1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
|
<pre>Network Working Group R. Aggarwal, Ed.
Request for Comments: 4719 Juniper Networks
Category: Standards Track M. Townsley, Ed.
M. Dos Santos, Ed.
Cisco Systems
November 2006
<span class="h1">Transport of Ethernet Frames over</span>
<span class="h1">Layer 2 Tunneling Protocol Version 3 (L2TPv3)</span>
Status of This Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The IETF Trust (2006).
Abstract
This document describes the transport of Ethernet frames over the
Layer 2 Tunneling Protocol, Version 3 (L2TPv3). This includes the
transport of Ethernet port-to-port frames as well as the transport of
Ethernet VLAN frames. The mechanism described in this document can
be used in the creation of Pseudowires to transport Ethernet frames
over an IP network.
<span class="grey">Aggarwal, et al. Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc4719">RFC 4719</a> Transport of Ethernet Frames over L2TPv3 November 2006</span>
Table of Contents
<a href="#section-1">1</a>. Introduction ....................................................<a href="#page-2">2</a>
<a href="#section-1.1">1.1</a>. Specification of Requirements ..............................<a href="#page-2">2</a>
<a href="#section-1.2">1.2</a>. Abbreviations ..............................................<a href="#page-3">3</a>
<a href="#section-1.3">1.3</a>. L2TPv3 Control Message Types ...............................<a href="#page-3">3</a>
<a href="#section-1.4">1.4</a>. Requirements ...............................................<a href="#page-3">3</a>
<a href="#section-2">2</a>. PW Establishment ................................................<a href="#page-4">4</a>
<a href="#section-2.1">2.1</a>. LCCE-LCCE Control Connection Establishment .................<a href="#page-4">4</a>
<a href="#section-2.2">2.2</a>. PW Session Establishment ...................................<a href="#page-4">4</a>
<a href="#section-2.3">2.3</a>. PW Session Monitoring ......................................<a href="#page-6">6</a>
<a href="#section-3">3</a>. Packet Processing ...............................................<a href="#page-7">7</a>
<a href="#section-3.1">3.1</a>. Encapsulation .............................................<a href="#page-7">7</a>
<a href="#section-3.2">3.2</a>. Sequencing ................................................<a href="#page-7">7</a>
<a href="#section-3.3">3.3</a>. MTU Handling ..............................................<a href="#page-7">7</a>
<a href="#section-4">4</a>. Applicability Statement .........................................<a href="#page-8">8</a>
<a href="#section-5">5</a>. Congestion Control .............................................<a href="#page-10">10</a>
<a href="#section-6">6</a>. Security Considerations ........................................<a href="#page-10">10</a>
<a href="#section-7">7</a>. IANA Considerations ............................................<a href="#page-11">11</a>
<a href="#section-8">8</a>. Contributors ...................................................<a href="#page-11">11</a>
<a href="#section-9">9</a>. Acknowledgements ...............................................<a href="#page-11">11</a>
<a href="#section-10">10</a>. References ....................................................<a href="#page-12">12</a>
<a href="#section-10.1">10.1</a>. Normative References .....................................<a href="#page-12">12</a>
<a href="#section-10.2">10.2</a>. Informative References ...................................<a href="#page-12">12</a>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
The Layer 2 Tunneling Protocol, Version 3 (L2TPv3) can be used as a
control protocol and for data encapsulation to set up Pseudowires
(PWs) for transporting layer 2 Packet Data Units across an IP network
[<a href="./rfc3931" title=""Layer Two Tunneling Protocol - Version 3 (L2TPv3)"">RFC3931</a>]. This document describes the transport of Ethernet frames
over L2TPv3 including the PW establishment and data encapsulation.
The term "Ethernet" in this document is used with the intention to
include all such protocols that are reasonably similar in their
packet format to IEEE 802.3 [<a href="#ref-802.3" title=""IEEE std 802.3 -2005/Cor 1-2006 IEEE Standard for Information Technology - Telecommuincations and Information Exchange Between Systems - Local and Metropolitan Area Networks"">802.3</a>], including variants or extensions
that may or may not necessarily be sanctioned by the IEEE (including
such frames as jumbo frames, etc.). The term "VLAN" in this document
is used with the intention to include all virtual LAN tagging
protocols such as IEEE 802.1Q [<a href="#ref-802.1Q" title=""IEEE standard for local and metropolitan area networks virtual bridged local area networks"">802.1Q</a>], 802.1ad [<a href="#ref-802.1ad" title=""IEEE Std 802.1ad - 2005 IEEE Standard for Local and metropolitan area networks - virtual Bridged Local Area Networks, Amendment 4: Provider Bridges"">802.1ad</a>], etc.
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. Specification of Requirements</span>
In this document, several words are used to signify the requirements
of the specification. These words are often capitalized. The key
words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document
are to be interpreted as described in [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
<span class="grey">Aggarwal, et al. Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc4719">RFC 4719</a> Transport of Ethernet Frames over L2TPv3 November 2006</span>
<span class="h3"><a class="selflink" id="section-1.2" href="#section-1.2">1.2</a>. Abbreviations</span>
AC Attachment Circuit (see [<a href="./rfc3985" title=""Pseudo Wire Emulation Edge-to- Edge (PWE3) Architecture"">RFC3985</a>])
CE Customer Edge (Typically also the L2TPv3 Remote System)
LCCE L2TP Control Connection Endpoint (see [<a href="./rfc3931" title=""Layer Two Tunneling Protocol - Version 3 (L2TPv3)"">RFC3931</a>])
NSP Native Service Processing (see [<a href="./rfc3985" title=""Pseudo Wire Emulation Edge-to- Edge (PWE3) Architecture"">RFC3985</a>])
PE Provider Edge (Typically also the LCCE) (see [<a href="./rfc3985" title=""Pseudo Wire Emulation Edge-to- Edge (PWE3) Architecture"">RFC3985</a>])
PSN Packet Switched Network (see [<a href="./rfc3985" title=""Pseudo Wire Emulation Edge-to- Edge (PWE3) Architecture"">RFC3985</a>])
PW Pseudowire (see [<a href="./rfc3985" title=""Pseudo Wire Emulation Edge-to- Edge (PWE3) Architecture"">RFC3985</a>])
PWE3 Pseudowire Emulation Edge to Edge (Working Group)
<span class="h3"><a class="selflink" id="section-1.3" href="#section-1.3">1.3</a>. L2TPv3 Control Message Types</span>
Relevant L2TPv3 control message types (see [<a href="./rfc3931" title=""Layer Two Tunneling Protocol - Version 3 (L2TPv3)"">RFC3931</a>]) are listed for
reference.
SCCRQ L2TPv3 Start-Control-Connection-Request control message
SCCRP L2TPv3 Start-Control-Connection-Reply control message
SCCCN L2TPv3 Start-Control-Connection-Connected control message
StopCCN L2TPv3 Stop-Control-Connection-Notification control message
ICRQ L2TPv3 Incoming-Call-Request control message
ICRP L2TPv3 Incoming-Call-Reply control message
ICCN L2TPv3 Incoming-Call-Connected control message
OCRQ L2TPv3 Outgoing-Call-Request control message
OCRP L2TPv3 Outgoing-Call-Reply control message
OCCN L2TPv3 Outgoing-Call-Connected control message
CDN L2TPv3 Call-Disconnect-Notify control message
SLI L2TPv3 Set-Link-Info control message
<span class="h3"><a class="selflink" id="section-1.4" href="#section-1.4">1.4</a>. Requirements</span>
An Ethernet PW emulates a single Ethernet link between exactly two
endpoints. The following figure depicts the PW termination relative
to the NSP and PSN tunnel within an LCCE [<a href="./rfc3985" title=""Pseudo Wire Emulation Edge-to- Edge (PWE3) Architecture"">RFC3985</a>]. The Ethernet
interface may be connected to one or more Remote Systems (an L2TPv3
Remote System is referred to as Customer Edge (CE) in this and
associated PWE3 documents). The LCCE may or may not be a PE.
+---------------------------------------+
| LCCE |
+-+ +-----+ +------+ +------+ +-+
|P| | | |PW ter| | PSN | |P|
Ethernet <==>|h|<=>| NSP |<=>|minati|<=>|Tunnel|<=>|h|<==> PSN
Interface |y| | | |on | | | |y|
+-+ +-----+ +------+ +------+ +-+
| |
+---------------------------------------+
Figure 1: PW termination
<span class="grey">Aggarwal, et al. Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc4719">RFC 4719</a> Transport of Ethernet Frames over L2TPv3 November 2006</span>
The PW termination point receives untagged (also referred to as
'raw') or tagged Ethernet frames and delivers them unaltered to the
PW termination point on the remote LCCE. Hence, it can provide
untagged or tagged Ethernet link emulation service.
The "NSP" function includes packet processing needed to translate the
Ethernet frames that arrive at the CE-LCCE interface to/from the
Ethernet frames that are applied to the PW termination point. Such
functions may include stripping, overwriting, or adding VLAN tags.
The NSP functionality can be used in conjunction with local
provisioning to provide heterogeneous services where the CE-LCCE
encapsulations at the two ends may be different.
The physical layer between the CE and LCCE, and any adaptation (NSP)
functions between it and the PW termination, are outside of the scope
of PWE3 and are not defined here.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. PW Establishment</span>
With L2TPv3 as the tunneling protocol, Ethernet PWs are L2TPv3
sessions. An L2TP Control Connection has to be set up first between
the two LCCEs. Individual PWs can then be established as L2TP
sessions.
<span class="h3"><a class="selflink" id="section-2.1" href="#section-2.1">2.1</a>. LCCE-LCCE Control Connection Establishment</span>
The two LCCEs that wish to set up Ethernet PWs MUST establish an L2TP
Control Connection first as described in [<a href="./rfc3931" title=""Layer Two Tunneling Protocol - Version 3 (L2TPv3)"">RFC3931</a>]. Hence, an
Ethernet PW Type must be included in the Pseudowire Capabilities List
as defined in [<a href="./rfc3931" title=""Layer Two Tunneling Protocol - Version 3 (L2TPv3)"">RFC3931</a>]. The type of PW can be either "Ethernet
port" or "Ethernet VLAN". This indicates that the Control Connection
can support the establishment of Ethernet PWs. Note that there are
two Ethernet PW Types required. For connecting an Ethernet port to
another Ethernet port, the PW Type MUST be "Ethernet port"; for
connecting an Ethernet VLAN to another Ethernet VLAN, the PW Type
MUST be "Ethernet VLAN".
<span class="h3"><a class="selflink" id="section-2.2" href="#section-2.2">2.2</a>. PW Session Establishment</span>
The provisioning of an Ethernet port or Ethernet VLAN and its
association with a PW triggers the establishment of an L2TP session
via the standard Incoming Call three-way handshake described in
<a href="./rfc3931#section-3.4.1">Section 3.4.1 of [RFC3931]</a>.
<span class="grey">Aggarwal, et al. Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc4719">RFC 4719</a> Transport of Ethernet Frames over L2TPv3 November 2006</span>
Note that an L2TP Outgoing Call is essentially a method of
controlling the originating point of a Switched Virtual Circuit
(SVC), allowing it to be established from any reachable L2TP-enabled
device able to perform outgoing calls. The Outgoing Call model and
its corresponding OCRQ, OCRP, and OCCN control messages are mainly
used within the dial arena with L2TPv2 today and has not been found
applicable for PW applications yet.
The following are the signaling elements needed for the Ethernet PW
establishment:
a) Pseudowire Type: The type of a Pseudowire can be either "Ethernet
port" or "Ethernet VLAN". Each LCCE signals its Pseudowire type
in the Pseudowire Type AVP [<a href="./rfc3931" title=""Layer Two Tunneling Protocol - Version 3 (L2TPv3)"">RFC3931</a>]. The assigned values for
"Ethernet port" and "Ethernet VLAN" Pseudowire types are captured
in the "IANA Considerations" of this document. The Pseudowire
Type AVP MUST be present in the ICRQ.
b) Pseudowire ID: Each PW is associated with a Pseudowire ID. The
two LCCEs of a PW have the same Pseudowire ID for it. The Remote
End Identifier AVP [<a href="./rfc3931" title=""Layer Two Tunneling Protocol - Version 3 (L2TPv3)"">RFC3931</a>] is used to convey the Pseudowire ID.
The Remote End Identifier AVP MUST be present in the ICRQ in order
for the remote LCCE to determine the PW to associate the L2TP
session with. An implementation MUST support a Remote End
Identifier of four octets known to both LCCEs either by manual
configuration or some other means. Additional Remote End
Identifier formats that MAY be supported are outside the scope of
this document.
c) The Circuit Status AVP [<a href="./rfc3931" title=""Layer Two Tunneling Protocol - Version 3 (L2TPv3)"">RFC3931</a>] MUST be included in ICRQ and ICRP
to indicate the circuit status of the Ethernet port or Ethernet
VLAN. For ICRQ and ICRP, the Circuit Status AVP MUST indicate
that the circuit status is for a new circuit (refer to N bit in
<a href="#section-2.3.3">Section 2.3.3</a>). An implementation MAY send an ICRQ or ICRP before
an Ethernet interface is ACTIVE, as long as the Circuit Status AVP
(refer to A bit in <a href="#section-2.3.3">Section 2.3.3</a>) in the ICRQ or ICRP reflects the
correct status of the Ethernet port or Ethernet VLAN link. A
subsequent circuit status change of the Ethernet port or Ethernet
VLAN MUST be conveyed in the Circuit Status AVP in ICCN or SLI
control messages. For ICCN and SLI (refer to <a href="#section-2.3.2">Section 2.3.2</a>), the
Circuit Status AVP MUST indicate that the circuit status is for an
existing circuit (refer to N bit in <a href="#section-2.3.3">Section 2.3.3</a>) and reflect the
current status of the link (refer to A bit in <a href="#section-2.3.3">Section 2.3.3</a>).
<span class="grey">Aggarwal, et al. Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc4719">RFC 4719</a> Transport of Ethernet Frames over L2TPv3 November 2006</span>
<span class="h3"><a class="selflink" id="section-2.3" href="#section-2.3">2.3</a>. PW Session Monitoring</span>
<span class="h4"><a class="selflink" id="section-2.3.1" href="#section-2.3.1">2.3.1</a>. Control Connection Keep-alive</span>
The working status of a PW is reflected by the state of the L2TPv3
session. If the corresponding L2TPv3 session is down, the PW
associated with it MUST be shut down. The Control Connection keep-
alive mechanism of L2TPv3 can serve as a link status monitoring
mechanism for the set of PWs associated with a Control Connection.
<span class="h4"><a class="selflink" id="section-2.3.2" href="#section-2.3.2">2.3.2</a>. SLI Message</span>
In addition to the Control Connection keep-alive mechanism of L2TPv3,
Ethernet PW over L2TP makes use of the Set-Link-Info (SLI) control
message defined in [<a href="./rfc3931" title=""Layer Two Tunneling Protocol - Version 3 (L2TPv3)"">RFC3931</a>]. The SLI message is used to signal
Ethernet link status notifications between LCCEs. This can be useful
to indicate Ethernet interface state changes without bringing down
the L2TP session. Note that change in the Ethernet interface state
will trigger an SLI message for each PW associated with that Ethernet
interface. This may be one Ethernet port PW or more than one
Ethernet VLAN PW. The SLI message MUST be sent any time there is a
status change of any values identified in the Circuit Status AVP.
The only exception to this is the initial ICRQ, ICRP, and CDN
messages that establish and tear down the L2TP session itself. The
SLI message may be sent from either LCCE at any time after the first
ICRQ is sent (and perhaps before an ICRP is received, requiring the
peer to perform a reverse Session ID lookup).
<span class="h4"><a class="selflink" id="section-2.3.3" href="#section-2.3.3">2.3.3</a>. Use of Circuit Status AVP for Ethernet</span>
Ethernet PW reports circuit status with the Circuit Status AVP
defined in [<a href="./rfc3931" title=""Layer Two Tunneling Protocol - Version 3 (L2TPv3)"">RFC3931</a>]. For reference, this AVP is shown below:
0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved |N|A|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Value is a 16-bit mask with the two least significant bits
defined and the remaining bits reserved for future use. Reserved
bits MUST be set to 0 when sending and ignored upon receipt.
The A (Active) bit indicates whether the Ethernet interface is ACTIVE
(1) or INACTIVE (0).
The N (New) bit indicates whether the circuit status is for a new (1)
Ethernet circuit or an existing (0) Ethernet circuit.
<span class="grey">Aggarwal, et al. Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc4719">RFC 4719</a> Transport of Ethernet Frames over L2TPv3 November 2006</span>
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Packet Processing</span>
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. Encapsulation</span>
The encapsulation described in this section refers to the
functionality performed by the PW termination point depicted in
Figure 1, unless otherwise indicated.
The entire Ethernet frame, without the preamble or frame check
sequence (FCS), is encapsulated in L2TPv3 and is sent as a single
packet by the ingress LCCE. This is done regardless of whether or
not a VLAN tag is present in the Ethernet frame. For Ethernet port-
to-port mode, the remote LCCE simply decapsulates the L2TP payload
and sends it out on the appropriate interface without modifying the
Ethernet header. For Ethernet VLAN-to-VLAN mode, the remote LCCE MAY
rewrite the VLAN tag. As described in <a href="#section-1">Section 1</a>, the VLAN tag
modification is an NSP function.
The Ethernet PW over L2TP is homogeneous with respect to packet
encapsulation, i.e., both ends of the PW are either untagged or
tagged. The Ethernet PW can still be used to provide heterogeneous
services using NSP functionality at the ingress and/or egress LCCE.
The definition of such NSP functionality is outside the scope of this
document.
The maximum length of the Ethernet frame carried as the PW payload is
irrelevant as far as the PW is concerned. If anything, that value
would only be relevant when quantifying the faithfulness of the
emulation.
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. Sequencing</span>
Data packet sequencing MAY be enabled for Ethernet PWs. The
sequencing mechanisms described in [<a href="./rfc3931" title=""Layer Two Tunneling Protocol - Version 3 (L2TPv3)"">RFC3931</a>] MUST be used for
signaling sequencing support.
<span class="h3"><a class="selflink" id="section-3.3" href="#section-3.3">3.3</a>. MTU Handling</span>
With L2TPv3 as the tunneling protocol, the IP packet resulting from
the encapsulation is M + N bytes longer than the Ethernet frame
without the preamble or FCS. Here M is the length of the IP header
along with associated options and extension headers, and the value of
N depends on the following fields:
<span class="grey">Aggarwal, et al. Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc4719">RFC 4719</a> Transport of Ethernet Frames over L2TPv3 November 2006</span>
L2TP Session Header:
Flags, Ver, Res - 4 octets (L2TPv3 over UDP only)
Session ID - 4 octets
Cookie Size - 0, 4, or 8 octets
L2-Specific Sublayer - 0 or 4 octets (i.e., using sequencing)
Hence the range for N in octets is:
N = 4-16, for L2TPv3 data messages over IP;
N = 16-28, for L2TPv3 data messages over UDP;
(N does not include the IP header).
Fragmentation in the PSN can occur when using Ethernet over L2TP,
unless proper configuration and management of MTU sizes are in place
between the Customer Edge (CE) router and Provider Edge (PE) router,
and across the PSN. This is not specific only to Ethernet over
L2TPv3, and the base L2TPv3 specification [<a href="./rfc3931" title=""Layer Two Tunneling Protocol - Version 3 (L2TPv3)"">RFC3931</a>] provides general
recommendations with respect to fragmentation and reassembly in
<a href="#section-4.1.4">Section 4.1.4</a>. "PWE3 Fragmentation and Reassembly" [<a href="./rfc4623" title=""Pseudowire Emulation Edge-to- Edge (PWE3) Fragmentation and Reassembly"">RFC4623</a>]
expounds on this topic, including a fragmentation and reassembly
mechanism within L2TP itself in the event that no other option is
available. Implementations MUST follow these guidelines with respect
to fragmentation and reassembly.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Applicability Statement</span>
The Ethernet PW emulation allows a service provider to offer a
"port-to-port"-based Ethernet service across an IP Packet Switched
Network (PSN), while the Ethernet VLAN PW emulation allows an "VLAN-
to-VLAN"-based Ethernet service across an IP Packet Switched Network
(PSN).
The Ethernet or Ethernet VLAN PW emulation has the following
characteristics in relationship to the respective native service:
o Ethernet PW connects two Ethernet port ACs, and Ethernet VLAN PW
connects two Ethernet VLAN ACs, which both support bi-directional
transport of variable-length Ethernet frames. The ingress LCCE
strips the preamble and FCS from the Ethernet frame and transports
the frame in its entirety across the PW. This is done regardless
of the presence of the VLAN tag in the frame. The egress LCCE
receives the Ethernet frame from the PW and regenerates the
preamble and FCS before forwarding the frame to the attached
Remote System (see <a href="#section-3.1">Section 3.1</a>). Since FCS is not being
transported across either Ethernet or Ethernet VLAN PWs, payload
integrity transparency may be lost. To achieve payload integrity
transparency on Ethernet or Ethernet VLAN PWs using L2TP over IP
or L2TP over UDP/IP, the L2TPv3 session can utilize IPsec as
specified in <a href="./rfc3931#section-4.1.3">Section 4.1.3 of [RFC3931]</a>.
<span class="grey">Aggarwal, et al. Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc4719">RFC 4719</a> Transport of Ethernet Frames over L2TPv3 November 2006</span>
o While architecturally [<a href="./rfc3985" title=""Pseudo Wire Emulation Edge-to- Edge (PWE3) Architecture"">RFC3985</a>] outside the scope of the L2TPv3 PW
itself, if VLAN tags are present, the NSP may rewrite VLAN tags on
ingress or egress from the PW (see <a href="#section-3.1">Section 3.1</a>).
o The Ethernet or Ethernet VLAN PW only supports homogeneous
Ethernet frame type across the PW; both ends of the PW must be
either tagged or untagged. Heterogeneous frame type support
achieved with NSP functionality is outside the scope of this
document (see <a href="#section-3.1">Section 3.1</a>).
o Ethernet port or Ethernet VLAN status notification is provided
using the Circuit Status AVP in the SLI message (see Sections
2.3.2 and 2.3.3). Loss of connectivity between LCCEs can be
detected by the L2TPv3 keep-alive mechanism (see <a href="#section-2.3.1">Section 2.3.1</a> of
this document and <a href="./rfc3931#section-4.4">Section 4.4 of [RFC3931]</a>). The LCCE can convey
these indications back to its attached Remote System.
o The maximum frame size that can be supported is limited by the PSN
MTU minus the L2TPv3 header size, unless fragmentation and
reassembly is used (see <a href="#section-3.3">Section 3.3</a> of this document and <a href="./rfc3931#section-4.1.4">Section</a>
<a href="./rfc3931#section-4.1.4">4.1.4 of [RFC3931]</a>).
o The Packet Switched Network may reorder, duplicate, or silently
drop packets. Sequencing may be enabled in the Ethernet or
Ethernet VLAN PW for some or all packets to detect lost,
duplicate, or out-of-order packets on a per-session basis (see
<a href="#section-3.2">Section 3.2</a>).
o The faithfulness of an Ethernet or Ethernet VLAN PW may be
increased by leveraging Quality-of-Service (QoS) features of the
LCCEs and the underlying PSN. For example, for Ethernet 802.1Q
[<a href="#ref-802.1Q" title=""IEEE standard for local and metropolitan area networks virtual bridged local area networks"">802.1Q</a>] VLAN transport, the ingress LCCE MAY consider the user
priority field (i.e., 802.1p) of the VLAN tag for traffic
classification and QoS treatments, such as determining the
Differentiated Services (DS) field [<a href="./rfc2474" title=""Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers"">RFC2474</a>] of the encapsulating
IP header. Similarly, the egress LCCE MAY consider the DS field
of the encapsulating IP header when rewriting the user priority
field of the VLAN tag or queuing the Ethernet frame before
forwarding the frame to the Remote System. The mapping between
the user priority field and the IP header DS field as well as the
Quality-of-Service model deployed are application specific and are
outside the scope of this document.
<span class="grey">Aggarwal, et al. Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc4719">RFC 4719</a> Transport of Ethernet Frames over L2TPv3 November 2006</span>
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Congestion Control</span>
As explained in [<a href="./rfc3985" title=""Pseudo Wire Emulation Edge-to- Edge (PWE3) Architecture"">RFC3985</a>], the PSN carrying the PW may be subject to
congestion, with congestion characteristics depending on PSN type,
network architecture, configuration, and loading. During congestion,
the PSN may exhibit packet loss that will impact the service carried
by the Ethernet or Ethernet VLAN PW. In addition, since Ethernet or
Ethernet VLAN PWs carry a variety of services across the PSN,
including but not restricted to TCP/IP, they may or may not behave in
a TCP-friendly manner prescribed by [<a href="./rfc2914" title=""Congestion Control Principles"">RFC2914</a>] and thus consume more
than their fair share.
Whenever possible, Ethernet or Ethernet VLAN PWs should be run over
traffic-engineered PSNs providing bandwidth allocation and admission
control mechanisms. IntServ-enabled domains providing the Guaranteed
Service (GS) or DiffServ-enabled domains using EF (expedited
forwarding) are examples of traffic-engineered PSNs. Such PSNs will
minimize loss and delay while providing some degree of isolation of
the Ethernet or Ethernet VLAN PW's effects from neighboring streams.
LCCEs SHOULD monitor for congestion (by using explicit congestion
notification or by measuring packet loss) in order to ensure that the
service using the Ethernet or Ethernet VLAN PW may be maintained.
When severe congestion is detected (for example, when enabling
sequencing and detecting that the packet loss is higher than a
threshold), the Ethernet or Ethernet VLAN PW SHOULD be halted by
tearing down the L2TP session via a CDN message. The PW may be
restarted by manual intervention or by automatic means after an
appropriate waiting time. Note that the thresholds and time periods
for shutdown and possible automatic recovery need to be carefully
configured. This is necessary to avoid loss of service due to
temporary congestion and to prevent oscillation between the congested
and halted states.
This specification offers no congestion control and is not TCP
friendly [<a href="#ref-TFRC" title=""TCP Friendly Rate Control (TFRC): Protocol Specification"">TFRC</a>]. Future works for PW congestion control (being
studied by the PWE3 Working Group) will provide congestion control
for all PW types including Ethernet and Ethernet VLAN PWs.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Security Considerations</span>
Ethernet over L2TPv3 is subject to all of the general security
considerations outlined in [<a href="./rfc3931" title=""Layer Two Tunneling Protocol - Version 3 (L2TPv3)"">RFC3931</a>].
<span class="grey">Aggarwal, et al. Standards Track [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc4719">RFC 4719</a> Transport of Ethernet Frames over L2TPv3 November 2006</span>
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. IANA Considerations</span>
The signaling mechanisms defined in this document rely upon the
following Ethernet Pseudowire Types (see Pseudowire Capabilities List
as defined in 5.4.3 of [<a href="./rfc3931" title=""Layer Two Tunneling Protocol - Version 3 (L2TPv3)"">RFC3931</a>] and L2TPv3 Pseudowire Types in 10.6
of [<a href="./rfc3931" title=""Layer Two Tunneling Protocol - Version 3 (L2TPv3)"">RFC3931</a>]), which were allocated by the IANA (number space created
as part of publication of [<a href="./rfc3931" title=""Layer Two Tunneling Protocol - Version 3 (L2TPv3)"">RFC3931</a>]):
Pseudowire Types
----------------
0x0004 Ethernet VLAN Pseudowire Type
0x0005 Ethernet Pseudowire Type
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Contributors</span>
The following is the complete list of contributors to this document.
Rahul Aggarwal
Juniper Networks
Xipeng Xiao
Riverstone Networks
W. Mark Townsley
Stewart Bryant
Maria Alice Dos Santos
Cisco Systems
Cheng-Yin Lee
Alcatel
Tissa Senevirathne
Consultant
Mitsuru Higashiyama
Anritsu Corporation
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. Acknowledgements</span>
This RFC evolved from the document, "Ethernet Pseudo Wire Emulation
Edge-to-Edge". We would like to thank its authors, T.So, X.Xiao, L.
Anderson, C. Flores, N. Tingle, S. Khandekar, D. Zelig and G. Heron
for their contribution. We would also like to thank S. Nanji, the
author of "Ethernet Service for Layer Two Tunneling Protocol", for
writing the first Ethernet over L2TP document.
Thanks to Carlos Pignataro for providing a thorough review and
helpful input.
<span class="grey">Aggarwal, et al. Standards Track [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc4719">RFC 4719</a> Transport of Ethernet Frames over L2TPv3 November 2006</span>
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. References</span>
<span class="h3"><a class="selflink" id="section-10.1" href="#section-10.1">10.1</a>. Normative References</span>
[<a id="ref-RFC3931">RFC3931</a>] Lau, J., Townsley, M., and I. Goyret, "Layer Two Tunneling
Protocol - Version 3 (L2TPv3)", <a href="./rfc3931">RFC 3931</a>, March 2005.
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
[<a id="ref-RFC4623">RFC4623</a>] Malis, A. and M. Townsley, "Pseudowire Emulation Edge-to-
Edge (PWE3) Fragmentation and Reassembly", <a href="./rfc4623">RFC 4623</a>,
August 2006.
<span class="h3"><a class="selflink" id="section-10.2" href="#section-10.2">10.2</a>. Informative References</span>
[<a id="ref-RFC3985">RFC3985</a>] Bryant, S. and P. Pate, "Pseudo Wire Emulation Edge-to-
Edge (PWE3) Architecture", <a href="./rfc3985">RFC 3985</a>, March 2005.
[<a id="ref-RFC2914">RFC2914</a>] Floyd, S., "Congestion Control Principles", <a href="https://www.rfc-editor.org/bcp/bcp41">BCP 41</a>, <a href="./rfc2914">RFC</a>
<a href="./rfc2914">2914</a>, September 2000.
[<a id="ref-RFC2474">RFC2474</a>] Nichols, K., Blake, S., Baker, F., and D. Black,
"Definition of the Differentiated Services Field (DS
Field) in the IPv4 and IPv6 Headers", <a href="./rfc2474">RFC 2474</a>, December
1998.
[<a id="ref-802.3">802.3</a>] IEEE, "IEEE std 802.3 -2005/Cor 1-2006 IEEE Standard for
Information Technology - Telecommuincations and
Information Exchange Between Systems - Local and
Metropolitan Area Networks", IEEE Std 802.3-2005/Cor
1-2006 (Corrigendum to IEEE Std 802.3-2005)
[<a id="ref-802.1Q">802.1Q</a>] IEEE, "IEEE standard for local and metropolitan area
networks virtual bridged local area networks", IEEE Std
802.1Q-2005 (Incorporates IEEE Std 802.1Q1998, IEEE Std
802.1u-2001, IEEE Std 802.1v-2001, and IEEE Std 802.1s-
2002)
[<a id="ref-802.1ad">802.1ad</a>] IEEE, "IEEE Std 802.1ad - 2005 IEEE Standard for Local and
metropolitan area networks - virtual Bridged Local Area
Networks, Amendment 4: Provider Bridges", IEEE Std
802.1ad-2005 (Amendment to IEEE Std 8021Q-2005)
[<a id="ref-TFRC">TFRC</a>] Handley, M., Floyd, S., Padhye, J., and J. Widmer, "TCP
Friendly Rate Control (TFRC): Protocol Specification", <a href="./rfc3448">RFC</a>
<a href="./rfc3448">3448</a>, January 2003.
<span class="grey">Aggarwal, et al. Standards Track [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc4719">RFC 4719</a> Transport of Ethernet Frames over L2TPv3 November 2006</span>
Author Information
Rahul Aggarwal
Juniper Networks
1194 North Mathilda Avenue
Sunnyvale, CA 94089
EMail: rahul@juniper.net
W. Mark Townsley
Cisco Systems
7025 Kit Creek Road
PO Box 14987
Research Triangle Park, NC 27709
EMail: mark@townsley.net
Maria Alice Dos Santos
Cisco Systems
170 W Tasman Dr
San Jose, CA 95134
EMail: mariados@cisco.com
<span class="grey">Aggarwal, et al. Standards Track [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc4719">RFC 4719</a> Transport of Ethernet Frames over L2TPv3 November 2006</span>
Full Copyright Statement
Copyright (C) The IETF Trust (2006).
This document is subject to the rights, licenses and restrictions
contained in <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a>, and except as set forth therein, the authors
retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST,
AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and <a href="https://www.rfc-editor.org/bcp/bcp79">BCP 79</a>.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
<a href="http://www.ietf.org/ipr">http://www.ietf.org/ipr</a>.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Aggarwal, et al. Standards Track [Page 14]
</pre>
|