the control channels are physically diverse
from the data links. Link connectivity verification is used for data
plane discovery, Interface_Id exchange (Interface_Ids are used in
GMPLS signaling, either as port labels or component link identifiers,
depending on the configuration), and physical connectivity
verification. This is done by sending Test messages over the data
links and TestStatus messages back over the control channel. Note
that the Test message is the only LMP message that must be
transmitted over the data link. The ChannelStatus message exchange
is used between adjacent nodes for both the suppression of downstream
alarms and the localization of faults for protection and restoration.
<span class="grey">Lang Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
For LMP link connectivity verification, the Test message is
transmitted over the data links. For X-transparent devices, this
requires examining and modifying the X aspect of the signal. The LMP
link connectivity verification procedure is coordinated using a
BeginVerify message exchange over a control channel. To support
various aspects of transparency, a Verify Transport Mechanism is
included in the BeginVerify and BeginVerifyAck messages. Note that
there is no requirement that all data links must lose their
transparency simultaneously; but, at a minimum, it must be possible
to terminate them one at a time. There is also no requirement that
the control channel and TE link use the same physical medium;
however, the control channel MUST be terminated by the same two
control elements that control the TE link. Since the BeginVerify
message exchange coordinates the Test procedure, it also naturally
coordinates the transition of the data links in and out of the
transparent mode.
The LMP fault management procedure is based on a ChannelStatus
message exchange that uses the following messages: ChannelStatus,
ChannelStatusAck, ChannelStatusRequest, and ChannelStatusResponse.
The ChannelStatus message is sent unsolicited and is used to notify
an LMP neighbor about the status of one or more data channels of a TE
link. The ChannelStatusAck message is used to acknowledge receipt of
the ChannelStatus message. The ChannelStatusRequest message is used
to query an LMP neighbor for the status of one or more data channels
of a TE Link. The ChannelStatusResponse message is used to
acknowledge receipt of the ChannelStatusRequest message and indicate
the states of the queried data links.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Control Channel Management</span>
To initiate an LMP adjacency between two nodes, one or more bi-
directional control channels MUST be activated. The control channels
can be used to exchange control-plane information such as link
provisioning and fault management information (implemented using a
messaging protocol such as LMP, proposed in this document), path
management and label distribution information (implemented using a
signaling protocol such as RSVP-TE [<a href="./rfc3209" title=""RSVP-TE: Extensions to RSVP for LSP Tunnels"">RFC3209</a>]), and network topology
and state distribution information (implemented using traffic
engineering extensions of protocols such as OSPF [<a href="./rfc3630" title=""Traffic Engineering (TE) Extensions to OSPF Version 2"">RFC3630</a>] and IS-IS
[<a href="./rfc3784" title=""Intermediate System to Intermediate System (IS-IS) Extensions for Traffic Engineering (TE)"">RFC3784</a>]).
For the purposes of LMP, the exact implementation of the control
channel is not specified; it could be, for example, a separate
wavelength or fiber, an Ethernet link, an IP tunnel through a
separate management network, or the overhead bytes of a data link.
Each node assigns a node-wide, unique, 32-bit, non-zero integer
control channel identifier (CC_Id). This identifier comes from the
<span class="grey">Lang Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
same space as the unnumbered interface Id. Furthermore, LMP packets
are run over UDP with an LMP port number. Thus, the link level
encoding of the control channel is not part of the LMP specification.
To establish a control channel, the destination IP address on the far
end of the control channel must be known. This knowledge may be
manually configured or automatically discovered. Note that for in-
band signaling, a control channel could be explicitly configured on a
particular data link. In this case, the Config message exchange can
be used to dynamically learn the IP address on the far end of the
control channel. This is done by sending the Config message with the
unicast IP source address and the multicast IP destination address
(224.0.0.1 or ff02::1). The ConfigAck and ConfigNack messages MUST
be sent to the source IP address found in the IP header of the
received Config message.
Control channels exist independently of TE links and multiple control
channels may be active simultaneously between a pair of nodes.
Individual control channels can be realized in different ways; one
might be implemented in-fiber while another one may be implemented
out-of-fiber. As such, control channel parameters MUST be negotiated
over each individual control channel, and LMP Hello packets MUST be
exchanged over each control channel to maintain LMP connectivity if
other mechanisms are not available. Since control channels are
electrically terminated at each node, it may be possible to detect
control channel failures using lower layers (e.g., SONET/SDH).
There are four LMP messages that are used to manage individual
control channels. They are the Config, ConfigAck, ConfigNack, and
Hello messages. These messages MUST be transmitted on the channel to
which they refer. All other LMP messages may be transmitted over any
of the active control channels between a pair of LMP adjacent nodes.
In order to maintain an LMP adjacency, it is necessary to have at
least one active control channel between a pair of adjacent nodes
(recall that multiple control channels can be active simultaneously
between a pair of nodes). In the event of a control channel failure,
alternate active control channels can be used and it may be possible
to activate additional control channels as described below.
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. Parameter Negotiation</span>
Control channel activation begins with a parameter negotiation
exchange using Config, ConfigAck, and ConfigNack messages. The
contents of these messages are built using LMP objects, which can be
either negotiable or non-negotiable (identified by the N bit in the
object header). Negotiable objects can be used to let LMP peers
<span class="grey">Lang Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
agree on certain values. Non-negotiable objects are used for the
announcement of specific values that do not need, or do not allow,
negotiation.
To activate a control channel, a Config message MUST be transmitted
to the remote node, and in response, a ConfigAck message MUST be
received at the local node. The Config message contains the Local
Control Channel Id (CC_Id), the sender's Node_Id, a Message_Id for
reliable messaging, and a CONFIG object. It is possible that both
the local and remote nodes initiate the configuration procedure at
the same time. To avoid ambiguities, the node with the higher
Node_Id wins the contention; the node with the lower Node_Id MUST
stop transmitting the Config message and respond to the Config
message it received. If the Node_Ids are equal, then one (or both)
nodes have been misconfigured. The nodes MAY continue to retransmit
Config messages in hopes that the misconfiguration is corrected.
Note that the problem may be solved by an operator changing the
Node_Ids on one or both nodes.
The ConfigAck message is used to acknowledge receipt of the Config
message and express agreement on ALL of the configured parameters
(both negotiable and non-negotiable).
The ConfigNack message is used to acknowledge receipt of the Config
message, indicate which (if any) non-negotiable CONFIG objects are
unacceptable, and to propose alternate values for the negotiable
parameters.
If a node receives a ConfigNack message with acceptable alternate
values for negotiable parameters, the node SHOULD transmit a Config
message using these values for those parameters.
If a node receives a ConfigNack message with unacceptable alternate
values, the node MAY continue to retransmit Config messages in hopes
that the misconfiguration is corrected. Note that the problem may be
solved by an operator changing parameters on one or both nodes.
In the case where multiple control channels use the same physical
interface, the parameter negotiation exchange is performed for each
control channel. The various LMP parameter negotiation messages are
associated with their corresponding control channels by their node-
wide unique identifiers (CC_Ids).
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. Hello Protocol</span>
Once a control channel is activated between two adjacent nodes, the
LMP Hello protocol can be used to maintain control channel
connectivity between the nodes and to detect control channel
<span class="grey">Lang Standards Track [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
failures. The LMP Hello protocol is intended to be a lightweight
keep-alive mechanism that will react to control channel failures
rapidly so that IGP Hellos are not lost and the associated link-state
adjacencies are not removed unnecessarily.
<span class="h4"><a class="selflink" id="section-3.2.1" href="#section-3.2.1">3.2.1</a>. Hello Parameter Negotiation</span>
Before sending Hello messages, the HelloInterval and
HelloDeadInterval parameters MUST be agreed upon by the local and
remote nodes. These parameters are exchanged in the Config message.
The HelloInterval indicates how frequently LMP Hello messages will be
sent, and is measured in milliseconds (ms). For example, if the
value were 150, then the transmitting node would send the Hello
message at least every 150 ms. The HelloDeadInterval indicates how
long a device should wait to receive a Hello message before declaring
a control channel dead, and is measured in milliseconds (ms).
The HelloDeadInterval MUST be greater than the HelloInterval, and
SHOULD be at least 3 times the value of HelloInterval. If the fast
keep-alive mechanism of LMP is not used, the HelloInterval and
HelloDeadInterval parameters MUST be set to zero.
The values for the HelloInterval and HelloDeadInterval should be
selected carefully to provide rapid response time to control channel
failures without causing congestion. As such, different values will
likely be configured for different control channel implementations.
When the control channel is implemented over a directly connected
link, the suggested default values for the HelloInterval is 150 ms
and for the HelloDeadInterval is 500 ms.
When a node has either sent or received a ConfigAck message, it may
begin sending Hello messages. Once it has sent a Hello message and
received a valid Hello message (i.e., with expected sequence numbers;
see <a href="#section-3.2.2">Section 3.2.2</a>), the control channel moves to the up state. (It
is also possible to move to the up state without sending Hellos if
other methods are used to indicate bi-directional control-channel
connectivity. For example, indication of bi-directional connectivity
may be learned from the transport layer.) If, however, a node
receives a ConfigNack message instead of a ConfigAck message, the
node MUST not send Hello messages and the control channel SHOULD NOT
move to the up state. See <a href="#section-11.1">Section 11.1</a> for the complete control
channel FSM.
<span class="grey">Lang Standards Track [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
<span class="h4"><a class="selflink" id="section-3.2.2" href="#section-3.2.2">3.2.2</a>. Fast Keep-alive</span>
Each Hello message contains two sequence numbers: the first sequence
number (TxSeqNum) is the sequence number for the Hello message being
sent and the second sequence number (RcvSeqNum) is the sequence
number of the last Hello message received from the adjacent node over
this control channel.
There are two special sequence numbers. TxSeqNum MUST NOT ever be 0.
TxSeqNum = 1 is used to indicate that the sender has just started or
has restarted and has no recollection of the last TxSeqNum that was
sent. Thus, the first Hello sent has a TxSeqNum of 1 and an RxSeqNum
of 0. When TxSeqNum reaches (2^32)-1, the next sequence number used
is 2, not 0 or 1, as these have special meanings.
Under normal operation, the difference between the RcvSeqNum in a
Hello message that is received and the local TxSeqNum that is
generated will be at most 1. This difference can be more than one
only when a control channel restarts or when the values wrap.
Since the 32-bit sequence numbers may wrap, the following expression
may be used to test if a newly received TxSeqNum value is less than a
previously received value:
If ((int) old_id - (int) new_id > 0) {
New value is less than old value;
}
Having sequence numbers in the Hello messages allows each node to
verify that its peer is receiving its Hello messages. By including
the RcvSeqNum in Hello packets, the local node will know which Hello
packets the remote node has received.
The following example illustrates how the sequence numbers operate.
Note that only the operation at one node is shown, and alternative
scenarios are possible:
1) After completing the configuration stage, Node A sends Hello
messages to Node B with {TxSeqNum=1;RcvSeqNum=0}.
2) Node A receives a Hello from Node B with {TxSeqNum=1;RcvSeqNum=1}.
When the HelloInterval expires on Node A, it sends Hellos to Node
B with {TxSeqNum=2;RcvSeqNum=1}.
3) Node A receives a Hello from Node B with {TxSeqNum=2;RcvSeqNum=2}.
When the HelloInterval expires on Node A, it sends Hellos to Node
B with {TxSeqNum=3;RcvSeqNum=2}.
<span class="grey">Lang Standards Track [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
<span class="h4"><a class="selflink" id="section-3.2.3" href="#section-3.2.3">3.2.3</a>. Control Channel Down</span>
To allow bringing a control channel down gracefully for
administration purposes, a ControlChannelDown flag is available in
the Common Header of LMP packets. When data links are still in use
between a pair of nodes, a control channel SHOULD only be taken down
administratively when there are other active control channels that
can be used to manage the data links.
When bringing a control channel down administratively, a node MUST
set the ControlChannelDown flag in all LMP messages sent over the
control channel. The node that initiated the control channel down
procedure may stop sending Hello messages after HelloDeadInterval
seconds have passed, or if it receives an LMP message over the same
control channel with the ControlChannelDown flag set.
When a node receives an LMP packet with the ControlChannelDown flag
set, it SHOULD send a Hello message with the ControlChannelDown flag
set and move the control channel to the down state.
<span class="h4"><a class="selflink" id="section-3.2.4" href="#section-3.2.4">3.2.4</a>. Degraded State</span>
A consequence of allowing the control channels to be physically
diverse from the associated data links is that there may not be any
active control channels available while the data links are still in
use. For many applications, it is unacceptable to tear down a link
that is carrying user traffic simply because the control channel is
no longer available; however, the traffic that is using the data
links may no longer be guaranteed the same level of service. Hence,
the TE link is in a Degraded state.
When a TE link is in the Degraded state, routing and signaling SHOULD
be notified so that new connections are not accepted and the TE link
is advertised with no unreserved resources.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Link Property Correlation</span>
As part of LMP, a link property correlation exchange is defined for
TE links using the LinkSummary, LinkSummaryAck, and LinkSummaryNack
messages. The contents of these messages are built using LMP
objects, which can be either negotiable or non-negotiable (identified
by the N flag in the object header). Negotiable objects can be used
to let both sides agree on certain link parameters. Non-negotiable
objects are used for announcement of specific values that do not
need, or do not allow, negotiation.
<span class="grey">Lang Standards Track [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
Each TE link has an identifier (Link_Id) that is assigned at each end
of the link. These identifiers MUST be the same type (i.e, IPv4,
IPv6, unnumbered) at both ends. If a LinkSummary message is received
with different local and remote TE link types, then a LinkSummaryNack
message MUST be sent with Error Code "Bad TE Link Object".
Similarly, each data link is assigned an identifier (Interface_Id) at
each end. These identifiers MUST also be the same type at both ends.
If a LinkSummary message is received with different local and remote
Interface_Id types, then a LinkSummaryNack message MUST be sent with
Error Code "Bad Data Link Object".
Link property correlation SHOULD be done before the link is brought
up and MAY be done any time a link is up and not in the Verification
process.
The LinkSummary message is used to verify for consistency the TE and
data link information on both sides. Link Summary messages are also
used (1) to aggregate multiple data links (either ports or component
links) into a TE link; (2) to exchange, correlate (to determine
inconsistencies), or change TE link parameters; and (3) to exchange,
correlate (to determine inconsistencies), or change Interface_Ids
(either Port_Ids or component link identifiers).
The LinkSummary message includes a TE_LINK object followed by one or
more DATA_LINK objects. The TE_LINK object identifies the TE link's
local and remote Link_Id and indicates support for fault management
and link verification procedures for that TE link. The DATA_LINK
objects are used to characterize the data links that comprise the TE
link. These objects include the local and remote Interface_Ids, and
may include one or more sub-objects further describing the properties
of the data links.
If the LinkSummary message is received from a remote node, and the
Interface_Id mappings match those that are stored locally, then the
two nodes have agreement on the Verification procedure (see <a href="#section-5">Section</a>
<a href="#section-5">5</a>) and data link identification configuration. If the verification
procedure is not used, the LinkSummary message can be used to verify
agreement on manual configuration.
The LinkSummaryAck message is used to signal agreement on the
Interface_Id mappings and link property definitions. Otherwise, a
LinkSummaryNack message MUST be transmitted, indicating which
Interface mappings are not correct and/or which link properties are
not accepted. If a LinkSummaryNack message indicates that the
Interface_Id mappings are not correct and the link verification
procedure is enabled, the link verification process SHOULD be
repeated for all mismatched, free data links; if an allocated data
link has a mapping mismatch, it SHOULD be flagged and verified when
<span class="grey">Lang Standards Track [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
it becomes free. If a LinkSummaryNack message includes negotiable
parameters, then acceptable values for those parameters MUST be
included. If a LinkSummaryNack message is received and includes
negotiable parameters, then the initiator of the LinkSummary message
SHOULD send a new LinkSummary message. The new LinkSummary message
SHOULD include new values for the negotiable parameters. These
values SHOULD take into account the acceptable values received in the
LinkSummaryNack message.
It is possible that the LinkSummary message could grow quite large
due to the number of DATA LINK objects. An LMP implementation SHOULD
be able to fragment when transmitting LMP messages, and MUST be able
to re-assemble IP fragments when receiving LMP messages.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Verifying Link Connectivity</span>
In this section, an optional procedure is described that may be used
to verify the physical connectivity of the data links and dynamically
learn (i.e., discover) the TE link and Interface_Id associations.
The procedure SHOULD be done when establishing a TE link, and
subsequently, on a periodic basis for all unallocated (free) data
links of the TE link.
Support for this procedure is indicated by setting the "Link
Verification Supported" flag in the TE_LINK object of the LinkSummary
message.
If a BeginVerify message is received and link verification is not
supported for the TE link, then a BeginVerifyNack message MUST be
transmitted with Error Code indicating, "Link Verification Procedure
not supported for this TE Link."
A unique characteristic of transparent devices is that the data is
not modified or examined during normal operation. This
characteristic poses a challenge for validating the connectivity of
the data links and establishing the label mappings. Therefore, to
ensure proper verification of data link connectivity, it is required
that, until the data links are allocated for user traffic, they must
be opaque (i.e., lose their transparency). To support various
degrees of opaqueness (e.g., examining overhead bytes, terminating
the IP payload, etc.) and, hence, different mechanisms to transport
the Test messages, a Verify Transport Mechanism field is included in
the BeginVerify and BeginVerifyAck messages.
There is no requirement that all data links be terminated
simultaneously; but, at a minimum, the data links MUST be able to be
terminated one at a time. Furthermore, for the link verification
procedure it is assumed that the nodal architecture is designed so
<span class="grey">Lang Standards Track [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
that messages can be sent and received over any data link. Note that
this requirement is trivial for opaque devices since each data link
is electrically terminated and processed before being forwarded to
the next opaque device; but that in transparent devices this is an
additional requirement.
To interconnect two nodes, a TE link is defined between them, and at
a minimum, there MUST be at least one active control channel between
the nodes. For link verification, a TE link MUST include at least
one data link.
Once a control channel has been established between the two nodes,
data link connectivity can be verified by exchanging Test messages
over each of the data links specified in the TE link. It should be
noted that all LMP messages except the Test message are exchanged
over the control channels and that Hello messages continue to be
exchanged over each control channel during the data link verification
process. The Test message is sent over the data link that is being
verified. Data links are tested in the transmit direction because
they are unidirectional; therefore, it may be possible for both nodes
to (independently) exchange the Test messages simultaneously.
To initiate the link verification procedure, the local node MUST send
a BeginVerify message over a control channel. To limit the scope of
Link Verification to a particular TE Link, the local Link_Id MUST be
non-zero. If this field is zero, the data links can span multiple TE
links and/or they may comprise a TE link that is yet to be
configured. For the case where the local Link_Id field is zero, the
"Verify all Links" flag of the BEGIN_VERIFY object is used to
distinguish between data links that span multiple TE links and those
that have not yet been assigned to a TE link. Specifically,
verification of data links that span multiple TE links is indicated
by setting the local Link_Id field to zero and setting the "Verify
all Links" flag. Verification of data links that have not yet been
assigned to a TE link is indicated by setting the local Link_Id field
to zero and clearing the "Verify all Links" flag.
The BeginVerify message also contains the number of data links that
are to be verified; the interval (called VerifyInterval) at which the
Test messages will be sent; the encoding scheme and transport
mechanisms that are supported; the data rate for Test messages; and,
when the data links correspond to fibers, the wavelength identifier
over which the Test messages will be transmitted.
If the remote node receives a BeginVerify message and it is ready to
process Test messages, it MUST send a BeginVerifyAck message back to
the local node specifying the desired transport mechanism for the
TEST messages. The remote node includes a 32-bit, node-unique
<span class="grey">Lang Standards Track [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
Verify_Id in the BeginVerifyAck message. The Verify_Id MAY be
randomly selected; however, it MUST NOT overlap any other Verify_Id
currently being used by the node selecting it. The Verify_Id is then
used in all corresponding verification messages to differentiate them
from different LMP peers and/or parallel Test procedures. When the
local node receives a BeginVerifyAck message from the remote node, it
may begin testing the data links by transmitting periodic Test
messages over each data link. The Test message includes the
Verify_Id and the local Interface_Id for the associated data link.
The remote node MUST send either a TestStatusSuccess or a
TestStatusFailure message in response for each data link. A
TestStatusAck message MUST be sent to confirm receipt of the
TestStatusSuccess and TestStatusFailure messages. Unacknowledged
TestStatusSuccess and TestStatusFailure messages SHOULD be
retransmitted until the message is acknowledged or until a retry
limit is reached (see also <a href="#section-10">Section 10</a>).
It is also permissible for the sender to terminate the Test procedure
anytime after sending the BeginVerify message. An EndVerify message
SHOULD be sent for this purpose.
Message correlation is done using message identifiers and the
Verify_Id; this enables verification of data links, belonging to
different link bundles or LMP sessions, in parallel.
When the Test message is received, the received Interface_Id (used in
GMPLS as either a Port label or component link identifier, depending
on the configuration) is recorded and mapped to the local
Interface_Id for that data link, and a TestStatusSuccess message MUST
be sent. The TestStatusSuccess message includes the local
Interface_Id along with the Interface_Id and Verify_Id received in
the Test message. The receipt of a TestStatusSuccess message
indicates that the Test message was detected at the remote node and
the physical connectivity of the data link has been verified. When
the TestStatusSuccess message is received, the local node SHOULD mark
the data link as up and send a TestStatusAck message to the remote
node. If, however, the Test message is not detected at the remote
node within an observation period (specified by the
VerifyDeadInterval), the remote node MUST send a TestStatusFailure
message over the control channel, which indicates that the
verification of the physical connectivity of the data link has
failed. When the local node receives a TestStatusFailure message, it
SHOULD mark the data link as FAILED and send a TestStatusAck message
to the remote node. When all the data links on the list have been
tested, the local node SHOULD send an EndVerify message to indicate
that testing is complete on this link.
<span class="grey">Lang Standards Track [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
If the local/remote data link mappings are known, then the link
verification procedure can be optimized by testing the data links in
a defined order known to both nodes. The suggested criterion for
this ordering is by increasing the value of the remote Interface_Id.
Both the local and remote nodes SHOULD maintain the complete list of
Interface_Id mappings for correlation purposes.
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. Example of Link Connectivity Verification</span>
Figure 1 shows an example of the link verification scenario that is
executed when a link between Node A and Node B is added. In this
example, the TE link consists of three free ports (each transmitted
along a separate fiber) and is associated with a bi-directional
control channel (indicated by a "c"). The verification process is as
follows:
o A sends a BeginVerify message over the control channel to B,
indicating it will begin verifying the ports that form the TE
link. The LOCAL_LINK_ID object carried in the BeginVerify message
carries the identifier (IP address or interface index) that A
assigns to the link.
o Upon receipt of the BeginVerify message, B creates a Verify_Id and
binds it to the TE Link from A. This binding is used later when B
receives the Test messages from A, and these messages carry the
Verify_Id. B discovers the identifier (IP address or interface
index) that A assigns to the TE link by examining the
LOCAL_LINK_ID object carried in the received BeginVerify message.
(If the data ports are not yet assigned to the TE Link, the
binding is limited to the Node_Id of A.) In response to the
BeginVerify message, B sends the BeginVerifyAck message to A. The
LOCAL_LINK_ID object carried in the BeginVerifyAck message is used
to carry the identifier (IP address or interface index) that B
assigns to the TE link. The REMOTE_LINK_ID object carried in the
BeginVerifyAck message is used to bind the Link_Ids assigned by
both A and B. The Verify_Id is returned to A in the
BeginVerifyAck message over the control channel.
o When A receives the BeginVerifyAck message, it begins transmitting
periodic Test messages over the first port (Interface Id=1). The
Test message includes the Interface_Id for the port and the
Verify_Id that was assigned by B.
o When B receives the Test messages, it maps the received
Interface_Id to its own local Interface_Id = 10 and transmits a
TestStatusSuccess message over the control channel back to Node A.
The TestStatusSuccess message includes both the local and received
Interface_Ids for the port as well as the Verify_Id. The
<span class="grey">Lang Standards Track [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
Verify_Id is used to determine the local/remote TE link
identifiers (IP addresses or interface indices) to which the data
links belong.
o A will send a TestStatusAck message over the control channel back
to B, indicating it received the TestStatusSuccess message.
o The process is repeated until all of the ports are verified.
o At this point, A will send an EndVerify message over the control
channel to B, indicating that testing is complete.
o B will respond by sending an EndVerifyAck message over the control
channel back to A.
Note that this procedure can be used to "discover" the
connectivity of the data ports.
+---------------------+ +---------------------+
+ + + +
+ Node A +<-------- c --------->+ Node B +
+ + + +
+ + + +
+ 1 +--------------------->+ 10 +
+ + + +
+ + + +
+ 2 + /---->+ 11 +
+ + /----/ + +
+ + /---/ + +
+ 3 +----/ + 12 +
+ + + +
+ + + +
+ 4 +--------------------->+ 14 +
+ + + +
+---------------------+ +---------------------+
Figure 1: Example of link connectivity between Node A and Node B.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Fault Management</span>
In this section, an optional LMP procedure is described that is used
to manage failures by rapid notification of the status of one or more
data channels of a TE Link. The scope of this procedure is within a
TE link, and as such, the use of this procedure is negotiated as part
of the LinkSummary exchange. The procedure can be used to rapidly
isolate data link and TE link failures, and is designed to work for
both unidirectional and bi-directional LSPs.
<span class="grey">Lang Standards Track [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
An important implication of using transparent devices is that
traditional methods that are used to monitor the health of allocated
data links may no longer be appropriate. Instead of fault detection
being in layer 2 or layer 3, it is delegated to the physical layer
(i.e., loss of light or optical monitoring of the data).
Recall that a TE link connecting two nodes may consist of a number of
data links. If one or more data links fail between two nodes, a
mechanism must be used for rapid failure notification so that
appropriate protection/restoration mechanisms can be initiated. If
the failure is subsequently cleared, then a mechanism must be used to
notify that the failure is clear and the channel status is OK.
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. Fault Detection</span>
Fault detection should be handled at the layer closest to the
failure; for optical networks, this is the physical (optical) layer.
One measure of fault detection at the physical layer is detecting
loss of light (LOL). Other techniques for monitoring optical signals
are still being developed and will not be further considered in this
document. However, it should be clear that the mechanism used for
fault notification in LMP is independent of the mechanism used to
detect the failure, and simply relies on the fact that a failure is
detected.
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>. Fault Localization Procedure</span>
In some situations, a data link failure between two nodes is
propagated downstream such that all the downstream nodes detect the
failure without localizing the failure. To avoid multiple alarms
stemming from the same failure, LMP provides failure notification
through the ChannelStatus message. This message may be used to
indicate that a single data channel has failed, multiple data
channels have failed, or an entire TE link has failed. Failure
correlation is done locally at each node upon receipt of the failure
notification.
To localize a fault to a particular link between adjacent nodes, a
downstream node (downstream in terms of data flow) that detects data
link failures will send a ChannelStatus message to its upstream
neighbor indicating that a failure has been detected (bundling
together the notification of all the failed data links). An upstream
node that receives the ChannelStatus message MUST send a
ChannelStatusAck message to the downstream node indicating it has
received the ChannelStatus message. The upstream node should
correlate the failure to see if the failure is also detected locally
for the corresponding LSP(s). If, for example, the failure is clear
on the input of the upstream node or internally, then the upstream
<span class="grey">Lang Standards Track [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
node will have localized the failure. Once the failure is
correlated, the upstream node SHOULD send a ChannelStatus message to
the downstream node indicating that the channel is failed or is OK.
If a ChannelStatus message is not received by the downstream node, it
SHOULD send a ChannelStatusRequest message for the channel in
question. Once the failure has been localized, the signaling
protocols may be used to initiate span or path protection and
restoration procedures.
If all of the data links of a TE link have failed, then the upstream
node MAY be notified of the TE link failure without specifying each
data link of the failed TE link. This is done by sending failure
notification in a ChannelStatus message identifying the TE Link
without including the Interface_Ids in the CHANNEL_STATUS object.
<span class="h3"><a class="selflink" id="section-6.3" href="#section-6.3">6.3</a>. Examples of Fault Localization</span>
In Figure 2, a sample network is shown where four nodes are connected
in a linear array configuration. The control channels are bi-
directional and are labeled with a "c". All LSPs are also bi-
directional.
In the first example [see Fig. 2(a)], there is a failure on one
direction of the bi-directional LSP. Node 4 will detect the failure
and will send a ChannelStatus message to Node 3 indicating the
failure (e.g., LOL) to the corresponding upstream node. When Node 3
receives the ChannelStatus message from Node 4, it returns a
ChannelStatusAck message back to Node 4 and correlates the failure
locally. When Node 3 correlates the failure and verifies that the
failure is clear, it has localized the failure to the data link
between Node 3 and Node 4. At that time, Node 3 should send a
ChannelStatus message to Node 4 indicating that the failure has been
localized.
In the second example [see Fig. 2(b)], a single failure (e.g., fiber
cut) affects both directions of the bi-directional LSP. Node 2 (Node
3) will detect the failure of the upstream (downstream) direction and
send a ChannelStatus message to the upstream (in terms of data flow)
node indicating the failure (e.g., LOL). Simultaneously (ignoring
propagation delays), Node 1 (Node 4) will detect the failure on the
upstream (downstream) direction, and will send a ChannelStatus
message to the corresponding upstream (in terms of data flow) node
indicating the failure. Node 2 and Node 3 will have localized the
two directions of the failure.
<span class="grey">Lang Standards Track [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
+-------+ +-------+ +-------+ +-------+
+ Node1 + + Node2 + + Node3 + + Node4 +
+ +-- c ---+ +-- c ---+ +-- c ---+ +
----+---\ + + + + + + +
<---+---\\--+--------+-------+---\ + + + /--+--->
+ \--+--------+-------+---\\---+-------+---##---+---//--+----
+ + + + \---+-------+--------+---/ +
+ + + + + + (a) + +
----+-------+--------+---\ + + + + +
<---+-------+--------+---\\--+---##---+--\ + + +
+ + + \--+---##---+--\\ + + +
+ + + + (b) + \\--+--------+-------+--->
+ + + + + \--+--------+-------+----
+ + + + + + + +
+-------+ +-------+ +-------+ +-------+
Figure 2: Two types of data link failures are shown (indicated
by ## in the figure):
(A) a data link corresponding to the downstream direction of a
bi-directional LSP fails,
(B) two data links corresponding to both directions of a bi-
directional LSP fail. The control channel connecting two
nodes is indicated with a "c".
<span class="h3"><a class="selflink" id="section-6.4" href="#section-6.4">6.4</a>. Channel Activation Indication</span>
The ChannelStatus message may also be used to notify an LMP neighbor
that the data link should be actively monitored. This is called
Channel Activation Indication. This is particularly useful in
networks with transparent nodes where the status of data links may
need to be triggered using control channel messages. For example, if
a data link is pre-provisioned and the physical link fails after
verification and before inserting user traffic, a mechanism is needed
to indicate the data link should be active, otherwise the failure may
not be detectable.
The ChannelStatus message is used to indicate that a channel or group
of channels are now active. The ChannelStatusAck message MUST be
transmitted upon receipt of a ChannelStatus message. When a
ChannelStatus message is received, the corresponding data link(s)
MUST be put into the Active state. If upon putting them into the
Active state, a failure is detected, the ChannelStatus message SHOULD
be transmitted as described in <a href="#section-6.2">Section 6.2</a>.
<span class="grey">Lang Standards Track [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
<span class="h3"><a class="selflink" id="section-6.5" href="#section-6.5">6.5</a>. Channel Deactivation Indication</span>
The ChannelStatus message may also be used to notify an LMP neighbor
that the data link no longer needs to be actively monitored. This is
the counterpart to the Channel Active Indication.
When a ChannelStatus message is received with Channel Deactive
Indication, the corresponding data link(s) MUST be taken out of the
Active state.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Message_Id Usage</span>
The MESSAGE_ID and MESSAGE_ID_ACK objects are included in LMP
messages to support reliable message delivery. This section
describes the usage of these objects. The MESSAGE_ID and
MESSAGE_ID_ACK objects contain a Message_Id field.
Only one MESSAGE_ID/MESSAGE_ID_ACK object may be included in any LMP
message.
For control-channel-specific messages, the Message_Id field is within
the scope of the CC_Id. For TE link specific messages, the
Message_Id field is within the scope of the LMP adjacency.
The Message_Id field of the MESSAGE_ID object contains a generator-
selected value. This value MUST be monotonically increasing. A
value is considered to be previously used when it has been sent in an
LMP message with the same CC_Id (for control channel specific
messages) or LMP adjacency (for TE Link specific messages). The
Message_Id field of the MESSAGE_ID_ACK object contains the Message_Id
field of the message being acknowledged.
Unacknowledged messages sent with the MESSAGE_ID object SHOULD be
retransmitted until the message is acknowledged or until a retry
limit is reached (see also <a href="#section-10">Section 10</a>).
Note that the 32-bit Message_Id value may wrap. The following
expression may be used to test if a newly received Message_Id value
is less than a previously received value:
If ((int) old_id - (int) new_id > 0) {
New value is less than old value;
}
<span class="grey">Lang Standards Track [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
Nodes processing incoming messages SHOULD check to see if a newly
received message is out of order and can be ignored. Out-of-order
messages can be identified by examining the value in the Message_Id
field. If a message is determined to be out-of-order, that message
should be silently dropped.
If the message is a Config message, and the Message_Id value is less
than the largest Message_Id value previously received from the sender
for the CC_Id, then the message SHOULD be treated as being out-of-
order.
If the message is a LinkSummary message and the Message_Id value is
less than the largest Message_Id value previously received from the
sender for the TE Link, then the message SHOULD be treated as being
out-of-order.
If the message is a ChannelStatus message and the Message_Id value is
less than the largest Message_Id value previously received from the
sender for the specified TE link, then the receiver SHOULD check the
Message_Id value previously received for the state of each data
channel included in the ChannelStatus message. If the Message_Id
value is greater than the most recently received Message_Id value
associated with at least one of the data channels included in the
message, the message MUST NOT be treated as out of order; otherwise,
the message SHOULD be treated as being out of order. However, the
state of any data channel MUST NOT be updated if the Message_Id value
is less than the most recently received Message_Id value associated
with the data channel.
All other messages MUST NOT be treated as out-of-order.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Graceful Restart</span>
This section describes the mechanism to resynchronize the LMP state
after a control plane restart. A control plane restart may occur
when bringing up the first control channel after a control
communications failure. A control communications failure may be the
result of an LMP adjacency failure or a nodal failure wherein the LMP
control state is lost, but the data plane is unaffected. The latter
is detected by setting the "LMP Restart" bit in the Common Header of
the LMP messages. When the control plane fails due to the loss of
the control channel, the LMP link information should be retained. It
is possible that a node may be capable of retaining the LMP link
information across a nodal failure. However, in both cases the
status of the data channels MUST be synchronized.
<span class="grey">Lang Standards Track [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
It is assumed the Node_Id and Local Interface_Ids remain stable
across a control plane restart.
After the control plane of a node restarts, the control channel(s)
must be re-established using the procedures of <a href="#section-3.1">Section 3.1</a>. When
re-establishing control channels, the Config message SHOULD be sent
using the unicast IP source and destination addresses.
If the control plane failure was the result of a nodal failure where
the LMP control state is lost, then the "LMP Restart" flag MUST be
set in LMP messages until a Hello message is received with the
RcvSeqNum equal to the local TxSeqNum. This indicates that the
control channel is up and the LMP neighbor has detected the restart.
The following assumes that the LMP component restart only occurred on
one end of the TE Link. If the LMP component restart occurred on
both ends of the TE Link, the normal procedures for LinkSummary
should be used, as described in <a href="#section-4">Section 4</a>.
Once a control channel is up, the LMP neighbor MUST send a
LinkSummary message for each TE Link across the adjacency. All the
objects of the LinkSummary message MUST have the N-bit set to 0,
indicating that the parameters are non-negotiable. This provides the
local/remote Link_Id and Interface_Id mappings, the associated data
link parameters, and indication of which data links are currently
allocated to user traffic. When a node receives the LinkSummary
message, it checks its local configuration. If the node is capable
of retaining the LMP link information across a restart, it must
process the LinkSummary message as described in <a href="#section-4">Section 4</a> with the
exception that the allocated/de-allocated flag of the DATA_LINK
object received in the LinkSummary message MUST take precedence over
any local value. If, however, the node was not capable of retaining
the LMP link information across a restart, the node MUST accept the
data link parameters of the received LinkSummary message and respond
with a LinkSummaryAck message.
Upon completion of the LinkSummary exchange, the node that has
restarted the control plane SHOULD send a ChannelStatusRequest
message for that TE link. The node SHOULD also verify the
connectivity of all unallocated data channels.
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. Addressing</span>
All LMP messages are run over UDP with an LMP port number (except, in
some cases, the Test messages, which may be limited by the transport
mechanism for in-band messaging). The destination address of the IP
packet MAY be either the address learned in the Configuration
procedure (i.e., the Source IP address found in the IP header of the
<span class="grey">Lang Standards Track [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
received Config message), an IP address configured on the remote
node, or the Node_Id. The Config message is an exception as
described below.
The manner in which a Config message is addressed may depend on the
signaling transport mechanism. When the transport mechanism is a
point-to-point link, Config messages SHOULD be sent to the Multicast
address (224.0.0.1 or ff02::1). Otherwise, Config messages MUST be
sent to an IP address on the neighboring node. This may be
configured at both ends of the control channel or may be
automatically discovered.
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. Exponential Back-off Procedures</span>
This section is based on [<a href="./rfc2961" title=""RSVP Refresh Overhead Reduction Extensions"">RFC2961</a>] and provides exponential back-off
procedures for message retransmission. Implementations MUST use the
described procedures or their equivalent.
<span class="h3"><a class="selflink" id="section-10.1" href="#section-10.1">10.1</a>. Operation</span>
The following operation is one possible mechanism for exponential
back-off retransmission of unacknowledged LMP messages. The sending
node retransmits the message until an acknowledgement message is
received or until a retry limit is reached. When the sending node
receives the acknowledgement, retransmission of the message is
stopped. The interval between message retransmission is governed by
a rapid retransmission timer. The rapid retransmission timer starts
at a small interval and increases exponentially until it reaches a
threshold.
The following time parameters are useful to characterize the
procedures:
Rapid retransmission interval Ri:
Ri is the initial retransmission interval for unacknowledged
messages. After sending the message for the first time, the
sending node will schedule a retransmission after Ri milliseconds.
Rapid retry limit Rl:
Rl is the maximum number of times a message will be transmitted
without being acknowledged.
<span class="grey">Lang Standards Track [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
Increment value Delta:
Delta governs the speed with which the sender increases the
retransmission interval. The ratio of two successive
retransmission intervals is (1 + Delta).
Suggested default values for an initial retransmission interval (Ri)
of 500 ms are a power of 2 exponential back-off (Delta = 1) and a
retry limit of 3.
<span class="h3"><a class="selflink" id="section-10.2" href="#section-10.2">10.2</a>. Retransmission Algorithm</span>
After a node transmits a message requiring acknowledgement, it should
immediately schedule a retransmission after Ri seconds. If a
corresponding acknowledgement message is received before Ri seconds,
then message retransmission SHOULD be canceled. Otherwise, it will
retransmit the message after (1+Delta)*Ri seconds. The
retransmission will continue until either an appropriate
acknowledgement message is received or the rapid retry limit, Rl, has
been reached.
A sending node can use the following algorithm when transmitting a
message that requires acknowledgement:
Prior to initial transmission, initialize Rk = Ri and Rn = 0.
while (Rn++ < Rl) {
transmit the message;
wake up after Rk milliseconds;
Rk = Rk * (1 + Delta);
}
/* acknowledged message or no reply from receiver and Rl
reached*/
do any needed clean up;
exit;
Asynchronously, when a sending node receives a corresponding
acknowledgment message, it will change the retry count, Rn, to Rl.
Note that the transmitting node does not advertise or negotiate the
use of the described exponential back-off procedures in the Config or
LinkSummary messages.
<span class="grey">Lang Standards Track [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
<span class="h2"><a class="selflink" id="section-11" href="#section-11">11</a>. LMP Finite State Machines</span>
<span class="h3"><a class="selflink" id="section-11.1" href="#section-11.1">11.1</a>. Control Channel FSM</span>
The control channel FSM defines the states and logics of operation of
an LMP control channel.
<span class="h4"><a class="selflink" id="section-11.1.1" href="#section-11.1.1">11.1.1</a>. Control Channel States</span>
A control channel can be in one of the states described below. Every
state corresponds to a certain condition of the control channel and
is usually associated with a specific type of LMP message that is
periodically transmitted to the far end.
Down: This is the initial control channel state. In this
state, no attempt is being made to bring the control
channel up and no LMP messages are sent. The control
channel parameters should be set to the initial values.
ConfSnd: The control channel is in the parameter negotiation
state. In this state the node periodically sends a
Config message, and is expecting the other side to reply
with either a ConfigAck or ConfigNack message. The FSM
does not transition into the Active state until the
remote side positively acknowledges the parameters.
ConfRcv: The control channel is in the parameter negotiation
state. In this state, the node is waiting for acceptable
configuration parameters from the remote side. Once such
parameters are received and acknowledged, the FSM can
transition to the Active state.
Active: In this state the node periodically sends a Hello message
and is waiting to receive a valid Hello message. Once a
valid Hello message is received, it can transition to the
up state.
Up: The CC is in an operational state. The node receives
valid Hello messages and sends Hello messages.
GoingDown: A CC may go into this state because of administrative
action. While a CC is in this state, the node sets the
ControlChannelDown bit in all the messages it sends.
<span class="grey">Lang Standards Track [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
<span class="h4"><a class="selflink" id="section-11.1.2" href="#section-11.1.2">11.1.2</a>. Control Channel Events</span>
Operation of the LMP control channel is described in terms of FSM
states and events. Control channel events are generated by the
underlying protocols and software modules, as well as by the packet
processing routines and FSMs of associated TE links. Every event has
its number and a symbolic name. Description of possible control
channel events is given below.
1 : evBringUp: This is an externally triggered event indicating
that the control channel negotiation should begin.
This event, for example, may be triggered by an
operator command, by the successful completion of a
control channel bootstrap procedure, or by
configuration. Depending on the configuration,
this will trigger either
1a) the sending of a Config message,
1b) a period of waiting to receive a Config
message from the remote node.
2 : evCCDn: This event is generated when there is indication
that the control channel is no longer available.
3 : evConfDone: This event indicates a ConfigAck message has been
received, acknowledging the Config parameters.
4 : evConfErr: This event indicates a ConfigNack message has been
received, rejecting the Config parameters.
5 : evNewConfOK: New Config message was received from neighbor and
positively acknowledged.
6 : evNewConfErr: New Config message was received from neighbor and
rejected with a ConfigNack message.
7 : evContenWin: New Config message was received from neighbor at
the same time a Config message was sent to the
neighbor. The local node wins the contention. As
a result, the received Config message is ignored.
8 : evContenLost: New Config message was received from neighbor at
the same time a Config message was sent to the
neighbor. The local node loses the contention.
8a) The Config message is positively
acknowledged.
8b) The Config message is negatively
acknowledged.
<span class="grey">Lang Standards Track [Page 29]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-30" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
9 : evAdminDown: The administrator has requested that the control
channel is brought down administratively.
10: evNbrGoesDn: A packet with ControlChannelDown flag is received
from the neighbor.
11: evHelloRcvd: A Hello packet with expected SeqNum has been
received.
12: evHoldTimer: The HelloDeadInterval timer has expired indicating
that no Hello packet has been received. This moves
the control channel back into the Negotiation
state, and depending on the local configuration,
this will trigger either
12a) the sending of periodic Config messages,
12b) a period of waiting to receive Config
messages from the remote node.
13: evSeqNumErr: A Hello with unexpected SeqNum received and
discarded.
14: evReconfig: Control channel parameters have been reconfigured
and require renegotiation.
15: evConfRet: A retransmission timer has expired and a Config
message is resent.
16: evHelloRet: The HelloInterval timer has expired and a Hello
packet is sent.
17: evDownTimer: A timer has expired and no messages have been
received with the ControlChannelDown flag set.
<span class="h4"><a class="selflink" id="section-11.1.3" href="#section-11.1.3">11.1.3</a>. Control Channel FSM Description</span>
Figure 3 illustrates operation of the control channel FSM in a form
of FSM state transition diagram.
<span class="grey">Lang Standards Track [Page 30]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-31" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
+--------+
+----------------->| |<--------------+
| +--------->| Down |<----------+ |
| |+---------| |<-------+ | |
| || +--------+ | | |
| || | ^ 2,9| 2| 2|
| ||1b 1a| | | | |
| || v |2,9 | | |
| || +--------+ | | |
| || +->| |<------+| | |
| || 4,7,| |ConfSnd | || | |
| || 14,15+--| |<----+ || | |
| || +--------+ | || | |
| || 3,8a| | | || | |
| || +---------+ |8b 14,12a| || | |
| || | v | || | |
| |+-|------>+--------+ | || | |
| | | +->| |-----|-|+ | |
| | |6,14| |ConfRcv | | | | |
| | | +--| |<--+ | | | |
| | | +--------+ | | | | |
| | | 5| ^ | | | | |
| | +---------+ | | | | | | |
| | | | | | | | | |
| | v v |6,12b | | | | |
| |10 +--------+ | | | | |
| +----------| | | | | | |
| | +--| Active |---|-+ | | |
10,17| | 5,16| | |-------|---+ |
+-------+ 9 | 13 +->| | | | |
| Going |<--|----------+--------+ | | |
| Down | | 11| ^ | | |
+-------+ | | |5 | | |
^ | v | 6,12b| | |
|9 |10 +--------+ | |12a,14 |
| +----------| |---+ | |
| | Up |-------+ |
+------------------| |---------------+
+--------+
| ^
| |
+---+
11,13,16
Figure 3: Control Channel FSM
<span class="grey">Lang Standards Track [Page 31]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-32" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
Event evCCDn always forces the FSM to the down state. Events
evHoldTimer and evReconfig always force the FSM to the Negotiation
state (either ConfSnd or ConfRcv).
<span class="h3"><a class="selflink" id="section-11.2" href="#section-11.2">11.2</a>. TE Link FSM</span>
The TE Link FSM defines the states and logics of operation of the LMP
TE Link.
<span class="h4"><a class="selflink" id="section-11.2.1" href="#section-11.2.1">11.2.1</a>. TE Link States</span>
An LMP TE link can be in one of the states described below. Every
state corresponds to a certain condition of the TE link and is
usually associated with a specific type of LMP message that is
periodically transmitted to the far end via the associated control
channel or in-band via the data links.
Down: There are no data links allocated to the TE link.
Init: Data links have been allocated to the TE link, but the
configuration has not yet been synchronized with the LMP
neighbor. The LinkSummary message is periodically
transmitted to the LMP neighbor.
Up: This is the normal operational state of the TE link. At
least one LMP control channel is required to be
operational between the nodes sharing the TE link. As
part of normal operation, the LinkSummary message may be
periodically transmitted to the LMP neighbor or generated
by an external request.
Degraded: In this state, all LMP control channels are down, but the
TE link still includes some data links that are allocated
to user traffic.
<span class="h4"><a class="selflink" id="section-11.2.2" href="#section-11.2.2">11.2.2</a>. TE Link Events</span>
Operation of the LMP TE link is described in terms of FSM states and
events. TE Link events are generated by the packet processing
routines and by the FSMs of the associated control channel(s) and the
data links. Every event has its number and a symbolic name.
Descriptions of possible events are given below.
1 : evDCUp: One or more data channels have been enabled and
assigned to the TE Link.
2 : evSumAck: LinkSummary message received and positively
acknowledged.
<span class="grey">Lang Standards Track [Page 32]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-33" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
3 : evSumNack: LinkSummary message received and negatively
acknowledged.
4 : evRcvAck: LinkSummaryAck message received acknowledging the
TE Link Configuration.
5 : evRcvNack: LinkSummaryNack message received.
6 : evSumRet: Retransmission timer has expired and LinkSummary
message is resent.
7 : evCCUp: First active control channel goes up.
8 : evCCDown: Last active control channel goes down.
9 : evDCDown: Last data channel of TE Link has been removed.
<span class="h4"><a class="selflink" id="section-11.2.3" href="#section-11.2.3">11.2.3</a>. TE Link FSM Description</span>
Figure 4 illustrates operation of the LMP TE Link FSM in a form of
FSM state transition diagram.
<span class="grey">Lang Standards Track [Page 33]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-34" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
3,7,8
+--+
| |
| v
+--------+
| |
+------------>| Down |<---------+
| | | |
| +--------+ |
| | ^ |
| 1| |9 |
| v | |
| +--------+ |
| | |<-+ |
| | Init | |3,5,6 |9
| | |--+ 7,8 |
9| +--------+ |
| | |
| 2,4| |
| v |
+--------+ 7 +--------+ |
| |------>| |----------+
| Deg | | Up |
| |<------| |
+--------+ 8 +--------+
| ^
| |
+--+
2,3,4,5,6
Figure 4: LMP TE Link FSM
In the above FSM, the sub-states that may be implemented when the
link verification procedure is used have been omitted.
<span class="h3"><a class="selflink" id="section-11.3" href="#section-11.3">11.3</a>. Data Link FSM</span>
The data link FSM defines the states and logics of operation of a
data link within an LMP TE link. Operation of a data link is
described in terms of FSM states and events. Data links can either
be in the active (transmitting) mode, where Test messages are
transmitted from them, or the passive (receiving) mode, where Test
messages are received through them. For clarity, separate FSMs are
defined for the active/passive data links; however, a single set of
data link states and events are defined.
<span class="grey">Lang Standards Track [Page 34]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-35" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
<span class="h4"><a class="selflink" id="section-11.3.1" href="#section-11.3.1">11.3.1</a>. Data Link States</span>
Any data link can be in one of the states described below. Every
state corresponds to a certain condition of the data link.
Down: The data link has not been put in the resource pool
(i.e., the link is not 'in service')
Test: The data link is being tested. An LMP Test message is
periodically sent through the link.
PasvTest: The data link is being checked for incoming test
messages.
Up/Free: The link has been successfully tested and is now put
in the pool of resources (in-service). The link has
not yet been allocated to data traffic.
Up/Alloc: The link is up and has been allocated for data
traffic.
<span class="h4"><a class="selflink" id="section-11.3.2" href="#section-11.3.2">11.3.2</a>. Data Link Events</span>
Data link events are generated by the packet processing routines and
by the FSMs of the associated control channel and the TE link.
Every event has its number and a symbolic name. Description of
possible data link events is given below:
1 :evCCUp: First active control channel goes up.
2 :evCCDown: LMP neighbor connectivity is lost. This indicates
the last LMP control channel has failed between
neighboring nodes.
3 :evStartTst: This is an external event that triggers the
sending of Test messages over the data link.
4 :evStartPsv: This is an external event that triggers the
listening for Test messages over the data link.
5 :evTestOK: Link verification was successful and the link can
be used for path establishment.
(a) This event indicates the Link Verification
procedure (see <a href="#section-5">Section 5</a>) was successful
for this data link and a TestStatusSuccess
message was received over the control
channel.
<span class="grey">Lang Standards Track [Page 35]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-36" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
(b) This event indicates the link is ready for
path establishment, but the Link
Verification procedure was not used. For
in-band signaling of the control channel,
the control channel establishment may be
sufficient to verify the link.
6 :evTestRcv: Test message was received over the data port and a
TestStatusSuccess message is transmitted over the
control channel.
7 :evTestFail: Link verification returned negative results. This
could be because (a) a TestStatusFailure message
was received, or (b) the Verification procedure
has ended without receiving a TestStatusSuccess or
TestStatusFailure message for the data link.
8 :evPsvTestFail: Link verification returned negative results. This
indicates that a Test message was not detected and
either (a) the VerifyDeadInterval has expired or
(b) the Verification procedure has ended and the
VerifyDeadInterval has not yet expired.
9 :evLnkAlloc: The data link has been allocated.
10:evLnkDealloc: The data link has been de-allocated.
11:evTestRet: A retransmission timer has expired and the Test
message is resent.
12:evSummaryFail: The LinkSummary did not match for this data port.
13:evLocalizeFail: A Failure has been localized to this data link.
14:evdcDown: The data channel is no longer available.
<span class="grey">Lang Standards Track [Page 36]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-37" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
<span class="h4"><a class="selflink" id="section-11.3.3" href="#section-11.3.3">11.3.3</a>. Active Data Link FSM Description</span>
Figure 5 illustrates operation of the LMP active data link FSM in a
form of FSM state transition diagram.
+------+
| |<-------+
+--------->| Down | |
| +----| |<-----+ |
| | +------+ | |
| |5b 3| ^ | |
| | | |7 | |
| | v | | |
| | +------+ | |
| | | |<-+ | |
| | | Test | |11 | |
| | | |--+ | |
| | +------+ | |
| | 5a| 3^ | |
| | | | | |
| | v | | |
|12 | +---------+ | |
| +-->| |14 | |
| | Up/Free |----+ |
+---------| | |
+---------+ |
9| ^ |
| | |
v |10 |
+---------+ |
| |13 |
|Up/Alloc |------+
| |
+---------+
Figure 5: Active LMP Data Link FSM
<span class="grey">Lang Standards Track [Page 37]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-38" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
<span class="h4"><a class="selflink" id="section-11.3.4" href="#section-11.3.4">11.3.4</a>. Passive Data Link FSM Description</span>
Figure 6 illustrates operation of the LMP passive data link FSM in a
form of FSM state transition diagram.
+------+
| |<------+
+---------->| Down | |
| +-----| |<----+ |
| | +------+ | |
| |5b 4| ^ | |
| | | |8 | |
| | v | | |
| | +----------+ | |
| | | PasvTest | | |
| | +----------+ | |
| | 6| 4^ | |
| | | | | |
| | v | | |
|12 | +---------+ | |
| +--->| Up/Free |14 | |
| | |---+ |
+----------| | |
+---------+ |
9| ^ |
| | |
v |10 |
+---------+ |
| |13 |
|Up/Alloc |-----+
| |
+---------+
Figure 6: Passive LMP Data Link FSM
<span class="h2"><a class="selflink" id="section-12" href="#section-12">12</a>. LMP Message Formats</span>
All LMP messages (except, in some cases, the Test messages, which are
limited by the transport mechanism for in-band messaging) are run
over UDP with an LMP port number (701).
<span class="grey">Lang Standards Track [Page 38]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-39" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
<span class="h3"><a class="selflink" id="section-12.1" href="#section-12.1">12.1</a>. Common Header</span>
In addition to the UDP header and standard IP header, all LMP
messages (except, in some cases, the Test messages which may be
limited by the transport mechanism for in-band messaging) have the
following common header:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Vers | (Reserved) | Flags | Msg Type |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LMP Length | (Reserved) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Reserved field should be sent as zero and ignored on receipt.
All values are defined in network byte order (i.e., big-endian byte
order).
Vers: 4 bits
Protocol version number. This is version 1.
Flags: 8 bits
The following bit-values are defined. All other bits are reserved
and should be sent as zero and ignored on receipt.
0x01: ControlChannelDown
0x02: LMP Restart
This bit is set to indicate that a nodal failure has occurred
and the LMP control state has been lost. This flag may be
reset to 0 when a Hello message is received with RcvSeqNum
equal to the local TxSeqNum.
Msg Type: 8 bits
The following values are defined. All other values are reserved
1 = Config
2 = ConfigAck
3 = ConfigNack
<span class="grey">Lang Standards Track [Page 39]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-40" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
4 = Hello
5 = BeginVerify
6 = BeginVerifyAck
7 = BeginVerifyNack
8 = EndVerify
9 = EndVerifyAck
10 = Test
11 = TestStatusSuccess
12 = TestStatusFailure
13 = TestStatusAck
14 = LinkSummary
15 = LinkSummaryAck
16 = LinkSummaryNack
17 = ChannelStatus
18 = ChannelStatusAck
19 = ChannelStatusRequest
20 = ChannelStatusResponse
All of the messages are sent over the control channel EXCEPT the
Test message, which is sent over the data link that is being
tested.
LMP Length: 16 bits
The total length of this LMP message in bytes, including the
common header and any variable-length objects that follow.
<span class="grey">Lang Standards Track [Page 40]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-41" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
<span class="h3"><a class="selflink" id="section-12.2" href="#section-12.2">12.2</a>. LMP Object Format</span>
LMP messages are built using objects. Each object is identified by
its Object Class and Class-type. Each object has a name, which is
always capitalized in this document. LMP objects can be either
negotiable or non-negotiable (identified by the N bit in the object
header). Negotiable objects can be used to let the devices agree on
certain values. Non-negotiable objects are used for announcement of
specific values that do not need or do not allow negotiation.
All values are defined in network byte order (i.e., big-endian byte
order).
The format of the LMP object is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|N| C-Type | Class | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
// (object contents) //
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
N: 1 bit
The N flag indicates if the object is negotiable (N=1) or non-
negotiable (N=0).
C-Type: 7 bits
Class-type, unique within an Object Class. Values are defined in
<a href="#section-13">Section 13</a>.
Class: 8 bits
The Class indicates the object type. Each object has a name,
which is always capitalized in this document.
Length: 16 bits
The Length field indicates the length of the object in bytes,
including the N, C-Type, Class, and Length fields.
<span class="grey">Lang Standards Track [Page 41]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-42" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
<span class="h3"><a class="selflink" id="section-12.3" href="#section-12.3">12.3</a>. Parameter Negotiation Messages</span>
<span class="h4"><a class="selflink" id="section-12.3.1" href="#section-12.3.1">12.3.1</a>. Config Message (Msg Type = 1)</span>
The Config message is used in the control channel negotiation phase
of LMP. The contents of the Config message are built using LMP
objects. The format of the Config message is as follows:
<Config Message> ::= <Common Header> <LOCAL_CCID> <MESSAGE_ID>
<LOCAL_NODE_ID> <CONFIG>
The above transmission order SHOULD be followed.
The MESSAGE_ID object is within the scope of the LOCAL_CCID object.
The Config message MUST be periodically transmitted until (1) it
receives a ConfigAck or ConfigNack message, (2) a retry limit has
been reached and no ConfigAck or ConfigNack message has been
received, or (3) it receives a Config message from the remote node
and has lost the contention (e.g., the Node_Id of the remote node is
higher than the Node_Id of the local node). Both the retransmission
interval and the retry limit are local configuration parameters.
<span class="h4"><a class="selflink" id="section-12.3.2" href="#section-12.3.2">12.3.2</a>. ConfigAck Message (Msg Type = 2)</span>
The ConfigAck message is used to acknowledge receipt of the Config
message and indicate agreement on all parameters.
<ConfigAck Message> ::= <Common Header> <LOCAL_CCID> <LOCAL_NODE_ID>
<REMOTE_CCID> <MESSAGE_ID_ACK>
<REMOTE_NODE_ID>
The above transmission order SHOULD be followed.
The contents of the REMOTE_CCID, MESSAGE_ID_ACK, and REMOTE_NODE_ID
objects MUST be obtained from the Config message being acknowledged.
<span class="h4"><a class="selflink" id="section-12.3.3" href="#section-12.3.3">12.3.3</a>. ConfigNack Message (Msg Type = 3)</span>
The ConfigNack message is used to acknowledge receipt of the Config
message and indicate disagreement on non-negotiable parameters or
propose other values for negotiable parameters. Parameters where
agreement was reached MUST NOT be included in the ConfigNack Message.
The format of the ConfigNack message is as follows:
<ConfigNack Message> ::= <Common Header> <LOCAL_CCID>
<LOCAL_NODE_ID> <REMOTE_CCID>
<MESSAGE_ID_ACK> <REMOTE_NODE_ID> <CONFIG>
<span class="grey">Lang Standards Track [Page 42]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-43" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
The above transmission order SHOULD be followed.
The contents of the REMOTE_CCID, MESSAGE_ID_ACK, and REMOTE_NODE_ID
objects MUST be obtained from the Config message being negatively
acknowledged.
It is possible that multiple parameters may be invalid in the Config
message.
If a negotiable CONFIG object is included in the ConfigNack message,
it MUST include acceptable values for the parameters.
If the ConfigNack message includes CONFIG objects for non-negotiable
parameters, they MUST be copied from the CONFIG objects received in
the Config message.
If the ConfigNack message is received and only includes CONFIG
objects that are negotiable, then a new Config message SHOULD be
sent. The values in the CONFIG object of the new Config message
SHOULD take into account the acceptable values included in the
ConfigNack message.
If a node receives a Config message and recognizes the CONFIG object,
but does not recognize the C-Type, a ConfigNack message including the
unknown CONFIG object MUST be sent.
<span class="h3"><a class="selflink" id="section-12.4" href="#section-12.4">12.4</a>. Hello Message (Msg Type = 4)</span>
The format of the Hello message is as follows:
<Hello Message> ::= <Common Header> <LOCAL_CCID> <HELLO>
The above transmission order SHOULD be followed.
The Hello message MUST be periodically transmitted at least once
every HelloInterval msec. If no Hello message is received within the
HelloDeadInterval, the control channel is assumed to have failed.
<span class="h3"><a class="selflink" id="section-12.5" href="#section-12.5">12.5</a>. Link Verification Messages</span>
<span class="h4"><a class="selflink" id="section-12.5.1" href="#section-12.5.1">12.5.1</a>. BeginVerify Message (Msg Type = 5)</span>
The BeginVerify message is sent over the control channel and is used
to initiate the link verification process. The format is as follows:
<BeginVerify Message> ::= <Common Header> <LOCAL_LINK_ID>
<MESSAGE_ID> [<REMOTE_LINK_ID>]
<BEGIN_VERIFY>
<span class="grey">Lang Standards Track [Page 43]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-44" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
The above transmission order SHOULD be followed.
To limit the scope of Link Verification to a particular TE Link, the
Link_Id field of the LOCAL_LINK_ID object MUST be non-zero. If this
field is zero, the data links can span multiple TE links and/or they
may comprise a TE link that is yet to be configured. In the special
case where the local Link_Id field is zero, the "Verify all Links"
flag of the BEGIN_VERIFY object is used to distinguish between data
links that span multiple TE links and those that have not yet been
assigned to a TE link (see <a href="#section-5">Section 5</a>).
The REMOTE_LINK_ID object may be included if the local/remote Link_Id
mapping is known.
The Link_Id field of the REMOTE_LINK_ID object MUST be non-zero if
included.
The BeginVerify message MUST be periodically transmitted until (1)
the node receives either a BeginVerifyAck or BeginVerifyNack message
to accept or reject the verify process or (2) a retry limit has been
reached and no BeginVerifyAck or BeginVerifyNack message has been
received. Both the retransmission interval and the retry limit are
local configuration parameters.
<span class="h4"><a class="selflink" id="section-12.5.2" href="#section-12.5.2">12.5.2</a>. BeginVerifyAck Message (Msg Type = 6)</span>
When a BeginVerify message is received and Test messages are ready to
be processed, a BeginVerifyAck message MUST be transmitted.
<BeginVerifyAck Message> ::= <Common Header> [<LOCAL_LINK_ID>]
<MESSAGE_ID_ACK> <BEGIN_VERIFY_ACK>
<VERIFY_ID>
The above transmission order SHOULD be followed.
The LOCAL_LINK_ID object may be included if the local/remote Link_Id
mapping is known or learned through the BeginVerify message.
The Link_Id field of the LOCAL_LINK_ID MUST be non-zero if included.
The contents of the MESSAGE_ID_ACK object MUST be obtained from the
BeginVerify message being acknowledged.
The VERIFY_ID object contains a node-unique value that is assigned by
the generator of the BeginVerifyAck message. This value is used to
uniquely identify the Verification process from multiple LMP
neighbors and/or parallel Test procedures between the same LMP
neighbors.
<span class="grey">Lang Standards Track [Page 44]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-45" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
<span class="h4"><a class="selflink" id="section-12.5.3" href="#section-12.5.3">12.5.3</a>. BeginVerifyNack Message (Msg Type = 7)</span>
If a BeginVerify message is received and a node is unwilling or
unable to begin the Verification procedure, a BeginVerifyNack message
MUST be transmitted.
<BeginVerifyNack Message> ::= <Common Header> [<LOCAL_LINK_ID>]
<MESSAGE_ID_ACK> <ERROR_CODE>
The above transmission order SHOULD be followed.
The contents of the MESSAGE_ID_ACK object MUST be obtained from the
BeginVerify message being negatively acknowledged.
If the Verification process is not supported, the ERROR_CODE MUST
indicate "Link Verification Procedure not supported".
If Verification is supported, but the node is unable to begin the
procedure, the ERROR_CODE MUST indicate "Unwilling to verify". If a
BeginVerifyNack message is received with such an ERROR_CODE, the node
that originated the BeginVerify SHOULD schedule a BeginVerify
retransmission after Rf seconds, where Rf is a locally defined
parameter.
If the Verification Transport mechanism is not supported, the
ERROR_CODE MUST indicate "Unsupported verification transport
mechanism".
If remote configuration of the Link_Id is not supported and the
content of the REMOTE_LINK_ID object (included in the BeginVerify
message) does not match any configured values, the ERROR_CODE MUST
indicate "Link_Id configuration error".
If a node receives a BeginVerify message and recognizes the
BEGIN_VERIFY object but does not recognize the C-Type, the ERROR_CODE
MUST indicate "Unknown object C-Type".
<span class="h4"><a class="selflink" id="section-12.5.4" href="#section-12.5.4">12.5.4</a>. EndVerify Message (Msg Type = 8)</span>
The EndVerify message is sent over the control channel and is used to
terminate the link verification process. The EndVerify message may
be sent any time the initiating node desires to end the Verify
procedure. The format is as follows:
<EndVerify Message> ::=<Common Header> <MESSAGE_ID> <VERIFY_ID>
The above transmission order SHOULD be followed.
<span class="grey">Lang Standards Track [Page 45]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-46" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
The EndVerify message will be periodically transmitted until (1) an
EndVerifyAck message has been received or (2) a retry limit has been
reached and no EndVerifyAck message has been received. Both the
retransmission interval and the retry limit are local configuration
parameters.
<span class="h4"><a class="selflink" id="section-12.5.5" href="#section-12.5.5">12.5.5</a>. EndVerifyAck Message (Msg Type =9)</span>
The EndVerifyAck message is sent over the control channel and is used
to acknowledge the termination of the link verification process. The
format is as follows:
<EndVerifyAck Message> ::= <Common Header> <MESSAGE_ID_ACK>
<VERIFY_ID>
The above transmission order SHOULD be followed.
The contents of the MESSAGE_ID_ACK object MUST be obtained from the
EndVerify message being acknowledged.
<span class="h4"><a class="selflink" id="section-12.5.6" href="#section-12.5.6">12.5.6</a>. Test Message (Msg Type = 10)</span>
The Test message is transmitted over the data link and is used to
verify its physical connectivity. Unless explicitly stated, these
messages MUST be transmitted over UDP like all other LMP messages.
The format of the Test messages is as follows:
<Test Message> ::= <Common Header> <LOCAL_INTERFACE_ID> <VERIFY_ID>
The above transmission order SHOULD be followed.
Note that this message is sent over a data link and NOT over the
control channel. The transport mechanism for the Test message is
negotiated using the Verify Transport Mechanism field of the
BEGIN_VERIFY object and the Verify Transport Response field of the
BEGIN_VERIFY_ACK object (see Sections <a href="#section-13.8">13.8</a> and <a href="#section-13.9">13.9</a>).
The local (transmitting) node sends a given Test message periodically
(at least once every VerifyInterval ms) on the corresponding data
link until (1) it receives a correlating TestStatusSuccess or
TestStatusFailure message on the control channel from the remote
(receiving) node or (2) all active control channels between the two
nodes have failed. The remote node will send a given TestStatus
message periodically over the control channel until it receives
either a correlating TestStatusAck message or an EndVerify message.
<span class="grey">Lang Standards Track [Page 46]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-47" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
<span class="h4"><a class="selflink" id="section-12.5.7" href="#section-12.5.7">12.5.7</a>. TestStatusSuccess Message (Msg Type = 11)</span>
The TestStatusSuccess message is transmitted over the control channel
and is used to transmit the mapping between the local Interface_Id
and the Interface_Id that was received in the Test message.
<TestStatusSuccess Message> ::= <Common Header> <LOCAL_LINK_ID>
<MESSAGE_ID> <LOCAL_INTERFACE_ID>
<REMOTE_INTERFACE_ID> <VERIFY_ID>
The above transmission order SHOULD be followed.
The contents of the REMOTE_INTERFACE_ID object MUST be obtained from
the corresponding Test message being positively acknowledged.
<span class="h4"><a class="selflink" id="section-12.5.8" href="#section-12.5.8">12.5.8</a>. TestStatusFailure Message (Msg Type = 12)</span>
The TestStatusFailure message is transmitted over the control channel
and is used to indicate that the Test message was not received.
<TestStatusFailure Message> ::= <Common Header> <MESSAGE_ID>
<VERIFY_ID>
The above transmission order SHOULD be followed.
<span class="h4"><a class="selflink" id="section-12.5.9" href="#section-12.5.9">12.5.9</a>. TestStatusAck Message (Msg Type = 13)</span>
The TestStatusAck message is used to acknowledge receipt of the
TestStatusSuccess or TestStatusFailure messages.
<TestStatusAck Message> ::= <Common Header> <MESSAGE_ID_ACK>
<VERIFY_ID>
The above transmission order SHOULD be followed.
The contents of the MESSAGE_ID_ACK object MUST be obtained from the
TestStatusSuccess or TestStatusFailure message being acknowledged.
<span class="h3"><a class="selflink" id="section-12.6" href="#section-12.6">12.6</a>. Link Summary Messages</span>
<span class="h4"><a class="selflink" id="section-12.6.1" href="#section-12.6.1">12.6.1</a>. LinkSummary Message (Msg Type = 14)</span>
The LinkSummary message is used to synchronize the Interface_Ids and
correlate the properties of the TE link. The format of the
LinkSummary message is as follows:
<LinkSummary Message> ::= <Common Header> <MESSAGE_ID> <TE_LINK>
<DATA_LINK> [<DATA_LINK>...]
<span class="grey">Lang Standards Track [Page 47]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-48" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
The above transmission order SHOULD be followed.
The LinkSummary message can be exchanged any time a link is not in
the Verification process. The LinkSummary message MUST be
periodically transmitted until (1) the node receives a LinkSummaryAck
or LinkSummaryNack message or (2) a retry limit has been reached and
no LinkSummaryAck or LinkSummaryNack message has been received. Both
the retransmission interval and the retry limit are local
configuration parameters.
<span class="h4"><a class="selflink" id="section-12.6.2" href="#section-12.6.2">12.6.2</a>. LinkSummaryAck Message (Msg Type = 15)</span>
The LinkSummaryAck message is used to indicate agreement on the
Interface_Id synchronization and acceptance/agreement on all the link
parameters. It is on the reception of this message that the local
node makes the Link_Id associations.
<LinkSummaryAck Message> ::= <Common Header> <MESSAGE_ID_ACK>
The above transmission order SHOULD be followed.
<span class="h4"><a class="selflink" id="section-12.6.3" href="#section-12.6.3">12.6.3</a>. LinkSummaryNack Message (Msg Type = 16)</span>
The LinkSummaryNack message is used to indicate disagreement on non-
negotiated parameters or propose other values for negotiable
parameters. Parameters on which agreement was reached MUST NOT be
included in the LinkSummaryNack message.
<LinkSummaryNack Message> ::= <Common Header> <MESSAGE_ID_ACK>
<ERROR_CODE> [<DATA_LINK>...]
The above transmission order SHOULD be followed.
The DATA_LINK objects MUST include acceptable values for all
negotiable parameters. If the LinkSummaryNack includes DATA_LINK
objects for non-negotiable parameters, they MUST be copied from the
DATA_LINK objects received in the LinkSummary message.
If the LinkSummaryNack message is received and only includes
negotiable parameters, then a new LinkSummary message SHOULD be sent.
The values received in the new LinkSummary message SHOULD take into
account the acceptable parameters included in the LinkSummaryNack
message.
If the LinkSummary message is received with unacceptable, non-
negotiable parameters, the ERROR_CODE MUST indicate "Unacceptable
non-negotiable LINK_SUMMARY parameters."
<span class="grey">Lang Standards Track [Page 48]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-49" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
If the LinkSummary message is received with unacceptable negotiable
parameters, the ERROR_CODE MUST indicate "Renegotiate LINK_SUMMARY
parameters."
If the LinkSummary message is received with an invalid TE_LINK
object, the ERROR_CODE MUST indicate "Invalid TE_LINK object."
If the LinkSummary message is received with an invalid DATA_LINK
object, the ERROR_CODE MUST indicate "Invalid DATA_LINK object."
If the LinkSummary message is received with a TE_LINK object but the
C-Type is unknown, the ERROR_CODE MUST indicate, "Unknown TE_LINK
object C-Type."
If the LinkSummary message is received with a DATA_LINK object but
the C-Type is unknown, the ERROR_CODE MUST indicate, "Unknown
DATA_LINK object C-Type."
<span class="h3"><a class="selflink" id="section-12.7" href="#section-12.7">12.7</a>. Fault Management Messages</span>
<span class="h4"><a class="selflink" id="section-12.7.1" href="#section-12.7.1">12.7.1</a>. ChannelStatus Message (Msg Type = 17)</span>
The ChannelStatus message is sent over the control channel and is
used to notify an LMP neighbor of the status of a data link. A node
that receives a ChannelStatus message MUST respond with a
ChannelStatusAck message. The format is as follows:
<ChannelStatus Message> ::= <Common Header> <LOCAL_LINK_ID>
<MESSAGE_ID> <CHANNEL_STATUS>
The above transmission order SHOULD be followed.
If the CHANNEL_STATUS object does not include any Interface_Ids, then
this indicates the entire TE Link has failed.
<span class="h4"><a class="selflink" id="section-12.7.2" href="#section-12.7.2">12.7.2</a>. ChannelStatusAck Message (Msg Type = 18)</span>
The ChannelStatusAck message is used to acknowledge receipt of the
ChannelStatus Message. The format is as follows:
<ChannelStatusAck Message> ::= <Common Header> <MESSAGE_ID_ACK>
The above transmission order SHOULD be followed.
The contents of the MESSAGE_ID_ACK object MUST be obtained from the
ChannelStatus message being acknowledged.
<span class="grey">Lang Standards Track [Page 49]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-50" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
<span class="h4"><a class="selflink" id="section-12.7.3" href="#section-12.7.3">12.7.3</a>. ChannelStatusRequest Message (Msg Type = 19)</span>
The ChannelStatusRequest message is sent over the control channel and
is used to request the status of one or more data link(s). A node
that receives a ChannelStatusRequest message MUST respond with a
ChannelStatusResponse message. The format is as follows:
<ChannelStatusRequest Message> ::= <Common Header> <LOCAL_LINK_ID>
<MESSAGE_ID>
[<CHANNEL_STATUS_REQUEST>]
The above transmission order SHOULD be followed.
If the CHANNEL_STATUS_REQUEST object is not included, then the
ChannelStatusRequest is being used to request the status of ALL of
the data link(s) of the TE Link.
<span class="h4"><a class="selflink" id="section-12.7.4" href="#section-12.7.4">12.7.4</a>. ChannelStatusResponse Message (Msg Type = 20)</span>
The ChannelStatusResponse message is used to acknowledge receipt of
the ChannelStatusRequest Message and notify the LMP neighbor of the
status of the data channel(s). The format is as follows:
<ChannelStatusResponse Message> ::= <Common Header> <MESSAGE_ID_ACK>
<CHANNEL_STATUS>
The above transmission order SHOULD be followed.
The contents of the MESSAGE_ID_ACK objects MUST be obtained from the
ChannelStatusRequest message being acknowledged.
<span class="h2"><a class="selflink" id="section-13" href="#section-13">13</a>. LMP Object Definitions</span>
<span class="h3"><a class="selflink" id="section-13.1" href="#section-13.1">13.1</a>. CCID (Control Channel ID) Class</span>
Class = 1
o C-Type = 1, LOCAL_CCID
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| CC_Id |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
<span class="grey">Lang Standards Track [Page 50]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-51" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
CC_Id: 32 bits
This MUST be node-wide unique and non-zero. The CC_Id identifies
the control channel of the sender associated with the message.
This object is non-negotiable.
o C-Type = 2, REMOTE_CCID
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| CC_Id |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
CC_Id: 32 bits
This identifies the remote node's CC_Id and MUST be non-zero.
This object is non-negotiable.
<span class="h3"><a class="selflink" id="section-13.2" href="#section-13.2">13.2</a>. NODE_ID Class</span>
Class = 2
o C-Type = 1, LOCAL_NODE_ID
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Node_Id (4 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Node_Id:
This identities the node that originated the LMP packet.
This object is non-negotiable.
o C-Type = 2, REMOTE_NODE_ID
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Node_Id (4 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
<span class="grey">Lang Standards Track [Page 51]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-52" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
Node_Id:
This identities the remote node.
This object is non-negotiable.
<span class="h3"><a class="selflink" id="section-13.3" href="#section-13.3">13.3</a>. LINK_ID Class</span>
Class = 3
o C-Type = 1, IPv4 LOCAL_LINK_ID
o C-Type = 2, IPv4 REMOTE_LINK_ID
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link_Id (4 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
o C-Type = 3, IPv6 LOCAL_LINK_ID
o C-Type = 4, IPv6 REMOTE_LINK_ID
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ Link_Id (16 bytes) +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
o C-Type = 5, Unnumbered LOCAL_LINK_ID
o C-Type = 6, Unnumbered REMOTE_LINK_ID
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link_Id (4 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
<span class="grey">Lang Standards Track [Page 52]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-53" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
Link_Id:
For LOCAL_LINK_ID, this identifies the sender's Link associated
with the message. This value MUST be non-zero.
For REMOTE_LINK_ID, this identifies the remote node's Link_Id and
MUST be non-zero.
This object is non-negotiable.
<span class="h3"><a class="selflink" id="section-13.4" href="#section-13.4">13.4</a>. INTERFACE_ID Class</span>
Class = 4
o C-Type = 1, IPv4 LOCAL_INTERFACE_ID
o C-Type = 2, IPv4 REMOTE_INTERFACE_ID
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Interface_Id (4 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
o C-Type = 3, IPv6 LOCAL_INTERFACE_ID
o C-Type = 4, IPv6 REMOTE_INTERFACE_ID
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ Interface_Id (16 bytes) +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
o C-Type = 5, Unnumbered LOCAL_INTERFACE_ID
o C-Type = 6, Unnumbered REMOTE_INTERFACE_ID
<span class="grey">Lang Standards Track [Page 53]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-54" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Interface_Id (4 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Interface_Id:
For the LOCAL_INTERFACE_ID, this identifies the data link. This
value MUST be node-wide unique and non-zero.
For the REMOTE_INTERFACE_ID, this identifies the remote node's
data link. The Interface_Id MUST be non-zero.
This object is non-negotiable.
<span class="h3"><a class="selflink" id="section-13.5" href="#section-13.5">13.5</a>. MESSAGE_ID Class</span>
Class = 5
o C-Type=1, MessageId
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Message_Id |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Message_Id:
The Message_Id field is used to identify a message. This value is
incremented and only decreases when the value wraps. This is used
for message acknowledgment.
This object is non-negotiable.
o C-Type = 2, MessageIdAck
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Message_Id |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
<span class="grey">Lang Standards Track [Page 54]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-55" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
Message_Id:
The Message_Id field is used to identify the message being
acknowledged. This value is copied from the MESSAGE_ID object of
the message being acknowledged.
This object is non-negotiable.
<span class="h3"><a class="selflink" id="section-13.6" href="#section-13.6">13.6</a>. CONFIG Class</span>
Class = 6.
o C-Type = 1, HelloConfig
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| HelloInterval | HelloDeadInterval |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
HelloInterval: 16 bits.
Indicates how frequently the Hello packets will be sent and is
measured in milliseconds (ms).
HelloDeadInterval: 16 bits.
If no Hello packets are received within the HelloDeadInterval, the
control channel is assumed to have failed. The HelloDeadInterval
is measured in milliseconds (ms). The HelloDeadInterval MUST be
greater than the HelloInterval, and SHOULD be at least 3 times the
value of HelloInterval.
If the fast keep-alive mechanism of LMP is not used, the
HelloInterval and HelloDeadInterval MUST be set to zero.
<span class="grey">Lang Standards Track [Page 55]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-56" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
<span class="h3"><a class="selflink" id="section-13.7" href="#section-13.7">13.7</a>. HELLO Class</span>
Class = 7
o C-Type = 1, Hello
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| TxSeqNum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RcvSeqNum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
TxSeqNum: 32 bits
This is the current sequence number for this Hello message. This
sequence number will be incremented when the sequence number is
reflected in the RcvSeqNum of a Hello packet that is received over
the control channel.
TxSeqNum=0 is not allowed. TxSeqNum=1 is used to indicate that
this is the first Hello message sent over the control channel.
RcvSeqNum: 32 bits
This is the sequence number of the last Hello message received
over the control channel. RcvSeqNum=0 is used to indicate that a
Hello message has not yet been received.
This object is non-negotiable.
<span class="h3"><a class="selflink" id="section-13.8" href="#section-13.8">13.8</a>. BEGIN_VERIFY Class</span>
Class = 8
o C-Type = 1
<span class="grey">Lang Standards Track [Page 56]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-57" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Flags | VerifyInterval |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Number of Data Links |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| EncType | (Reserved) | Verify Transport Mechanism |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| TransmissionRate |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Wavelength |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Reserved field should be sent as zero and ignored on receipt.
Flags: 16 bits
The following flags are defined:
0x0001 Verify all Links
If this bit is set, the verification process checks all
unallocated links; else it only verifies new ports or
component links that are to be added to this TE link.
0x0002 Data Link Type
If set, the data links to be verified are ports, otherwise
they are component links
VerifyInterval: 16 bits
This is the interval between successive Test messages and is
measured in milliseconds (ms).
Number of Data Links: 32 bits
This is the number of data links that will be verified.
EncType: 8 bits
This is the encoding type of the data link. The defined EncType
values are consistent with the LSP Encoding Type values of
[<a href="./rfc3471" title=""Generalized MPLS - Signaling Functional Description"">RFC3471</a>].
<span class="grey">Lang Standards Track [Page 57]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-58" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
Verify Transport Mechanism: 16 bits
This defines the transport mechanism for the Test Messages. The
scope of this bit mask is restricted to each encoding type. The
local node will set the bits corresponding to the various
mechanisms it can support for transmitting LMP test messages. The
receiver chooses the appropriate mechanism in the BeginVerifyAck
message.
The following flag is defined across all Encoding Types. All
other flags are dependent on the Encoding Type.
0x8000 Payload:Test Message transmitted in the payload
Capable of transmitting Test messages in the payload.
The Test message is sent as an IP packet as defined
above.
TransmissionRate: 32 bits
This is the transmission rate of the data link over which the Test
messages will be transmitted. This is expressed in bytes per
second and represented in IEEE floating-point format.
Wavelength: 32 bits
When a data link is assigned to a port or component link that is
capable of transmitting multiple wavelengths (e.g., a fiber or
waveband-capable port), it is essential to know which wavelength
the test messages will be transmitted over. This value
corresponds to the wavelength at which the Test messages will be
transmitted over and has local significance. If there is no
ambiguity as to the wavelength over which the message will be
sent, then this value SHOULD be set to 0.
<span class="h3"><a class="selflink" id="section-13.9" href="#section-13.9">13.9</a>. BEGIN_VERIFY_ACK Class</span>
Class = 9
o C-Type = 1
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| VerifyDeadInterval | Verify_Transport_Response |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
<span class="grey">Lang Standards Track [Page 58]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-59" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
VerifyDeadInterval: 16 bits
If a Test message is not detected within the
VerifyDeadInterval, then a node will send the TestStatusFailure
message for that data link.
Verify_Transport_Response: 16 bits
The recipient of the BeginVerify message (and the future
recipient of the TEST messages) chooses the transport mechanism
from the various types that are offered by the transmitter of
the Test messages. One and only one bit MUST be set in the
verification transport response.
This object is non-negotiable.
<span class="h3"><a class="selflink" id="section-13.10" href="#section-13.10">13.10</a>. VERIFY_ID Class</span>
Class = 10
o C-Type = 1
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Verify_Id |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Verify_Id: 32 bits
This is used to differentiate Test messages from different TE
links and/or LMP peers. This is a node-unique value that is
assigned by the recipient of the BeginVerify message.
This object is non-negotiable.
<span class="h3"><a class="selflink" id="section-13.11" href="#section-13.11">13.11</a>. TE_LINK Class</span>
Class = 11
o C-Type = 1, IPv4 TE_LINK
<span class="grey">Lang Standards Track [Page 59]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-60" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Flags | (Reserved) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Local_Link_Id (4 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Remote_Link_Id (4 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
o C-Type = 2, IPv6 TE_LINK
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Flags | (Reserved) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ Local_Link_Id (16 bytes) +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ Remote_Link_Id (16 bytes) +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
o C-Type = 3, Unnumbered TE_LINK
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Flags | (Reserved) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Local_Link_Id (4 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Remote_Link_Id (4 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Reserved field should be sent as zero and ignored on receipt.
<span class="grey">Lang Standards Track [Page 60]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-61" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
Flags: 8 bits
The following flags are defined. All other bit-values are
reserved and should be sent as zero and ignored on receipt.
0x01 Fault Management Supported.
0x02 Link Verification Supported.
Local_Link_Id:
This identifies the node's local Link_Id and MUST be non-zero.
Remote_Link_Id:
This identifies the remote node's Link_Id and MUST be non-zero.
<span class="h3"><a class="selflink" id="section-13.12" href="#section-13.12">13.12</a>. DATA_LINK Class</span>
Class = 12
o C-Type = 1, IPv4 DATA_LINK
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Flags | (Reserved) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Local_Interface_Id (4 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Remote_Interface_Id (4 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
// (Subobjects) //
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
<span class="grey">Lang Standards Track [Page 61]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-62" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
o C-Type = 2, IPv6 DATA_LINK
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Flags | (Reserved) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ Local_Interface_Id (16 bytes) +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ Remote_Interface_Id (16 bytes) +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
// (Subobjects) //
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
o C-Type = 3, Unnumbered DATA_LINK
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Flags | (Reserved) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Local_Interface_Id (4 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Remote_Interface_Id (4 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
// (Subobjects) //
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
<span class="grey">Lang Standards Track [Page 62]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-63" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
The Reserved field should be sent as zero and ignored on receipt.
Flags: 8 bits
The following flags are defined. All other bit-values are
reserved and should be sent as zero and ignored on receipt.
0x01 Interface Type: If set, the data link is a port, otherwise it
is a component link.
0x02 Allocated Link: If set, the data link is currently allocated
for user traffic. If a single Interface_Id
is used for both the transmit and receive
data links, then this bit only applies to the
transmit interface.
0x04 Failed Link: If set, the data link is failed and not
suitable for user traffic.
Local_Interface_Id:
This is the local identifier of the data link. This MUST be
node-wide unique and non-zero.
Remote_Interface_Id:
This is the remote identifier of the data link. This MUST be
non-zero.
Subobjects
The contents of the DATA_LINK object consist of a series of
variable-length data items called subobjects. The subobjects are
defined in <a href="#section-13.12.1">Section 13.12.1</a> below.
A DATA_LINK object may contain more than one subobject. More than
one subobject of the same Type may appear if multiple capabilities
are supported over the data link.
<span class="grey">Lang Standards Track [Page 63]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-64" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
<span class="h4"><a class="selflink" id="section-13.12.1" href="#section-13.12.1">13.12.1</a>. Data Link Subobjects</span>
The contents of the DATA_LINK object include a series of variable-
length data items called subobjects. Each subobject has the form:
0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+---------------//--------------+
| Type | Length | (Subobject contents) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--------------//---------------+
Type: 8 bits
The Type indicates the type of contents of the subobject.
Currently defined values are:
Type = 1, Interface Switching Type
Type = 2, Wavelength
Length: 8 bits
The Length contains the total length of the subobject in bytes,
including the Type and Length fields. The Length MUST be at
least 4, and MUST be a multiple of 4.
<span class="h5"><a class="selflink" id="section-13.12.1.1" href="#section-13.12.1.1">13.12.1.1</a>. Subobject Type 1: Interface Switching Type</span>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | Switching Type| EncType |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Minimum Reservable Bandwidth |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Maximum Reservable Bandwidth |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Switching Type: 8 bits
This is used to identify the local Interface Switching Type of the
TE link as defined in [<a href="./rfc3471" title=""Generalized MPLS - Signaling Functional Description"">RFC3471</a>].
EncType: 8 bits
This is the encoding type of the data link. The defined EncType
values are consistent with the LSP Encoding Type values of
[<a href="./rfc3471" title=""Generalized MPLS - Signaling Functional Description"">RFC3471</a>].
<span class="grey">Lang Standards Track [Page 64]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-65" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
Minimum Reservable Bandwidth: 32 bits
This is measured in bytes per second and represented in IEEE
floating point format.
Maximum Reservable Bandwidth: 32 bits
This is measured in bytes per second and represented in IEEE
floating point format.
If the interface only supports a fixed rate, the minimum and maximum
bandwidth fields are set to the same value.
<span class="h5"><a class="selflink" id="section-13.12.1.2" href="#section-13.12.1.2">13.12.1.2</a>. Subobject Type 2: Wavelength</span>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length | (Reserved) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Wavelength |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Reserved field should be sent as zero and ignored on receipt.
Wavelength: 32 bits
This value indicates the wavelength carried over the port. Values
used in this field only have significance between two neighbors.
<span class="h3"><a class="selflink" id="section-13.13" href="#section-13.13">13.13</a>. CHANNEL_STATUS Class</span>
Class = 13
<span class="grey">Lang Standards Track [Page 65]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-66" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
o C-Type = 1, IPv4 INTERFACE_ID
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Interface_Id (4 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|A|D| Channel Status |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| : |
// : //
| : |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Interface_Id (4 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|A|D| Channel Status |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
o C-Type = 2, IPv6 INTERFACE_ID
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ Interface_Id (16 bytes) +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|A|D| Channel Status |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| : |
// : //
| : |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ Interface_Id (16 bytes) +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|A|D| Channel Status |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
<span class="grey">Lang Standards Track [Page 66]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-67" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
o C-Type = 3, Unnumbered INTERFACE_ID
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Interface_Id (4 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|A|D| Channel Status |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| : |
// : //
| : |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Interface_Id (4 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|A|D| Channel_Status |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Active bit: 1 bit
This indicates that the Channel is allocated to user traffic and
the data link should be actively monitored.
Direction bit: 1 bit
This indicates the direction (transmit/receive) of the data
channel referred to in the CHANNEL_STATUS object. If set, this
indicates the data channel is in the transmit direction.
Channel_Status: 30 bits
This indicates the status condition of a data channel. The
following values are defined. All other values are reserved.
1 Signal Okay (OK): Channel is operational
2 Signal Degrade (SD): A soft failure caused by a BER exceeding
a preselected threshold. The specific
BER used to define the threshold is
configured.
3 Signal Fail (SF): A hard signal failure including (but not
limited to) loss of signal (LOS), loss of
frame (LOF), or Line AIS.
This object contains one or more Interface_Ids followed by a
Channel_Status field.
To indicate the status of the entire TE Link, there MUST be only one
Interface_Id, and it MUST be zero.
<span class="grey">Lang Standards Track [Page 67]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-68" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
This object is non-negotiable.
<span class="h3"><a class="selflink" id="section-13.14" href="#section-13.14">13.14</a>. CHANNEL_STATUS_REQUEST Class</span>
Class = 14
o C-Type = 1, IPv4 INTERFACE_ID
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Interface_Id (4 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| : |
// : //
| : |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Interface_Id (4 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
This object contains one or more Interface_Ids.
The Length of this object is 4 + 4N in bytes, where N is the number
of Interface_Ids.
<span class="grey">Lang Standards Track [Page 68]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-69" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
o C-Type = 2, IPv6 INTERFACE_ID
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ Interface_Id (16 bytes) +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| : |
// : //
| : |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+ +
| |
+ Interface_Id (16 bytes) +
| |
+ +
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
This object contains one or more Interface_Ids.
The Length of this object is 4 + 16N in bytes, where N is the number
of Interface_Ids.
o C-Type = 3, Unnumbered INTERFACE_ID
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Interface_Id (4 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| : |
// : //
| : |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Interface_Id (4 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
<span class="grey">Lang Standards Track [Page 69]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-70" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
This object contains one or more Interface_Ids.
The Length of this object is 4 + 4N in bytes, where N is the number
of Interface_Ids.
This object is non-negotiable.
<span class="h3"><a class="selflink" id="section-13.15" href="#section-13.15">13.15</a>. ERROR_CODE Class</span>
Class = 20
o C-Type = 1, BEGIN_VERIFY_ERROR
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ERROR CODE |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The following bit-values are defined in network byte order (i.e.,
big-endian byte order):
0x01 = Link Verification Procedure not supported.
0x02 = Unwilling to verify.
0x04 = Unsupported verification transport mechanism.
0x08 = Link_Id configuration error.
0x10 = Unknown object C-Type.
All other bit-values are reserved and should be sent as zero and
ignored on receipt.
Multiple bits may be set to indicate multiple errors.
This object is non-negotiable.
If a BeginVerifyNack message is received with Error Code 2, the node
that originated the BeginVerify SHOULD schedule a BeginVerify
retransmission after Rf seconds, where Rf is a locally defined
parameter.
o C-Type = 2, LINK_SUMMARY_ERROR
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ERROR CODE |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
<span class="grey">Lang Standards Track [Page 70]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-71" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
The following bit-values are defined in network byte order (i.e.,
big-endian byte order):
0x01 = Unacceptable non-negotiable LINK_SUMMARY parameters.
0x02 = Renegotiate LINK_SUMMARY parameters.
0x04 = Invalid TE_LINK Object.
0x08 = Invalid DATA_LINK Object.
0x10 = Unknown TE_LINK object C-Type.
0x20 = Unknown DATA_LINK object C-Type.
All other bit-values are reserved and should be sent as zero and
ignored on receipt.
Multiple bits may be set to indicate multiple errors.
This object is non-negotiable.
<span class="h2"><a class="selflink" id="section-14" href="#section-14">14</a>. References</span>
<span class="h3"><a class="selflink" id="section-14.1" href="#section-14.1">14.1</a>. Normative References</span>
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
[<a id="ref-RFC4201">RFC4201</a>] Kompella, K., Rekhter, Y., and L. Berger, "Link Bundling
in MPLS Traffic Engineering (TE)", <a href="./rfc4201">RFC 4201</a>, October
2005.
[<a id="ref-RFC4202">RFC4202</a>] Kompella, K., Ed. and Y. Rekhter, Ed., "Routing
Extensions in Support of Generalized Multi-Protocol Label
Switching (GMPLS)", <a href="./rfc4202">RFC 4202</a>, October 2005.
[<a id="ref-RFC2961">RFC2961</a>] Berger, L., Gan, D., Swallow, G., Pan, P., Tommasi, F.,
and S. Molendini, "RSVP Refresh Overhead Reduction
Extensions", <a href="./rfc2961">RFC 2961</a>, April 2001.
[<a id="ref-RFC2402">RFC2402</a>] Kent, S. and R. Atkinson, "IP Authentication Header", <a href="./rfc2402">RFC</a>
<a href="./rfc2402">2402</a>, November 1998.
[<a id="ref-RFC2406">RFC2406</a>] Kent, S. and R. Atkinson, "IP Encapsulating Security
Payload (ESP)", <a href="./rfc2406">RFC 2406</a>, November 1998.
[<a id="ref-RFC2407">RFC2407</a>] Piper, D., "The Internet IP Security Domain of
Interpretation for ISAKMP", <a href="./rfc2407">RFC 2407</a>, November 1998.
[<a id="ref-RFC2409">RFC2409</a>] Harkins, D. and D. Carrel, "The Internet Key Exchange
(IKE)", <a href="./rfc2409">RFC 2409</a>, November 1998.
<span class="grey">Lang Standards Track [Page 71]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-72" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
[<a id="ref-RFC3471">RFC3471</a>] Berger, L., Ed., "Generalized MPLS - Signaling
Functional Description", <a href="./rfc3471">RFC 3471</a>, January 2003.
<span class="h3"><a class="selflink" id="section-14.2" href="#section-14.2">14.2</a>. Informative References</span>
[<a id="ref-RFC3630">RFC3630</a>] Katz, D., Kompella, K., and D. Yeung, "Traffic
Engineering (TE) Extensions to OSPF Version 2", <a href="./rfc3630">RFC 3630</a>,
September 2003.
[<a id="ref-RFC3784">RFC3784</a>] Smit, H. and T. Li, "Intermediate System to Intermediate
System (IS-IS) Extensions for Traffic Engineering (TE)",
<a href="./rfc3784">RFC 3784</a>, June 2004.
[<a id="ref-RFC2401">RFC2401</a>] Kent, S. and R. Atkinson, "Security Architecture for the
Internet Protocol", <a href="./rfc2401">RFC 2401</a>, November 1998.
[<a id="ref-RFC2434">RFC2434</a>] Narten, T. and H. Alvestrand, "Guidelines for Writing an
IANA Considerations Section in RFCs", <a href="https://www.rfc-editor.org/bcp/bcp26">BCP 26</a>, <a href="./rfc2434">RFC 2434</a>,
October 1998.
[<a id="ref-RFC3209">RFC3209</a>] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
Tunnels", <a href="./rfc3209">RFC 3209</a>, December 2001.
<span class="grey">Lang Standards Track [Page 72]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-73" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
<span class="h2"><a class="selflink" id="section-15" href="#section-15">15</a>. Security Considerations</span>
There are number of attacks that an LMP protocol session can
potentially experience. Some examples include:
o an adversary may spoof control packets;
o an adversary may modify the control packets in transit;
o an adversary may replay control packets;
o an adversary may study a number of control packets and try to
break the key using cryptographic tools. If the
hash/encryption algorithm used has known weaknesses, then it
becomes easy for the adversary to discover the key using simple
tools.
This section specifies an IPsec-based security mechanism for LMP.
<span class="h3"><a class="selflink" id="section-15.1" href="#section-15.1">15.1</a>. Security Requirements</span>
The following requirements are applied to the mechanism described in
this section.
o LMP security MUST be able to provide authentication, integrity,
and replay protection.
o For LMP traffic, confidentiality is not needed. Only
authentication is needed to ensure that the control packets
(packets sent along the LMP Control Channel) are originating
from the right place and have not been modified in transit.
LMP Test packets exchanged through the data links do not need
to be protected.
o For LMP traffic, protecting the identity of LMP end-points is
not commonly required.
o The security mechanism should provide for well defined key
management schemes. The key management schemes should be well
analyzed to be cryptographically secure. The key management
schemes should be scalable. In addition, the key management
system should be automatic.
o The algorithms used for authentication MUST be
cryptographically sound. Also, the security protocol MUST
allow for negotiating and using different authentication
algorithms.
<span class="grey">Lang Standards Track [Page 73]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-74" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
<span class="h3"><a class="selflink" id="section-15.2" href="#section-15.2">15.2</a>. Security Mechanisms</span>
IPsec is a protocol suite that is used to secure communication at the
network layer between two peers. This protocol is comprised of IP
Security architecture document [<a href="./rfc2401" title=""Security Architecture for the Internet Protocol"">RFC2401</a>], IKE [<a href="./rfc2409" title=""The Internet Key Exchange (IKE)"">RFC2409</a>], IPsec AH
[<a href="./rfc2402" title=""IP Authentication Header"">RFC2402</a>], and IPsec ESP [<a href="./rfc2406" title=""IP Encapsulating Security Payload (ESP)"">RFC2406</a>]. IKE is the key management
protocol for IP networks, while AH and ESP are used to protect IP
traffic. IKE is defined specific to IP domain of interpretation.
Considering the requirements described in <a href="#section-15.1">Section 15.1</a>, it is
recommended that, where security is needed for LMP, implementations
use IPsec as described below:
1. Implementations of LMP over IPsec protocol SHOULD support manual
keying mode.
Manual keying mode provides an easy way to set up and diagnose
IPsec functionality.
However, note that manual keying mode cannot effectively support
features such as replay protection and automatic re-keying. An
implementer using manual keys must be aware of these limits.
It is recommended that an implementer use manual keying only for
diagnostic purposes and use dynamic keying protocol to make use of
features such as replay protection and automatic re-keying.
2. IPsec ESP with trailer authentication in tunnel mode MUST be
supported.
3. Implementations MUST support authenticated key exchange protocols.
IKE [<a href="./rfc2409" title=""The Internet Key Exchange (IKE)"">RFC2409</a>] MUST be used as the key exchange protocol if keys
are dynamically negotiated between peers.
4. Implementation MUST use the IPsec DOI [<a href="./rfc2407" title=""The Internet IP Security Domain of Interpretation for ISAKMP"">RFC2407</a>].
5. For IKE protocol, the identities of the SAs negotiated in Quick
Mode represent the traffic that the peers agree to protect and are
comprised of address space, protocol, and port information.
For LMP over IPsec, it is recommended that the identity payload
for Quick mode contain the following information:
The identities MUST be of type IP addresses and the value of the
identities SHOULD be the IP addresses of the communicating peers.
<span class="grey">Lang Standards Track [Page 74]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-75" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
The protocol field MUST be UDP. The port field SHOULD be set to
zero to indicate port fields should be ignored. This implies all
UDP traffic between the peers must be sent through the IPsec
tunnel. If an implementation supports port-based selectors, it
can opt for a more finely grained selector by specifying the port
field to the LMP port. If, however, the peer does not use port-
based selectors, the implementation MUST fall back to using a port
selector value of 0.
6. Aggressive mode of IKE negotiation MUST be supported.
When IPsec is configured to be used with a peer, all LMP messages
are expected to be sent over the IPsec tunnel (crypto channel).
Similarly, an LMP receiver configured to use Ipsec with a peer
should reject any LMP traffic that does not come through the
crypto channel.
The crypto channel can be pre-setup with the LMP neighbor, or the
first LMP message sent to the peer can trigger the creation of the
IPsec tunnel.
A set of control channels can share the same crypto channel. When
LMP Hellos are used to monitor the status of the control channel,
it is important to keep in mind that the keep-alive failure in a
control channel may also be due to a failure in the crypto
channel. The following method is recommended to ensure that an
LMP communication path between two peers is working properly.
o If LMP Hellos detect a failure on a control channel, switch to
an alternate control channel and/or try to establish a new
control channel.
o Ensure the health of the control channels using LMP Hellos. If
all control channels indicate a failure and it is not possible
to bring up a new control channel, tear down all existing
control channels. Also, tear down the crypto channel (both the
IKE SA and IPsec SAs).
o Reestablish the crypto channel. Failure to establish a crypto
channel indicates a fatal failure for LMP communication.
o Bring up the control channel. Failure to bring up the control
channel indicates a fatal failure for LMP communication.
<span class="grey">Lang Standards Track [Page 75]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-76" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
When LMP peers are dynamically discovered (particularly the
initiator), the following points should be noted:
When using pre-shared key authentication in identity protection
mode (main mode), the pre-shared key is required to compute the
value of SKEYID (used for deriving keys to encrypt messages
during key exchange). In main mode of IKE, the pre-shared key
to be used has to be identified before receiving the peer's
identity payload. The pre-shared key is required for
calculating SKEYID. The only information available about the
peer at this point is its IP address from which the negotiation
came from. Keying off the IP address of a peer to get the
pre-shared key is not possible since the addresses are dynamic
and not known beforehand.
Aggressive mode key exchange can be used since identification
payloads are sent in the first message.
Note, however, that aggressive mode is prone to passive denial
of service attacks. Using a shared secret (group shared
secret) among a number of peers is strongly discouraged because
this opens up the solution to man-in-the-middle attacks.
Digital-signature-based authentication is not prone to such
problems. It is RECOMMENDED that a digital-signature-based
authentication mechanism be used where possible.
If pre-shared-key-based authentication is required, then
aggressive mode SHOULD be used. IKE pre-shared authentication
key values SHOULD be protected in a manner similar to the
user's account password.
<span class="h2"><a class="selflink" id="section-16" href="#section-16">16</a>. IANA Considerations</span>
The IANA has assigned port number 701 to LMP.
In the following, guidelines are given for IANA assignment for each
LMP name space. Ranges are specified for Private Use, to be assigned
by Expert Review, and to be assigned by Standards Action (as defined
in [<a href="./rfc2434" title="">RFC2434</a>].
Assignments made from LMP number spaces set aside for Private Use
(i.e., for proprietary extensions) need not be documented.
Independent LMP implementations using the same Private Use code
points will in general not interoperate, so care should be exercised
in using these code points in a multi-vendor network.
<span class="grey">Lang Standards Track [Page 76]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-77" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
Assignments made from LMP number spaces to be assigned by Expert
Review are to be reviewed by an Expert designated by the IESG. The
intent in this document is that code points from these ranges are
used for Experimental extensions; as such, assignments MUST be
accompanied by Experimental RFCs. If deployment suggests that these
extensions are useful, then they should be described in Standards
Track RFCs, and new code points from the Standards Action ranges MUST
be assigned.
Assignments from LMP number spaces to be assigned by Standards Action
MUST be documented by a Standards Track RFC, typically submitted to
an IETF Working Group, but in any case following the usual IETF
procedures for Proposed Standards.
The Reserved bits of the LMP Common Header should be allocated by
Standards Action, pursuant to the policies outlined in [<a href="./rfc2434" title="">RFC2434</a>].
LMP defines the following name spaces that require management:
- LMP Message Type.
- LMP Object Class.
- LMP Object Class type (C-Type). These are unique within the
Object Class.
- LMP Sub-object Class type (Type). These are unique within the
Object Class.
The LMP Message Type name space should be allocated as follows:
pursuant to the policies outlined in [<a href="./rfc2434" title="">RFC2434</a>], the numbers in the
range 0-127 are allocated by Standards Action, 128-240 are allocated
through an Expert Review, and 241-255 are reserved for Private Use.
The LMP Object Class name space should be allocated as follows:
pursuant to the policies outlined in [<a href="./rfc2434" title="">RFC2434</a>], the numbers in the
range of 0-127 are allocated by Standards Action, 128-247 are
allocated through an Expert Review, and 248-255 are reserved for
Private Use.
The policy for allocating values out of the LMP Object Class name
space is part of the definition of the specific Class instance. When
a Class is defined, its definition must also include a description of
the policy under which the Object Class names are allocated.
The policy for allocating values out of the LMP Sub-object Class name
space is part of the definition of the specific Class instance. When
a Class is defined, its definition must also include a description of
the policy under which sub-objects are allocated.
<span class="grey">Lang Standards Track [Page 77]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-78" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
The following name spaces have been assigned by IANA:
------------------------------------------------------------------
LMP Message Type name space
o Config message (Message type = 1)
o ConfigAck message (Message type = 2)
o ConfigNack message (Message type = 3)
o Hello message (Message type = 4)
o BeginVerify message (Message type = 5)
o BeginVerifyAck message (Message type = 6)
o BeginVerifyNack message (Message type = 7)
o EndVerify message (Message type = 8)
o EndVerifyAck message (Message type = 9)
o Test message (Message type = 10)
o TestStatusSuccess message (Message type = 11)
o TestStatusFailure message (Message type = 12)
o TestStatusAck message (Message type = 13)
o LinkSummary message (Message type = 14)
o LinkSummaryAck message (Message type = 15)
o LinkSummaryNack message (Message type = 16)
o ChannelStatus message (Message type = 17)
o ChannelStatusAck message (Message type = 18)
o ChannelStatusRequest message (Message type = 19)
o ChannelStatusResponse message (Message type = 20)
------------------------------------------------------------------
<span class="grey">Lang Standards Track [Page 78]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-79" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
LMP Object Class name space and Class type (C-Type)
o CCID Class name (1)
The CCID Object Class type name space should be allocated as follows:
pursuant to the policies outlined in [<a href="./rfc2434" title="">RFC2434</a>], the numbers in the
range 0-111 are allocated by Standards Action, 112-119 are allocated
through an Expert Review, and 120-127 are reserved for Private Use.
- LOCAL_CCID (C-Type = 1)
- REMOTE_CCID (C-Type = 2)
o NODE_ID Class name (2)
The NODE ID Object Class type name space should be allocated as
follows: pursuant to the policies outlined in [<a href="./rfc2434" title="">RFC2434</a>], the numbers
in the range 0-111 are allocated by Standards Action, 112-119 are
allocated through an Expert Review, and 120-127 are reserved for
Private Use.
- LOCAL_NODE_ID (C-Type = 1)
- REMOTE_NODE_ID (C-Type = 2)
o LINK_ID Class name (3)
The LINK_ID Object Class type name space should be allocated as
follows: pursuant to the policies outlined in [<a href="./rfc2434" title="">RFC2434</a>], the numbers
in the range 0-111 are allocated by Standards Action, 112-119 are
allocated through an Expert Review, and 120-127 are reserved for
Private Use.
- IPv4 LOCAL_LINK_ID (C-Type = 1)
- IPv4 REMOTE_LINK_ID (C-Type = 2)
- IPv6 LOCAL_LINK_ID (C-Type = 3)
- IPv6 REMOTE_LINK_ID (C-Type = 4)
- Unnumbered LOCAL_LINK_ID (C-Type = 5)
- Unnumbered REMOTE_LINK_ID (C-Type = 6)
o INTERFACE_ID Class name (4)
The INTERFACE_ID Object Class type name space should be allocated as
follows: pursuant to the policies outlined in [<a href="./rfc2434" title="">RFC2434</a>], the numbers
in the range 0-111 are allocated by Standards Action, 112-119 are
allocated through an Expert Review, and 120-127 are reserved for
Private Use.
<span class="grey">Lang Standards Track [Page 79]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-80" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
- IPv4 LOCAL_INTERFACE_ID (C-Type = 1)
- IPv4 REMOTE_INTERFACE_ID (C-Type = 2)
- IPv6 LOCAL_INTERFACE_ID (C-Type = 3)
- IPv6 REMOTE_INTERFACE_ID (C-Type = 4)
- Unnumbered LOCAL_INTERFACE_ID (C-Type = 5)
- Unnumbered REMOTE_INTERFACE_ID (C-Type = 6)
o MESSAGE_ID Class name (5)
The MESSAGE_ID Object Class type name space should be allocated as
follows: pursuant to the policies outlined in [<a href="./rfc2434" title="">RFC2434</a>], the numbers
in the range 0-111 are allocated by Standards Action, 112-119 are
allocated through an Expert Review, and 120-127 are reserved for
Private Use.
- MESSAGE_ID (C-Type = 1)
- MESSAGE_ID_ACK (C-Type = 2)
o CONFIG Class name (6)
The CONFIG Object Class type name space should be allocated as
follows: pursuant to the policies outlined in [<a href="./rfc2434" title="">RFC2434</a>], the numbers
in the range 0-111 are allocated by Standards Action, 112-119 are
allocated through an Expert Review, and 120-127 are reserved for
Private Use.
- HELLO_CONFIG (C-Type = 1)
o HELLO Class name (7)
The HELLO Object Class type name space should be allocated as
follows: pursuant to the policies outlined in [<a href="./rfc2434" title="">RFC2434</a>], the numbers
in the range 0-111 are allocated by Standards Action, 112-119 are
allocated through an Expert Review, and 120-127 are reserved for
Private Use.
- HELLO (C-Type = 1)
o BEGIN_VERIFY Class name (8)
The BEGIN_VERIFY Object Class type name space should be allocated as
follows: pursuant to the policies outlined in [<a href="./rfc2434" title="">RFC2434</a>], the numbers
in the range 0-111 are allocated by Standards Action, 112-119 are
allocated through an Expert Review, and 120-127 are reserved for
Private Use.
- Type 1 (C-Type = 1)
<span class="grey">Lang Standards Track [Page 80]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-81" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
o BEGIN_VERIFY_ACK Class name (9)
The BEGIN_VERIFY_ACK Object Class type name space should be allocated
as follows: pursuant to the policies outlined in [<a href="./rfc2434" title="">RFC2434</a>], the
numbers in the range 0-111 are allocated by Standards Action, 112-119
are allocated through an Expert Review, and 120-127 are reserved for
Private Use.
- Type 1 (C-Type = 1)
o VERIFY_ID Class name (10)
The VERIFY_ID Object Class type name space should be allocated as
follows: pursuant to the policies outlined in [<a href="./rfc2434" title="">RFC2434</a>], the numbers
in the range 0-111 are allocated by Standards Action, 112-119 are
allocated through an Expert Review, and 120-127 are reserved for
Private Use.
- Type 1 (C-Type = 1)
o TE_LINK Class name (11)
The TE_LINK Object Class type name space should be allocated as
follows: pursuant to the policies outlined in [<a href="./rfc2434" title="">RFC2434</a>], the numbers
in the range 0-111 are allocated by Standards Action, 112-119 are
allocated through an Expert Review, and 120-127 are reserved for
Private Use.
- IPv4 TE_LINK (C-Type = 1)
- IPv6 TE_LINK (C-Type = 2)
- Unnumbered TE_LINK (C-Type = 3)
o DATA_LINK Class name (12)
The DATA_LINK Object Class type name space should be allocated as
follows: pursuant to the policies outlined in [<a href="./rfc2434" title="">RFC2434</a>], the numbers
in the range 0-111 are allocated by Standards Action, 112-119 are
allocated through an Expert Review, and 120-127 are reserved for
private Use.
- IPv4 DATA_LINK (C-Type = 1)
- IPv6 DATA_LINK (C-Type = 2)
- Unnumbered DATA_LINK (C-Type = 3)
<span class="grey">Lang Standards Track [Page 81]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-82" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
The DATA_LINK Sub-object Class name space should be allocated as
follows: pursuant to the policies outlined in [<a href="./rfc2434" title="">RFC2434</a>], the numbers
in the range of 0-127 are allocated by Standards Action, 128-247 are
allocated through an Expert Review, and 248-255 are reserved for
private Use.
- Interface Switching Type (sub-object Type = 1)
- Wavelength (sub-object Type = 2)
o CHANNEL_STATUS Class name (13)
The CHANNEL_STATUS Object Class type name space should be allocated
as follows: pursuant to the policies outlined in [<a href="./rfc2434" title="">RFC2434</a>], the
numbers in the range 0-111 are allocated by Standards Action, 112-119
are allocated through an Expert Review, and 120-127 are reserved for
Private Use.
- IPv4 INTERFACE_ID (C-Type = 1)
- IPv6 INTERFACE_ID (C-Type = 2)
- Unnumbered INTERFACE_ID (C-Type = 3)
o CHANNEL_STATUS_REQUESTClass name (14)
The CHANNEL_STATUS_REQUEST Object Class type name space should be
allocated as follows: pursuant to the policies outlined in [<a href="./rfc2434" title="">RFC2434</a>],
the numbers in the range 0-111 are allocated by Standards Action,
112-119 are allocated through an Expert Review, and 120-127 are
reserved for Private Use.
- IPv4 INTERFACE_ID (C-Type = 1)
- IPv6 INTERFACE_ID (C-Type = 2)
- Unnumbered INTERFACE_ID (C-Type = 3)
o ERROR_CODE Class name (20)
The ERROR_CODE Object Class type name space should be allocated as
follows: pursuant to the policies outlined in [<a href="./rfc2434" title="">RFC2434</a>], the numbers
in the range 0-111 are allocated by Standards Action, 112-119 are
allocated through an Expert Review, and 120-127 are reserved for
private Use.
- BEGIN_VERIFY_ERROR (C-Type = 1)
- LINK_SUMMARY_ERROR (C-Type = 2)
<span class="grey">Lang Standards Track [Page 82]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-83" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
<span class="h2"><a class="selflink" id="section-17" href="#section-17">17</a>. Acknowledgements</span>
The authors would like to thank Andre Fredette for his many
contributions to this document. We would also like to thank Ayan
Banerjee, George Swallow, Adrian Farrel, Dimitri Papadimitriou, Vinay
Ravuri, and David Drysdale for their insightful comments and
suggestions. We would also like to thank John Yu, Suresh Katukam,
and Greg Bernstein for their helpful suggestions for the in-band
control channel applicability.
<span class="h2"><a class="selflink" id="section-18" href="#section-18">18</a>. Contributors</span>
Jonathan P. Lang
Sonos, Inc.
223 E. De La Guerra St.
Santa Barbara, CA 93101
EMail: jplang@ieee.org
Krishna Mitra
Independent Consultant
EMail: kmitra@earthlink.net
John Drake
Calient Networks
5853 Rue Ferrari
San Jose, CA 95138
EMail: jdrake@calient.net
Kireeti Kompella
Juniper Networks, Inc.
1194 North Mathilda Avenue
Sunnyvale, CA 94089
EMail: kireeti@juniper.net
Yakov Rekhter
Juniper Networks, Inc.
1194 North Mathilda Avenue
Sunnyvale, CA 94089
EMail: yakov@juniper.net
<span class="grey">Lang Standards Track [Page 83]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-84" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
Lou Berger
Movaz Networks
EMail: lberger@movaz.com
Debanjan Saha
IBM Watson Research Center
EMail: dsaha@us.ibm.com
Debashis Basak
Accelight Networks
70 Abele Road, Suite 1201
Bridgeville, PA 15017-3470
EMail: dbasak@accelight.com
Hal Sandick
Shepard M.S.
2401 Dakota Street
Durham, NC 27705
EMail: sandick@nc.rr.com
Alex Zinin
Alcatel
EMail: alex.zinin@alcatel.com
Bala Rajagopalan
Intel Corp.
2111 NE 25th Ave
Hillsboro, OR 97123
EMail: bala.rajagopalan@intel.com
Sankar Ramamoorthi
Juniper Networks, Inc.
1194 North Mathilda Avenue
Sunnyvale, CA 94089
EMail: sankarr@juniper.net
<span class="grey">Lang Standards Track [Page 84]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-85" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
Contact Address
Jonathan P. Lang
Sonos, Inc.
829 De La Vina, Suite 220
Santa Barbara, CA 93101
EMail: jplang@ieee.org
<span class="grey">Lang Standards Track [Page 85]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-86" ></span>
<span class="grey"><a href="./rfc4204">RFC 4204</a> Link Management Protocol (LMP) October 2005</span>
Full Copyright Statement
Copyright (C) The Internet Society (2005).
This document is subject to the rights, licenses and restrictions
contained in <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a>, and except as set forth therein, the authors
retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and <a href="https://www.rfc-editor.org/bcp/bcp79">BCP 79</a>.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
<a href="http://www.ietf.org/ipr">http://www.ietf.org/ipr</a>.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at ietf-
ipr@ietf.org.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Lang Standards Track [Page 86]
</pre>
|