1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
|
<pre>Network Working Group M. Wong
Request for Comments: 4408 W. Schlitt
Category: Experimental April 2006
<span class="h1">Sender Policy Framework (SPF) for</span>
<span class="h1">Authorizing Use of Domains in E-Mail, Version 1</span>
Status of This Memo
This memo defines an Experimental Protocol for the Internet
community. It does not specify an Internet standard of any kind.
Discussion and suggestions for improvement are requested.
Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2006).
IESG Note
The following documents (<a href="./rfc4405">RFC 4405</a>, <a href="./rfc4406">RFC 4406</a>, <a href="./rfc4407">RFC 4407</a>, and <a href="./rfc4408">RFC 4408</a>)
are published simultaneously as Experimental RFCs, although there is
no general technical consensus and efforts to reconcile the two
approaches have failed. As such, these documents have not received
full IETF review and are published "AS-IS" to document the different
approaches as they were considered in the MARID working group.
The IESG takes no position about which approach is to be preferred
and cautions the reader that there are serious open issues for each
approach and concerns about using them in tandem. The IESG believes
that documenting the different approaches does less harm than not
documenting them.
Note that the Sender ID experiment may use DNS records that may have
been created for the current SPF experiment or earlier versions in
this set of experiments. Depending on the content of the record,
this may mean that Sender-ID heuristics would be applied incorrectly
to a message. Depending on the actions associated by the recipient
with those heuristics, the message may not be delivered or may be
discarded on receipt.
Participants relying on Sender ID experiment DNS records are warned
that they may lose valid messages in this set of circumstances.
aParticipants publishing SPF experiment DNS records should consider
the advice given in <a href="./rfc4406#section-3.4">section 3.4 of RFC 4406</a> and may wish to publish
both v=spf1 and spf2.0 records to avoid the conflict.
<span class="grey">Wong & Schlitt Experimental [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc4408">RFC 4408</a> Sender Policy Framework (SPF) April 2006</span>
Participants in the Sender-ID experiment need to be aware that the
way Resent-* header fields are used will result in failure to receive
legitimate email when interacting with standards-compliant systems
(specifically automatic forwarders which comply with the standards by
not adding Resent-* headers, and systems which comply with <a href="./rfc822">RFC 822</a>
but have not yet implemented <a href="./rfc2822">RFC 2822</a> Resent-* semantics). It would
be inappropriate to advance Sender-ID on the standards track without
resolving this interoperability problem.
The community is invited to observe the success or failure of the two
approaches during the two years following publication, in order that
a community consensus can be reached in the future.
Abstract
E-mail on the Internet can be forged in a number of ways. In
particular, existing protocols place no restriction on what a sending
host can use as the reverse-path of a message or the domain given on
the SMTP HELO/EHLO commands. This document describes version 1 of
the Sender Policy Framework (SPF) protocol, whereby a domain may
explicitly authorize the hosts that are allowed to use its domain
name, and a receiving host may check such authorization.
Table of Contents
<a href="#section-1">1</a>. Introduction ....................................................<a href="#page-4">4</a>
<a href="#section-1.1">1.1</a>. Protocol Status ............................................<a href="#page-4">4</a>
<a href="#section-1.2">1.2</a>. Terminology ................................................<a href="#page-5">5</a>
<a href="#section-2">2</a>. Operation .......................................................<a href="#page-5">5</a>
<a href="#section-2.1">2.1</a>. The HELO Identity ..........................................<a href="#page-5">5</a>
<a href="#section-2.2">2.2</a>. The MAIL FROM Identity .....................................<a href="#page-5">5</a>
<a href="#section-2.3">2.3</a>. Publishing Authorization ...................................<a href="#page-6">6</a>
<a href="#section-2.4">2.4</a>. Checking Authorization .....................................<a href="#page-6">6</a>
<a href="#section-2.5">2.5</a>. Interpreting the Result ....................................<a href="#page-7">7</a>
<a href="#section-2.5.1">2.5.1</a>. None ................................................<a href="#page-8">8</a>
<a href="#section-2.5.2">2.5.2</a>. Neutral .............................................<a href="#page-8">8</a>
<a href="#section-2.5.3">2.5.3</a>. Pass ................................................<a href="#page-8">8</a>
<a href="#section-2.5.4">2.5.4</a>. Fail ................................................<a href="#page-8">8</a>
<a href="#section-2.5.5">2.5.5</a>. SoftFail ............................................<a href="#page-9">9</a>
<a href="#section-2.5.6">2.5.6</a>. TempError ...........................................<a href="#page-9">9</a>
<a href="#section-2.5.7">2.5.7</a>. PermError ...........................................<a href="#page-9">9</a>
<a href="#section-3">3</a>. SPF Records .....................................................<a href="#page-9">9</a>
<a href="#section-3.1">3.1</a>. Publishing ................................................<a href="#page-10">10</a>
<a href="#section-3.1.1">3.1.1</a>. DNS Resource Record Types ..........................<a href="#page-10">10</a>
<a href="#section-3.1.2">3.1.2</a>. Multiple DNS Records ...............................<a href="#page-11">11</a>
<a href="#section-3.1.3">3.1.3</a>. Multiple Strings in a Single DNS record ............<a href="#page-11">11</a>
<a href="#section-3.1.4">3.1.4</a>. Record Size ........................................<a href="#page-11">11</a>
<a href="#section-3.1.5">3.1.5</a>. Wildcard Records ...................................<a href="#page-11">11</a>
<span class="grey">Wong & Schlitt Experimental [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc4408">RFC 4408</a> Sender Policy Framework (SPF) April 2006</span>
<a href="#section-4">4</a>. The check_host() Function ......................................<a href="#page-12">12</a>
<a href="#section-4.1">4.1</a>. Arguments .................................................<a href="#page-12">12</a>
<a href="#section-4.2">4.2</a>. Results ...................................................<a href="#page-13">13</a>
<a href="#section-4.3">4.3</a>. Initial Processing ........................................<a href="#page-13">13</a>
<a href="#section-4.4">4.4</a>. Record Lookup .............................................<a href="#page-13">13</a>
<a href="#section-4.5">4.5</a>. Selecting Records .........................................<a href="#page-13">13</a>
<a href="#section-4.6">4.6</a>. Record Evaluation .........................................<a href="#page-14">14</a>
<a href="#section-4.6.1">4.6.1</a>. Term Evaluation ....................................<a href="#page-14">14</a>
<a href="#section-4.6.2">4.6.2</a>. Mechanisms .........................................<a href="#page-15">15</a>
<a href="#section-4.6.3">4.6.3</a>. Modifiers ..........................................<a href="#page-15">15</a>
<a href="#section-4.7">4.7</a>. Default Result ............................................<a href="#page-16">16</a>
<a href="#section-4.8">4.8</a>. Domain Specification ......................................<a href="#page-16">16</a>
<a href="#section-5">5</a>. Mechanism Definitions ..........................................<a href="#page-16">16</a>
<a href="#section-5.1">5.1</a>. "all" .....................................................<a href="#page-17">17</a>
<a href="#section-5.2">5.2</a>. "include" .................................................<a href="#page-18">18</a>
<a href="#section-5.3">5.3</a>. "a" .......................................................<a href="#page-19">19</a>
<a href="#section-5.4">5.4</a>. "mx" ......................................................<a href="#page-20">20</a>
<a href="#section-5.5">5.5</a>. "ptr" .....................................................<a href="#page-20">20</a>
<a href="#section-5.6">5.6</a>. "ip4" and "ip6" ...........................................<a href="#page-21">21</a>
<a href="#section-5.7">5.7</a>. "exists" ..................................................<a href="#page-22">22</a>
<a href="#section-6">6</a>. Modifier Definitions ...........................................<a href="#page-22">22</a>
<a href="#section-6.1">6.1</a>. redirect: Redirected Query ................................<a href="#page-23">23</a>
<a href="#section-6.2">6.2</a>. exp: Explanation ..........................................<a href="#page-23">23</a>
<a href="#section-7">7</a>. The Received-SPF Header Field ..................................<a href="#page-25">25</a>
<a href="#section-8">8</a>. Macros .........................................................<a href="#page-27">27</a>
<a href="#section-8.1">8.1</a>. Macro Definitions .........................................<a href="#page-27">27</a>
<a href="#section-8.2">8.2</a>. Expansion Examples ........................................<a href="#page-30">30</a>
<a href="#section-9">9</a>. Implications ...................................................<a href="#page-31">31</a>
<a href="#section-9.1">9.1</a>. Sending Domains ...........................................<a href="#page-31">31</a>
<a href="#section-9.2">9.2</a>. Mailing Lists .............................................<a href="#page-32">32</a>
<a href="#section-9.3">9.3</a>. Forwarding Services and Aliases ...........................<a href="#page-32">32</a>
<a href="#section-9.4">9.4</a>. Mail Services .............................................<a href="#page-34">34</a>
<a href="#section-9.5">9.5</a>. MTA Relays ................................................<a href="#page-34">34</a>
<a href="#section-10">10</a>. Security Considerations .......................................<a href="#page-35">35</a>
<a href="#section-10.1">10.1</a>. Processing Limits ........................................<a href="#page-35">35</a>
10.2. SPF-Authorized E-Mail May Contain Other False
Identities ...............................................<a href="#page-37">37</a>
<a href="#section-10.3">10.3</a>. Spoofed DNS and IP Data ..................................<a href="#page-37">37</a>
<a href="#section-10.4">10.4</a>. Cross-User Forgery .......................................<a href="#page-37">37</a>
<a href="#section-10.5">10.5</a>. Untrusted Information Sources ............................<a href="#page-38">38</a>
<a href="#section-10.6">10.6</a>. Privacy Exposure .........................................<a href="#page-38">38</a>
<a href="#section-11">11</a>. Contributors and Acknowledgements .............................<a href="#page-38">38</a>
<a href="#section-12">12</a>. IANA Considerations ...........................................<a href="#page-39">39</a>
<a href="#section-12.1">12.1</a>. The SPF DNS Record Type ..................................<a href="#page-39">39</a>
<a href="#section-12.2">12.2</a>. The Received-SPF Mail Header Field .......................<a href="#page-39">39</a>
<a href="#section-13">13</a>. References ....................................................<a href="#page-39">39</a>
<a href="#section-13.1">13.1</a>. Normative References .....................................<a href="#page-39">39</a>
<a href="#section-13.2">13.2</a>. Informative References ...................................<a href="#page-40">40</a>
<span class="grey">Wong & Schlitt Experimental [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc4408">RFC 4408</a> Sender Policy Framework (SPF) April 2006</span>
<a href="#appendix-A">Appendix A</a>. Collected ABNF .......................................<a href="#page-42">42</a>
<a href="#appendix-B">Appendix B</a>. Extended Examples ....................................<a href="#page-44">44</a>
<a href="#appendix-B.1">B.1</a>. Simple Examples ..........................................<a href="#page-44">44</a>
<a href="#appendix-B.2">B.2</a>. Multiple Domain Example ..................................<a href="#page-45">45</a>
<a href="#appendix-B.3">B.3</a>. DNSBL Style Example ......................................<a href="#page-46">46</a>
<a href="#appendix-B.4">B.4</a>. Multiple Requirements Example ............................<a href="#page-46">46</a>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
The current E-Mail infrastructure has the property that any host
injecting mail into the mail system can identify itself as any domain
name it wants. Hosts can do this at a variety of levels: in
particular, the session, the envelope, and the mail headers.
Although this feature is desirable in some circumstances, it is a
major obstacle to reducing Unsolicited Bulk E-Mail (UBE, aka spam).
Furthermore, many domain name holders are understandably concerned
about the ease with which other entities may make use of their domain
names, often with malicious intent.
This document defines a protocol by which domain owners may authorize
hosts to use their domain name in the "MAIL FROM" or "HELO" identity.
Compliant domain holders publish Sender Policy Framework (SPF)
records specifying which hosts are permitted to use their names, and
compliant mail receivers use the published SPF records to test the
authorization of sending Mail Transfer Agents (MTAs) using a given
"HELO" or "MAIL FROM" identity during a mail transaction.
An additional benefit to mail receivers is that after the use of an
identity is verified, local policy decisions about the mail can be
made based on the sender's domain, rather than the host's IP address.
This is advantageous because reputation of domain names is likely to
be more accurate than reputation of host IP addresses. Furthermore,
if a claimed identity fails verification, local policy can take
stronger action against such E-Mail, such as rejecting it.
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. Protocol Status</span>
SPF has been in development since the summer of 2003 and has seen
deployment beyond the developers beginning in December 2003. The
design of SPF slowly evolved until the spring of 2004 and has since
stabilized. There have been quite a number of forms of SPF, some
written up as documents, some submitted as Internet Drafts, and many
discussed and debated in development forums.
The goal of this document is to clearly document the protocol defined
by earlier draft specifications of SPF as used in existing
implementations. This conception of SPF is sometimes called "SPF
Classic". It is understood that particular implementations and
<span class="grey">Wong & Schlitt Experimental [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc4408">RFC 4408</a> Sender Policy Framework (SPF) April 2006</span>
deployments may differ from, and build upon, this work. It is hoped
that we have nonetheless captured the common understanding of SPF
version 1.
<span class="h3"><a class="selflink" id="section-1.2" href="#section-1.2">1.2</a>. Terminology</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
This document is concerned with the portion of a mail message
commonly called "envelope sender", "return path", "reverse path",
"bounce address", "2821 FROM", or "MAIL FROM". Since these terms are
either not well defined or often used casually, this document defines
the "MAIL FROM" identity in <a href="#section-2.2">Section 2.2</a>. Note that other terms that
may superficially look like the common terms, such as "reverse-path",
are used only with the defined meanings from normative documents.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Operation</span>
<span class="h3"><a class="selflink" id="section-2.1" href="#section-2.1">2.1</a>. The HELO Identity</span>
The "HELO" identity derives from either the SMTP HELO or EHLO command
(see [<a href="./rfc2821" title=""Simple Mail Transfer Protocol"">RFC2821</a>]). These commands supply the SMTP client (sending
host) for the SMTP session. Note that requirements for the domain
presented in the EHLO or HELO command are not always clear to the
sending party, and SPF clients must be prepared for the "HELO"
identity to be malformed or an IP address literal. At the time of
this writing, many legitimate E-Mails are delivered with invalid HELO
domains.
It is RECOMMENDED that SPF clients not only check the "MAIL FROM"
identity, but also separately check the "HELO" identity by applying
the check_host() function (<a href="#section-4">Section 4</a>) to the "HELO" identity as the
<sender>.
<span class="h3"><a class="selflink" id="section-2.2" href="#section-2.2">2.2</a>. The MAIL FROM Identity</span>
The "MAIL FROM" identity derives from the SMTP MAIL command (see
[<a href="./rfc2821" title=""Simple Mail Transfer Protocol"">RFC2821</a>]). This command supplies the "reverse-path" for a message,
which generally consists of the sender mailbox, and is the mailbox to
which notification messages are to be sent if there are problems
delivering the message.
[<a id="ref-RFC2821">RFC2821</a>] allows the reverse-path to be null (see <a href="./rfc2821#section-4.5.5">Section 4.5.5 in
RFC 2821</a>). In this case, there is no explicit sender mailbox, and
such a message can be assumed to be a notification message from the
mail system itself. When the reverse-path is null, this document
<span class="grey">Wong & Schlitt Experimental [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc4408">RFC 4408</a> Sender Policy Framework (SPF) April 2006</span>
defines the "MAIL FROM" identity to be the mailbox composed of the
localpart "postmaster" and the "HELO" identity (which may or may not
have been checked separately before).
SPF clients MUST check the "MAIL FROM" identity. SPF clients check
the "MAIL FROM" identity by applying the check_host() function to the
"MAIL FROM" identity as the <sender>.
<span class="h3"><a class="selflink" id="section-2.3" href="#section-2.3">2.3</a>. Publishing Authorization</span>
An SPF-compliant domain MUST publish a valid SPF record as described
in <a href="#section-3">Section 3</a>. This record authorizes the use of the domain name in
the "HELO" and "MAIL FROM" identities by the MTAs it specifies.
If domain owners choose to publish SPF records, it is RECOMMENDED
that they end in "-all", or redirect to other records that do, so
that a definitive determination of authorization can be made.
Domain holders may publish SPF records that explicitly authorize no
hosts if mail should never originate using that domain.
When changing SPF records, care must be taken to ensure that there is
a transition period so that the old policy remains valid until all
legitimate E-Mail has been checked.
<span class="h3"><a class="selflink" id="section-2.4" href="#section-2.4">2.4</a>. Checking Authorization</span>
A mail receiver can perform a set of SPF checks for each mail message
it receives. An SPF check tests the authorization of a client host
to emit mail with a given identity. Typically, such checks are done
by a receiving MTA, but can be performed elsewhere in the mail
processing chain so long as the required information is available and
reliable. At least the "MAIL FROM" identity MUST be checked, but it
is RECOMMENDED that the "HELO" identity also be checked beforehand.
Without explicit approval of the domain owner, checking other
identities against SPF version 1 records is NOT RECOMMENDED because
there are cases that are known to give incorrect results. For
example, almost all mailing lists rewrite the "MAIL FROM" identity
(see <a href="#section-9.2">Section 9.2</a>), but some do not change any other identities in the
message. The scenario described in <a href="#section-9.3">Section 9.3</a>, sub-<a href="#section-1.2">section 1.2</a>, is
another example. Documents that define other identities should
define the method for explicit approval.
It is possible that mail receivers will use the SPF check as part of
a larger set of tests on incoming mail. The results of other tests
may influence whether or not a particular SPF check is performed.
For example, finding the sending host's IP address on a local white
<span class="grey">Wong & Schlitt Experimental [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc4408">RFC 4408</a> Sender Policy Framework (SPF) April 2006</span>
list may cause all other tests to be skipped and all mail from that
host to be accepted.
When a mail receiver decides to perform an SPF check, it MUST use a
correctly-implemented check_host() function (<a href="#section-4">Section 4</a>) evaluated
with the correct parameters. Although the test as a whole is
optional, once it has been decided to perform a test it must be
performed as specified so that the correct semantics are preserved
between publisher and receiver.
To make the test, the mail receiver MUST evaluate the check_host()
function with the arguments set as follows:
<ip> - the IP address of the SMTP client that is emitting the
mail, either IPv4 or IPv6.
<domain> - the domain portion of the "MAIL FROM" or "HELO" identity.
<sender> - the "MAIL FROM" or "HELO" identity.
Note that the <domain> argument may not be a well-formed domain name.
For example, if the reverse-path was null, then the EHLO/HELO domain
is used, with its associated problems (see <a href="#section-2.1">Section 2.1</a>). In these
cases, check_host() is defined in <a href="#section-4.3">Section 4.3</a> to return a "None"
result.
Although invalid, malformed, or non-existent domains cause SPF checks
to return "None" because no SPF record can be found, it has long been
the policy of many MTAs to reject E-Mail from such domains,
especially in the case of invalid "MAIL FROM". In order to prevent
the circumvention of SPF records, rejecting E-Mail from invalid
domains should be considered.
Implementations must take care to correctly extract the <domain> from
the data given with the SMTP MAIL FROM command as many MTAs will
still accept such things as source routes (see [<a href="./rfc2821" title=""Simple Mail Transfer Protocol"">RFC2821</a>], <a href="#appendix-C">Appendix</a>
<a href="#appendix-C">C</a>), the %-hack (see [<a href="./rfc1123" title=""Requirements for Internet Hosts - Application and Support"">RFC1123</a>]), and bang paths (see [<a href="./rfc1983" title=""Internet Users' Glossary"">RFC1983</a>]).
These archaic features have been maliciously used to bypass security
systems.
<span class="h3"><a class="selflink" id="section-2.5" href="#section-2.5">2.5</a>. Interpreting the Result</span>
This section describes how software that performs the authorization
should interpret the results of the check_host() function. The
authorization check SHOULD be performed during the processing of the
SMTP transaction that sends the mail. This allows errors to be
returned directly to the sending MTA by way of SMTP replies.
<span class="grey">Wong & Schlitt Experimental [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc4408">RFC 4408</a> Sender Policy Framework (SPF) April 2006</span>
Performing the authorization after the SMTP transaction has finished
may cause problems, such as the following: (1) It may be difficult to
accurately extract the required information from potentially
deceptive headers; (2) legitimate E-Mail may fail because the
sender's policy may have since changed.
Generating non-delivery notifications to forged identities that have
failed the authorization check is generally abusive and against the
explicit wishes of the identity owner.
<span class="h4"><a class="selflink" id="section-2.5.1" href="#section-2.5.1">2.5.1</a>. None</span>
A result of "None" means that no records were published by the domain
or that no checkable sender domain could be determined from the given
identity. The checking software cannot ascertain whether or not the
client host is authorized.
<span class="h4"><a class="selflink" id="section-2.5.2" href="#section-2.5.2">2.5.2</a>. Neutral</span>
The domain owner has explicitly stated that he cannot or does not
want to assert whether or not the IP address is authorized. A
"Neutral" result MUST be treated exactly like the "None" result; the
distinction exists only for informational purposes. Treating
"Neutral" more harshly than "None" would discourage domain owners
from testing the use of SPF records (see <a href="#section-9.1">Section 9.1</a>).
<span class="h4"><a class="selflink" id="section-2.5.3" href="#section-2.5.3">2.5.3</a>. Pass</span>
A "Pass" result means that the client is authorized to inject mail
with the given identity. The domain can now, in the sense of
reputation, be considered responsible for sending the message.
Further policy checks can now proceed with confidence in the
legitimate use of the identity.
<span class="h4"><a class="selflink" id="section-2.5.4" href="#section-2.5.4">2.5.4</a>. Fail</span>
A "Fail" result is an explicit statement that the client is not
authorized to use the domain in the given identity. The checking
software can choose to mark the mail based on this or to reject the
mail outright.
If the checking software chooses to reject the mail during the SMTP
transaction, then it SHOULD use an SMTP reply code of 550 (see
[<a href="./rfc2821" title=""Simple Mail Transfer Protocol"">RFC2821</a>]) and, if supported, the 5.7.1 Delivery Status Notification
(DSN) code (see [<a href="./rfc3464" title=""An Extensible Message Format for Delivery Status Notifications"">RFC3464</a>]), in addition to an appropriate reply text.
The check_host() function may return either a default explanation
string or one from the domain that published the SPF records (see
<a href="#section-6.2">Section 6.2</a>). If the information does not originate with the
<span class="grey">Wong & Schlitt Experimental [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc4408">RFC 4408</a> Sender Policy Framework (SPF) April 2006</span>
checking software, it should be made clear that the text is provided
by the sender's domain. For example:
550-5.7.1 SPF MAIL FROM check failed:
550-5.7.1 The domain example.com explains:
550 5.7.1 Please see http://www.example.com/mailpolicy.html
<span class="h4"><a class="selflink" id="section-2.5.5" href="#section-2.5.5">2.5.5</a>. SoftFail</span>
A "SoftFail" result should be treated as somewhere between a "Fail"
and a "Neutral". The domain believes the host is not authorized but
is not willing to make that strong of a statement. Receiving
software SHOULD NOT reject the message based solely on this result,
but MAY subject the message to closer scrutiny than normal.
The domain owner wants to discourage the use of this host and thus
desires limited feedback when a "SoftFail" result occurs. For
example, the recipient's Mail User Agent (MUA) could highlight the
"SoftFail" status, or the receiving MTA could give the sender a
message using a technique called "greylisting" whereby the MTA can
issue an SMTP reply code of 451 (4.3.0 DSN code) with a note the
first time the message is received, but accept it the second time.
<span class="h4"><a class="selflink" id="section-2.5.6" href="#section-2.5.6">2.5.6</a>. TempError</span>
A "TempError" result means that the SPF client encountered a
transient error while performing the check. Checking software can
choose to accept or temporarily reject the message. If the message
is rejected during the SMTP transaction for this reason, the software
SHOULD use an SMTP reply code of 451 and, if supported, the 4.4.3 DSN
code.
<span class="h4"><a class="selflink" id="section-2.5.7" href="#section-2.5.7">2.5.7</a>. PermError</span>
A "PermError" result means that the domain's published records could
not be correctly interpreted. This signals an error condition that
requires manual intervention to be resolved, as opposed to the
TempError result. Be aware that if the domain owner uses macros
(<a href="#section-8">Section 8</a>), it is possible that this result is due to the checked
identities having an unexpected format.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. SPF Records</span>
An SPF record is a DNS Resource Record (RR) that declares which hosts
are, and are not, authorized to use a domain name for the "HELO" and
"MAIL FROM" identities. Loosely, the record partitions all hosts
into permitted and not-permitted sets (though some hosts might fall
into neither category).
<span class="grey">Wong & Schlitt Experimental [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc4408">RFC 4408</a> Sender Policy Framework (SPF) April 2006</span>
The SPF record is a single string of text. An example record is the
following:
v=spf1 +mx a:colo.example.com/28 -all
This record has a version of "spf1" and three directives: "+mx",
"a:colo.example.com/28" (the + is implied), and "-all".
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. Publishing</span>
Domain owners wishing to be SPF compliant must publish SPF records
for the hosts that are used in the "MAIL FROM" and "HELO" identities.
The SPF records are placed in the DNS tree at the host name it
pertains to, not a subdomain under it, such as is done with SRV
records. This is the same whether the TXT or SPF RR type (see
<a href="#section-3.1.1">Section 3.1.1</a>) is used.
The example above in <a href="#section-3">Section 3</a> might be published via these lines in
a domain zone file:
example.com. TXT "v=spf1 +mx a:colo.example.com/28 -all"
smtp-out.example.com. TXT "v=spf1 a -all"
When publishing via TXT records, beware of other TXT records
published there for other purposes. They may cause problems with
size limits (see <a href="#section-3.1.4">Section 3.1.4</a>).
<span class="h4"><a class="selflink" id="section-3.1.1" href="#section-3.1.1">3.1.1</a>. DNS Resource Record Types</span>
This document defines a new DNS RR of type SPF, code 99. The format
of this type is identical to the TXT RR [<a href="./rfc1035" title=""Domain names - implementation and specification"">RFC1035</a>]. For either type,
the character content of the record is encoded as [<a href="#ref-US-ASCII" title=""USA Code for Information Interchange, X3.4"">US-ASCII</a>].
It is recognized that the current practice (using a TXT record) is
not optimal, but it is necessary because there are a number of DNS
server and resolver implementations in common use that cannot handle
the new RR type. The two-record-type scheme provides a forward path
to the better solution of using an RR type reserved for this purpose.
An SPF-compliant domain name SHOULD have SPF records of both RR
types. A compliant domain name MUST have a record of at least one
type. If a domain has records of both types, they MUST have
identical content. For example, instead of publishing just one
record as in <a href="#section-3.1">Section 3.1</a> above, it is better to publish:
example.com. IN TXT "v=spf1 +mx a:colo.example.com/28 -all"
example.com. IN SPF "v=spf1 +mx a:colo.example.com/28 -all"
<span class="grey">Wong & Schlitt Experimental [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc4408">RFC 4408</a> Sender Policy Framework (SPF) April 2006</span>
Example RRs in this document are shown with the TXT record type;
however, they could be published with the SPF type or with both
types.
<span class="h4"><a class="selflink" id="section-3.1.2" href="#section-3.1.2">3.1.2</a>. Multiple DNS Records</span>
A domain name MUST NOT have multiple records that would cause an
authorization check to select more than one record. See <a href="#section-4.5">Section 4.5</a>
for the selection rules.
<span class="h4"><a class="selflink" id="section-3.1.3" href="#section-3.1.3">3.1.3</a>. Multiple Strings in a Single DNS record</span>
As defined in [<a href="./rfc1035" title=""Domain names - implementation and specification"">RFC1035</a>] sections <a href="#section-3.3.14">3.3.14</a> and <a href="#section-3.3">3.3</a>, a single text DNS
record (either TXT or SPF RR types) can be composed of more than one
string. If a published record contains multiple strings, then the
record MUST be treated as if those strings are concatenated together
without adding spaces. For example:
IN TXT "v=spf1 .... first" "second string..."
MUST be treated as equivalent to
IN TXT "v=spf1 .... firstsecond string..."
SPF or TXT records containing multiple strings are useful in
constructing records that would exceed the 255-byte maximum length of
a string within a single TXT or SPF RR record.
<span class="h4"><a class="selflink" id="section-3.1.4" href="#section-3.1.4">3.1.4</a>. Record Size</span>
The published SPF record for a given domain name SHOULD remain small
enough that the results of a query for it will fit within 512 octets.
This will keep even older DNS implementations from falling over to
TCP. Since the answer size is dependent on many things outside the
scope of this document, it is only possible to give this guideline:
If the combined length of the DNS name and the text of all the
records of a given type (TXT or SPF) is under 450 characters, then
DNS answers should fit in UDP packets. Note that when computing the
sizes for queries of the TXT format, one must take into account any
other TXT records published at the domain name. Records that are too
long to fit in a single UDP packet MAY be silently ignored by SPF
clients.
<span class="h4"><a class="selflink" id="section-3.1.5" href="#section-3.1.5">3.1.5</a>. Wildcard Records</span>
Use of wildcard records for publishing is not recommended. Care must
be taken if wildcard records are used. If a domain publishes
wildcard MX records, it may want to publish wildcard declarations,
<span class="grey">Wong & Schlitt Experimental [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc4408">RFC 4408</a> Sender Policy Framework (SPF) April 2006</span>
subject to the same requirements and problems. In particular, the
declaration must be repeated for any host that has any RR records at
all, and for subdomains thereof. For example, the example given in
<a href="./rfc1034#section-4.3.3">[RFC1034], Section 4.3.3</a>, could be extended with the following:
X.COM. MX 10 A.X.COM
X.COM. TXT "v=spf1 a:A.X.COM -all"
*.X.COM. MX 10 A.X.COM
*.X.COM. TXT "v=spf1 a:A.X.COM -all"
A.X.COM. A 1.2.3.4
A.X.COM. MX 10 A.X.COM
A.X.COM. TXT "v=spf1 a:A.X.COM -all"
*.A.X.COM. MX 10 A.X.COM
*.A.X.COM. TXT "v=spf1 a:A.X.COM -all"
Notice that SPF records must be repeated twice for every name within
the domain: once for the name, and once with a wildcard to cover the
tree under the name.
Use of wildcards is discouraged in general as they cause every name
under the domain to exist and queries against arbitrary names will
never return RCODE 3 (Name Error).
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. The check_host() Function</span>
The check_host() function fetches SPF records, parses them, and
interprets them to determine whether a particular host is or is not
permitted to send mail with a given identity. Mail receivers that
perform this check MUST correctly evaluate the check_host() function
as described here.
Implementations MAY use a different algorithm than the canonical
algorithm defined here, so long as the results are the same in all
cases.
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. Arguments</span>
The check_host() function takes these arguments:
<ip> - the IP address of the SMTP client that is emitting the
mail, either IPv4 or IPv6.
<domain> - the domain that provides the sought-after authorization
information; initially, the domain portion of the "MAIL
FROM" or "HELO" identity.
<span class="grey">Wong & Schlitt Experimental [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc4408">RFC 4408</a> Sender Policy Framework (SPF) April 2006</span>
<sender> - the "MAIL FROM" or "HELO" identity.
The domain portion of <sender> will usually be the same as the
<domain> argument when check_host() is initially evaluated. However,
this will generally not be true for recursive evaluations (see
<a href="#section-5.2">Section 5.2</a> below).
Actual implementations of the check_host() function may need
additional arguments.
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. Results</span>
The function check_host() can return one of several results described
in <a href="#section-2.5">Section 2.5</a>. Based on the result, the action to be taken is
determined by the local policies of the receiver.
<span class="h3"><a class="selflink" id="section-4.3" href="#section-4.3">4.3</a>. Initial Processing</span>
If the <domain> is malformed (label longer than 63 characters, zero-
length label not at the end, etc.) or is not a fully qualified domain
name, or if the DNS lookup returns "domain does not exist" (RCODE 3),
check_host() immediately returns the result "None".
If the <sender> has no localpart, substitute the string "postmaster"
for the localpart.
<span class="h3"><a class="selflink" id="section-4.4" href="#section-4.4">4.4</a>. Record Lookup</span>
In accordance with how the records are published (see <a href="#section-3.1">Section 3.1</a>
above), a DNS query needs to be made for the <domain> name, querying
for either RR type TXT, SPF, or both. If both SPF and TXT RRs are
looked up, the queries MAY be done in parallel.
If all DNS lookups that are made return a server failure (RCODE 2),
or other error (RCODE other than 0 or 3), or time out, then
check_host() exits immediately with the result "TempError".
<span class="h3"><a class="selflink" id="section-4.5" href="#section-4.5">4.5</a>. Selecting Records</span>
Records begin with a version section:
record = version terms *SP
version = "v=spf1"
Starting with the set of records that were returned by the lookup,
record selection proceeds in two steps:
<span class="grey">Wong & Schlitt Experimental [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc4408">RFC 4408</a> Sender Policy Framework (SPF) April 2006</span>
1. Records that do not begin with a version section of exactly
"v=spf1" are discarded. Note that the version section is
terminated either by an SP character or the end of the record. A
record with a version section of "v=spf10" does not match and must
be discarded.
2. If any records of type SPF are in the set, then all records of
type TXT are discarded.
After the above steps, there should be exactly one record remaining
and evaluation can proceed. If there are two or more records
remaining, then check_host() exits immediately with the result of
"PermError".
If no matching records are returned, an SPF client MUST assume that
the domain makes no SPF declarations. SPF processing MUST stop and
return "None".
<span class="h3"><a class="selflink" id="section-4.6" href="#section-4.6">4.6</a>. Record Evaluation</span>
After one SPF record has been selected, the check_host() function
parses and interprets it to find a result for the current test. If
there are any syntax errors, check_host() returns immediately with
the result "PermError".
Implementations MAY choose to parse the entire record first and
return "PermError" if the record is not syntactically well formed.
However, in all cases, any syntax errors anywhere in the record MUST
be detected.
<span class="h4"><a class="selflink" id="section-4.6.1" href="#section-4.6.1">4.6.1</a>. Term Evaluation</span>
There are two types of terms: mechanisms and modifiers. A record
contains an ordered list of these as specified in the following
Augmented Backus-Naur Form (ABNF).
terms = *( 1*SP ( directive / modifier ) )
directive = [ qualifier ] mechanism
qualifier = "+" / "-" / "?" / "~"
mechanism = ( all / include
/ A / MX / PTR / IP4 / IP6 / exists )
modifier = redirect / explanation / unknown-modifier
unknown-modifier = name "=" macro-string
name = ALPHA *( ALPHA / DIGIT / "-" / "_" / "." )
Most mechanisms allow a ":" or "/" character after the name.
<span class="grey">Wong & Schlitt Experimental [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc4408">RFC 4408</a> Sender Policy Framework (SPF) April 2006</span>
Modifiers always contain an equals ('=') character immediately after
the name, and before any ":" or "/" characters that may be part of
the macro-string.
Terms that do not contain any of "=", ":", or "/" are mechanisms, as
defined in <a href="#section-5">Section 5</a>.
As per the definition of the ABNF notation in [<a href="./rfc4234" title=""Augmented BNF for Syntax Specifications: ABNF"">RFC4234</a>], mechanism
and modifier names are case-insensitive.
<span class="h4"><a class="selflink" id="section-4.6.2" href="#section-4.6.2">4.6.2</a>. Mechanisms</span>
Each mechanism is considered in turn from left to right. If there
are no more mechanisms, the result is specified in <a href="#section-4.7">Section 4.7</a>.
When a mechanism is evaluated, one of three things can happen: it can
match, not match, or throw an exception.
If it matches, processing ends and the qualifier value is returned as
the result of that record. If it does not match, processing
continues with the next mechanism. If it throws an exception,
mechanism processing ends and the exception value is returned.
The possible qualifiers, and the results they return are as follows:
"+" Pass
"-" Fail
"~" SoftFail
"?" Neutral
The qualifier is optional and defaults to "+".
When a mechanism matches and the qualifier is "-", then a "Fail"
result is returned and the explanation string is computed as
described in <a href="#section-6.2">Section 6.2</a>.
The specific mechanisms are described in <a href="#section-5">Section 5</a>.
<span class="h4"><a class="selflink" id="section-4.6.3" href="#section-4.6.3">4.6.3</a>. Modifiers</span>
Modifiers are not mechanisms: they do not return match or not-match.
Instead they provide additional information. Although modifiers do
not directly affect the evaluation of the record, the "redirect"
modifier has an effect after all the mechanisms have been evaluated.
<span class="grey">Wong & Schlitt Experimental [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc4408">RFC 4408</a> Sender Policy Framework (SPF) April 2006</span>
<span class="h3"><a class="selflink" id="section-4.7" href="#section-4.7">4.7</a>. Default Result</span>
If none of the mechanisms match and there is no "redirect" modifier,
then the check_host() returns a result of "Neutral", just as if
"?all" were specified as the last directive. If there is a
"redirect" modifier, check_host() proceeds as defined in <a href="#section-6.1">Section 6.1</a>.
Note that records SHOULD always use either a "redirect" modifier or
an "all" mechanism to explicitly terminate processing.
For example:
v=spf1 +mx -all
or
v=spf1 +mx redirect=_spf.example.com
<span class="h3"><a class="selflink" id="section-4.8" href="#section-4.8">4.8</a>. Domain Specification</span>
Several of these mechanisms and modifiers have a <domain-spec>
section. The <domain-spec> string is macro expanded (see <a href="#section-8">Section 8</a>).
The resulting string is the common presentation form of a fully-
qualified DNS name: a series of labels separated by periods. This
domain is called the <target-name> in the rest of this document.
Note: The result of the macro expansion is not subject to any further
escaping. Hence, this facility cannot produce all characters that
are legal in a DNS label (e.g., the control characters). However,
this facility is powerful enough to express legal host names and
common utility labels (such as "_spf") that are used in DNS.
For several mechanisms, the <domain-spec> is optional. If it is not
provided, the <domain> is used as the <target-name>.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Mechanism Definitions</span>
This section defines two types of mechanisms.
Basic mechanisms contribute to the language framework. They do not
specify a particular type of authorization scheme.
all
include
Designated sender mechanisms are used to designate a set of <ip>
addresses as being permitted or not permitted to use the <domain> for
sending mail.
<span class="grey">Wong & Schlitt Experimental [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc4408">RFC 4408</a> Sender Policy Framework (SPF) April 2006</span>
a
mx
ptr
ip4
ip6
exists
The following conventions apply to all mechanisms that perform a
comparison between <ip> and an IP address at any point:
If no CIDR-length is given in the directive, then <ip> and the IP
address are compared for equality. (Here, CIDR is Classless Inter-
Domain Routing.)
If a CIDR-length is specified, then only the specified number of
high-order bits of <ip> and the IP address are compared for equality.
When any mechanism fetches host addresses to compare with <ip>, when
<ip> is an IPv4 address, A records are fetched, when <ip> is an IPv6
address, AAAA records are fetched. Even if the SMTP connection is
via IPv6, an IPv4-mapped IPv6 IP address (see [<a href="./rfc3513" title=""Internet Protocol Version 6 (IPv6) Addressing Architecture"">RFC3513</a>], <a href="#section-2.5.5">Section</a>
<a href="#section-2.5.5">2.5.5</a>) MUST still be considered an IPv4 address.
Several mechanisms rely on information fetched from DNS. For these
DNS queries, except where noted, if the DNS server returns an error
(RCODE other than 0 or 3) or the query times out, the mechanism
throws the exception "TempError". If the server returns "domain does
not exist" (RCODE 3), then evaluation of the mechanism continues as
if the server returned no error (RCODE 0) and zero answer records.
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. "all"</span>
all = "all"
The "all" mechanism is a test that always matches. It is used as the
rightmost mechanism in a record to provide an explicit default.
For example:
v=spf1 a mx -all
Mechanisms after "all" will never be tested. Any "redirect" modifier
(<a href="#section-6.1">Section 6.1</a>) has no effect when there is an "all" mechanism.
<span class="grey">Wong & Schlitt Experimental [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc4408">RFC 4408</a> Sender Policy Framework (SPF) April 2006</span>
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. "include"</span>
include = "include" ":" domain-spec
The "include" mechanism triggers a recursive evaluation of
check_host(). The domain-spec is expanded as per <a href="#section-8">Section 8</a>. Then
check_host() is evaluated with the resulting string as the <domain>.
The <ip> and <sender> arguments remain the same as in the current
evaluation of check_host().
In hindsight, the name "include" was poorly chosen. Only the
evaluated result of the referenced SPF record is used, rather than
acting as if the referenced SPF record was literally included in the
first. For example, evaluating a "-all" directive in the referenced
record does not terminate the overall processing and does not
necessarily result in an overall "Fail". (Better names for this
mechanism would have been "if-pass", "on-pass", etc.)
The "include" mechanism makes it possible for one domain to designate
multiple administratively-independent domains. For example, a vanity
domain "example.net" might send mail using the servers of
administratively-independent domains example.com and example.org.
Example.net could say
IN TXT "v=spf1 include:example.com include:example.org -all"
This would direct check_host() to, in effect, check the records of
example.com and example.org for a "Pass" result. Only if the host
were not permitted for either of those domains would the result be
"Fail".
<span class="grey">Wong & Schlitt Experimental [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc4408">RFC 4408</a> Sender Policy Framework (SPF) April 2006</span>
Whether this mechanism matches, does not match, or throws an
exception depends on the result of the recursive evaluation of
check_host():
+---------------------------------+---------------------------------+
| A recursive check_host() result | Causes the "include" mechanism |
| of: | to: |
+---------------------------------+---------------------------------+
| Pass | match |
| | |
| Fail | not match |
| | |
| SoftFail | not match |
| | |
| Neutral | not match |
| | |
| TempError | throw TempError |
| | |
| PermError | throw PermError |
| | |
| None | throw PermError |
+---------------------------------+---------------------------------+
The "include" mechanism is intended for crossing administrative
boundaries. Although it is possible to use includes to consolidate
multiple domains that share the same set of designated hosts, domains
are encouraged to use redirects where possible, and to minimize the
number of includes within a single administrative domain. For
example, if example.com and example.org were managed by the same
entity, and if the permitted set of hosts for both domains was
"mx:example.com", it would be possible for example.org to specify
"include:example.com", but it would be preferable to specify
"redirect=example.com" or even "mx:example.com".
<span class="h3"><a class="selflink" id="section-5.3" href="#section-5.3">5.3</a>. "a"</span>
This mechanism matches if <ip> is one of the <target-name>'s IP
addresses.
A = "a" [ ":" domain-spec ] [ dual-cidr-length ]
An address lookup is done on the <target-name>. The <ip> is compared
to the returned address(es). If any address matches, the mechanism
matches.
<span class="grey">Wong & Schlitt Experimental [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc4408">RFC 4408</a> Sender Policy Framework (SPF) April 2006</span>
<span class="h3"><a class="selflink" id="section-5.4" href="#section-5.4">5.4</a>. "mx"</span>
This mechanism matches if <ip> is one of the MX hosts for a domain
name.
MX = "mx" [ ":" domain-spec ] [ dual-cidr-length ]
check_host() first performs an MX lookup on the <target-name>. Then
it performs an address lookup on each MX name returned. The <ip> is
compared to each returned IP address. To prevent Denial of Service
(DoS) attacks, more than 10 MX names MUST NOT be looked up during the
evaluation of an "mx" mechanism (see <a href="#section-10">Section 10</a>). If any address
matches, the mechanism matches.
Note regarding implicit MXs: If the <target-name> has no MX records,
check_host() MUST NOT pretend the target is its single MX, and MUST
NOT default to an A lookup on the <target-name> directly. This
behavior breaks with the legacy "implicit MX" rule. See <a href="./rfc2821#section-5">[RFC2821],
Section 5</a>. If such behavior is desired, the publisher should specify
an "a" directive.
<span class="h3"><a class="selflink" id="section-5.5" href="#section-5.5">5.5</a>. "ptr"</span>
This mechanism tests whether the DNS reverse-mapping for <ip> exists
and correctly points to a domain name within a particular domain.
PTR = "ptr" [ ":" domain-spec ]
First, the <ip>'s name is looked up using this procedure: perform a
DNS reverse-mapping for <ip>, looking up the corresponding PTR record
in "in-addr.arpa." if the address is an IPv4 one and in "ip6.arpa."
if it is an IPv6 address. For each record returned, validate the
domain name by looking up its IP address. To prevent DoS attacks,
more than 10 PTR names MUST NOT be looked up during the evaluation of
a "ptr" mechanism (see <a href="#section-10">Section 10</a>). If <ip> is among the returned IP
addresses, then that domain name is validated. In pseudocode:
sending-domain_names := ptr_lookup(sending-host_IP); if more than 10
sending-domain_names are found, use at most 10. for each name in
(sending-domain_names) {
IP_addresses := a_lookup(name);
if the sending-domain_IP is one of the IP_addresses {
validated-sending-domain_names += name;
} }
Check all validated domain names to see if they end in the
<target-name> domain. If any do, this mechanism matches. If no
validated domain name can be found, or if none of the validated
<span class="grey">Wong & Schlitt Experimental [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc4408">RFC 4408</a> Sender Policy Framework (SPF) April 2006</span>
domain names end in the <target-name>, this mechanism fails to match.
If a DNS error occurs while doing the PTR RR lookup, then this
mechanism fails to match. If a DNS error occurs while doing an A RR
lookup, then that domain name is skipped and the search continues.
Pseudocode:
for each name in (validated-sending-domain_names) {
if name ends in <domain-spec>, return match.
if name is <domain-spec>, return match.
}
return no-match.
This mechanism matches if the <target-name> is either an ancestor of
a validated domain name or if the <target-name> and a validated
domain name are the same. For example: "mail.example.com" is within
the domain "example.com", but "mail.bad-example.com" is not.
Note: Use of this mechanism is discouraged because it is slow, it is
not as reliable as other mechanisms in cases of DNS errors, and it
places a large burden on the arpa name servers. If used, proper PTR
records must be in place for the domain's hosts and the "ptr"
mechanism should be one of the last mechanisms checked.
<span class="h3"><a class="selflink" id="section-5.6" href="#section-5.6">5.6</a>. "ip4" and "ip6"</span>
These mechanisms test whether <ip> is contained within a given IP
network.
IP4 = "ip4" ":" ip4-network [ ip4-cidr-length ]
IP6 = "ip6" ":" ip6-network [ ip6-cidr-length ]
ip4-cidr-length = "/" 1*DIGIT
ip6-cidr-length = "/" 1*DIGIT
dual-cidr-length = [ ip4-cidr-length ] [ "/" ip6-cidr-length ]
ip4-network = qnum "." qnum "." qnum "." qnum
qnum = DIGIT ; 0-9
/ %x31-39 DIGIT ; 10-99
/ "1" 2DIGIT ; 100-199
/ "2" %x30-34 DIGIT ; 200-249
/ "25" %x30-35 ; 250-255
; as per conventional dotted quad notation. e.g., 192.0.2.0
ip6-network = <as per <a href="./rfc3513#section-2.2">[RFC 3513], section 2.2</a>>
; e.g., 2001:DB8::CD30
The <ip> is compared to the given network. If CIDR-length high-order
bits match, the mechanism matches.
<span class="grey">Wong & Schlitt Experimental [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc4408">RFC 4408</a> Sender Policy Framework (SPF) April 2006</span>
If ip4-cidr-length is omitted, it is taken to be "/32". If
ip6-cidr-length is omitted, it is taken to be "/128". It is not
permitted to omit parts of the IP address instead of using CIDR
notations. That is, use 192.0.2.0/24 instead of 192.0.2.
<span class="h3"><a class="selflink" id="section-5.7" href="#section-5.7">5.7</a>. "exists"</span>
This mechanism is used to construct an arbitrary domain name that is
used for a DNS A record query. It allows for complicated schemes
involving arbitrary parts of the mail envelope to determine what is
permitted.
exists = "exists" ":" domain-spec
The domain-spec is expanded as per <a href="#section-8">Section 8</a>. The resulting domain
name is used for a DNS A RR lookup. If any A record is returned,
this mechanism matches. The lookup type is A even when the
connection type is IPv6.
Domains can use this mechanism to specify arbitrarily complex
queries. For example, suppose example.com publishes the record:
v=spf1 exists:%{ir}.%{l1r+-}._spf.%{d} -all
The <target-name> might expand to
"1.2.0.192.someuser._spf.example.com". This makes fine-grained
decisions possible at the level of the user and client IP address.
This mechanism enables queries that mimic the style of tests that
existing anti-spam DNS blacklists (DNSBL) use.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Modifier Definitions</span>
Modifiers are name/value pairs that provide additional information.
Modifiers always have an "=" separating the name and the value.
The modifiers defined in this document ("redirect" and "exp") MAY
appear anywhere in the record, but SHOULD appear at the end, after
all mechanisms. Ordering of these two modifiers does not matter.
These two modifiers MUST NOT appear in a record more than once each.
If they do, then check_host() exits with a result of "PermError".
Unrecognized modifiers MUST be ignored no matter where in a record,
or how often. This allows implementations of this document to
gracefully handle records with modifiers that are defined in other
specifications.
<span class="grey">Wong & Schlitt Experimental [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc4408">RFC 4408</a> Sender Policy Framework (SPF) April 2006</span>
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. redirect: Redirected Query</span>
If all mechanisms fail to match, and a "redirect" modifier is
present, then processing proceeds as follows:
redirect = "redirect" "=" domain-spec
The domain-spec portion of the redirect section is expanded as per
the macro rules in <a href="#section-8">Section 8</a>. Then check_host() is evaluated with
the resulting string as the <domain>. The <ip> and <sender>
arguments remain the same as current evaluation of check_host().
The result of this new evaluation of check_host() is then considered
the result of the current evaluation with the exception that if no
SPF record is found, or if the target-name is malformed, the result
is a "PermError" rather than "None".
Note that the newly-queried domain may itself specify redirect
processing.
This facility is intended for use by organizations that wish to apply
the same record to multiple domains. For example:
la.example.com. TXT "v=spf1 redirect=_spf.example.com"
ny.example.com. TXT "v=spf1 redirect=_spf.example.com"
sf.example.com. TXT "v=spf1 redirect=_spf.example.com"
_spf.example.com. TXT "v=spf1 mx:example.com -all"
In this example, mail from any of the three domains is described by
the same record. This can be an administrative advantage.
Note: In general, the domain "A" cannot reliably use a redirect to
another domain "B" not under the same administrative control. Since
the <sender> stays the same, there is no guarantee that the record at
domain "B" will correctly work for mailboxes in domain "A",
especially if domain "B" uses mechanisms involving localparts. An
"include" directive may be more appropriate.
For clarity, it is RECOMMENDED that any "redirect" modifier appear as
the very last term in a record.
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>. exp: Explanation</span>
explanation = "exp" "=" domain-spec
If check_host() results in a "Fail" due to a mechanism match (such as
"-all"), and the "exp" modifier is present, then the explanation
string returned is computed as described below. If no "exp" modifier
<span class="grey">Wong & Schlitt Experimental [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc4408">RFC 4408</a> Sender Policy Framework (SPF) April 2006</span>
is present, then either a default explanation string or an empty
explanation string may be returned.
The <domain-spec> is macro expanded (see <a href="#section-8">Section 8</a>) and becomes the
<target-name>. The DNS TXT record for the <target-name> is fetched.
If <domain-spec> is empty, or there are any DNS processing errors
(any RCODE other than 0), or if no records are returned, or if more
than one record is returned, or if there are syntax errors in the
explanation string, then proceed as if no exp modifier was given.
The fetched TXT record's strings are concatenated with no spaces, and
then treated as an <explain-string>, which is macro-expanded. This
final result is the explanation string. Implementations MAY limit
the length of the resulting explanation string to allow for other
protocol constraints and/or reasonable processing limits. Since the
explanation string is intended for an SMTP response and <a href="./rfc2821#section-2.4">[RFC2821]
Section 2.4</a> says that responses are in [<a href="#ref-US-ASCII" title=""USA Code for Information Interchange, X3.4"">US-ASCII</a>], the explanation
string is also limited to US-ASCII.
Software evaluating check_host() can use this string to communicate
information from the publishing domain in the form of a short message
or URL. Software SHOULD make it clear that the explanation string
comes from a third party. For example, it can prepend the macro
string "%{o} explains: " to the explanation, such as shown in <a href="#section-2.5.4">Section</a>
<a href="#section-2.5.4">2.5.4</a>.
Suppose example.com has this record:
v=spf1 mx -all exp=explain._spf.%{d}
Here are some examples of possible explanation TXT records at
explain._spf.example.com:
"Mail from example.com should only be sent by its own servers."
-- a simple, constant message
"%{i} is not one of %{d}'s designated mail servers."
-- a message with a little more information, including the IP
address that failed the check
"See http://%{d}/why.html?s=%{S}&i=%{I}"
-- a complicated example that constructs a URL with the
arguments to check_host() so that a web page can be
generated with detailed, custom instructions
Note: During recursion into an "include" mechanism, an exp= modifier
from the <target-name> MUST NOT be used. In contrast, when executing
<span class="grey">Wong & Schlitt Experimental [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc4408">RFC 4408</a> Sender Policy Framework (SPF) April 2006</span>
a "redirect" modifier, an exp= modifier from the original domain MUST
NOT be used.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. The Received-SPF Header Field</span>
It is RECOMMENDED that SMTP receivers record the result of SPF
processing in the message header. If an SMTP receiver chooses to do
so, it SHOULD use the "Received-SPF" header field defined here for
each identity that was checked. This information is intended for the
recipient. (Information intended for the sender is described in
<a href="#section-6.2">Section 6.2</a>, Explanation.)
The Received-SPF header field is a trace field (see [<a href="./rfc2822" title=""Internet Message Format"">RFC2822</a>] <a href="#section-3.6.7">Section</a>
<a href="#section-3.6.7">3.6.7</a>) and SHOULD be prepended to the existing header, above the
Received: field that is generated by the SMTP receiver. It MUST
appear above all other Received-SPF fields in the message. The
header field has the following format:
header-field = "Received-SPF:" [CFWS] result FWS [comment FWS]
[ key-value-list ] CRLF
result = "Pass" / "Fail" / "SoftFail" / "Neutral" /
"None" / "TempError" / "PermError"
key-value-list = key-value-pair *( ";" [CFWS] key-value-pair )
[";"]
key-value-pair = key [CFWS] "=" ( dot-atom / quoted-string )
key = "client-ip" / "envelope-from" / "helo" /
"problem" / "receiver" / "identity" /
mechanism / "x-" name / name
identity = "mailfrom" ; for the "MAIL FROM" identity
/ "helo" ; for the "HELO" identity
/ name ; other identities
dot-atom = <unquoted word as per [<a href="./rfc2822" title=""Internet Message Format"">RFC2822</a>]>
quoted-string = <quoted string as per [<a href="./rfc2822" title=""Internet Message Format"">RFC2822</a>]>
comment = <comment string as per [<a href="./rfc2822" title=""Internet Message Format"">RFC2822</a>]>
CFWS = <comment or folding white space as per [<a href="./rfc2822" title=""Internet Message Format"">RFC2822</a>]>
FWS = <folding white space as per [<a href="./rfc2822" title=""Internet Message Format"">RFC2822</a>]>
CRLF = <standard end-of-line token as per [<a href="./rfc2822" title=""Internet Message Format"">RFC2822</a>]>
The header field SHOULD include a "(...)" style <comment> after the
result, conveying supporting information for the result, such as
<ip>, <sender>, and <domain>.
<span class="grey">Wong & Schlitt Experimental [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc4408">RFC 4408</a> Sender Policy Framework (SPF) April 2006</span>
The following key-value pairs are designed for later machine parsing.
SPF clients SHOULD give enough information so that the SPF results
can be verified. That is, at least "client-ip", "helo", and, if the
"MAIL FROM" identity was checked, "envelope-from".
client-ip the IP address of the SMTP client
envelope-from the envelope sender mailbox
helo the host name given in the HELO or EHLO command
mechanism the mechanism that matched (if no mechanisms matched,
substitute the word "default")
problem if an error was returned, details about the error
receiver the host name of the SPF client
identity the identity that was checked; see the <identity> ABNF
rule
Other keys may be defined by SPF clients. Until a new key name
becomes widely accepted, new key names should start with "x-".
SPF clients MUST make sure that the Received-SPF header field does
not contain invalid characters, is not excessively long, and does not
contain malicious data that has been provided by the sender.
Examples of various header styles that could be generated are the
following:
Received-SPF: Pass (mybox.example.org: domain of
myname@example.com designates 192.0.2.1 as permitted sender)
receiver=mybox.example.org; client-ip=192.0.2.1;
envelope-from=<myname@example.com>; helo=foo.example.com;
Received-SPF: Fail (mybox.example.org: domain of
myname@example.com does not designate
192.0.2.1 as permitted sender)
identity=mailfrom; client-ip=192.0.2.1;
envelope-from=<myname@example.com>;
<span class="grey">Wong & Schlitt Experimental [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc4408">RFC 4408</a> Sender Policy Framework (SPF) April 2006</span>
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Macros</span>
<span class="h3"><a class="selflink" id="section-8.1" href="#section-8.1">8.1</a>. Macro Definitions</span>
Many mechanisms and modifiers perform macro expansion on part of the
term.
domain-spec = macro-string domain-end
domain-end = ( "." toplabel [ "." ] ) / macro-expand
toplabel = ( *alphanum ALPHA *alphanum ) /
( 1*alphanum "-" *( alphanum / "-" ) alphanum )
; LDH rule plus additional TLD restrictions
; (see <a href="./rfc3696#section-2">[RFC3696], Section 2</a>)
alphanum = ALPHA / DIGIT
explain-string = *( macro-string / SP )
macro-string = *( macro-expand / macro-literal )
macro-expand = ( "%{" macro-letter transformers *delimiter "}" )
/ "%%" / "%_" / "%-"
macro-literal = %x21-24 / %x26-7E
; visible characters except "%"
macro-letter = "s" / "l" / "o" / "d" / "i" / "p" / "h" /
"c" / "r" / "t"
transformers = *DIGIT [ "r" ]
delimiter = "." / "-" / "+" / "," / "/" / "_" / "="
A literal "%" is expressed by "%%".
"%_" expands to a single " " space.
"%-" expands to a URL-encoded space, viz., "%20".
The following macro letters are expanded in term arguments:
s = <sender>
l = local-part of <sender>
o = domain of <sender>
d = <domain>
i = <ip>
p = the validated domain name of <ip>
v = the string "in-addr" if <ip> is ipv4, or "ip6" if <ip> is ipv6
h = HELO/EHLO domain
<span class="grey">Wong & Schlitt Experimental [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc4408">RFC 4408</a> Sender Policy Framework (SPF) April 2006</span>
The following macro letters are allowed only in "exp" text:
c = SMTP client IP (easily readable format)
r = domain name of host performing the check
t = current timestamp
A '%' character not followed by a '{', '%', '-', or '_' character is
a syntax error. So
-exists:%(ir).sbl.spamhaus.example.org
is incorrect and will cause check_host() to return a "PermError".
Instead, say
-exists:%{ir}.sbl.spamhaus.example.org
Optional transformers are the following:
*DIGIT = zero or more digits
'r' = reverse value, splitting on dots by default
If transformers or delimiters are provided, the replacement value for
a macro letter is split into parts. After performing any reversal
operation and/or removal of left-hand parts, the parts are rejoined
using "." and not the original splitting characters.
By default, strings are split on "." (dots). Note that no special
treatment is given to leading, trailing, or consecutive delimiters,
and so the list of parts may contain empty strings. Older
implementations of SPF prohibit trailing dots in domain names, so
trailing dots should not be published by domain owners, although they
must be accepted by implementations conforming to this document.
Macros may specify delimiter characters that are used instead of ".".
The 'r' transformer indicates a reversal operation: if the client IP
address were 192.0.2.1, the macro %{i} would expand to "192.0.2.1"
and the macro %{ir} would expand to "1.2.0.192".
The DIGIT transformer indicates the number of right-hand parts to
use, after optional reversal. If a DIGIT is specified, the value
MUST be nonzero. If no DIGITs are specified, or if the value
specifies more parts than are available, all the available parts are
used. If the DIGIT was 5, and only 3 parts were available, the macro
interpreter would pretend the DIGIT was 3. Implementations MUST
support at least a value of 128, as that is the maximum number of
labels in a domain name.
<span class="grey">Wong & Schlitt Experimental [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc4408">RFC 4408</a> Sender Policy Framework (SPF) April 2006</span>
The "s" macro expands to the <sender> argument. It is an E-Mail
address with a localpart, an "@" character, and a domain. The "l"
macro expands to just the localpart. The "o" macro expands to just
the domain part. Note that these values remain the same during
recursive and chained evaluations due to "include" and/or "redirect".
Note also that if the original <sender> had no localpart, the
localpart was set to "postmaster" in initial processing (see <a href="#section-4.3">Section</a>
<a href="#section-4.3">4.3</a>).
For IPv4 addresses, both the "i" and "c" macros expand to the
standard dotted-quad format.
For IPv6 addresses, the "i" macro expands to a dot-format address; it
is intended for use in %{ir}. The "c" macro may expand to any of the
hexadecimal colon-format addresses specified in [<a href="./rfc3513" title=""Internet Protocol Version 6 (IPv6) Addressing Architecture"">RFC3513</a>], <a href="#section-2.2">Section</a>
<a href="#section-2.2">2.2</a>. It is intended for humans to read.
The "p" macro expands to the validated domain name of <ip>. The
procedure for finding the validated domain name is defined in <a href="#section-5.5">Section</a>
<a href="#section-5.5">5.5</a>. If the <domain> is present in the list of validated domains, it
SHOULD be used. Otherwise, if a subdomain of the <domain> is
present, it SHOULD be used. Otherwise, any name from the list may be
used. If there are no validated domain names or if a DNS error
occurs, the string "unknown" is used.
The "r" macro expands to the name of the receiving MTA. This SHOULD
be a fully qualified domain name, but if one does not exist (as when
the checking is done by a MUA) or if policy restrictions dictate
otherwise, the word "unknown" SHOULD be substituted. The domain name
may be different from the name found in the MX record that the client
MTA used to locate the receiving MTA.
The "t" macro expands to the decimal representation of the
approximate number of seconds since the Epoch (Midnight, January 1,
1970, UTC). This is the same value as is returned by the POSIX
time() function in most standards-compliant libraries.
When the result of macro expansion is used in a domain name query, if
the expanded domain name exceeds 253 characters (the maximum length
of a domain name), the left side is truncated to fit, by removing
successive domain labels until the total length does not exceed 253
characters.
Uppercased macros expand exactly as their lowercased equivalents, and
are then URL escaped. URL escaping must be performed for characters
not in the "uric" set, which is defined in [<a href="./rfc3986" title=""Uniform Resource Identifier (URI): Generic Syntax"">RFC3986</a>].
<span class="grey">Wong & Schlitt Experimental [Page 29]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-30" ></span>
<span class="grey"><a href="./rfc4408">RFC 4408</a> Sender Policy Framework (SPF) April 2006</span>
Note: Care must be taken so that macro expansion for legitimate
E-Mail does not exceed the 63-character limit on DNS labels. The
localpart of E-Mail addresses, in particular, can have more than 63
characters between dots.
Note: Domains should avoid using the "s", "l", "o", or "h" macros in
conjunction with any mechanism directive. Although these macros are
powerful and allow per-user records to be published, they severely
limit the ability of implementations to cache results of check_host()
and they reduce the effectiveness of DNS caches.
Implementations should be aware that if no directive processed during
the evaluation of check_host() contains an "s", "l", "o", or "h"
macro, then the results of the evaluation can be cached on the basis
of <domain> and <ip> alone for as long as the shortest Time To Live
(TTL) of all the DNS records involved.
<span class="h3"><a class="selflink" id="section-8.2" href="#section-8.2">8.2</a>. Expansion Examples</span>
The <sender> is strong-bad@email.example.com.
The IPv4 SMTP client IP is 192.0.2.3.
The IPv6 SMTP client IP is 2001:DB8::CB01.
The PTR domain name of the client IP is mx.example.org.
macro expansion
------- ----------------------------
%{s} strong-bad@email.example.com
%{o} email.example.com
%{d} email.example.com
%{d4} email.example.com
%{d3} email.example.com
%{d2} example.com
%{d1} com
%{dr} com.example.email
%{d2r} example.email
%{l} strong-bad
%{l-} strong.bad
%{lr} strong-bad
%{lr-} bad.strong
%{l1r-} strong
<span class="grey">Wong & Schlitt Experimental [Page 30]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-31" ></span>
<span class="grey"><a href="./rfc4408">RFC 4408</a> Sender Policy Framework (SPF) April 2006</span>
macro-string expansion
--------------------------------------------------------------------
%{ir}.%{v}._spf.%{d2} 3.2.0.192.in-addr._spf.example.com
%{lr-}.lp._spf.%{d2} bad.strong.lp._spf.example.com
%{lr-}.lp.%{ir}.%{v}._spf.%{d2}
bad.strong.lp.3.2.0.192.in-addr._spf.example.com
%{ir}.%{v}.%{l1r-}.lp._spf.%{d2}
3.2.0.192.in-addr.strong.lp._spf.example.com
%{d2}.trusted-domains.example.net
example.com.trusted-domains.example.net
IPv6:
%{ir}.%{v}._spf.%{d2} 1.0.B.C.0.0.0.0.
0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.8.B.D.0.1.0.0.2.ip6._spf.example.com
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. Implications</span>
This section outlines the major implications that adoption of this
document will have on various entities involved in Internet E-Mail.
It is intended to make clear to the reader where this document
knowingly affects the operation of such entities. This section is
not a "how-to" manual, or a "best practices" document, and it is not
a comprehensive list of what such entities should do in light of this
document.
This section is non-normative.
<span class="h3"><a class="selflink" id="section-9.1" href="#section-9.1">9.1</a>. Sending Domains</span>
Domains that wish to be compliant with this specification will need
to determine the list of hosts that they allow to use their domain
name in the "HELO" and "MAIL FROM" identities. It is recognized that
forming such a list is not just a simple technical exercise, but
involves policy decisions with both technical and administrative
considerations.
It can be helpful to publish records that include a "tracking
exists:" mechanism. By looking at the name server logs, a rough list
may then be generated. For example:
v=spf1 exists:_h.%{h}._l.%{l}._o.%{o}._i.%{i}._spf.%{d} ?all
<span class="grey">Wong & Schlitt Experimental [Page 31]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-32" ></span>
<span class="grey"><a href="./rfc4408">RFC 4408</a> Sender Policy Framework (SPF) April 2006</span>
<span class="h3"><a class="selflink" id="section-9.2" href="#section-9.2">9.2</a>. Mailing Lists</span>
Mailing lists must be aware of how they re-inject mail that is sent
to the list. Mailing lists MUST comply with the requirements in
<a href="./rfc2821#section-3.10">[RFC2821], Section 3.10</a>, and <a href="./rfc1123#section-5.3.6">[RFC1123], Section 5.3.6</a>, that say that
the reverse-path MUST be changed to be the mailbox of a person or
other entity who administers the list. Whereas the reasons for
changing the reverse-path are many and long-standing, SPF adds
enforcement to this requirement.
In practice, almost all mailing list software in use already complies
with this requirement. Mailing lists that do not comply may or may
not encounter problems depending on how access to the list is
restricted. Such lists that are entirely internal to a domain (only
people in the domain can send to or receive from the list) are not
affected.
<span class="h3"><a class="selflink" id="section-9.3" href="#section-9.3">9.3</a>. Forwarding Services and Aliases</span>
Forwarding services take mail that is received at a mailbox and
direct it to some external mailbox. At the time of this writing, the
near-universal practice of such services is to use the original "MAIL
FROM" of a message when re-injecting it for delivery to the external
mailbox. [<a href="./rfc1123" title=""Requirements for Internet Hosts - Application and Support"">RFC1123</a>] and [<a href="./rfc2821" title=""Simple Mail Transfer Protocol"">RFC2821</a>] describe this action as an "alias"
rather than a "mail list". This means that the external mailbox's
MTA sees all such mail in a connection from a host of the forwarding
service, and so the "MAIL FROM" identity will not, in general, pass
authorization.
There are three places that techniques can be used to ameliorate this
problem.
1. The beginning, when E-Mail is first sent.
1. "Neutral" results could be given for IP addresses that may be
forwarders, instead of "Fail" results. For example:
"v=spf1 mx -exists:%{ir}.sbl.spamhaus.example.org ?all"
This would cause a lookup on an anti-spam DNS blacklist
(DNSBL) and cause a result of "Fail" only for E-Mail coming
from listed sources. All other E-Mail, including E-Mail sent
through forwarders, would receive a "Neutral" result. By
checking the DNSBL after the known good sources, problems with
incorrect listing on the DNSBL are greatly reduced.
<span class="grey">Wong & Schlitt Experimental [Page 32]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-33" ></span>
<span class="grey"><a href="./rfc4408">RFC 4408</a> Sender Policy Framework (SPF) April 2006</span>
2. The "MAIL FROM" identity could have additional information in
the localpart that cryptographically identifies the mail as
coming from an authorized source. In this case, such an SPF
record could be used:
"v=spf1 mx exists:%{l}._spf_verify.%{d} -all"
Then, a specialized DNS server can be set up to serve the
_spf_verify subdomain that validates the localpart. Although
this requires an extra DNS lookup, this happens only when the
E-Mail would otherwise be rejected as not coming from a known
good source.
Note that due to the 63-character limit for domain labels,
this approach only works reliably if the localpart signature
scheme is guaranteed either to only produce localparts with a
maximum of 63 characters or to gracefully handle truncated
localparts.
3. Similarly, a specialized DNS server could be set up that will
rate-limit the E-Mail coming from unexpected IP addresses.
"v=spf1 mx exists:%{ir}._spf_rate.%{d} -all"
4. SPF allows the creation of per-user policies for special
cases. For example, the following SPF record and appropriate
wildcard DNS records can be used:
"v=spf1 mx redirect=%{l1r+}._at_.%{o}._spf.%{d}"
2. The middle, when E-Mail is forwarded.
1. Forwarding services can solve the problem by rewriting the
"MAIL FROM" to be in their own domain. This means that mail
bounced from the external mailbox will have to be re-bounced
by the forwarding service. Various schemes to do this exist
though they vary widely in complexity and resource
requirements on the part of the forwarding service.
2. Several popular MTAs can be forced from "alias" semantics to
"mailing list" semantics by configuring an additional alias
with "owner-" prepended to the original alias name (e.g., an
alias of "friends: george@example.com, fred@example.org" would
need another alias of the form "owner-friends: localowner").
<span class="grey">Wong & Schlitt Experimental [Page 33]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-34" ></span>
<span class="grey"><a href="./rfc4408">RFC 4408</a> Sender Policy Framework (SPF) April 2006</span>
3. The end, when E-Mail is received.
1. If the owner of the external mailbox wishes to trust the
forwarding service, he can direct the external mailbox's MTA
to skip SPF tests when the client host belongs to the
forwarding service.
2. Tests against other identities, such as the "HELO" identity,
may be used to override a failed test against the "MAIL FROM"
identity.
3. For larger domains, it may not be possible to have a complete
or accurate list of forwarding services used by the owners of
the domain's mailboxes. In such cases, whitelists of
generally-recognized forwarding services could be employed.
<span class="h3"><a class="selflink" id="section-9.4" href="#section-9.4">9.4</a>. Mail Services</span>
Service providers that offer mail services to third-party domains,
such as sending of bulk mail, may want to adjust their setup in light
of the authorization check described in this document. If the "MAIL
FROM" identity used for such E-Mail uses the domain of the service
provider, then the provider needs only to ensure that its sending
host is authorized by its own SPF record, if any.
If the "MAIL FROM" identity does not use the mail service provider's
domain, then extra care must be taken. The SPF record format has
several options for the third-party domain to authorize the service
provider's MTAs to send mail on its behalf. For mail service
providers, such as ISPs, that have a wide variety of customers using
the same MTA, steps should be taken to prevent cross-customer forgery
(see <a href="#section-10.4">Section 10.4</a>).
<span class="h3"><a class="selflink" id="section-9.5" href="#section-9.5">9.5</a>. MTA Relays</span>
The authorization check generally precludes the use of arbitrary MTA
relays between sender and receiver of an E-Mail message.
Within an organization, MTA relays can be effectively deployed.
However, for purposes of this document, such relays are effectively
transparent. The SPF authorization check is a check between border
MTAs of different domains.
For mail senders, this means that published SPF records must
authorize any MTAs that actually send across the Internet. Usually,
these are just the border MTAs as internal MTAs simply forward mail
to these MTAs for delivery.
<span class="grey">Wong & Schlitt Experimental [Page 34]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-35" ></span>
<span class="grey"><a href="./rfc4408">RFC 4408</a> Sender Policy Framework (SPF) April 2006</span>
Mail receivers will generally want to perform the authorization check
at the border MTAs, specifically including all secondary MXs. This
allows mail that fails to be rejected during the SMTP session rather
than bounced. Internal MTAs then do not perform the authorization
test. To perform the authorization test other than at the border,
the host that first transferred the message to the organization must
be determined, which can be difficult to extract from the message
header. Testing other than at the border is not recommended.
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. Security Considerations</span>
<span class="h3"><a class="selflink" id="section-10.1" href="#section-10.1">10.1</a>. Processing Limits</span>
As with most aspects of E-Mail, there are a number of ways that
malicious parties could use the protocol as an avenue for a
Denial-of-Service (DoS) attack. The processing limits outlined here
are designed to prevent attacks such as the following:
o A malicious party could create an SPF record with many references
to a victim's domain and send many E-Mails to different SPF
clients; those SPF clients would then create a DoS attack. In
effect, the SPF clients are being used to amplify the attacker's
bandwidth by using fewer bytes in the SMTP session than are used
by the DNS queries. Using SPF clients also allows the attacker to
hide the true source of the attack.
o Whereas implementations of check_host() are supposed to limit the
number of DNS lookups, malicious domains could publish records
that exceed these limits in an attempt to waste computation effort
at their targets when they send them mail. Malicious domains
could also design SPF records that cause particular
implementations to use excessive memory or CPU usage, or to
trigger bugs.
o Malicious parties could send a large volume of mail purporting to
come from the intended target to a wide variety of legitimate mail
hosts. These legitimate machines would then present a DNS load on
the target as they fetched the relevant records.
Of these, the case of a third party referenced in the SPF record is
the easiest for a DoS attack to effectively exploit. As a result,
limits that may seem reasonable for an individual mail server can
still allow an unreasonable amount of bandwidth amplification.
Therefore, the processing limits need to be quite low.
SPF implementations MUST limit the number of mechanisms and modifiers
that do DNS lookups to at most 10 per SPF check, including any
lookups caused by the use of the "include" mechanism or the
<span class="grey">Wong & Schlitt Experimental [Page 35]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-36" ></span>
<span class="grey"><a href="./rfc4408">RFC 4408</a> Sender Policy Framework (SPF) April 2006</span>
"redirect" modifier. If this number is exceeded during a check, a
PermError MUST be returned. The "include", "a", "mx", "ptr", and
"exists" mechanisms as well as the "redirect" modifier do count
against this limit. The "all", "ip4", and "ip6" mechanisms do not
require DNS lookups and therefore do not count against this limit.
The "exp" modifier does not count against this limit because the DNS
lookup to fetch the explanation string occurs after the SPF record
has been evaluated.
When evaluating the "mx" and "ptr" mechanisms, or the %{p} macro,
there MUST be a limit of no more than 10 MX or PTR RRs looked up and
checked.
SPF implementations SHOULD limit the total amount of data obtained
from the DNS queries. For example, when DNS over TCP or EDNS0 are
available, there may need to be an explicit limit to how much data
will be accepted to prevent excessive bandwidth usage or memory usage
and DoS attacks.
MTAs or other processors MAY also impose a limit on the maximum
amount of elapsed time to evaluate check_host(). Such a limit SHOULD
allow at least 20 seconds. If such a limit is exceeded, the result
of authorization SHOULD be "TempError".
Domains publishing records SHOULD try to keep the number of "include"
mechanisms and chained "redirect" modifiers to a minimum. Domains
SHOULD also try to minimize the amount of other DNS information
needed to evaluate a record. This can be done by choosing directives
that require less DNS information and placing lower-cost mechanisms
earlier in the SPF record.
For example, consider a domain set up as follows:
example.com. IN MX 10 mx.example.com.
mx.example.com. IN A 192.0.2.1
a.example.com. IN TXT "v=spf1 mx:example.com -all"
b.example.com. IN TXT "v=spf1 a:mx.example.com -all"
c.example.com. IN TXT "v=spf1 ip4:192.0.2.1 -all"
Evaluating check_host() for the domain "a.example.com" requires the
MX records for "example.com", and then the A records for the listed
hosts. Evaluating for "b.example.com" requires only the A records.
Evaluating for "c.example.com" requires none.
However, there may be administrative considerations: using "a" over
"ip4" allows hosts to be renumbered easily. Using "mx" over "a"
allows the set of mail hosts to be changed easily.
<span class="grey">Wong & Schlitt Experimental [Page 36]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-37" ></span>
<span class="grey"><a href="./rfc4408">RFC 4408</a> Sender Policy Framework (SPF) April 2006</span>
<span class="h3"><a class="selflink" id="section-10.2" href="#section-10.2">10.2</a>. SPF-Authorized E-Mail May Contain Other False Identities</span>
The "MAIL FROM" and "HELO" identity authorizations must not be
construed to provide more assurance than they do. It is entirely
possible for a malicious sender to inject a message using his own
domain in the identities used by SPF, to have that domain's SPF
record authorize the sending host, and yet the message can easily
list other identities in its header. Unless the user or the MUA
takes care to note that the authorized identity does not match the
other more commonly-presented identities (such as the From: header
field), the user may be lulled into a false sense of security.
<span class="h3"><a class="selflink" id="section-10.3" href="#section-10.3">10.3</a>. Spoofed DNS and IP Data</span>
There are two aspects of this protocol that malicious parties could
exploit to undermine the validity of the check_host() function:
o The evaluation of check_host() relies heavily on DNS. A malicious
attacker could attack the DNS infrastructure and cause
check_host() to see spoofed DNS data, and then return incorrect
results. This could include returning "Pass" for an <ip> value
where the actual domain's record would evaluate to "Fail". See
[<a href="./rfc3833" title=""Threat Analysis of the Domain Name System (DNS)"">RFC3833</a>] for a description of DNS weaknesses.
o The client IP address, <ip>, is assumed to be correct. A
malicious attacker could spoof TCP sequence numbers to make mail
appear to come from a permitted host for a domain that the
attacker is impersonating.
<span class="h3"><a class="selflink" id="section-10.4" href="#section-10.4">10.4</a>. Cross-User Forgery</span>
By definition, SPF policies just map domain names to sets of
authorized MTAs, not whole E-Mail addresses to sets of authorized
users. Although the "l" macro (<a href="#section-8">Section 8</a>) provides a limited way to
define individual sets of authorized MTAs for specific E-Mail
addresses, it is generally impossible to verify, through SPF, the use
of specific E-Mail addresses by individual users of the same MTA.
It is up to mail services and their MTAs to directly prevent
cross-user forgery: based on SMTP AUTH ([<a href="./rfc2554" title=""SMTP Service Extension for Authentication"">RFC2554</a>]), users should be
restricted to using only those E-Mail addresses that are actually
under their control (see <a href="./rfc4409#section-6.1">[RFC4409], Section 6.1</a>). Another means to
verify the identity of individual users is message cryptography such
as PGP ([<a href="./rfc2440" title=""OpenPGP Message Format"">RFC2440</a>]) or S/MIME ([<a href="./rfc3851" title=""Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 3.1 Message Specification"">RFC3851</a>]).
<span class="grey">Wong & Schlitt Experimental [Page 37]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-38" ></span>
<span class="grey"><a href="./rfc4408">RFC 4408</a> Sender Policy Framework (SPF) April 2006</span>
<span class="h3"><a class="selflink" id="section-10.5" href="#section-10.5">10.5</a>. Untrusted Information Sources</span>
SPF uses information supplied by third parties, such as the "HELO"
domain name, the "MAIL FROM" address, and SPF records. This
information is then passed to the receiver in the Received-SPF: trace
fields and possibly returned to the client MTA in the form of an SMTP
rejection message. This information must be checked for invalid
characters and excessively long lines.
When the authorization check fails, an explanation string may be
included in the reject response. Both the sender and the rejecting
receiver need to be aware that the explanation was determined by the
publisher of the SPF record checked and, in general, not the
receiver. The explanation may contain malicious URLs, or it may be
offensive or misleading.
This is probably less of a concern than it may initially seem since
such messages are returned to the sender, and the explanation strings
come from the sender policy published by the domain in the identity
claimed by that very sender. As long as the DSN is not redirected to
someone other than the actual sender, the only people who see
malicious explanation strings are people whose messages claim to be
from domains that publish such strings in their SPF records. In
practice, DSNs can be misdirected, such as when an MTA accepts an
E-Mail and then later generates a DSN to a forged address, or when an
E-Mail forwarder does not direct the DSN back to the original sender.
<span class="h3"><a class="selflink" id="section-10.6" href="#section-10.6">10.6</a>. Privacy Exposure</span>
Checking SPF records causes DNS queries to be sent to the domain
owner. These DNS queries, especially if they are caused by the
"exists" mechanism, can contain information about who is sending
E-Mail and likely to which MTA the E-Mail is being sent. This can
introduce some privacy concerns, which may be more or less of an
issue depending on local laws and the relationship between the domain
owner and the person sending the E-Mail.
<span class="h2"><a class="selflink" id="section-11" href="#section-11">11</a>. Contributors and Acknowledgements</span>
This document is largely based on the work of Meng Weng Wong and Mark
Lentczner. Although, as this section acknowledges, many people have
contributed to this document, a very large portion of the writing and
editing are due to Meng and Mark.
This design owes a debt of parentage to [<a href="#ref-RMX" title=""The RMX DNS RR Type for light weight sender authentication"">RMX</a>] by Hadmut Danisch and
to [<a href="#ref-DMP" title=""Designated Mailers Protocol"">DMP</a>] by Gordon Fecyk. The idea of using a DNS record to check
the legitimacy of an E-Mail address traces its ancestry further back
through messages on the namedroppers mailing list by Paul Vixie
<span class="grey">Wong & Schlitt Experimental [Page 38]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-39" ></span>
<span class="grey"><a href="./rfc4408">RFC 4408</a> Sender Policy Framework (SPF) April 2006</span>
[<a id="ref-Vixie">Vixie</a>] (based on suggestion by Jim Miller) and by David Green
[<a href="#ref-Green" title=""Domain-Authorized SMTP Mail"">Green</a>].
Philip Gladstone contributed the concept of macros to the
specification, multiplying the expressiveness of the language and
making per-user and per-IP lookups possible.
The authors would also like to thank the literally hundreds of
individuals who have participated in the development of this design.
They are far too numerous to name, but they include the following:
The folks on the spf-discuss mailing list.
The folks on the SPAM-L mailing list.
The folks on the IRTF ASRG mailing list.
The folks on the IETF MARID mailing list.
The folks on #perl.
<span class="h2"><a class="selflink" id="section-12" href="#section-12">12</a>. IANA Considerations</span>
<span class="h3"><a class="selflink" id="section-12.1" href="#section-12.1">12.1</a>. The SPF DNS Record Type</span>
The IANA has assigned a new Resource Record Type and Qtype from the
DNS Parameters Registry for the SPF RR type with code 99.
<span class="h3"><a class="selflink" id="section-12.2" href="#section-12.2">12.2</a>. The Received-SPF Mail Header Field</span>
Per [<a href="./rfc3864" title=""Registration Procedures for Message Header Fields"">RFC3864</a>], the "Received-SPF:" header field is added to the IANA
Permanent Message Header Field Registry. The following is the
registration template:
Header field name: Received-SPF
Applicable protocol: mail ([<a href="./rfc2822" title=""Internet Message Format"">RFC2822</a>])
Status: Experimental
Author/Change controller: IETF
Specification document(s): <a href="./rfc4408">RFC 4408</a>
Related information:
Requesting SPF Council review of any proposed changes and
additions to this field are recommended. For information about
the SPF Council see <a href="http://www.openspf.org/Council">http://www.openspf.org/Council</a>
<span class="h2"><a class="selflink" id="section-13" href="#section-13">13</a>. References</span>
<span class="h3"><a class="selflink" id="section-13.1" href="#section-13.1">13.1</a>. Normative References</span>
[<a id="ref-RFC1035">RFC1035</a>] Mockapetris, P., "Domain names - implementation and
specification", STD 13, <a href="./rfc1035">RFC 1035</a>, November 1987.
<span class="grey">Wong & Schlitt Experimental [Page 39]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-40" ></span>
<span class="grey"><a href="./rfc4408">RFC 4408</a> Sender Policy Framework (SPF) April 2006</span>
[<a id="ref-RFC1123">RFC1123</a>] Braden, R., "Requirements for Internet Hosts - Application
and Support", STD 3, <a href="./rfc1123">RFC 1123</a>, October 1989.
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
[<a id="ref-RFC2821">RFC2821</a>] Klensin, J., "Simple Mail Transfer Protocol", <a href="./rfc2821">RFC 2821</a>,
April 2001.
[<a id="ref-RFC2822">RFC2822</a>] Resnick, P., "Internet Message Format", <a href="./rfc2822">RFC 2822</a>, April
2001.
[<a id="ref-RFC3464">RFC3464</a>] Moore, K. and G. Vaudreuil, "An Extensible Message Format
for Delivery Status Notifications", <a href="./rfc3464">RFC 3464</a>, January
2003.
[<a id="ref-RFC3513">RFC3513</a>] Hinden, R. and S. Deering, "Internet Protocol Version 6
(IPv6) Addressing Architecture", <a href="./rfc3513">RFC 3513</a>, April 2003.
[<a id="ref-RFC3864">RFC3864</a>] Klyne, G., Nottingham, M., and J. Mogul, "Registration
Procedures for Message Header Fields", <a href="https://www.rfc-editor.org/bcp/bcp90">BCP 90</a>, <a href="./rfc3864">RFC 3864</a>,
September 2004.
[<a id="ref-RFC3986">RFC3986</a>] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
Resource Identifier (URI): Generic Syntax", STD 66, <a href="./rfc3986">RFC</a>
<a href="./rfc3986">3986</a>, January 2005.
[<a id="ref-RFC4234">RFC4234</a>] Crocker, D. and P. Overell, "Augmented BNF for Syntax
Specifications: ABNF", <a href="./rfc4234">RFC 4234</a>, October 2005.
[<a id="ref-US-ASCII">US-ASCII</a>] American National Standards Institute (formerly United
States of America Standards Institute), "USA Code for
Information Interchange, X3.4", 1968.
ANSI X3.4-1968 has been replaced by newer versions with slight
modifications, but the 1968 version remains definitive for
the Internet.
<span class="h3"><a class="selflink" id="section-13.2" href="#section-13.2">13.2</a> Informative References</span>
[<a id="ref-RFC1034">RFC1034</a>] Mockapetris, P., "Domain names - concepts and facilities",
STD 13, <a href="./rfc1034">RFC 1034</a>, November 1987.
[<a id="ref-RFC1983">RFC1983</a>] Malkin, G., "Internet Users' Glossary", <a href="./rfc1983">RFC 1983</a>, August
1996.
[<a id="ref-RFC2440">RFC2440</a>] Callas, J., Donnerhacke, L., Finney, H., and R. Thayer,
"OpenPGP Message Format", <a href="./rfc2440">RFC 2440</a>, November 1998.
<span class="grey">Wong & Schlitt Experimental [Page 40]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-41" ></span>
<span class="grey"><a href="./rfc4408">RFC 4408</a> Sender Policy Framework (SPF) April 2006</span>
[<a id="ref-RFC2554">RFC2554</a>] Myers, J., "SMTP Service Extension for Authentication",
<a href="./rfc2554">RFC 2554</a>, March 1999.
[<a id="ref-RFC3696">RFC3696</a>] Klensin, J., "Application Techniques for Checking and
Transformation of Names", <a href="./rfc3696">RFC 3696</a>, February 2004.
[<a id="ref-RFC3833">RFC3833</a>] Atkins, D. and R. Austein, "Threat Analysis of the Domain
Name System (DNS)", <a href="./rfc3833">RFC 3833</a>, August 2004.
[<a id="ref-RFC3851">RFC3851</a>] Ramsdell, B., "Secure/Multipurpose Internet Mail
Extensions (S/MIME) Version 3.1 Message Specification",
<a href="./rfc3851">RFC 3851</a>, July 2004.
[<a id="ref-RFC4409">RFC4409</a>] Gellens, R. and J. Klensin, "Message Submission for Mail",
<a href="./rfc4409">RFC 4409</a>, April 2006.
[<a id="ref-RMX">RMX</a>] Danish, H., "The RMX DNS RR Type for light weight sender
authentication", Work In Progress
[<a id="ref-DMP">DMP</a>] Fecyk, G., "Designated Mailers Protocol", Work In Progress
[<a id="ref-Vixie">Vixie</a>] Vixie, P., "Repudiating MAIL FROM", 2002.
[<a id="ref-Green">Green</a>] Green, D., "Domain-Authorized SMTP Mail", 2002.
<span class="grey">Wong & Schlitt Experimental [Page 41]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-42" ></span>
<span class="grey"><a href="./rfc4408">RFC 4408</a> Sender Policy Framework (SPF) April 2006</span>
<span class="h2"><a class="selflink" id="appendix-A" href="#appendix-A">Appendix A</a>. Collected ABNF</span>
This section is normative and any discrepancies with the ABNF
fragments in the preceding text are to be resolved in favor of this
grammar.
See [<a href="./rfc4234" title=""Augmented BNF for Syntax Specifications: ABNF"">RFC4234</a>] for ABNF notation. Please note that as per this ABNF
definition, literal text strings (those in quotes) are case-
insensitive. Hence, "mx" matches "mx", "MX", "mX", and "Mx".
record = version terms *SP
version = "v=spf1"
terms = *( 1*SP ( directive / modifier ) )
directive = [ qualifier ] mechanism
qualifier = "+" / "-" / "?" / "~"
mechanism = ( all / include
/ A / MX / PTR / IP4 / IP6 / exists )
all = "all"
include = "include" ":" domain-spec
A = "a" [ ":" domain-spec ] [ dual-cidr-length ]
MX = "mx" [ ":" domain-spec ] [ dual-cidr-length ]
PTR = "ptr" [ ":" domain-spec ]
IP4 = "ip4" ":" ip4-network [ ip4-cidr-length ]
IP6 = "ip6" ":" ip6-network [ ip6-cidr-length ]
exists = "exists" ":" domain-spec
modifier = redirect / explanation / unknown-modifier
redirect = "redirect" "=" domain-spec
explanation = "exp" "=" domain-spec
unknown-modifier = name "=" macro-string
ip4-cidr-length = "/" 1*DIGIT
ip6-cidr-length = "/" 1*DIGIT
dual-cidr-length = [ ip4-cidr-length ] [ "/" ip6-cidr-length ]
ip4-network = qnum "." qnum "." qnum "." qnum
qnum = DIGIT ; 0-9
/ %x31-39 DIGIT ; 10-99
/ "1" 2DIGIT ; 100-199
/ "2" %x30-34 DIGIT ; 200-249
/ "25" %x30-35 ; 250-255
; conventional dotted quad notation. e.g., 192.0.2.0
ip6-network = <as per <a href="./rfc3513#section-2.2">[RFC 3513], section 2.2</a>>
; e.g., 2001:DB8::CD30
<span class="grey">Wong & Schlitt Experimental [Page 42]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-43" ></span>
<span class="grey"><a href="./rfc4408">RFC 4408</a> Sender Policy Framework (SPF) April 2006</span>
domain-spec = macro-string domain-end
domain-end = ( "." toplabel [ "." ] ) / macro-expand
toplabel = ( *alphanum ALPHA *alphanum ) /
( 1*alphanum "-" *( alphanum / "-" ) alphanum )
; LDH rule plus additional TLD restrictions
; (see <a href="./rfc3696#section-2">[RFC3696], Section 2</a>)
alphanum = ALPHA / DIGIT
explain-string = *( macro-string / SP )
macro-string = *( macro-expand / macro-literal )
macro-expand = ( "%{" macro-letter transformers *delimiter "}" )
/ "%%" / "%_" / "%-"
macro-literal = %x21-24 / %x26-7E
; visible characters except "%"
macro-letter = "s" / "l" / "o" / "d" / "i" / "p" / "h" /
"c" / "r" / "t"
transformers = *DIGIT [ "r" ]
delimiter = "." / "-" / "+" / "," / "/" / "_" / "="
name = ALPHA *( ALPHA / DIGIT / "-" / "_" / "." )
header-field = "Received-SPF:" [CFWS] result FWS [comment FWS]
[ key-value-list ] CRLF
result = "Pass" / "Fail" / "SoftFail" / "Neutral" /
"None" / "TempError" / "PermError"
key-value-list = key-value-pair *( ";" [CFWS] key-value-pair )
[";"]
key-value-pair = key [CFWS] "=" ( dot-atom / quoted-string )
key = "client-ip" / "envelope-from" / "helo" /
"problem" / "receiver" / "identity" /
mechanism / "x-" name / name
identity = "mailfrom" ; for the "MAIL FROM" identity
/ "helo" ; for the "HELO" identity
/ name ; other identities
dot-atom = <unquoted word as per [<a href="./rfc2822" title=""Internet Message Format"">RFC2822</a>]>
quoted-string = <quoted string as per [<a href="./rfc2822" title=""Internet Message Format"">RFC2822</a>]>
comment = <comment string as per [<a href="./rfc2822" title=""Internet Message Format"">RFC2822</a>]>
CFWS = <comment or folding white space as per [<a href="./rfc2822" title=""Internet Message Format"">RFC2822</a>]>
FWS = <folding white space as per [<a href="./rfc2822" title=""Internet Message Format"">RFC2822</a>]>
CRLF = <standard end-of-line token as per [<a href="./rfc2822" title=""Internet Message Format"">RFC2822</a>]>
<span class="grey">Wong & Schlitt Experimental [Page 43]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-44" ></span>
<span class="grey"><a href="./rfc4408">RFC 4408</a> Sender Policy Framework (SPF) April 2006</span>
<span class="h2"><a class="selflink" id="appendix-B" href="#appendix-B">Appendix B</a>. Extended Examples</span>
These examples are based on the following DNS setup:
; A domain with two mail servers, two hosts
; and two servers at the domain name
$ORIGIN example.com.
@ MX 10 mail-a
MX 20 mail-b
A 192.0.2.10
A 192.0.2.11
amy A 192.0.2.65
bob A 192.0.2.66
mail-a A 192.0.2.129
mail-b A 192.0.2.130
www CNAME example.com.
; A related domain
$ORIGIN example.org.
@ MX 10 mail-c
mail-c A 192.0.2.140
; The reverse IP for those addresses
$ORIGIN 2.0.192.in-addr.arpa.
10 PTR example.com.
11 PTR example.com.
65 PTR amy.example.com.
66 PTR bob.example.com.
129 PTR mail-a.example.com.
130 PTR mail-b.example.com.
140 PTR mail-c.example.org.
; A rogue reverse IP domain that claims to be
; something it's not
$ORIGIN 0.0.10.in-addr.arpa.
4 PTR bob.example.com.
<span class="h3"><a class="selflink" id="appendix-B.1" href="#appendix-B.1">B.1</a>. Simple Examples</span>
These examples show various possible published records for
example.com and which values if <ip> would cause check_host() to
return "Pass". Note that <domain> is "example.com".
v=spf1 +all
-- any <ip> passes
v=spf1 a -all
-- hosts 192.0.2.10 and 192.0.2.11 pass
<span class="grey">Wong & Schlitt Experimental [Page 44]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-45" ></span>
<span class="grey"><a href="./rfc4408">RFC 4408</a> Sender Policy Framework (SPF) April 2006</span>
v=spf1 a:example.org -all
-- no sending hosts pass since example.org has no A records
v=spf1 mx -all
-- sending hosts 192.0.2.129 and 192.0.2.130 pass
v=spf1 mx:example.org -all
-- sending host 192.0.2.140 passes
v=spf1 mx mx:example.org -all
-- sending hosts 192.0.2.129, 192.0.2.130, and 192.0.2.140 pass
v=spf1 mx/30 mx:example.org/30 -all
-- any sending host in 192.0.2.128/30 or 192.0.2.140/30 passes
v=spf1 ptr -all
-- sending host 192.0.2.65 passes (reverse DNS is valid and is in
example.com)
-- sending host 192.0.2.140 fails (reverse DNS is valid, but not
in example.com)
-- sending host 10.0.0.4 fails (reverse IP is not valid)
v=spf1 ip4:192.0.2.128/28 -all
-- sending host 192.0.2.65 fails
-- sending host 192.0.2.129 passes
<span class="h3"><a class="selflink" id="appendix-B.2" href="#appendix-B.2">B.2</a>. Multiple Domain Example</span>
These examples show the effect of related records:
example.org: "v=spf1 include:example.com include:example.net -all"
This record would be used if mail from example.org actually came
through servers at example.com and example.net. Example.org's
designated servers are the union of example.com's and example.net's
designated servers.
la.example.org: "v=spf1 redirect=example.org"
ny.example.org: "v=spf1 redirect=example.org"
sf.example.org: "v=spf1 redirect=example.org"
These records allow a set of domains that all use the same mail
system to make use of that mail system's record. In this way, only
the mail system's record needs to be updated when the mail setup
changes. These domains' records never have to change.
<span class="grey">Wong & Schlitt Experimental [Page 45]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-46" ></span>
<span class="grey"><a href="./rfc4408">RFC 4408</a> Sender Policy Framework (SPF) April 2006</span>
<span class="h3"><a class="selflink" id="appendix-B.3" href="#appendix-B.3">B.3</a>. DNSBL Style Example</span>
Imagine that, in addition to the domain records listed above, there
are these:
$ORIGIN _spf.example.com. mary.mobile-users A
127.0.0.2 fred.mobile-users A 127.0.0.2
15.15.168.192.joel.remote-users A 127.0.0.2
16.15.168.192.joel.remote-users A 127.0.0.2
The following records describe users at example.com who mail from
arbitrary servers, or who mail from personal servers.
example.com:
v=spf1 mx
include:mobile-users._spf.%{d}
include:remote-users._spf.%{d}
-all
mobile-users._spf.example.com:
v=spf1 exists:%{l1r+}.%{d}
remote-users._spf.example.com:
v=spf1 exists:%{ir}.%{l1r+}.%{d}
<span class="h3"><a class="selflink" id="appendix-B.4" href="#appendix-B.4">B.4</a>. Multiple Requirements Example</span>
Say that your sender policy requires both that the IP address is
within a certain range and that the reverse DNS for the IP matches.
This can be done several ways, including the following:
example.com. SPF ( "v=spf1 "
"-include:ip4._spf.%{d} "
"-include:ptr._spf.%{d} "
"+all" )
ip4._spf.example.com. SPF "v=spf1 -ip4:192.0.2.0/24 +all"
ptr._spf.example.com. SPF "v=spf1 -ptr +all"
This example shows how the "-include" mechanism can be useful, how an
SPF record that ends in "+all" can be very restrictive, and the use
of De Morgan's Law.
<span class="grey">Wong & Schlitt Experimental [Page 46]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-47" ></span>
<span class="grey"><a href="./rfc4408">RFC 4408</a> Sender Policy Framework (SPF) April 2006</span>
Authors' Addresses
Meng Weng Wong
Singapore
EMail: mengwong+spf@pobox.com
Wayne Schlitt
4615 Meredeth #9
Lincoln Nebraska, NE 68506
United States of America
EMail: wayne@schlitt.net
URI: <a href="http://www.schlitt.net/spf/">http://www.schlitt.net/spf/</a>
<span class="grey">Wong & Schlitt Experimental [Page 47]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-48" ></span>
<span class="grey"><a href="./rfc4408">RFC 4408</a> Sender Policy Framework (SPF) April 2006</span>
Full Copyright Statement
Copyright (C) The Internet Society (2006).
This document is subject to the rights, licenses and restrictions
contained in <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a>, and except as set forth therein, the authors
retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and <a href="https://www.rfc-editor.org/bcp/bcp79">BCP 79</a>.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
<a href="http://www.ietf.org/ipr">http://www.ietf.org/ipr</a>.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.
Acknowledgement
Funding for the RFC Editor function is provided by the IETF
Administrative Support Activity (IASA).
Wong & Schlitt Experimental [Page 48]
</pre>
|