1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
|
<pre>Network Working Group J. Song
Request for Comments: 4615 R. Poovendran
Category: Standards Track University of Washington
J. Lee
Samsung Electronics
T. Iwata
Nagoya University
August 2006
<span class="h1">The Advanced Encryption Standard-Cipher-based</span>
<span class="h1">Message Authentication Code-Pseudo-Random Function-128</span>
<span class="h1">(AES-CMAC-PRF-128) Algorithm for the</span>
Internet Key Exchange Protocol (IKE)
Status of This Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2006).
Abstract
Some implementations of IP Security (IPsec) may want to use a
pseudo-random function (PRF) based on the Advanced Encryption
Standard (AES). This memo describes such an algorithm, called
AES-CMAC-PRF-128. It supports fixed and variable key sizes.
Table of Contents
<a href="#section-1">1</a>. Introduction ....................................................<a href="#page-2">2</a>
<a href="#section-2">2</a>. Basic Definitions ...............................................<a href="#page-2">2</a>
<a href="#section-3">3</a>. The AES-CMAC-PRF-128 Algorithm ..................................<a href="#page-2">2</a>
<a href="#section-4">4</a>. Test Vectors ....................................................<a href="#page-4">4</a>
<a href="#section-5">5</a>. Security Considerations .........................................<a href="#page-4">4</a>
<a href="#section-6">6</a>. IANA Considerations .............................................<a href="#page-5">5</a>
<a href="#section-7">7</a>. Acknowledgements ................................................<a href="#page-5">5</a>
<a href="#section-8">8</a>. References ......................................................<a href="#page-5">5</a>
<a href="#section-8.1">8.1</a>. Normative References .......................................<a href="#page-5">5</a>
<a href="#section-8.2">8.2</a>. Informative References .....................................<a href="#page-5">5</a>
<span class="grey">Song, et al. Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc4615">RFC 4615</a> AES-CMAC-PRF-128 for IKE August 2006</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
[<a id="ref-RFC4493">RFC4493</a>] describes a method to use the Advanced Encryption Standard
(AES) as a Message Authentication Code (MAC) that has a 128-bit
output length. The 128-bit output is useful as a long-lived pseudo-
random function (PRF). This document specifies a PRF that supports
fixed and variable key sizes for IKEv2 [<a href="./rfc4306" title=""Internet Key Exchange (IKEv2) Protocol"">RFC4306</a>] Key Derivation
Function (KDF) and authentication.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Basic Definitions</span>
VK Variable-length key for AES-CMAC-PRF-128, denoted
by VK.
0^128 The string that consists of 128 zero-bits, which is
equivalent to 0x00000000000000000000000000000000 in
hexadecimal notation.
AES-CMAC The AES-CMAC algorithm with a 128-bit long key described
in <a href="./rfc4493#section-2.4">section 2.4 of [RFC4493]</a>.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. The AES-CMAC-PRF-128 Algorithm</span>
The AES-CMAC-PRF-128 algorithm is identical to AES-CMAC defined in
[<a href="./rfc4493" title=""The AES-CMAC Algorithm"">RFC4493</a>] except that the 128-bit key length restriction is removed.
IKEv2 [<a href="./rfc4306" title=""Internet Key Exchange (IKEv2) Protocol"">RFC4306</a>] uses PRFs for multiple purposes, most notably for
generating keying material and authentication of the IKE_SA. The
IKEv2 specification differentiates between PRFs with fixed key sizes
and those with variable key sizes.
When using AES-CMAC-PRF-128 as the PRF described in IKEv2, AES-CMAC-
PRF-128 is considered to take fixed size (16 octets) keys for
generating keying material but it takes variable key sizes for
authentication.
That is, when generating keying material, "half the bits must come
from Ni and half from Nr, taking the first bits of each" as described
in IKEv2, <a href="#section-2.14">section 2.14</a>; but for authenticating with shared secrets
(IKEv2, <a href="#section-2.16">section 2.16</a>), the shared secret does not have to be 16
octets and the length may vary.
<span class="grey">Song, et al. Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc4615">RFC 4615</a> AES-CMAC-PRF-128 for IKE August 2006</span>
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+ AES-CMAC-PRF-128 +
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+ +
+ Input : VK (Variable-length key) +
+ : M (Message, i.e., the input data of the PRF) +
+ : VKlen (length of VK in octets) +
+ : len (length of M in octets) +
+ Output : PRV (128-bit Pseudo-Random Variable) +
+ +
+-------------------------------------------------------------------+
+ Variable: K (128-bit key for AES-CMAC) +
+ +
+ Step 1. If VKlen is equal to 16 +
+ Step 1a. then +
+ K := VK; +
+ Step 1b. else +
+ K := AES-CMAC(0^128, VK, VKlen); +
+ Step 2. PRV := AES-CMAC(K, M, len); +
+ return PRV; +
+ +
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Figure 1. The AES-CMAC-PRF-128 Algorithm
In step 1, the 128-bit key, K, for AES-CMAC is derived as follows:
o If the key, VK, is exactly 128 bits, then we use it as-is.
o If it is longer or shorter than 128 bits, then we derive the key,
K, by applying the AES-CMAC algorithm using the 128-bit all-zero
string as the key and VK as the input message. This step is
described in step 1b.
In step 2, we apply the AES-CMAC algorithm using K as the key and M
as the input message. The output of this algorithm is returned.
<span class="grey">Song, et al. Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc4615">RFC 4615</a> AES-CMAC-PRF-128 for IKE August 2006</span>
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Test Vectors</span>
------------------------------------------------------------
Test Case AES-CMAC-PRF-128 with 20-octet input
Key : 00010203 04050607 08090a0b 0c0d0e0f edcb
Key Length : 18
Message : 00010203 04050607 08090a0b 0c0d0e0f 10111213
PRF Output : 84a348a4 a45d235b abfffc0d 2b4da09a
Test Case AES-CMAC-PRF-128 with 20-octet input
Key : 00010203 04050607 08090a0b 0c0d0e0f
Key Length : 16
Message : 00010203 04050607 08090a0b 0c0d0e0f 10111213
PRF Output : 980ae87b 5f4c9c52 14f5b6a8 455e4c2d
Test Case AES-CMAC-PRF-128 with 20-octet input
Key : 00010203 04050607 0809
Key Length : 10
Message : 00010203 04050607 08090a0b 0c0d0e0f 10111213
PRF Output : 290d9e11 2edb09ee 141fcf64 c0b72f3d
------------------------------------------------------------
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Security Considerations</span>
The security provided by AES-CMAC-PRF-128 is based upon the strength
of AES and AES-CMAC. At the time of this writing, there are no known
practical cryptographic attacks against AES or AES-CMAC. However, as
is true with any cryptographic algorithm, part of its strength lies
in the secret key, VK, and the correctness of the implementation in
all of the participating systems. The key, VK, needs to be chosen
independently and randomly based on <a href="./rfc4086">RFC 4086</a> [<a href="./rfc4086" title=""Randomness Requirements for Security"">RFC4086</a>], and both
keys, VK and K, should be kept safe and periodically refreshed.
<a href="#section-4">Section 4</a> presents test vectors that assist in verifying the
correctness of the AES-CMAC-PRF-128 code.
If VK is longer than 128 bits and it is shortened to meet the AES-128
key size, then some entropy might be lost. However, as long as VK is
longer than 128 bits, then the new key, K, preserves sufficient
entropy, i.e., the entropy of K is about 128 bits.
Therefore, we recommend the use of VK that is longer than or equal to
128 bits, and we discourage the use of VK that is shorter than or
equal to 64 bits, because of the small entropy.
<span class="grey">Song, et al. Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc4615">RFC 4615</a> AES-CMAC-PRF-128 for IKE August 2006</span>
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. IANA Considerations</span>
IANA has allocated a value of 8 for IKEv2 Transform Type 2 (Pseudo-
Random Function) to the PRF_AES128_CMAC algorithm.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Acknowledgements</span>
Portions of this text were borrowed from [<a href="./rfc3664" title=""The AES-XCBC-PRF-128 Algorithm for the Internet Key Exchange Protocol (IKE)"">RFC3664</a>] and [<a href="./rfc4434" title=""The AES-XCBC-PRF-128 Algorithm for the Internet Key Exchange Protocol (IKE)"">RFC4434</a>].
Many thanks to Russ Housley and Paul Hoffman for suggestions and
guidance. We also thank Alfred Hoenes for many useful comments.
We acknowledge support from the following grants: Collaborative
Technology Alliance (CTA) from US Army Research Laboratory,
DAAD19-01-2-0011; Presidential Award from Army Research Office,-
W911NF-05-1-0491; ONR YIP N00014-04-1-0479. Results do not reflect
any position of the funding agencies.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. References</span>
<span class="h3"><a class="selflink" id="section-8.1" href="#section-8.1">8.1</a>. Normative References</span>
[<a id="ref-RFC4493">RFC4493</a>] Song, JH., Poovendran, R., Lee, J., and T. Iwata, "The
AES-CMAC Algorithm", <a href="./rfc4493">RFC 4493</a>, June 2006.
[<a id="ref-RFC4306">RFC4306</a>] Kaufman, C., "Internet Key Exchange (IKEv2) Protocol", <a href="./rfc4306">RFC</a>
<a href="./rfc4306">4306</a>, December 2005.
[<a id="ref-RFC4086">RFC4086</a>] Eastlake, D., 3rd, Schiller, J., and S. Crocker,
"Randomness Requirements for Security", <a href="https://www.rfc-editor.org/bcp/bcp106">BCP 106</a>, <a href="./rfc4086">RFC 4086</a>,
June 2005.
<span class="h3"><a class="selflink" id="section-8.2" href="#section-8.2">8.2</a>. Informative References</span>
[<a id="ref-RFC3664">RFC3664</a>] Hoffman, P., "The AES-XCBC-PRF-128 Algorithm for the
Internet Key Exchange Protocol (IKE)", <a href="./rfc3664">RFC 3664</a>, January
2004.
[<a id="ref-RFC4434">RFC4434</a>] Hoffman, P., "The AES-XCBC-PRF-128 Algorithm for the
Internet Key Exchange Protocol (IKE)", <a href="./rfc4434">RFC 4434</a>, February
2006.
<span class="grey">Song, et al. Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc4615">RFC 4615</a> AES-CMAC-PRF-128 for IKE August 2006</span>
Authors' Addresses
JunHyuk Song
Samsung Electronics
University of Washington
Phone: (206) 853-5843
EMail: junhyuk.song@samsung.com, junhyuk.song@gmail.com
Radha Poovendran
Network Security Lab
University of Washington
Phone: (206) 221-6512
EMail: radha@ee.washington.edu
Jicheol Lee
Samsung Electronics
Phone: +82-31-279-3605
EMail: jicheol.lee@samsung.com
Tetsu Iwata
Nagoya University
EMail: iwata@cse.nagoya-u.ac.jp
<span class="grey">Song, et al. Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc4615">RFC 4615</a> AES-CMAC-PRF-128 for IKE August 2006</span>
Full Copyright Statement
Copyright (C) The Internet Society (2006).
This document is subject to the rights, licenses and restrictions
contained in <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a>, and except as set forth therein, the authors
retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and <a href="https://www.rfc-editor.org/bcp/bcp79">BCP 79</a>.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
<a href="http://www.ietf.org/ipr">http://www.ietf.org/ipr</a>.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.
Acknowledgement
Funding for the RFC Editor function is provided by the IETF
Administrative Support Activity (IASA).
Song, et al. Standards Track [Page 7]
</pre>
|