1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
|
<pre>Network Working Group S. Josefsson
Request for Comments: 4648 SJD
Obsoletes: <a href="./rfc3548">3548</a> October 2006
Category: Standards Track
<span class="h1">The Base16, Base32, and Base64 Data Encodings</span>
Status of This Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2006).
Abstract
This document describes the commonly used base 64, base 32, and base
16 encoding schemes. It also discusses the use of line-feeds in
encoded data, use of padding in encoded data, use of non-alphabet
characters in encoded data, use of different encoding alphabets, and
canonical encodings.
<span class="grey">Josefsson Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc4648">RFC 4648</a> Base-N Encodings October 2006</span>
Table of Contents
<a href="#section-1">1</a>. Introduction ....................................................<a href="#page-3">3</a>
<a href="#section-2">2</a>. Conventions Used in This Document ...............................<a href="#page-3">3</a>
<a href="#section-3">3</a>. Implementation Discrepancies ....................................<a href="#page-3">3</a>
<a href="#section-3.1">3.1</a>. Line Feeds in Encoded Data .................................<a href="#page-3">3</a>
<a href="#section-3.2">3.2</a>. Padding of Encoded Data ....................................<a href="#page-4">4</a>
<a href="#section-3.3">3.3</a>. Interpretation of Non-Alphabet Characters in Encoded Data ..4
<a href="#section-3.4">3.4</a>. Choosing the Alphabet ......................................<a href="#page-4">4</a>
<a href="#section-3.5">3.5</a>. Canonical Encoding .........................................<a href="#page-5">5</a>
<a href="#section-4">4</a>. Base 64 Encoding ................................................<a href="#page-5">5</a>
<a href="#section-5">5</a>. Base 64 Encoding with URL and Filename Safe Alphabet ............<a href="#page-7">7</a>
<a href="#section-6">6</a>. Base 32 Encoding ................................................<a href="#page-8">8</a>
<a href="#section-7">7</a>. Base 32 Encoding with Extended Hex Alphabet ....................<a href="#page-10">10</a>
<a href="#section-8">8</a>. Base 16 Encoding ...............................................<a href="#page-10">10</a>
<a href="#section-9">9</a>. Illustrations and Examples .....................................<a href="#page-11">11</a>
<a href="#section-10">10</a>. Test Vectors ..................................................<a href="#page-12">12</a>
<a href="#section-11">11</a>. ISO C99 Implementation of Base64 ..............................<a href="#page-14">14</a>
<a href="#section-12">12</a>. Security Considerations .......................................<a href="#page-14">14</a>
<a href="#section-13">13</a>. Changes Since <a href="./rfc3548">RFC 3548</a> ........................................<a href="#page-15">15</a>
<a href="#section-14">14</a>. Acknowledgements ..............................................<a href="#page-15">15</a>
<a href="#section-15">15</a>. Copying Conditions ............................................<a href="#page-15">15</a>
<a href="#section-16">16</a>. References ....................................................<a href="#page-16">16</a>
<a href="#section-16.1">16.1</a>. Normative References .....................................<a href="#page-16">16</a>
<a href="#section-16.2">16.2</a>. Informative References ...................................<a href="#page-16">16</a>
<span class="grey">Josefsson Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc4648">RFC 4648</a> Base-N Encodings October 2006</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
Base encoding of data is used in many situations to store or transfer
data in environments that, perhaps for legacy reasons, are restricted
to US-ASCII [<a href="#ref-1" title=""ASCII format for network interchange"">1</a>] data. Base encoding can also be used in new
applications that do not have legacy restrictions, simply because it
makes it possible to manipulate objects with text editors.
In the past, different applications have had different requirements
and thus sometimes implemented base encodings in slightly different
ways. Today, protocol specifications sometimes use base encodings in
general, and "base64" in particular, without a precise description or
reference. Multipurpose Internet Mail Extensions (MIME) [<a href="#ref-4" title=""Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies"">4</a>] is often
used as a reference for base64 without considering the consequences
for line-wrapping or non-alphabet characters. The purpose of this
specification is to establish common alphabet and encoding
considerations. This will hopefully reduce ambiguity in other
documents, leading to better interoperability.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Conventions Used in This Document</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [<a href="#ref-2" title=""Key words for use in RFCs to Indicate Requirement Levels"">2</a>].
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Implementation Discrepancies</span>
Here we discuss the discrepancies between base encoding
implementations in the past and, where appropriate, mandate a
specific recommended behavior for the future.
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. Line Feeds in Encoded Data</span>
MIME [<a href="#ref-4" title=""Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies"">4</a>] is often used as a reference for base 64 encoding. However,
MIME does not define "base 64" per se, but rather a "base 64 Content-
Transfer-Encoding" for use within MIME. As such, MIME enforces a
limit on line length of base 64-encoded data to 76 characters. MIME
inherits the encoding from Privacy Enhanced Mail (PEM) [<a href="#ref-3" title=""Privacy Enhancement for Internet Electronic Mail: Part I: Message Encryption and Authentication Procedures"">3</a>], stating
that it is "virtually identical"; however, PEM uses a line length of
64 characters. The MIME and PEM limits are both due to limits within
SMTP.
Implementations MUST NOT add line feeds to base-encoded data unless
the specification referring to this document explicitly directs base
encoders to add line feeds after a specific number of characters.
<span class="grey">Josefsson Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc4648">RFC 4648</a> Base-N Encodings October 2006</span>
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. Padding of Encoded Data</span>
In some circumstances, the use of padding ("=") in base-encoded data
is not required or used. In the general case, when assumptions about
the size of transported data cannot be made, padding is required to
yield correct decoded data.
Implementations MUST include appropriate pad characters at the end of
encoded data unless the specification referring to this document
explicitly states otherwise.
The base64 and base32 alphabets use padding, as described below in
sections <a href="#section-4">4</a> and <a href="#section-6">6</a>, but the base16 alphabet does not need it; see
<a href="#section-8">section 8</a>.
<span class="h3"><a class="selflink" id="section-3.3" href="#section-3.3">3.3</a>. Interpretation of Non-Alphabet Characters in Encoded Data</span>
Base encodings use a specific, reduced alphabet to encode binary
data. Non-alphabet characters could exist within base-encoded data,
caused by data corruption or by design. Non-alphabet characters may
be exploited as a "covert channel", where non-protocol data can be
sent for nefarious purposes. Non-alphabet characters might also be
sent in order to exploit implementation errors leading to, e.g.,
buffer overflow attacks.
Implementations MUST reject the encoded data if it contains
characters outside the base alphabet when interpreting base-encoded
data, unless the specification referring to this document explicitly
states otherwise. Such specifications may instead state, as MIME
does, that characters outside the base encoding alphabet should
simply be ignored when interpreting data ("be liberal in what you
accept"). Note that this means that any adjacent carriage return/
line feed (CRLF) characters constitute "non-alphabet characters" and
are ignored. Furthermore, such specifications MAY ignore the pad
character, "=", treating it as non-alphabet data, if it is present
before the end of the encoded data. If more than the allowed number
of pad characters is found at the end of the string (e.g., a base 64
string terminated with "==="), the excess pad characters MAY also be
ignored.
<span class="h3"><a class="selflink" id="section-3.4" href="#section-3.4">3.4</a>. Choosing the Alphabet</span>
Different applications have different requirements on the characters
in the alphabet. Here are a few requirements that determine which
alphabet should be used:
<span class="grey">Josefsson Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc4648">RFC 4648</a> Base-N Encodings October 2006</span>
o Handled by humans. The characters "0" and "O" are easily
confused, as are "1", "l", and "I". In the base32 alphabet below,
where 0 (zero) and 1 (one) are not present, a decoder may
interpret 0 as O, and 1 as I or L depending on case. (However, by
default it should not; see previous section.)
o Encoded into structures that mandate other requirements. For base
16 and base 32, this determines the use of upper- or lowercase
alphabets. For base 64, the non-alphanumeric characters (in
particular, "/") may be problematic in file names and URLs.
o Used as identifiers. Certain characters, notably "+" and "/" in
the base 64 alphabet, are treated as word-breaks by legacy text
search/index tools.
There is no universally accepted alphabet that fulfills all the
requirements. For an example of a highly specialized variant, see
IMAP [<a href="#ref-8" title=""INTERNET MESSAGE ACCESS PROTOCOL - VERSION 4rev1"">8</a>]. In this document, we document and name some currently used
alphabets.
<span class="h3"><a class="selflink" id="section-3.5" href="#section-3.5">3.5</a>. Canonical Encoding</span>
The padding step in base 64 and base 32 encoding can, if improperly
implemented, lead to non-significant alterations of the encoded data.
For example, if the input is only one octet for a base 64 encoding,
then all six bits of the first symbol are used, but only the first
two bits of the next symbol are used. These pad bits MUST be set to
zero by conforming encoders, which is described in the descriptions
on padding below. If this property do not hold, there is no
canonical representation of base-encoded data, and multiple base-
encoded strings can be decoded to the same binary data. If this
property (and others discussed in this document) holds, a canonical
encoding is guaranteed.
In some environments, the alteration is critical and therefore
decoders MAY chose to reject an encoding if the pad bits have not
been set to zero. The specification referring to this may mandate a
specific behaviour.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Base 64 Encoding</span>
The following description of base 64 is derived from [<a href="#ref-3" title=""Privacy Enhancement for Internet Electronic Mail: Part I: Message Encryption and Authentication Procedures"">3</a>], [<a href="#ref-4" title=""Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies"">4</a>], [<a href="#ref-5" title=""OpenPGP Message Format"">5</a>],
and [<a href="#ref-6" title=""DNS Security Introduction and Requirements"">6</a>]. This encoding may be referred to as "base64".
The Base 64 encoding is designed to represent arbitrary sequences of
octets in a form that allows the use of both upper- and lowercase
letters but that need not be human readable.
<span class="grey">Josefsson Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc4648">RFC 4648</a> Base-N Encodings October 2006</span>
A 65-character subset of US-ASCII is used, enabling 6 bits to be
represented per printable character. (The extra 65th character, "=",
is used to signify a special processing function.)
The encoding process represents 24-bit groups of input bits as output
strings of 4 encoded characters. Proceeding from left to right, a
24-bit input group is formed by concatenating 3 8-bit input groups.
These 24 bits are then treated as 4 concatenated 6-bit groups, each
of which is translated into a single character in the base 64
alphabet.
Each 6-bit group is used as an index into an array of 64 printable
characters. The character referenced by the index is placed in the
output string.
Table 1: The Base 64 Alphabet
Value Encoding Value Encoding Value Encoding Value Encoding
0 A 17 R 34 i 51 z
1 B 18 S 35 j 52 0
2 C 19 T 36 k 53 1
3 D 20 U 37 l 54 2
4 E 21 V 38 m 55 3
5 F 22 W 39 n 56 4
6 G 23 X 40 o 57 5
7 H 24 Y 41 p 58 6
8 I 25 Z 42 q 59 7
9 J 26 a 43 r 60 8
10 K 27 b 44 s 61 9
11 L 28 c 45 t 62 +
12 M 29 d 46 u 63 /
13 N 30 e 47 v
14 O 31 f 48 w (pad) =
15 P 32 g 49 x
16 Q 33 h 50 y
Special processing is performed if fewer than 24 bits are available
at the end of the data being encoded. A full encoding quantum is
always completed at the end of a quantity. When fewer than 24 input
bits are available in an input group, bits with value zero are added
(on the right) to form an integral number of 6-bit groups. Padding
at the end of the data is performed using the '=' character. Since
all base 64 input is an integral number of octets, only the following
cases can arise:
(1) The final quantum of encoding input is an integral multiple of 24
bits; here, the final unit of encoded output will be an integral
multiple of 4 characters with no "=" padding.
<span class="grey">Josefsson Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc4648">RFC 4648</a> Base-N Encodings October 2006</span>
(2) The final quantum of encoding input is exactly 8 bits; here, the
final unit of encoded output will be two characters followed by
two "=" padding characters.
(3) The final quantum of encoding input is exactly 16 bits; here, the
final unit of encoded output will be three characters followed by
one "=" padding character.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Base 64 Encoding with URL and Filename Safe Alphabet</span>
The Base 64 encoding with an URL and filename safe alphabet has been
used in [<a href="#ref-12" title=""Post to P2P-hackers mailing list"">12</a>].
An alternative alphabet has been suggested that would use "~" as the
63rd character. Since the "~" character has special meaning in some
file system environments, the encoding described in this section is
recommended instead. The remaining unreserved URI character is ".",
but some file system environments do not permit multiple "." in a
filename, thus making the "." character unattractive as well.
The pad character "=" is typically percent-encoded when used in an
URI [<a href="#ref-9" title=""Uniform Resource Identifier (URI): Generic Syntax"">9</a>], but if the data length is known implicitly, this can be
avoided by skipping the padding; see <a href="#section-3.2">section 3.2</a>.
This encoding may be referred to as "base64url". This encoding
should not be regarded as the same as the "base64" encoding and
should not be referred to as only "base64". Unless clarified
otherwise, "base64" refers to the base 64 in the previous section.
This encoding is technically identical to the previous one, except
for the 62:nd and 63:rd alphabet character, as indicated in Table 2.
<span class="grey">Josefsson Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc4648">RFC 4648</a> Base-N Encodings October 2006</span>
Table 2: The "URL and Filename safe" Base 64 Alphabet
Value Encoding Value Encoding Value Encoding Value Encoding
0 A 17 R 34 i 51 z
1 B 18 S 35 j 52 0
2 C 19 T 36 k 53 1
3 D 20 U 37 l 54 2
4 E 21 V 38 m 55 3
5 F 22 W 39 n 56 4
6 G 23 X 40 o 57 5
7 H 24 Y 41 p 58 6
8 I 25 Z 42 q 59 7
9 J 26 a 43 r 60 8
10 K 27 b 44 s 61 9
11 L 28 c 45 t 62 - (minus)
12 M 29 d 46 u 63 _
13 N 30 e 47 v (underline)
14 O 31 f 48 w
15 P 32 g 49 x
16 Q 33 h 50 y (pad) =
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Base 32 Encoding</span>
The following description of base 32 is derived from [<a href="#ref-11" title=""SASL GSSAPI mechanisms"">11</a>] (with
corrections). This encoding may be referred to as "base32".
The Base 32 encoding is designed to represent arbitrary sequences of
octets in a form that needs to be case insensitive but that need not
be human readable.
A 33-character subset of US-ASCII is used, enabling 5 bits to be
represented per printable character. (The extra 33rd character, "=",
is used to signify a special processing function.)
The encoding process represents 40-bit groups of input bits as output
strings of 8 encoded characters. Proceeding from left to right, a
40-bit input group is formed by concatenating 5 8bit input groups.
These 40 bits are then treated as 8 concatenated 5-bit groups, each
of which is translated into a single character in the base 32
alphabet. When a bit stream is encoded via the base 32 encoding, the
bit stream must be presumed to be ordered with the most-significant-
bit first. That is, the first bit in the stream will be the high-
order bit in the first 8bit byte, the eighth bit will be the low-
order bit in the first 8bit byte, and so on.
<span class="grey">Josefsson Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc4648">RFC 4648</a> Base-N Encodings October 2006</span>
Each 5-bit group is used as an index into an array of 32 printable
characters. The character referenced by the index is placed in the
output string. These characters, identified in Table 3, below, are
selected from US-ASCII digits and uppercase letters.
Table 3: The Base 32 Alphabet
Value Encoding Value Encoding Value Encoding Value Encoding
0 A 9 J 18 S 27 3
1 B 10 K 19 T 28 4
2 C 11 L 20 U 29 5
3 D 12 M 21 V 30 6
4 E 13 N 22 W 31 7
5 F 14 O 23 X
6 G 15 P 24 Y (pad) =
7 H 16 Q 25 Z
8 I 17 R 26 2
Special processing is performed if fewer than 40 bits are available
at the end of the data being encoded. A full encoding quantum is
always completed at the end of a body. When fewer than 40 input bits
are available in an input group, bits with value zero are added (on
the right) to form an integral number of 5-bit groups. Padding at
the end of the data is performed using the "=" character. Since all
base 32 input is an integral number of octets, only the following
cases can arise:
(1) The final quantum of encoding input is an integral multiple of 40
bits; here, the final unit of encoded output will be an integral
multiple of 8 characters with no "=" padding.
(2) The final quantum of encoding input is exactly 8 bits; here, the
final unit of encoded output will be two characters followed by
six "=" padding characters.
(3) The final quantum of encoding input is exactly 16 bits; here, the
final unit of encoded output will be four characters followed by
four "=" padding characters.
(4) The final quantum of encoding input is exactly 24 bits; here, the
final unit of encoded output will be five characters followed by
three "=" padding characters.
(5) The final quantum of encoding input is exactly 32 bits; here, the
final unit of encoded output will be seven characters followed by
one "=" padding character.
<span class="grey">Josefsson Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc4648">RFC 4648</a> Base-N Encodings October 2006</span>
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Base 32 Encoding with Extended Hex Alphabet</span>
The following description of base 32 is derived from [<a href="#ref-7" title=""Identifying Composite Media Features"">7</a>]. This
encoding may be referred to as "base32hex". This encoding should not
be regarded as the same as the "base32" encoding and should not be
referred to as only "base32". This encoding is used by, e.g.,
NextSECure3 (NSEC3) [<a href="#ref-10" title=""DNSSEC Hash Authenticated Denial of Existence"">10</a>].
One property with this alphabet, which the base64 and base32
alphabets lack, is that encoded data maintains its sort order when
the encoded data is compared bit-wise.
This encoding is identical to the previous one, except for the
alphabet. The new alphabet is found in Table 4.
Table 4: The "Extended Hex" Base 32 Alphabet
Value Encoding Value Encoding Value Encoding Value Encoding
0 0 9 9 18 I 27 R
1 1 10 A 19 J 28 S
2 2 11 B 20 K 29 T
3 3 12 C 21 L 30 U
4 4 13 D 22 M 31 V
5 5 14 E 23 N
6 6 15 F 24 O (pad) =
7 7 16 G 25 P
8 8 17 H 26 Q
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Base 16 Encoding</span>
The following description is original but analogous to previous
descriptions. Essentially, Base 16 encoding is the standard case-
insensitive hex encoding and may be referred to as "base16" or "hex".
A 16-character subset of US-ASCII is used, enabling 4 bits to be
represented per printable character.
The encoding process represents 8-bit groups (octets) of input bits
as output strings of 2 encoded characters. Proceeding from left to
right, an 8-bit input is taken from the input data. These 8 bits are
then treated as 2 concatenated 4-bit groups, each of which is
translated into a single character in the base 16 alphabet.
Each 4-bit group is used as an index into an array of 16 printable
characters. The character referenced by the index is placed in the
output string.
<span class="grey">Josefsson Standards Track [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc4648">RFC 4648</a> Base-N Encodings October 2006</span>
Table 5: The Base 16 Alphabet
Value Encoding Value Encoding Value Encoding Value Encoding
0 0 4 4 8 8 12 C
1 1 5 5 9 9 13 D
2 2 6 6 10 A 14 E
3 3 7 7 11 B 15 F
Unlike base 32 and base 64, no special padding is necessary since a
full code word is always available.
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. Illustrations and Examples</span>
To translate between binary and a base encoding, the input is stored
in a structure, and the output is extracted. The case for base 64 is
displayed in the following figure, borrowed from [<a href="#ref-5" title=""OpenPGP Message Format"">5</a>].
+--first octet--+-second octet--+--third octet--+
|7 6 5 4 3 2 1 0|7 6 5 4 3 2 1 0|7 6 5 4 3 2 1 0|
+-----------+---+-------+-------+---+-----------+
|5 4 3 2 1 0|5 4 3 2 1 0|5 4 3 2 1 0|5 4 3 2 1 0|
+--1.index--+--2.index--+--3.index--+--4.index--+
The case for base 32 is shown in the following figure, borrowed from
[<a href="#ref-7" title=""Identifying Composite Media Features"">7</a>]. Each successive character in a base-32 value represents 5
successive bits of the underlying octet sequence. Thus, each group
of 8 characters represents a sequence of 5 octets (40 bits).
1 2 3
01234567 89012345 67890123 45678901 23456789
+--------+--------+--------+--------+--------+
|< 1 >< 2| >< 3 ><|.4 >< 5.|>< 6 ><.|7 >< 8 >|
+--------+--------+--------+--------+--------+
<===> 8th character
<====> 7th character
<===> 6th character
<====> 5th character
<====> 4th character
<===> 3rd character
<====> 2nd character
<===> 1st character
<span class="grey">Josefsson Standards Track [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc4648">RFC 4648</a> Base-N Encodings October 2006</span>
The following example of Base64 data is from [<a href="#ref-5" title=""OpenPGP Message Format"">5</a>], with corrections.
Input data: 0x14fb9c03d97e
Hex: 1 4 f b 9 c | 0 3 d 9 7 e
8-bit: 00010100 11111011 10011100 | 00000011 11011001 01111110
6-bit: 000101 001111 101110 011100 | 000000 111101 100101 111110
Decimal: 5 15 46 28 0 61 37 62
Output: F P u c A 9 l +
Input data: 0x14fb9c03d9
Hex: 1 4 f b 9 c | 0 3 d 9
8-bit: 00010100 11111011 10011100 | 00000011 11011001
pad with 00
6-bit: 000101 001111 101110 011100 | 000000 111101 100100
Decimal: 5 15 46 28 0 61 36
pad with =
Output: F P u c A 9 k =
Input data: 0x14fb9c03
Hex: 1 4 f b 9 c | 0 3
8-bit: 00010100 11111011 10011100 | 00000011
pad with 0000
6-bit: 000101 001111 101110 011100 | 000000 110000
Decimal: 5 15 46 28 0 48
pad with = =
Output: F P u c A w = =
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. Test Vectors</span>
BASE64("") = ""
BASE64("f") = "Zg=="
BASE64("fo") = "Zm8="
BASE64("foo") = "Zm9v"
BASE64("foob") = "Zm9vYg=="
BASE64("fooba") = "Zm9vYmE="
BASE64("foobar") = "Zm9vYmFy"
BASE32("") = ""
BASE32("f") = "MY======"
BASE32("fo") = "MZXQ===="
<span class="grey">Josefsson Standards Track [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc4648">RFC 4648</a> Base-N Encodings October 2006</span>
BASE32("foo") = "MZXW6==="
BASE32("foob") = "MZXW6YQ="
BASE32("fooba") = "MZXW6YTB"
BASE32("foobar") = "MZXW6YTBOI======"
BASE32-HEX("") = ""
BASE32-HEX("f") = "CO======"
BASE32-HEX("fo") = "CPNG===="
BASE32-HEX("foo") = "CPNMU==="
BASE32-HEX("foob") = "CPNMUOG="
BASE32-HEX("fooba") = "CPNMUOJ1"
BASE32-HEX("foobar") = "CPNMUOJ1E8======"
BASE16("") = ""
BASE16("f") = "66"
BASE16("fo") = "666F"
BASE16("foo") = "666F6F"
BASE16("foob") = "666F6F62"
BASE16("fooba") = "666F6F6261"
BASE16("foobar") = "666F6F626172"
<span class="grey">Josefsson Standards Track [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc4648">RFC 4648</a> Base-N Encodings October 2006</span>
<span class="h2"><a class="selflink" id="section-11" href="#section-11">11</a>. ISO C99 Implementation of Base64</span>
An ISO C99 implementation of Base64 encoding and decoding that is
believed to follow all recommendations in this RFC is available from:
<a href="http://josefsson.org/base-encoding/">http://josefsson.org/base-encoding/</a>
This code is not normative.
The code could not be included in this RFC for procedural reasons
(<a href="./rfc3978#section-5.4">RFC 3978 section 5.4</a>).
<span class="h2"><a class="selflink" id="section-12" href="#section-12">12</a>. Security Considerations</span>
When base encoding and decoding is implemented, care should be taken
not to introduce vulnerabilities to buffer overflow attacks, or other
attacks on the implementation. A decoder should not break on invalid
input including, e.g., embedded NUL characters (ASCII 0).
If non-alphabet characters are ignored, instead of causing rejection
of the entire encoding (as recommended), a covert channel that can be
used to "leak" information is made possible. The ignored characters
could also be used for other nefarious purposes, such as to avoid a
string equality comparison or to trigger implementation bugs. The
implications of ignoring non-alphabet characters should be understood
in applications that do not follow the recommended practice.
Similarly, when the base 16 and base 32 alphabets are handled case
insensitively, alteration of case can be used to leak information or
make string equality comparisons fail.
When padding is used, there are some non-significant bits that
warrant security concerns, as they may be abused to leak information
or used to bypass string equality comparisons or to trigger
implementation problems.
Base encoding visually hides otherwise easily recognized information,
such as passwords, but does not provide any computational
confidentiality. This has been known to cause security incidents
when, e.g., a user reports details of a network protocol exchange
(perhaps to illustrate some other problem) and accidentally reveals
the password because she is unaware that the base encoding does not
protect the password.
Base encoding adds no entropy to the plaintext, but it does increase
the amount of plaintext available and provide a signature for
cryptanalysis in the form of a characteristic probability
distribution.
<span class="grey">Josefsson Standards Track [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc4648">RFC 4648</a> Base-N Encodings October 2006</span>
<span class="h2"><a class="selflink" id="section-13" href="#section-13">13</a>. Changes Since <a href="./rfc3548">RFC 3548</a></span>
Added the "base32 extended hex alphabet", needed to preserve sort
order of encoded data.
Referenced IMAP for the special Base64 encoding used there.
Fixed the example copied from <a href="./rfc2440">RFC 2440</a>.
Added security consideration about providing a signature for
cryptoanalysis.
Added test vectors.
Fixed typos.
<span class="h2"><a class="selflink" id="section-14" href="#section-14">14</a>. Acknowledgements</span>
Several people offered comments and/or suggestions, including John E.
Hadstate, Tony Hansen, Gordon Mohr, John Myers, Chris Newman, and
Andrew Sieber. Text used in this document are based on earlier RFCs
describing specific uses of various base encodings. The author
acknowledges the RSA Laboratories for supporting the work that led to
this document.
This revised version is based in parts on comments and/or suggestions
made by Roy Arends, Eric Blake, Brian E Carpenter, Elwyn Davies, Bill
Fenner, Sam Hartman, Ted Hardie, Per Hygum, Jelte Jansen, Clement
Kent, Tero Kivinen, Paul Kwiatkowski, and Ben Laurie.
<span class="h2"><a class="selflink" id="section-15" href="#section-15">15</a>. Copying Conditions</span>
Copyright (c) 2000-2006 Simon Josefsson
Regarding the abstract and sections <a href="#section-1">1</a>, <a href="#section-3">3</a>, <a href="#section-8">8</a>, <a href="#section-10">10</a>, <a href="#section-12">12</a>, <a href="#section-13">13</a>, and <a href="#section-14">14</a> of
this document, that were written by Simon Josefsson ("the author",
for the remainder of this section), the author makes no guarantees
and is not responsible for any damage resulting from its use. The
author grants irrevocable permission to anyone to use, modify, and
distribute it in any way that does not diminish the rights of anyone
else to use, modify, and distribute it, provided that redistributed
derivative works do not contain misleading author or version
information and do not falsely purport to be IETF RFC documents.
Derivative works need not be licensed under similar terms.
<span class="grey">Josefsson Standards Track [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc4648">RFC 4648</a> Base-N Encodings October 2006</span>
<span class="h2"><a class="selflink" id="section-16" href="#section-16">16</a>. References</span>
<span class="h3"><a class="selflink" id="section-16.1" href="#section-16.1">16.1</a>. Normative References</span>
[<a id="ref-1">1</a>] Cerf, V., "ASCII format for network interchange", <a href="./rfc20">RFC 20</a>,
October 1969.
[<a id="ref-2">2</a>] Bradner, S., "Key words for use in RFCs to Indicate Requirement
Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
<span class="h3"><a class="selflink" id="section-16.2" href="#section-16.2">16.2</a>. Informative References</span>
[<a id="ref-3">3</a>] Linn, J., "Privacy Enhancement for Internet Electronic Mail:
Part I: Message Encryption and Authentication Procedures", <a href="./rfc1421">RFC</a>
<a href="./rfc1421">1421</a>, February 1993.
[<a id="ref-4">4</a>] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
Extensions (MIME) Part One: Format of Internet Message Bodies",
<a href="./rfc2045">RFC 2045</a>, November 1996.
[<a id="ref-5">5</a>] Callas, J., Donnerhacke, L., Finney, H., and R. Thayer,
"OpenPGP Message Format", <a href="./rfc2440">RFC 2440</a>, November 1998.
[<a id="ref-6">6</a>] Arends, R., Austein, R., Larson, M., Massey, D., and S. Rose,
"DNS Security Introduction and Requirements", <a href="./rfc4033">RFC 4033</a>, March
2005.
[<a id="ref-7">7</a>] Klyne, G. and L. Masinter, "Identifying Composite Media
Features", <a href="./rfc2938">RFC 2938</a>, September 2000.
[<a id="ref-8">8</a>] Crispin, M., "INTERNET MESSAGE ACCESS PROTOCOL - VERSION
4rev1", <a href="./rfc3501">RFC 3501</a>, March 2003.
[<a id="ref-9">9</a>] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
Resource Identifier (URI): Generic Syntax", STD 66, <a href="./rfc3986">RFC 3986</a>,
January 2005.
[<a id="ref-10">10</a>] Laurie, B., Sisson, G., Arends, R., and D. Blacka, "DNSSEC Hash
Authenticated Denial of Existence", Work in Progress, June
2006.
[<a id="ref-11">11</a>] Myers, J., <a style="text-decoration: none" href='https://www.google.com/search?sitesearch=datatracker.ietf.org%2Fdoc%2Fhtml%2F&q=inurl:draft-+%22SASL+GSSAPI+mechanisms%22'>"SASL GSSAPI mechanisms"</a>, Work in Progress, May
2000.
[<a id="ref-12">12</a>] Wilcox-O'Hearn, B., "Post to P2P-hackers mailing list",
<a href="http://zgp.org/pipermail/p2p-hackers/2001-September/000315.html">http://zgp.org/pipermail/p2p-hackers/2001-September/</a>
<a href="http://zgp.org/pipermail/p2p-hackers/2001-September/000315.html">000315.html</a>, September 2001.
<span class="grey">Josefsson Standards Track [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc4648">RFC 4648</a> Base-N Encodings October 2006</span>
Author's Address
Simon Josefsson
SJD
EMail: simon@josefsson.org
<span class="grey">Josefsson Standards Track [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc4648">RFC 4648</a> Base-N Encodings October 2006</span>
Full Copyright Statement
Copyright (C) The Internet Society (2006).
This document is subject to the rights, licenses and restrictions
contained in <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a>, and except as set forth therein, the authors
retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and <a href="https://www.rfc-editor.org/bcp/bcp79">BCP 79</a>.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
<a href="http://www.ietf.org/ipr">http://www.ietf.org/ipr</a>.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.
Acknowledgement
Funding for the RFC Editor function is provided by the IETF
Administrative Support Activity (IASA).
Josefsson Standards Track [Page 18]
</pre>
|