1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
|
<pre>Network Working Group F. Templin
Request for Comments: 4214 Nokia
Category: Experimental T. Gleeson
Cisco Systems K.K.
M. Talwar
D. Thaler
Microsoft Corporation
October 2005
<span class="h1">Intra-Site Automatic Tunnel Addressing Protocol (ISATAP)</span>
Status of This Memo
This memo defines an Experimental Protocol for the Internet
community. It does not specify an Internet standard of any kind.
Discussion and suggestions for improvement are requested.
Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2005).
IESG Note
The content of this RFC was at one time considered by the IETF, and
therefore it may resemble a current IETF work in progress or a
published IETF work. This RFC is not a candidate for any level of
Internet Standard. The IETF disclaims any knowledge of the fitness
of this RFC for any purpose, and in particular notes that the
decision to publish is not based on IETF review for such things as
security, congestion control or inappropriate interaction with
deployed protocols. The RFC Editor has chosen to publish this
document at its discretion. Readers of this RFC should exercise
caution in evaluating its value for implementation and deployment.
See <a href="./rfc3932">RFC 3932</a> for more information.
Abstract
The Intra-Site Automatic Tunnel Addressing Protocol (ISATAP) connects
IPv6 hosts/routers over IPv4 networks. ISATAP views the IPv4 network
as a link layer for IPv6 and views other nodes on the network as
potential IPv6 hosts/routers. ISATAP supports an automatic tunneling
abstraction similar to the Non-Broadcast Multiple Access (NBMA)
model.
<span class="grey">Templin, et al. Experimental [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc4214">RFC 4214</a> ISATAP October 2005</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
This document specifies a simple mechanism called the Intra-Site
Automatic Tunnel Addressing Protocol (ISATAP) that connects IPv6
hosts/routers over IPv4 networks. Dual-stack (IPv6/IPv4) nodes use
ISATAP to automatically tunnel IPv6 packets in IPv4, i.e., ISATAP
views the IPv4 network as a link layer for IPv6 and views other nodes
on the network as potential IPv6 hosts/routers.
ISATAP enables automatic tunneling whether global or private IPv4
addresses are used, and presents a Non-Broadcast Multiple Access
(NBMA) abstraction similar to [<a href="./rfc2491" title=""IPv6 over Non-Broadcast Multiple Access (NBMA) networks"">RFC2491</a>][RFC2492][<a href="./rfc2529" title=""Transmission of IPv6 over IPv4 Domains without Explicit Tunnels"">RFC2529</a>][RFC3056].
The main objectives of this document are to: 1) describe the domain
of applicability, 2) specify addressing requirements, 3) specify
automatic tunneling using ISATAP, 4) specify the operation of IPv6
Neighbor Discovery over ISATAP interfaces, and 5) discuss Site
Administration, Security, and IANA considerations.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Requirements</span>
The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this
document, are to be interpreted as described in [<a href="#ref-BCP14" title=""Key words for use in RFCs to Indicate Requirement Levels"">BCP14</a>].
This document also uses internal conceptual variables to describe
protocol behavior and external variables that an implementation must
allow system administrators to change. The specific variable names,
how their values change, and how their settings influence protocol
behavior are provided in order to demonstrate protocol behavior. An
implementation is not required to have them in the exact form
described here, as long as its external behavior is consistent with
that described in this document.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Terminology</span>
The terminology of [<a href="./rfc2460" title=""Internet Protocol, Version 6 (IPv6) Specification"">RFC2460</a>][RFC2461] applies to this document. The
following additional terms are defined:
ISATAP node:
A node that implements the specifications in this document.
ISATAP interface:
An ISATAP node's Non-Broadcast Multi-Access (NBMA) IPv6 interface,
used for automatic tunneling of IPv6 packets in IPv4.
<span class="grey">Templin, et al. Experimental [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc4214">RFC 4214</a> ISATAP October 2005</span>
ISATAP interface identifier:
An IPv6 interface identifier with an embedded IPv4 address
constructed as specified in <a href="#section-6.1">Section 6.1</a>.
ISATAP address:
An IPv6 unicast address that matches an on-link prefix on an
ISATAP interface of the node, and that includes an ISATAP
interface identifier.
locator:
An IPv4 address-to-interface mapping; i.e., a node's IPv4 address
and its associated interface.
locator set:
A set of locators associated with an ISATAP interface. Each
locator in the set belongs to the same site.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Domain of Applicability</span>
The domain of applicability for this technical specification is
automatic tunneling of IPv6 packets in IPv4 for ISATAP nodes within
sites that observe the security considerations found in this
document, including host-to-router, router-to-host, and host-to-host
automatic tunneling in certain enterprise networks and 3GPP/3GPP2
wireless operator networks. (Other scenarios with a sufficient trust
basis ensured by the mechanisms specified in this document also fall
within this domain of applicability.)
Extensions to the above domain of applicability (e.g., by combining
the mechanisms in this document with those in other technical
specifications) are out of the scope of this document.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Node Requirements</span>
ISATAP nodes observe the common functionality requirements for IPv6
nodes found in [<a href="#ref-NODEREQ" title=""IPv6 Node Requirements"">NODEREQ</a>] and the requirements for dual IP layer
operation found in ([<a href="#ref-MECH" title=""Basic Transition Mechanisms for IPv6 Hosts and Routers"">MECH</a>], Section 2). They also implement the
additional features specified in this document.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Addressing Requirements</span>
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. ISATAP Interface Identifiers</span>
ISATAP interface identifiers are constructed in Modified EUI-64
format (<a href="./rfc3513#section-2.5.1">[RFC3513], Section 2.5.1</a> and <a href="#appendix-A">Appendix A</a>) by concatenating the
24-bit IANA OUI (00-00-5E), the 8-bit hexadecimal value 0xFE, and a
32-bit IPv4 address in network byte order as follows:
<span class="grey">Templin, et al. Experimental [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc4214">RFC 4214</a> ISATAP October 2005</span>
|0 1|1 3|3 6|
|0 5|6 1|2 3|
+----------------+----------------+--------------------------------+
|000000ug00000000|0101111011111110|mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm|
+----------------+----------------+--------------------------------+
When the IPv4 address is known to be globally unique, the "u" bit
(universal/local) is set to 1; otherwise, the "u" bit is set to 0.
"g" is the individual/group bit, and "m" are the bits of the IPv4
address.
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>. ISATAP Interface Address Configuration</span>
Each ISATAP interface configures a set of locators consisting of IPv4
address-to-interface mappings from a single site; i.e., an ISATAP
interface's locator set MUST NOT span multiple sites.
When an IPv4 address is removed from an interface, the corresponding
locator SHOULD be removed from its associated locator set(s). When a
new IPv4 address is assigned to an interface, the corresponding
locator MAY be added to the appropriate locator set(s).
ISATAP interfaces form ISATAP interface identifiers from IPv4
addresses in their locator set and use them to create link-local
ISATAP addresses (<a href="./rfc2462#section-5.3">[RFC2462], Section 5.3</a>).
<span class="h3"><a class="selflink" id="section-6.3" href="#section-6.3">6.3</a>. Multicast/Anycast</span>
It is not possible to assume the general availability of wide-area
IPv4 multicast, so (unlike 6over4 [<a href="./rfc2529" title=""Transmission of IPv6 over IPv4 Domains without Explicit Tunnels"">RFC2529</a>]) ISATAP must assume that
its underlying IPv4 carrier network only has unicast capability.
Support for IPv6 multicast over ISATAP interfaces is not described in
this document.
Similarly, support for Reserved IPv6 Subnet Anycast Addresses is not
described in this document.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Automatic Tunneling</span>
ISATAP interfaces use the basic tunneling mechanisms specified in
([<a href="#ref-MECH" title=""Basic Transition Mechanisms for IPv6 Hosts and Routers"">MECH</a>], Section 3). The following sub-sections describe additional
specifications.
<span class="h3"><a class="selflink" id="section-7.1" href="#section-7.1">7.1</a>. Encapsulation</span>
ISATAP addresses are mapped to a link-layer address by a static
computation; i.e., the last four octets are treated as an IPv4
address.
<span class="grey">Templin, et al. Experimental [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc4214">RFC 4214</a> ISATAP October 2005</span>
<span class="h3"><a class="selflink" id="section-7.2" href="#section-7.2">7.2</a>. Handling ICMPv4 Errors</span>
ISATAP interfaces SHOULD process ARP failures and persistent ICMPv4
errors as link-specific information indicating that a path to a
neighbor may have failed (<a href="./rfc2461#section-7.3.3">[RFC2461], Section 7.3.3</a>).
<span class="h3"><a class="selflink" id="section-7.3" href="#section-7.3">7.3</a>. Decapsulation</span>
The specification in ([<a href="#ref-MECH" title=""Basic Transition Mechanisms for IPv6 Hosts and Routers"">MECH</a>], Section 3.6) is used. Additionally,
when an ISATAP node receives an IPv4 protocol 41 datagram that does
not belong to a configured tunnel interface, it determines whether
the packet's IPv4 destination address and arrival interface match a
locator configured in an ISATAP interface's locator set.
If an ISATAP interface that configures a matching locator is found,
the decapsulator MUST verify that the packet's IPv4 source address is
correct for the encapsulated IPv6 source address. The IPv4 source
address is correct if:
- the IPv6 source address is an ISATAP address that embeds the
IPv4 source address in its interface identifier, or
- the IPv4 source address is a member of the Potential Router
List (see <a href="#section-8.1">Section 8.1</a>).
Packets for which the IPv4 source address is incorrect for this
ISATAP interface are checked to determine whether they belong to
another tunnel interface.
<span class="h3"><a class="selflink" id="section-7.4" href="#section-7.4">7.4</a>. Link-Local Addresses</span>
ISATAP interfaces use link-local addresses constructed as specified
in <a href="#section-6">Section 6</a> of this document.
<span class="h3"><a class="selflink" id="section-7.5" href="#section-7.5">7.5</a>. Neighbor Discovery over Tunnels</span>
ISATAP interfaces use the specifications for neighbor discovery found
in the following section of this document.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Neighbor Discovery for ISATAP Interfaces</span>
ISATAP interfaces use the neighbor discovery mechanisms specified in
[<a href="./rfc2461" title=""Neighbor Discovery for IP Version 6 (IPv6)"">RFC2461</a>]. The following sub-sections describe specifications that
are also implemented.
<span class="grey">Templin, et al. Experimental [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc4214">RFC 4214</a> ISATAP October 2005</span>
<span class="h3"><a class="selflink" id="section-8.1" href="#section-8.1">8.1</a>. Conceptual Model of a Host</span>
To the list of Conceptual Data Structures (<a href="./rfc2461#section-5.1">[RFC2461], Section 5.1</a>),
ISATAP interfaces add the following:
Potential Router List (PRL)
A set of entries about potential routers; used to support router
and prefix discovery. Each entry ("PRL(i)") has an associated
timer ("TIMER(i)"), and an IPv4 address ("V4ADDR(i)") that
represents a router's advertising ISATAP interface.
<span class="h3"><a class="selflink" id="section-8.2" href="#section-8.2">8.2</a>. Router and Prefix Discovery - Router Specification</span>
Advertising ISATAP interfaces send Solicited Router Advertisement
messages as specified in (<a href="./rfc2461#section-6.2.6">[RFC2461], Section 6.2.6</a>) except that the
messages are sent directly to the soliciting node; i.e., they might
not be received by other nodes on the link.
<span class="h3"><a class="selflink" id="section-8.3" href="#section-8.3">8.3</a>. Router and Prefix Discovery - Host Specification</span>
The Host Specification in (<a href="./rfc2461#section-6.3">[RFC2461], Section 6.3</a>) is used. The
following sub-sections describe specifications added by ISATAP
interfaces.
<span class="h4"><a class="selflink" id="section-8.3.1" href="#section-8.3.1">8.3.1</a>. Host Variables</span>
To the list of host variables (<a href="./rfc2461#section-6.3.2">[RFC2461], Section 6.3.2</a>), ISATAP
interfaces add the following:
PrlRefreshInterval
Time in seconds between successive refreshments of the PRL after
initialization. The designated value of all ones (0xffffffff)
represents infinity.
Default: 3600 seconds
MinRouterSolicitInterval
Minimum time in seconds between successive solicitations of the
same advertising ISATAP interface. The designated value of all
ones (0xffffffff) represents infinity.
<span class="h4"><a class="selflink" id="section-8.3.2" href="#section-8.3.2">8.3.2</a>. Potential Router List Initialization</span>
ISATAP nodes initialize an ISATAP interface's PRL with IPv4 addresses
discovered via manual configuration, a DNS Fully Qualified Domain
Name (FQDN) [<a href="#ref-STD13" title=""Domain names - implementation and specification"">STD13</a>], a DHCPv4 option, a DHCPv4 vendor-specific
option, or an unspecified alternate method. FQDNs are established
via manual configuration or an unspecified alternate method. FQDNs
are resolved into IPv4 addresses through a static host file lookup,
<span class="grey">Templin, et al. Experimental [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc4214">RFC 4214</a> ISATAP October 2005</span>
querying the DNS service, querying a site-specific name service, or
with an unspecified alternate method.
After initializing an ISATAP interface's PRL, the node sets a timer
for the interface to PrlRefreshInterval seconds and re-initializes
the interface's PRL as specified above when the timer expires. When
an FQDN is used, and when it is resolved via a service that includes
TTLs with the IPv4 addresses returned (e.g., DNS 'A' resource records
[<a href="#ref-STD13" title=""Domain names - implementation and specification"">STD13</a>]), the timer SHOULD be set to the minimum of
PrlRefreshInterval and the minimum TTL returned. (Zero-valued TTLs
are interpreted to mean that the PRL is re-initialized before each
Router Solicitation event; see <a href="#section-8.3.4">Section 8.3.4</a>.)
<span class="h4"><a class="selflink" id="section-8.3.3" href="#section-8.3.3">8.3.3</a>. Processing Received Router Advertisements</span>
To the list of checks for validating Router Advertisement messages
(<a href="./rfc2461#section-6.1.1">[RFC2461], Section 6.1.1</a>), ISATAP interfaces add the following:
- IP Source Address is a link-local ISATAP address that embeds
V4ADDR(i) for some PRL(i).
Valid Router Advertisements received on an ISATAP interface are
processed as specified in (<a href="./rfc2461#section-6.3.4">[RFC2461], Section 6.3.4</a>).
<span class="h4"><a class="selflink" id="section-8.3.4" href="#section-8.3.4">8.3.4</a>. Sending Router Solicitations</span>
To the list of events after which Router Solicitation messages may be
sent (<a href="./rfc2461#section-6.3.7">[RFC2461], Section 6.3.7</a>), ISATAP interfaces add the following:
- TIMER(i) for some PRL(i) expires.
Since unsolicited Router Advertisements may be incomplete and/or
absent, ISATAP nodes MAY schedule periodic Router Solicitation events
for certain PRL(i)s by setting the corresponding TIMER(i).
When periodic Router Solicitation events are scheduled, the node
SHOULD set TIMER(i) so that the next event will refresh remaining
lifetimes stored for PRL(i) before they expire, including the Router
Lifetime, Valid Lifetimes received in Prefix Information Options, and
Route Lifetimes received in Route Information Options [<a href="#ref-DEFLT" title=""Default Router Preferences and More-Specific Routes"">DEFLT</a>].
TIMER(i) MUST be set to no less than MinRouterSolicitInterval seconds
where MinRouterSolicitInterval is configurable for the node, or for a
specific PRL(i), with a conservative default value (e.g., 2 minutes).
When TIMER(i) expires, the node sends Router Solicitation messages as
specified in (<a href="./rfc2461#section-6.3.7">[RFC2461], Section 6.3.7</a>) except that the messages are
sent directly to PRL(i); i.e., they might not be received by other
routers. While the node continues to require periodic Router
<span class="grey">Templin, et al. Experimental [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc4214">RFC 4214</a> ISATAP October 2005</span>
Solicitation events for PRL(i), and while PRL(i) continues to act as
a router, the node resets TIMER(i) after each expiration event as
described above.
<span class="h3"><a class="selflink" id="section-8.4" href="#section-8.4">8.4</a>. Neighbor Unreachability Detection</span>
Hosts SHOULD perform Neighbor Unreachability Detection (<a href="./rfc2461#section-7.3">[RFC2461],
Section 7.3</a>). Routers MAY perform neighbor unreachability detection,
but this might not scale in all environments.
After address resolution, hosts SHOULD perform an initial
reachability confirmation by sending Neighbor Solicitation messages
and receiving a Neighbor Advertisement message. Routers MAY perform
this initial reachability confirmation, but this might not scale in
all environments.
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. Site Administration Considerations</span>
Site administrators maintain a Potential Router List (PRL) of IPv4
addresses representing advertising ISATAP interfaces of routers.
The PRL is commonly maintained as an FQDN for the ISATAP service in
the site's name service (see <a href="#section-8.3.2">Section 8.3.2</a>). There are no mandatory
rules for the selection of the FQDN, but site administrators are
encouraged to use the convention "isatap.domainname" (e.g.,
isatap.example.com).
When the site's name service includes TTLs with the IPv4 addresses
returned, site administrators SHOULD configure the TTLs with
conservative values to minimize control traffic.
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. Security Considerations</span>
Implementors should be aware that, in addition to possible attacks
against IPv6, security attacks against IPv4 must also be considered.
Use of IP security at both IPv4 and IPv6 levels should nevertheless
be avoided, for efficiency reasons. For example, if IPv6 is running
encrypted, encryption of IPv4 would be redundant unless traffic
analysis is felt to be a threat. If IPv6 is running authenticated,
then authentication of IPv4 will add little. Conversely, IPv4
security will not protect IPv6 traffic once it leaves the ISATAP
domain. Therefore, implementing IPv6 security is required even if
IPv4 security is available.
The threats associated with IPv6 Neighbor Discovery are described in
[<a href="./rfc3756" title=""IPv6 Neighbor Discovery (ND) Trust Models and Threats"">RFC3756</a>].
<span class="grey">Templin, et al. Experimental [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc4214">RFC 4214</a> ISATAP October 2005</span>
There is a possible spoofing attack in which spurious ip-protocol-41
packets are injected into an ISATAP link from outside. Since an
ISATAP link spans an entire IPv4 site, restricting access to the link
can be achieved by restricting access to the site; i.e., by having
site border routers implement IPv4 ingress filtering and ip-
protocol-41 filtering.
Another possible spoofing attack involves spurious ip-protocol-41
packets injected from within an ISATAP link by a node pretending to
be a router. The Potential Router List (PRL) provides a list of IPv4
addresses representing advertising ISATAP interfaces of routers that
hosts use in filtering decisions. Site administrators should ensure
that the PRL is kept up to date, and that the resolution mechanism
(see <a href="#section-9">Section 9</a>) cannot be subverted.
The use of temporary addresses [<a href="./rfc3041" title=""Privacy Extensions for Stateless Address Autoconfiguration in IPv6"">RFC3041</a>] and Cryptographically
Generated Addresses [<a href="#ref-CGA" title=""Cryptographically Generated Addresses (CGA)"">CGA</a>] on ISATAP interfaces is outside the scope
of this specification.
<span class="h2"><a class="selflink" id="section-11" href="#section-11">11</a>. IANA Considerations</span>
The IANA has specified the format for Modified EUI-64 address
construction (<a href="./rfc3513#appendix-A">[RFC3513], Appendix A</a>) in the IANA Ethernet Address
Block. The text in <a href="#appendix-A">Appendix A</a> of this document has been offered as
an example specification. The current version of the IANA registry
for Ether Types can be accessed at:
<a href="http://www.iana.org/assignments/ethernet-numbers">http://www.iana.org/assignments/ethernet-numbers</a>
<span class="h2"><a class="selflink" id="section-12" href="#section-12">12</a>. Acknowledgements</span>
The ideas in this document are not original, and the authors
acknowledge the original architects. Portions of this work were
sponsored through SRI International internal projects and government
contracts. Government sponsors include Monica Farah-Stapleton and
Russell Langan (U.S. Army CECOM ASEO), and Dr. Allen Moshfegh (U.S.
Office of Naval Research). SRI International sponsors include Dr.
Mike Frankel, J. Peter Marcotullio, Lou Rodriguez, and Dr. Ambatipudi
Sastry.
The following are acknowledged for providing peer review input: Jim
Bound, Rich Draves, Cyndi Jung, Ambatipudi Sastry, Aaron Schrader,
Ole Troan, and Vlad Yasevich.
The following are acknowledged for their significant contributions:
Alain Durand, Hannu Flinck, Jason Goldschmidt, Nathan Lutchansky,
Karen Nielsen, Mohan Parthasarathy, Chirayu Patel, Art Shelest,
Markku Savela, Pekka Savola, Margaret Wasserman, and Brian Zill.
<span class="grey">Templin, et al. Experimental [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc4214">RFC 4214</a> ISATAP October 2005</span>
The authors acknowledge the work of Quang Nguyen on "Virtual
Ethernet", under the guidance of Dr. Lixia Zhang, that proposed very
similar ideas to those that appear in this document. This work was
first brought to the authors' attention on September 20, 2002.
<span class="grey">Templin, et al. Experimental [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc4214">RFC 4214</a> ISATAP October 2005</span>
<span class="h2"><a class="selflink" id="appendix-A" href="#appendix-A">Appendix A</a>. Modified EUI-64 Addresses in the IANA Ethernet Address</span>
Block
Modified EUI-64 addresses (<a href="./rfc3513#section-2.5.1">[RFC3513], Section 2.5.1</a> and <a href="#appendix-A">Appendix A</a>)
in the IANA Ethernet Address Block are formed by concatenating the
24-bit IANA OUI (00-00-5E) with a 40-bit extension identifier and
inverting the "u" bit; i.e., the "u" bit is set to one (1) to
indicate universal scope and set to zero (0) to indicate local scope.
Modified EUI-64 addresses have the following appearance in memory
(bits transmitted right-to-left within octets, octets transmitted
left-to-right):
0 23 63
| OUI | extension identifier |
000000ug00000000 01011110xxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx
When the first two octets of the extension identifier encode the
hexadecimal value 0xFFFE, the remainder of the extension identifier
encodes a 24-bit vendor-supplied id as follows:
0 23 39 63
| OUI | 0xFFFE | vendor-supplied id |
000000ug00000000 0101111011111111 11111110xxxxxxxx xxxxxxxxxxxxxxxx
When the first octet of the extension identifier encodes the
hexadecimal value 0xFE, the remainder of the extension identifier
encodes a 32-bit IPv4 address as follows:
0 23 31 63
| OUI | 0xFE | IPv4 address |
000000ug00000000 0101111011111110 xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx
Normative References
[<a id="ref-BCP14">BCP14</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
[<a id="ref-STD13">STD13</a>] Mockapetris, P., "Domain names - implementation and
specification", STD 13, <a href="./rfc1035">RFC 1035</a>, November 1987.
[<a id="ref-RFC2460">RFC2460</a>] Deering, S. and R. Hinden, "Internet Protocol, Version 6
(IPv6) Specification", <a href="./rfc2460">RFC 2460</a>, December 1998.
[<a id="ref-RFC2461">RFC2461</a>] Narten, T., Nordmark, E., and W. Simpson, "Neighbor
Discovery for IP Version 6 (IPv6)", <a href="./rfc2461">RFC 2461</a>, December
1998.
<span class="grey">Templin, et al. Experimental [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc4214">RFC 4214</a> ISATAP October 2005</span>
[<a id="ref-RFC2462">RFC2462</a>] Thomson, S. and T. Narten, "IPv6 Stateless Address
Autoconfiguration", <a href="./rfc2462">RFC 2462</a>, December 1998.
[<a id="ref-RFC3513">RFC3513</a>] Hinden, R. and S. Deering, "Internet Protocol Version 6
(IPv6) Addressing Architecture", <a href="./rfc3513">RFC 3513</a>, April 2003.
[<a id="ref-MECH">MECH</a>] Nordmark, E. and R. Gilligan, "Basic Transition Mechanisms
for IPv6 Hosts and Routers", <a href="./rfc4213">RFC 4213</a>, October 2005.
Informative References
[<a id="ref-RFC2491">RFC2491</a>] Armitage, G., Schulter, P., Jork, M., and G. Harter, "IPv6
over Non-Broadcast Multiple Access (NBMA) networks", <a href="./rfc2491">RFC</a>
<a href="./rfc2491">2491</a>, January 1999.
[<a id="ref-RFC2492">RFC2492</a>] Armitage, G., Schulter, P., and M. Jork, "IPv6 over ATM
Networks", <a href="./rfc2492">RFC 2492</a>, January 1999.
[<a id="ref-RFC2529">RFC2529</a>] Carpenter, B. and C. Jung, "Transmission of IPv6 over IPv4
Domains without Explicit Tunnels", <a href="./rfc2529">RFC 2529</a>, March 1999.
[<a id="ref-RFC3041">RFC3041</a>] Narten, T. and R. Draves, "Privacy Extensions for
Stateless Address Autoconfiguration in IPv6", <a href="./rfc3041">RFC 3041</a>,
January 2001.
[<a id="ref-RFC3056">RFC3056</a>] Carpenter, B. and K. Moore, "Connection of IPv6 Domains
via IPv4 Clouds", <a href="./rfc3056">RFC 3056</a>, February 2001.
[<a id="ref-RFC3756">RFC3756</a>] Nikander, P., Kempf, J., and E. Nordmark, "IPv6 Neighbor
Discovery (ND) Trust Models and Threats", <a href="./rfc3756">RFC 3756</a>, May
2004.
[<a id="ref-CGA">CGA</a>] Aura, T., "Cryptographically Generated Addresses (CGA)",
<a href="./rfc3972">RFC 3972</a>, March 2005.
[<a id="ref-DEFLT">DEFLT</a>] Draves, R. and D. Thaler, "Default Router Preferences and
More-Specific Routes", Work in Progress, December 2003.
[<a id="ref-NODEREQ">NODEREQ</a>] Loughney, J., Ed., <a style="text-decoration: none" href='https://www.google.com/search?sitesearch=datatracker.ietf.org%2Fdoc%2Fhtml%2F&q=inurl:draft-+%22IPv6+Node+Requirements%22'>"IPv6 Node Requirements"</a>, Work in
Progress, May 2004.
<span class="grey">Templin, et al. Experimental [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc4214">RFC 4214</a> ISATAP October 2005</span>
Authors' Addresses
Fred L. Templin
Nokia
313 Fairchild Drive
Mountain View, CA 94110
US
EMail: fltemplin@acm.org
Tim Gleeson
Cisco Systems K.K.
Shinjuku Mitsui Building
2-1-1 Nishishinjuku, Shinjuku-ku
Tokyo 163-0409
Japan
EMail: tgleeson@cisco.com
Mohit Talwar
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052-6399
US
Phone: +1 425 705 3131
EMail: mohitt@microsoft.com
Dave Thaler
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052-6399
US
Phone: +1 425 703 8835
EMail: dthaler@microsoft.com
<span class="grey">Templin, et al. Experimental [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc4214">RFC 4214</a> ISATAP October 2005</span>
Full Copyright Statement
Copyright (C) The Internet Society (2005).
This document is subject to the rights, licenses and restrictions
contained in <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and at www.rfc-editor.org/copyright.html, and
except as set forth therein, the authors retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and <a href="https://www.rfc-editor.org/bcp/bcp79">BCP 79</a>.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
<a href="http://www.ietf.org/ipr">http://www.ietf.org/ipr</a>.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at ietf-
ipr@ietf.org.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Templin, et al. Experimental [Page 14]
</pre>
|