1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
|
<pre>Network Working Group B. Aboba
Request for Comments: 4795 D. Thaler
Category: Informational L. Esibov
Microsoft Corporation
January 2007
<span class="h1">Link-Local Multicast Name Resolution (LLMNR)</span>
Status of This Memo
This memo provides information for the Internet community. It does
not specify an Internet standard of any kind. Distribution of this
memo is unlimited.
Copyright Notice
Copyright (C) The IETF Trust (2007).
IESG Note
This document was originally intended for advancement as a Proposed
Standard, but the IETF did not achieve consensus on the approach.
The document has had significant review and input. At time of
publication, early versions were implemented and deployed.
Abstract
The goal of Link-Local Multicast Name Resolution (LLMNR) is to enable
name resolution in scenarios in which conventional DNS name
resolution is not possible. LLMNR supports all current and future
DNS formats, types, and classes, while operating on a separate port
from DNS, and with a distinct resolver cache. Since LLMNR only
operates on the local link, it cannot be considered a substitute for
DNS.
<span class="grey">Aboba, et al. Informational [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc4795">RFC 4795</a> LLMNR January 2007</span>
Table of Contents
<a href="#section-1">1</a>. Introduction ....................................................<a href="#page-3">3</a>
<a href="#section-1.1">1.1</a>. Requirements ...............................................<a href="#page-3">3</a>
<a href="#section-1.2">1.2</a>. Terminology ................................................<a href="#page-4">4</a>
<a href="#section-2">2</a>. Name Resolution Using LLMNR .....................................<a href="#page-4">4</a>
<a href="#section-2.1">2.1</a>. LLMNR Packet Format ........................................<a href="#page-5">5</a>
<a href="#section-2.1.1">2.1.1</a>. LLMNR Header Format .................................<a href="#page-5">5</a>
<a href="#section-2.2">2.2</a>. Sender Behavior ............................................<a href="#page-8">8</a>
<a href="#section-2.3">2.3</a>. Responder Behavior .........................................<a href="#page-9">9</a>
<a href="#section-2.4">2.4</a>. Unicast Queries and Responses .............................<a href="#page-11">11</a>
<a href="#section-2.5">2.5</a>. "Off-Link" Detection ......................................<a href="#page-11">11</a>
<a href="#section-2.6">2.6</a>. Responder Responsibilities ................................<a href="#page-12">12</a>
<a href="#section-2.7">2.7</a>. Retransmission and Jitter .................................<a href="#page-13">13</a>
<a href="#section-2.8">2.8</a>. RR TTL ....................................................<a href="#page-14">14</a>
<a href="#section-2.9">2.9</a>. Use of the Authority and Additional Sections ..............<a href="#page-14">14</a>
<a href="#section-3">3</a>. Usage Model ....................................................<a href="#page-15">15</a>
<a href="#section-3.1">3.1</a>. LLMNR Configuration .......................................<a href="#page-17">17</a>
<a href="#section-4">4</a>. Conflict Resolution ............................................<a href="#page-18">18</a>
<a href="#section-4.1">4.1</a>. Uniqueness Verification ...................................<a href="#page-19">19</a>
<a href="#section-4.2">4.2</a>. Conflict Detection and Defense ............................<a href="#page-20">20</a>
<a href="#section-4.3">4.3</a>. Considerations for Multiple Interfaces ....................<a href="#page-21">21</a>
<a href="#section-4.4">4.4</a>. API Issues ................................................<a href="#page-22">22</a>
<a href="#section-5">5</a>. Security Considerations ........................................<a href="#page-23">23</a>
<a href="#section-5.1">5.1</a>. Denial of Service .........................................<a href="#page-23">23</a>
<a href="#section-5.2">5.2</a>. Spoofing ..................................................<a href="#page-24">24</a>
<a href="#section-5.3">5.3</a>. Authentication ............................................<a href="#page-25">25</a>
<a href="#section-5.4">5.4</a>. Cache and Port Separation .................................<a href="#page-25">25</a>
<a href="#section-6">6</a>. IANA Considerations ............................................<a href="#page-26">26</a>
<a href="#section-7">7</a>. Constants ......................................................<a href="#page-26">26</a>
<a href="#section-8">8</a>. References .....................................................<a href="#page-27">27</a>
<a href="#section-8.1">8.1</a>. Normative References ......................................<a href="#page-27">27</a>
<a href="#section-8.2">8.2</a>. Informative References ....................................<a href="#page-27">27</a>
<a href="#section-9">9</a>. Acknowledgments ................................................<a href="#page-29">29</a>
<span class="grey">Aboba, et al. Informational [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc4795">RFC 4795</a> LLMNR January 2007</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
This document discusses Link-Local Multicast Name Resolution (LLMNR),
which is based on the DNS packet format and supports all current and
future DNS formats, types, and classes. LLMNR operates on a separate
port from the Domain Name System (DNS), with a distinct resolver
cache.
Since LLMNR only operates on the local link, it cannot be considered
a substitute for DNS. Link-scope multicast addresses are used to
prevent propagation of LLMNR traffic across routers, potentially
flooding the network. LLMNR queries can also be sent to a unicast
address, as described in <a href="#section-2.4">Section 2.4</a>.
Propagation of LLMNR packets on the local link is considered
sufficient to enable name resolution in small networks. In such
networks, if a network has a gateway, then typically the network is
able to provide DNS server configuration. Configuration issues are
discussed in <a href="#section-3.1">Section 3.1</a>.
In the future, it may be desirable to consider use of multicast name
resolution with multicast scopes beyond the link-scope. This could
occur if LLMNR deployment is successful, the need arises for
multicast name resolution beyond the link-scope, or multicast routing
becomes ubiquitous. For example, expanded support for multicast name
resolution might be required for mobile ad-hoc networks.
Once we have experience in LLMNR deployment in terms of
administrative issues, usability, and impact on the network, it will
be possible to reevaluate which multicast scopes are appropriate for
use with multicast name resolution. IPv4 administratively scoped
multicast usage is specified in "Administratively Scoped IP
Multicast" [<a href="./rfc2365" title=""Administratively Scoped IP Multicast"">RFC2365</a>].
Service discovery in general, as well as discovery of DNS servers
using LLMNR in particular, is outside the scope of this document, as
is name resolution over non-multicast capable media.
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. Requirements</span>
In this document, several words are used to signify the requirements
of the specification. The key words "MUST", "MUST NOT", "REQUIRED",
"SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
and "OPTIONAL" in this document are to be interpreted as described in
[<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
<span class="grey">Aboba, et al. Informational [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc4795">RFC 4795</a> LLMNR January 2007</span>
<span class="h3"><a class="selflink" id="section-1.2" href="#section-1.2">1.2</a>. Terminology</span>
This document assumes familiarity with DNS terminology defined in
[<a href="./rfc1035" title=""Domain names - implementation and specification"">RFC1035</a>]. Other terminology used in this document includes:
Routable Address An address other than a link-local address. This
includes globally routable addresses, as well as
private addresses.
Reachable An LLMNR responder considers one of its addresses
reachable over a link if it will respond to an
Address Resolution Protocol (ARP) or Neighbor
Discovery query for that address received on that
link.
Responder A host that listens to LLMNR queries, and responds
to those for which it is authoritative.
Sender A host that sends an LLMNR query.
UNIQUE There are some scenarios when multiple responders
may respond to the same query. There are other
scenarios when only one responder may respond to a
query. Names for which only a single responder is
anticipated are referred to as UNIQUE. Name
uniqueness is configured on the responder, and
therefore uniqueness verification is the responder's
responsibility.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Name Resolution Using LLMNR</span>
LLMNR queries are sent to and received on port 5355. The IPv4 link-
scope multicast address a given responder listens to, and to which a
sender sends queries, is 224.0.0.252. The IPv6 link-scope multicast
address a given responder listens to, and to which a sender sends all
queries, is FF02:0:0:0:0:0:1:3.
Typically, a host is configured as both an LLMNR sender and a
responder. A host MAY be configured as a sender, but not a
responder. However, a host configured as a responder MUST act as a
sender, if only to verify the uniqueness of names as described in
<a href="#section-4">Section 4</a>. This document does not specify how names are chosen or
configured. This may occur via any mechanism, including DHCPv4
[<a href="./rfc2131" title=""Dynamic Host Configuration Protocol"">RFC2131</a>] or DHCPv6 [<a href="./rfc3315" title=""Dynamic Host Configuration Protocol for IPv6 (DHCPv6)"">RFC3315</a>].
<span class="grey">Aboba, et al. Informational [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc4795">RFC 4795</a> LLMNR January 2007</span>
A typical sequence of events for LLMNR usage is as follows:
(a) An LLMNR sender sends an LLMNR query to the link-scope multicast
address(es), unless a unicast query is indicated, as specified
in <a href="#section-2.4">Section 2.4</a>.
(b) A responder responds to this query only if it is authoritative
for the name in the query. A responder responds to a multicast
query by sending a unicast UDP response to the sender. Unicast
queries are responded to as indicated in <a href="#section-2.4">Section 2.4</a>.
(c) Upon reception of the response, the sender processes it.
The sections that follow provide further details on sender and
responder behavior.
<span class="h3"><a class="selflink" id="section-2.1" href="#section-2.1">2.1</a>. LLMNR Packet Format</span>
LLMNR is based on the DNS packet format defined in [<a href="./rfc1035" title=""Domain names - implementation and specification"">RFC1035</a>] <a href="#section-4">Section</a>
<a href="#section-4">4</a> for both queries and responses. LLMNR implementations SHOULD send
UDP queries and responses only as large as are known to be
permissible without causing fragmentation. When in doubt, a maximum
packet size of 512 octets SHOULD be used. LLMNR implementations MUST
accept UDP queries and responses as large as the smaller of the link
MTU or 9194 octets (Ethernet jumbo frame size of 9KB (9216) minus 22
octets for the header, VLAN tag and Cyclic Redundancy Check (CRC)).
<span class="h4"><a class="selflink" id="section-2.1.1" href="#section-2.1.1">2.1.1</a>. LLMNR Header Format</span>
LLMNR queries and responses utilize the DNS header format defined in
[<a href="./rfc1035" title=""Domain names - implementation and specification"">RFC1035</a>] with exceptions noted below:
1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| ID |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|QR| Opcode | C|TC| T| Z| Z| Z| Z| RCODE |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| QDCOUNT |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| ANCOUNT |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| NSCOUNT |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| ARCOUNT |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
<span class="grey">Aboba, et al. Informational [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc4795">RFC 4795</a> LLMNR January 2007</span>
where:
ID A 16-bit identifier assigned by the program that generates
any kind of query. This identifier is copied from the query
to the response and can be used by the sender to match
responses to outstanding queries. The ID field in a query
SHOULD be set to a pseudo-random value. For advice on
generation of pseudo-random values, please consult [<a href="./rfc4086" title=""Randomness Requirements for Security"">RFC4086</a>].
QR Query/Response. A 1-bit field, which, if set, indicates that
the message is an LLMNR response; if clear, then the message
is an LLMNR query.
OPCODE A 4-bit field that specifies the kind of query in this
message. This value is set by the originator of a query and
copied into the response. This specification defines the
behavior of standard queries and responses (opcode value of
zero). Future specifications may define the use of other
opcodes with LLMNR. LLMNR senders and responders MUST
support standard queries (opcode value of zero). LLMNR
queries with unsupported OPCODE values MUST be silently
discarded by responders.
C Conflict. When set within a query, the 'C'onflict bit
indicates that a sender has received multiple LLMNR responses
to this query. In an LLMNR response, if the name is
considered UNIQUE, then the 'C' bit is clear; otherwise, it
is set. LLMNR senders do not retransmit queries with the 'C'
bit set. Responders MUST NOT respond to LLMNR queries with
the 'C' bit set, but may start the uniqueness verification
process, as described in <a href="#section-4.2">Section 4.2</a>.
TC TrunCation. The 'TC' bit specifies that this message was
truncated due to length greater than that permitted on the
transmission channel. The 'TC' bit MUST NOT be set in an
LLMNR query and, if set, is ignored by an LLMNR responder.
If the 'TC' bit is set in an LLMNR response, then the sender
SHOULD resend the LLMNR query over TCP using the unicast
address of the responder as the destination address. If the
sender receives a response to the TCP query, then it SHOULD
discard the UDP response with the TC bit set. See [<a href="./rfc2181" title=""Clarifications to the DNS Specification"">RFC2181</a>]
and <a href="#section-2.4">Section 2.4</a> of this specification for further discussion
of the 'TC' bit.
T Tentative. The 'T'entative bit is set in a response if the
responder is authoritative for the name, but has not yet
verified the uniqueness of the name. A responder MUST ignore
the 'T' bit in a query, if set. A response with the 'T' bit
<span class="grey">Aboba, et al. Informational [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc4795">RFC 4795</a> LLMNR January 2007</span>
set is silently discarded by the sender, except if it is a
uniqueness query, in which case, a conflict has been detected
and a responder MUST resolve the conflict as described in
<a href="#section-4.1">Section 4.1</a>.
Z Reserved for future use. Implementations of this
specification MUST set these bits to zero in both queries and
responses. If these bits are set in a LLMNR query or
response, implementations of this specification MUST ignore
them. Since reserved bits could conceivably be used for
different purposes than in DNS, implementers are advised not
to enable processing of these bits in an LLMNR implementation
starting from a DNS code base.
RCODE Response code. This 4-bit field is set as part of LLMNR
responses. In an LLMNR query, the sender MUST set RCODE to
zero; the responder ignores the RCODE and assumes it to be
zero. The response to a multicast LLMNR query MUST have
RCODE set to zero. A sender MUST silently discard an LLMNR
response with a non-zero RCODE sent in response to a
multicast query.
If an LLMNR responder is authoritative for the name in a
multicast query, but an error is encountered, the responder
SHOULD send an LLMNR response with an RCODE of zero, no RRs
in the answer section, and the TC bit set. This will cause
the query to be resent using TCP, and allow the inclusion of
a non-zero RCODE in the response to the TCP query.
Responding with the TC bit set is preferable to not sending a
response, since it enables errors to be diagnosed. This may
be required, for example, when an LLMNR query includes a TSIG
RR in the additional section, and the responder encounters a
problem that requires returning a non-zero RCODE. TSIG error
conditions defined in [<a href="./rfc2845" title=""Secret Key Transaction Authentication for DNS (TSIG)"">RFC2845</a>] include a TSIG RR in an
unacceptable position (RCODE=1) or a TSIG RR that does not
validate (RCODE=9 with TSIG ERROR 17 (BADKEY) or 16
(BADSIG)).
Since LLMNR responders only respond to LLMNR queries for
names for which they are authoritative, LLMNR responders MUST
NOT respond with an RCODE of 3; instead, they should not
respond at all.
LLMNR implementations MUST support EDNS0 [<a href="./rfc2671" title=""Extension Mechanisms for DNS (EDNS0)"">RFC2671</a>] and
extended RCODE values.
<span class="grey">Aboba, et al. Informational [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc4795">RFC 4795</a> LLMNR January 2007</span>
QDCOUNT An unsigned 16-bit integer specifying the number of entries
in the question section. A sender MUST place only one
question into the question section of an LLMNR query. LLMNR
responders MUST silently discard LLMNR queries with QDCOUNT
not equal to one. LLMNR senders MUST silently discard LLMNR
responses with QDCOUNT not equal to one.
ANCOUNT An unsigned 16-bit integer specifying the number of resource
records in the answer section. LLMNR responders MUST
silently discard LLMNR queries with ANCOUNT not equal to
zero.
NSCOUNT An unsigned 16-bit integer specifying the number of name
server resource records in the authority records section.
Authority record section processing is described in <a href="#section-2.9">Section</a>
<a href="#section-2.9">2.9</a>. LLMNR responders MUST silently discard LLMNR queries
with NSCOUNT not equal to zero.
ARCOUNT An unsigned 16-bit integer specifying the number of resource
records in the additional records section. Additional record
section processing is described in <a href="#section-2.9">Section 2.9</a>.
<span class="h3"><a class="selflink" id="section-2.2" href="#section-2.2">2.2</a>. Sender Behavior</span>
A sender MAY send an LLMNR query for any legal resource record type
(e.g., A, AAAA, PTR, SRV) to the link-scope multicast address. As
described in <a href="#section-2.4">Section 2.4</a>, a sender MAY also send a unicast query.
The sender MUST anticipate receiving no responses to some LLMNR
queries, in the event that no responders are available within the
link-scope. If no response is received, a resolver treats it as a
response that the name does not exist (RCODE=3 is returned). A
sender can handle duplicate responses by discarding responses with a
source IP address and ID field that duplicate a response already
received.
When multiple valid LLMNR responses are received with the 'C' bit
set, they SHOULD be concatenated and treated in the same manner that
multiple RRs received from the same DNS server would be. However,
responses with the 'C' bit set SHOULD NOT be concatenated with
responses with the 'C' bit clear; instead, only the responses with
the 'C' bit set SHOULD be returned. If valid LLMNR response(s) are
received along with error response(s), then the error responses are
silently discarded.
Since the responder may order the RRs in the response so as to
indicate preference, the sender SHOULD preserve ordering in the
response to the querying application.
<span class="grey">Aboba, et al. Informational [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc4795">RFC 4795</a> LLMNR January 2007</span>
<span class="h3"><a class="selflink" id="section-2.3" href="#section-2.3">2.3</a>. Responder Behavior</span>
An LLMNR response MUST be sent to the sender via unicast.
Upon configuring an IP address, responders typically will synthesize
corresponding A, AAAA and PTR RRs so as to be able to respond to
LLMNR queries for these RRs. An SOA RR is synthesized only when a
responder has another RR in addition to the SOA RR; the SOA RR MUST
NOT be the only RR that a responder has. However, in general,
whether RRs are manually or automatically created is an
implementation decision.
For example, a host configured to have computer name "host1" and to
be a member of the "example.com" domain, with IPv4 address 192.0.2.1
and IPv6 address 2001:0DB8::1:2:3:FF:FE:4:5:6, might be authoritative
for the following records:
host1. IN A 192.0.2.1
IN AAAA 2001:0DB8::1:2:3:FF:FE:4:5:6
host1.example.com. IN A 192.0.2.1
IN AAAA 2001:0DB8::1:2:3:FF:FE:4:5:6
1.2.0.192.in-addr.arpa. IN PTR host1.
IN PTR host1.example.com.
6.0.5.0.4.0.E.F.F.F.3.0.2.0.1.0.0.0.0.0.0.0.0.0.8.b.d.0.1.0.0.2.
ip6.arpa IN PTR host1. (line split for formatting reasons)
IN PTR host1.example.com.
An LLMNR responder might be further manually configured with the name
of a local mail server with an MX RR included in the "host1." and
"host1.example.com." records.
In responding to queries:
(a) Responders MUST listen on UDP port 5355 on the link-scope
multicast address(es) defined in <a href="#section-2">Section 2</a>, and on TCP port 5355
on the unicast address(es) that could be set as the source
address(es) when the responder responds to the LLMNR query.
(b) Responders MUST direct responses to the port from which the
query was sent. When queries are received via TCP, this is an
inherent part of the transport protocol. For queries received
by UDP, the responder MUST take note of the source port and use
that as the destination port in the response. Responses MUST
always be sent from the port to which they were directed.
<span class="grey">Aboba, et al. Informational [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc4795">RFC 4795</a> LLMNR January 2007</span>
(c) Responders MUST respond to LLMNR queries for names and addresses
for which they are authoritative. This applies to both forward
and reverse lookups, with the exception of queries with the 'C'
bit set, which do not elicit a response.
(d) Responders MUST NOT respond to LLMNR queries for names for which
they are not authoritative.
(e) Responders MUST NOT respond using data from the LLMNR or DNS
resolver cache.
(f) If a responder is authoritative for a name, it MUST respond with
RCODE=0 and an empty answer section, if the type of query does
not match an RR that the responder has.
As an example, a host configured to respond to LLMNR queries for the
name "foo.example.com." is authoritative for the name
"foo.example.com.". On receiving an LLMNR query for an A RR with the
name "foo.example.com.", the host authoritatively responds with an A
RR(s) that contain IP address(es) in the RDATA of the resource
record. If the responder has an AAAA RR, but no A RR, and an A RR
query is received, the responder would respond with RCODE=0 and an
empty answer section.
In conventional DNS terminology, a DNS server authoritative for a
zone is authoritative for all the domain names under the zone apex
except for the branches delegated into separate zones. Contrary to
conventional DNS terminology, an LLMNR responder is authoritative
only for the zone apex.
For example, the host "foo.example.com." is not authoritative for the
name "child.foo.example.com." unless the host is configured with
multiple names, including "foo.example.com." and
"child.foo.example.com.". As a result, "foo.example.com." cannot
respond to an LLMNR query for "child.foo.example.com." with RCODE=3
(authoritative name error). The purpose of limiting the name
authority scope of a responder is to prevent complications that could
be caused by coexistence of two or more hosts with the names
representing child and parent (or grandparent) nodes in the DNS tree,
for example, "foo.example.com." and "child.foo.example.com.".
Without the restriction on authority, an LLMNR query for an A
resource record for the name "child.foo.example.com." would result in
two authoritative responses: RCODE=3 (authoritative name error)
received from "foo.example.com.", and a requested A record from
"child.foo.example.com.". To prevent this ambiguity, LLMNR-enabled
hosts could perform a dynamic update of the parent (or grandparent)
zone with a delegation to a child zone; for example, a host
<span class="grey">Aboba, et al. Informational [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc4795">RFC 4795</a> LLMNR January 2007</span>
"child.foo.example.com." could send a dynamic update for the NS and
glue A record to "foo.example.com.". However, this approach
significantly complicates implementation of LLMNR and would not be
acceptable for lightweight hosts.
<span class="h3"><a class="selflink" id="section-2.4" href="#section-2.4">2.4</a>. Unicast Queries and Responses</span>
Unicast queries SHOULD be sent when:
(a) A sender repeats a query after it received a response with the TC
bit set to the previous LLMNR multicast query, or
(b) The sender queries for a PTR RR of a fully formed IP address
within the "in-addr.arpa" or "ip6.arpa" zones.
Unicast LLMNR queries MUST be done using TCP and the responses MUST
be sent using the same TCP connection as the query. Senders MUST
support sending TCP queries, and responders MUST support listening
for TCP queries. If the sender of a TCP query receives a response to
that query not using TCP, the response MUST be silently discarded.
Unicast UDP queries MUST be silently discarded.
A unicast PTR RR query for an off-link address will not elicit a
response, but instead, an ICMP Time to Live (TTL) or Hop Limit
exceeded message will be received. An implementation receiving an
ICMP message in response to a TCP connection setup attempt can return
immediately, treating this as a response that no such name exists
(RCODE=3 is returned). An implementation that cannot process ICMP
messages MAY send multicast UDP queries for PTR RRs. Since TCP
implementations will not retransmit prior to RTOmin, a considerable
period will elapse before TCP retransmits multiple times, resulting
in a long timeout for TCP PTR RR queries sent to an off-link
destination.
<span class="h3"><a class="selflink" id="section-2.5" href="#section-2.5">2.5</a>. "Off-Link" Detection</span>
A sender MUST select a source address for LLMNR queries that is
assigned on the interface on which the query is sent. The
destination address of an LLMNR query MUST be a link-scope multicast
address or a unicast address.
A responder MUST select a source address for responses that is
assigned on the interface on which the query was received. The
destination address of an LLMNR response MUST be a unicast address.
<span class="grey">Aboba, et al. Informational [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc4795">RFC 4795</a> LLMNR January 2007</span>
On receiving an LLMNR query, the responder MUST check whether it was
sent to an LLMNR multicast addresses defined in <a href="#section-2">Section 2</a>. If it was
sent to another multicast address, then the query MUST be silently
discarded.
<a href="#section-2.4">Section 2.4</a> discusses use of TCP for LLMNR queries and responses. In
composing an LLMNR query using TCP, the sender MUST set the Hop Limit
field in the IPv6 header and the TTL field in the IPv4 header of the
response to one (1). The responder SHOULD set the TTL or Hop Limit
settings on the TCP listen socket to one (1) so that SYN-ACK packets
will have TTL (IPv4) or Hop Limit (IPv6) set to one (1). This
prevents an incoming connection from off-link since the sender will
not receive a SYN-ACK from the responder.
For UDP queries and responses, the Hop Limit field in the IPv6 header
and the TTL field in the IPV4 header MAY be set to any value.
However, it is RECOMMENDED that the value 255 be used for
compatibility with early implementations of [<a href="./rfc3927" title=""Dynamic Configuration of IPv4 Link-Local Addresses"">RFC3927</a>].
Implementation note:
In the sockets API for IPv4 [<a href="#ref-POSIX" title="Issue 6">POSIX</a>], the IP_TTL and
IP_MULTICAST_TTL socket options are used to set the TTL of
outgoing unicast and multicast packets. The IP_RECVTTL socket
option is available on some platforms to retrieve the IPv4 TTL of
received packets with recvmsg(). [<a href="./rfc3542" title=""Advanced Sockets Application Program Interface (API) for IPv6"">RFC3542</a>] specifies similar
options for setting and retrieving the IPv6 Hop Limit.
<span class="h3"><a class="selflink" id="section-2.6" href="#section-2.6">2.6</a>. Responder Responsibilities</span>
It is the responsibility of the responder to ensure that RRs returned
in LLMNR responses MUST only include values that are valid on the
local interface, such as IPv4 or IPv6 addresses valid on the local
link or names defended using the mechanism described in <a href="#section-4">Section 4</a>.
IPv4 Link-Local addresses are defined in [<a href="./rfc3927" title=""Dynamic Configuration of IPv4 Link-Local Addresses"">RFC3927</a>]. IPv6 Link-Local
addresses are defined in [<a href="./rfc4291" title=""IP Version 6 Addressing Architecture"">RFC4291</a>]. In particular:
(a) If a link-scope IPv6 address is returned in a AAAA RR, that
address MUST be valid on the local link over which LLMNR is used.
(b) If an IPv4 address is returned, it MUST be reachable through the
link over which LLMNR is used.
(c) If a name is returned (for example in a CNAME, MX, or SRV RR),
the name MUST be resolvable on the local link over which LLMNR is
used.
<span class="grey">Aboba, et al. Informational [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc4795">RFC 4795</a> LLMNR January 2007</span>
Where multiple addresses represent valid responses to a query, the
order in which the addresses are returned is as follows:
(d) If the source address of the query is a link-scope address, then
the responder SHOULD include a link-scope address first in the
response, if available.
(e) If the source address of the query is a routable address, then
the responder MUST include a routable address first in the
response, if available.
<span class="h3"><a class="selflink" id="section-2.7" href="#section-2.7">2.7</a>. Retransmission and Jitter</span>
An LLMNR sender uses the timeout interval LLMNR_TIMEOUT to determine
when to retransmit an LLMNR query. An LLMNR sender SHOULD either
estimate the LLMNR_TIMEOUT for each interface or set a reasonably
high initial timeout. Suggested constants are described in <a href="#section-7">Section</a>
<a href="#section-7">7</a>.
If an LLMNR query sent over UDP is not resolved within LLMNR_TIMEOUT,
then a sender SHOULD repeat the transmission of the query in order to
ensure that it was received by a host capable of responding to it.
An LLMNR query SHOULD NOT be sent more than three times.
Where LLMNR queries are sent using TCP, retransmission is handled by
the transport layer. Queries with the 'C' bit set MUST be sent using
multicast UDP and MUST NOT be retransmitted.
An LLMNR sender cannot know in advance if a query sent using
multicast will receive no response, one response, or more than one
response. An LLMNR sender MUST wait for LLMNR_TIMEOUT if no response
has been received, or if it is necessary to collect all potential
responses, such as if a uniqueness verification query is being made.
Otherwise, an LLMNR sender SHOULD consider a multicast query answered
after the first response is received, if that response has the 'C'
bit clear.
However, if the first response has the 'C' bit set, then the sender
SHOULD wait for LLMNR_TIMEOUT + JITTER_INTERVAL in order to collect
all possible responses. When multiple valid answers are received,
they may first be concatenated, and then treated in the same manner
that multiple RRs received from the same DNS server would. A unicast
query sender considers the query answered after the first response is
received.
<span class="grey">Aboba, et al. Informational [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc4795">RFC 4795</a> LLMNR January 2007</span>
Since it is possible for a response with the 'C' bit clear to be
followed by a response with the 'C' bit set, an LLMNR sender SHOULD
be prepared to process additional responses for the purposes of
conflict detection, even after it has considered a query answered.
In order to avoid synchronization, the transmission of each LLMNR
query and response SHOULD be delayed by a time randomly selected from
the interval 0 to JITTER_INTERVAL. This delay MAY be avoided by
responders responding with names that they have previously determined
to be UNIQUE (see <a href="#section-4">Section 4</a> for details).
<span class="h3"><a class="selflink" id="section-2.8" href="#section-2.8">2.8</a>. RR TTL</span>
The responder should insert a pre-configured TTL value in the records
returned in an LLMNR response. A default value of 30 seconds is
RECOMMENDED. In highly dynamic environments (such as mobile ad-hoc
networks), the TTL value may need to be reduced.
Due to the TTL minimalization necessary when caching an RRset, all
TTLs in an RRset MUST be set to the same value.
<span class="h3"><a class="selflink" id="section-2.9" href="#section-2.9">2.9</a>. Use of the Authority and Additional Sections</span>
Unlike the DNS, LLMNR is a peer-to-peer protocol and does not have a
concept of delegation. In LLMNR, the NS resource record type may be
stored and queried for like any other type, but it has no special
delegation semantics as it does in the DNS. Responders MAY have NS
records associated with the names for which they are authoritative,
but they SHOULD NOT include these NS records in the authority
sections of responses.
Responders SHOULD insert an SOA record into the authority section of
a negative response, to facilitate negative caching as specified in
[<a href="./rfc2308" title=""Negative Caching of DNS Queries (DNS NCACHE)"">RFC2308</a>]. The TTL of this record is set from the minimum of the
MINIMUM field of the SOA record and the TTL of the SOA itself, and
indicates how long a resolver may cache the negative answer. The
owner name of the SOA record (MNAME) MUST be set to the query name.
The RNAME, SERIAL, REFRESH, RETRY, and EXPIRE values MUST be ignored
by senders. Negative responses without SOA records SHOULD NOT be
cached.
In LLMNR, the additional section is primarily intended for use by
EDNS0, TSIG, and SIG(0). As a result, unless the 'C' bit is set,
senders MAY only include pseudo RR-types in the additional section of
a query; unless the 'C' bit is set, responders MUST ignore the
additional section of queries containing other RR types.
<span class="grey">Aboba, et al. Informational [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc4795">RFC 4795</a> LLMNR January 2007</span>
In queries where the 'C' bit is set, the sender SHOULD include the
conflicting RRs in the additional section. Since conflict
notifications are advisory, responders SHOULD log information from
the additional section, but otherwise MUST ignore the additional
section.
Senders MUST NOT cache RRs from the authority or additional section
of a response as answers, though they may be used for other purposes,
such as negative caching.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Usage Model</span>
By default, an LLMNR sender SHOULD send LLMNR queries only for
single-label names. Stub resolvers supporting both DNS and LLMNR
SHOULD avoid sending DNS queries for single-label names, in order to
reduce unnecessary DNS queries. An LLMNR sender SHOULD NOT be
enabled to send a query for any name, except where security
mechanisms (described in <a href="#section-5.3">Section 5.3</a>) can be utilized. An LLMNR
query SHOULD only be sent for the originally requested name; a
searchlist is not used to form additional LLMNR queries.
LLMNR is a peer-to-peer name resolution protocol that is not intended
as a replacement for DNS; rather, it enables name resolution in
scenarios in which conventional DNS name resolution is not possible.
Where LLMNR security is not enabled as described in <a href="#section-5.3">Section 5.3</a>, if
LLMNR is given higher priority than DNS among the enabled name
resolution mechanisms, this would allow the LLMNR cache, once
poisoned, to take precedence over the DNS cache. As a result, use of
LLMNR as a primary name resolution mechanism is NOT RECOMMENDED.
Instead, it is recommended that LLMNR be utilized as a secondary name
resolution mechanism, for use in situations where hosts are not
configured with the address of a DNS server, where the DNS server is
unavailable or unreachable, where there is no DNS server
authoritative for the name of a host, or where the authoritative DNS
server does not have the desired RRs.
When LLMNR is configured as a secondary name resolution mechanism,
LLMNR queries SHOULD only be sent when all of the following
conditions are met:
<span class="grey">Aboba, et al. Informational [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc4795">RFC 4795</a> LLMNR January 2007</span>
(1) No manual or automatic DNS configuration has been performed. If
DNS server address(es) have been configured, a host SHOULD
attempt to reach DNS servers over all protocols on which DNS
server address(es) are configured, prior to sending LLMNR
queries. For dual-stack hosts configured with DNS server
address(es) for one protocol but not another, this implies that
DNS queries SHOULD be sent over the protocol configured with a
DNS server, prior to sending LLMNR queries.
(2) All attempts to resolve the name via DNS on all interfaces have
failed after exhausting the searchlist. This can occur because
DNS servers did not respond, or because they responded to DNS
queries with RCODE=3 (Authoritative Name Error) or RCODE=0, and
an empty answer section. Where a single resolver call generates
DNS queries for A and AAAA RRs, an implementation MAY choose not
to send LLMNR queries if any of the DNS queries is successful.
Where LLMNR is used as a secondary name resolution mechanism, its
usage is in part determined by the behavior of DNS resolver
implementations; robust resolver implementations are more likely to
avoid unnecessary LLMNR queries.
[<a id="ref-RFC1536">RFC1536</a>] describes common DNS implementation errors and fixes. If
the proposed fixes are implemented, unnecessary LLMNR queries will be
reduced substantially, so implementation of [<a href="./rfc1536" title=""Common DNS Implementation Errors and Suggested Fixes"">RFC1536</a>] is recommended.
For example, <a href="./rfc1536#section-1">[RFC1536] Section 1</a> describes issues with retransmission
and recommends implementation of a retransmission policy based on
round trip estimates, with exponential back-off. <a href="./rfc1536#section-4">[RFC1536] Section 4</a>
describes issues with failover, and recommends that resolvers try
another server when they don't receive a response to a query. These
policies are likely to avoid unnecessary LLMNR queries.
[<a id="ref-RFC1536">RFC1536</a>] <a href="#section-3">Section 3</a> describes zero answer bugs, which if addressed
will also reduce unnecessary LLMNR queries.
[<a id="ref-RFC1536">RFC1536</a>] <a href="#section-6">Section 6</a> describes name error bugs and recommended
searchlist processing that will reduce unnecessary RCODE=3
(authoritative name) errors, thereby also reducing unnecessary LLMNR
queries.
As noted in [<a href="#ref-DNSPerf" title=""DNS Performance and the Effectiveness of Caching"">DNSPerf</a>], a significant fraction of DNS queries do not
receive a response, or result in negative responses due to missing
inverse mappings or NS records that point to nonexistent or
inappropriate hosts. Therefore, a reduction in missing records can
prevent many unnecessary LLMNR queries.
<span class="grey">Aboba, et al. Informational [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc4795">RFC 4795</a> LLMNR January 2007</span>
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. LLMNR Configuration</span>
LLMNR usage MAY be configured manually or automatically on a per-
interface basis. By default, LLMNR responders SHOULD be enabled on
all interfaces, at all times. Where this is considered undesirable,
LLMNR SHOULD be disabled, so that hosts will neither listen on the
link-scope multicast address, nor will they send queries to that
address.
Where DHCPv4 or DHCPv6 is implemented, DHCP options can be used to
configure LLMNR on an interface. The LLMNR Enable Option, described
in [<a href="#ref-LLMNREnable" title=""DHCP LLMNR Enable Option"">LLMNREnable</a>], can be used to explicitly enable or disable use of
LLMNR on an interface. The LLMNR Enable Option does not determine
whether, or in which order, DNS itself is used for name resolution.
The order in which various name resolution mechanisms should be used
can be specified using the Name Service Search Option (NSSO) for DHCP
[<a href="./rfc2937" title=""The Name Service Search Option for DHCP"">RFC2937</a>], using the LLMNR Enable Option code carried in the NSSO
data.
In situations where LLMNR is configured as a secondary name
resolution protocol on a dual-stack host, behavior will be governed
by both IPv4 and IPv6 configuration mechanisms. Since IPv4 and IPv6
utilize distinct configuration mechanisms, it is possible for a
dual-stack host to be configured with the address of a DNS server
over IPv4, while remaining unconfigured with a DNS server suitable
for use over IPv6.
In these situations, a dual-stack host will send AAAA queries to the
configured DNS server over IPv4. However, an IPv6-only host
unconfigured with a DNS server suitable for use over IPv6 will be
unable to resolve names using DNS. Automatic IPv6 DNS configuration
mechanisms (such as [<a href="./rfc3315" title=""Dynamic Host Configuration Protocol for IPv6 (DHCPv6)"">RFC3315</a>] and [<a href="#ref-DNSDisc" title=""Well known site local unicast addresses to communicate with recursive DNS servers"">DNSDisc</a>]) are not yet widely
deployed, and not all DNS servers support IPv6. Therefore, lack of
IPv6 DNS configuration may be a common problem in the short term, and
LLMNR may prove useful in enabling link-local name resolution over
IPv6.
Where a DHCPv4 server is available but not a DHCPv6 server [<a href="./rfc3315" title=""Dynamic Host Configuration Protocol for IPv6 (DHCPv6)"">RFC3315</a>],
IPv6-only hosts may not be configured with a DNS server. Where there
is no DNS server authoritative for the name of a host or the
authoritative DNS server does not support dynamic client update over
IPv6 or DHCPv6-based dynamic update, then an IPv6-only host will not
be able to do DNS dynamic update, and other hosts will not be able to
resolve its name.
<span class="grey">Aboba, et al. Informational [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc4795">RFC 4795</a> LLMNR January 2007</span>
For example, if the configured DNS server responds to an AAAA RR
query sent over IPv4 or IPv6 with an authoritative name error
(RCODE=3) or RCODE=0 and an empty answer section, then an AAAA RR
query sent using LLMNR over IPv6 may be successful in resolving the
name of an IPv6-only host on the local link.
Similarly, if a DHCPv4 server is available providing DNS server
configuration, and DNS server(s) exist which are authoritative for
the A RRs of local hosts and support either dynamic client update
over IPv4 or DHCPv4-based dynamic update, then the names of local
IPv4 hosts can be resolved over IPv4 without LLMNR. However, if no
DNS server is authoritative for the names of local hosts, or the
authoritative DNS server(s) do not support dynamic update, then LLMNR
enables link-local name resolution over IPv4.
It is possible that DNS configuration mechanisms will go in and out
of service. In these circumstances, it is possible for hosts within
an administrative domain to be inconsistent in their DNS
configuration.
For example, where DHCP is used for configuring DNS servers, one or
more DHCP servers can fail. As a result, hosts configured prior to
the outage will be configured with a DNS server, while hosts
configured after the outage will not. Alternatively, it is possible
for the DNS configuration mechanism to continue functioning while
configured DNS servers fail.
An outage in the DNS configuration mechanism may result in hosts
continuing to use LLMNR even once the outage is repaired. Since
LLMNR only enables link-local name resolution, this represents a
degradation in capabilities. As a result, hosts without a configured
DNS server may wish to periodically attempt to obtain DNS
configuration if permitted by the configuration mechanism in use. In
the absence of other guidance, a default retry interval of one (1)
minute is RECOMMENDED.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Conflict Resolution</span>
By default, a responder SHOULD be configured to behave as though its
name is UNIQUE on each interface on which LLMNR is enabled. However,
it is also possible to configure multiple responders to be
authoritative for the same name. For example, multiple responders
MAY respond to a query for an A or AAAA type record for a cluster
name (assigned to multiple hosts in the cluster).
<span class="grey">Aboba, et al. Informational [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc4795">RFC 4795</a> LLMNR January 2007</span>
To detect duplicate use of a name, an administrator can use a name
resolution utility that employs LLMNR and lists both responses and
responders. This would allow an administrator to diagnose behavior
and potentially intervene and reconfigure LLMNR responders that
should not be configured to respond to the same name.
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. Uniqueness Verification</span>
Prior to sending an LLMNR response with the 'T' bit clear, a
responder configured with a UNIQUE name MUST verify that there is no
other host within the scope of LLMNR query propagation that is
authoritative for the same name on that interface.
Once a responder has verified that its name is UNIQUE, if it receives
an LLMNR query for that name with the 'C' bit clear, it MUST respond
with the 'T' bit clear. Prior to verifying that its name is UNIQUE,
a responder MUST set the 'T' bit in responses.
Uniqueness verification is carried out when the host:
- starts up or is rebooted
- wakes from sleep (if the network interface was inactive during
sleep)
- is configured to respond to LLMNR queries on an interface enabled
for transmission and reception of IP traffic
- is configured to respond to LLMNR queries using additional UNIQUE
resource records
- verifies the acquisition of a new IP address and configuration on
an interface
To verify uniqueness, a responder MUST send an LLMNR query with the
'C' bit clear, over all protocols on which it responds to LLMNR
queries (IPv4 and/or IPv6). It is RECOMMENDED that responders verify
uniqueness of a name by sending a query for the name with type='ANY'.
If no response is received, the sender retransmits the query, as
specified in <a href="#section-2.7">Section 2.7</a>. If a response is received, the sender MUST
check if the source address matches the address of any of its
interfaces; if so, then the response is not considered a conflict,
since it originates from the sender. To avoid triggering conflict
detection, a responder that detects that it is connected to the same
link on multiple interfaces SHOULD set the 'C' bit in responses.
<span class="grey">Aboba, et al. Informational [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc4795">RFC 4795</a> LLMNR January 2007</span>
If a response is received with the 'T' bit clear, the responder MUST
NOT use the name in response to LLMNR queries received over any
protocol (IPv4 or IPv6). If a response is received with the 'T' bit
set, the responder MUST check if the source IP address in the
response is lexicographically smaller than the source IP address in
the query. If so, the responder MUST NOT use the name in response to
LLMNR queries received over any protocol (IPv4 or IPv6). For the
purpose of uniqueness verification, the contents of the answer
section in a response is irrelevant.
Periodically carrying out uniqueness verification in an attempt to
detect name conflicts is not necessary, wastes network bandwidth, and
may actually be detrimental. For example, if network links are
joined only briefly, and are separated again before any new
communication is initiated, temporary conflicts are benign and no
forced reconfiguration is required. LLMNR responders SHOULD NOT
periodically attempt uniqueness verification.
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. Conflict Detection and Defense</span>
Hosts on disjoint network links may configure the same name for use
with LLMNR. If these separate network links are later joined or
bridged together, then there may be multiple hosts that are now on
the same link, trying to use the same name.
In order to enable ongoing detection of name conflicts, when an LLMNR
sender receives multiple LLMNR responses to a query, it MUST check if
the 'C' bit is clear in any of the responses. If so, the sender
SHOULD send another query for the same name, type, and class, this
time with the 'C' bit set, with the potentially conflicting resource
records included in the additional section.
Queries with the 'C' bit set are considered advisory, and responders
MUST verify the existence of a conflict before acting on it. A
responder receiving a query with the 'C' bit set MUST NOT respond.
If the query is for a UNIQUE name, then the responder MUST send its
own query for the same name, type, and class, with the 'C' bit clear.
If a response is received, the sender MUST check if the source
address matches the address of any of its interfaces; if so, then the
response is not considered a conflict, since it originates from the
sender. To avoid triggering conflict detection, a responder that
detects that it is connected to the same link on multiple interfaces
SHOULD set the 'C' bit in responses.
<span class="grey">Aboba, et al. Informational [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc4795">RFC 4795</a> LLMNR January 2007</span>
An LLMNR responder MUST NOT ignore conflicts once detected, and
SHOULD log them. Upon detecting a conflict, an LLMNR responder MUST
immediately stop using the conflicting name in response to LLMNR
queries received over any supported protocol, if the source IP
address in the response is lexicographically smaller than the source
IP address in the uniqueness verification query.
After stopping the use of a name, the responder MAY elect to
configure a new name. However, since name reconfiguration may be
disruptive, this is not required, and a responder may have been
configured to respond to multiple names so that alternative names may
already be available. A host that has stopped the use of a name may
attempt uniqueness verification again after the expiration of the TTL
of the conflicting response.
<span class="h3"><a class="selflink" id="section-4.3" href="#section-4.3">4.3</a>. Considerations for Multiple Interfaces</span>
A multi-homed host may elect to configure LLMNR on only one of its
active interfaces. In many situations, this will be adequate.
However, should a host need to configure LLMNR on more than one of
its active interfaces, there are some additional precautions it MUST
take. Implementers who are not planning to support LLMNR on multiple
interfaces simultaneously may skip this section.
Where a host is configured to issue LLMNR queries on more than one
interface, each interface maintains its own independent LLMNR
resolver cache, containing the responses to LLMNR queries.
A multi-homed host checks the uniqueness of UNIQUE records as
described in <a href="#section-4">Section 4</a>. The situation is illustrated in Figure 1.
---------- ----------
| | | |
[<a href="#ref-A">A</a>] [myhost] [myhost]
Figure 1. Link-scope name conflict
In this situation, the multi-homed myhost will probe for, and defend,
its host name on both interfaces. A conflict will be detected on one
interface, but not the other. The multi-homed myhost will not be
able to respond with a host RR for "myhost" on the interface on the
right (see Figure 1). The multi-homed host may, however, be
configured to use the "myhost" name on the interface on the left.
<span class="grey">Aboba, et al. Informational [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc4795">RFC 4795</a> LLMNR January 2007</span>
Since names are only unique per link, hosts on different links could
be using the same name. If an LLMNR client sends queries over
multiple interfaces, and receives responses from more than one, the
result returned to the client is defined by the implementation. The
situation is illustrated in Figure 2.
---------- ----------
| | | |
[<a href="#ref-A">A</a>] [myhost] [<a href="#ref-A">A</a>]
Figure 2. Off-segment name conflict
If host myhost is configured to use LLMNR on both interfaces, it will
send LLMNR queries on both interfaces. When host myhost sends a
query for the host RR for name "A", it will receive a response from
hosts on both interfaces.
Host myhost cannot distinguish between the situation shown in Figure
2, and that shown in Figure 3, where no conflict exists.
[<a id="ref-A">A</a>]
| |
----- -----
| |
[myhost]
Figure 3. Multiple paths to same host
This illustrates that the proposed name conflict-resolution mechanism
does not support detection or resolution of conflicts between hosts
on different links. This problem can also occur with DNS when a
multi-homed host is connected to two different networks with
separated name spaces. It is not the intent of this document to
address the issue of uniqueness of names within DNS.
<span class="h3"><a class="selflink" id="section-4.4" href="#section-4.4">4.4</a>. API Issues</span>
[<a id="ref-RFC3493">RFC3493</a>] provides an API that can partially solve the name ambiguity
problem for applications written to use this API, since the
sockaddr_in6 structure exposes the scope within which each scoped
address exists, and this structure can be used for both IPv4 (using
v4-mapped IPv6 addresses) and IPv6 addresses.
Following the example in Figure 2, an application on 'myhost' issues
the request getaddrinfo("A", ...) with ai_family=AF_INET6 and
ai_flags=AI_ALL|AI_V4MAPPED. LLMNR queries will be sent from both
interfaces, and the resolver library will return a list containing
multiple addrinfo structures, each with an associated sockaddr_in6
<span class="grey">Aboba, et al. Informational [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc4795">RFC 4795</a> LLMNR January 2007</span>
structure. This list will thus contain the IPv4 and IPv6 addresses
of both hosts responding to the name 'A'. Link-local addresses will
have a sin6_scope_id value that disambiguates which interface is used
to reach the address. Of course, to the application, Figures 2 and 3
are still indistinguishable, but this API allows the application to
communicate successfully with any address in the list.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Security Considerations</span>
LLMNR is a peer-to-peer name resolution protocol designed for use on
the local link. While LLMNR limits the vulnerability of responders
to off-link senders, it is possible for an off-link responder to
reach a sender.
In scenarios such as public "hotspots", attackers can be present on
the same link. These threats are most serious in wireless networks,
such as IEEE 802.11, since attackers on a wired network will require
physical access to the network, while wireless attackers may mount
attacks from a distance. Link-layer security, such as
[<a href="#ref-IEEE-802.11i" title=""Supplement to Standard for Telecommunications and Information Exchange Between Systems - LAN/MAN Specific Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Specification for Enhanced Security"">IEEE-802.11i</a>], can be of assistance against these threats if it is
available.
This section details security measures available to mitigate threats
from on and off-link attackers.
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. Denial of Service</span>
Attackers may take advantage of LLMNR conflict detection by
allocating the same name, denying service to other LLMNR responders,
and possibly allowing an attacker to receive packets destined for
other hosts. By logging conflicts, LLMNR responders can provide
forensic evidence of these attacks.
An attacker may spoof LLMNR queries from a victim's address in order
to mount a denial of service attack. Responders setting the IPv6 Hop
Limit or IPv4 TTL field to a value larger than one in an LLMNR UDP
response may be able to reach the victim across the Internet.
While LLMNR responders only respond to queries for which they are
authoritative, and LLMNR does not provide wildcard query support, an
LLMNR response may be larger than the query, and an attacker can
generate multiple responses to a query for a name used by multiple
responders. A sender may protect itself against unsolicited
responses by silently discarding them.
<span class="grey">Aboba, et al. Informational [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc4795">RFC 4795</a> LLMNR January 2007</span>
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. Spoofing</span>
LLMNR is designed to prevent reception of queries sent by an off-link
attacker. LLMNR requires that responders receiving UDP queries check
that they are sent to a link-scope multicast address. However, it is
possible that some routers may not properly implement link-scope
multicast, or that link-scope multicast addresses may leak into the
multicast routing system. To prevent successful setup of TCP
connections by an off-link sender, responders receiving a TCP SYN
reply with a TCP SYN-ACK with TTL set to one (1).
While it is difficult for an off-link attacker to send an LLMNR query
to a responder, it is possible for an off-link attacker to spoof a
response to a query (such as an A or AAAA query for a popular
Internet host), and by using a TTL or Hop Limit field larger than one
(1), for the forged response to reach the LLMNR sender. Since the
forged response will only be accepted if it contains a matching ID
field, choosing a pseudo-random ID field within queries provides some
protection against off-link responders.
When LLMNR is utilized as a secondary name resolution service,
queries can be sent when DNS server(s) do not respond. An attacker
can execute a denial of service attack on the DNS server(s), and then
poison the LLMNR cache by responding to an LLMNR query with incorrect
information. As noted in "Threat Analysis of the Domain Name System
(DNS)" [<a href="./rfc3833" title=""Threat Analysis of the Domain Name System (DNS)"">RFC3833</a>], these threats also exist with DNS, since DNS-
response spoofing tools are available that can allow an attacker to
respond to a query more quickly than a distant DNS server. However,
while switched networks or link-layer security may make it difficult
for an on-link attacker to snoop unicast DNS queries, multicast LLMNR
queries are propagated to all hosts on the link, making it possible
for an on-link attacker to spoof LLMNR responses without having to
guess the value of the ID field in the query.
Since LLMNR queries are sent and responded to on the local link, an
attacker will need to respond more quickly to provide its own
response prior to arrival of the response from a legitimate
responder. If an LLMNR query is sent for an off-link host, spoofing
a response in a timely way is not difficult, since a legitimate
response will never be received.
This vulnerability can be reduced by limiting use of LLMNR to
resolution of single-label names as described in <a href="#section-3">Section 3</a>, or by
implementation of authentication (see <a href="#section-5.3">Section 5.3</a>).
<span class="grey">Aboba, et al. Informational [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc4795">RFC 4795</a> LLMNR January 2007</span>
<span class="h3"><a class="selflink" id="section-5.3" href="#section-5.3">5.3</a>. Authentication</span>
LLMNR is a peer-to-peer name resolution protocol and, as a result, is
often deployed in situations where no trust model can be assumed.
Where a pre-arranged security configuration is possible, the
following security mechanisms may be used:
(a) LLMNR implementations MAY support TSIG [<a href="./rfc2845" title=""Secret Key Transaction Authentication for DNS (TSIG)"">RFC2845</a>] and/or SIG(0)
[<a href="./rfc2931" title=""DNS Request and Transaction Signatures ( SIG(0)s )"">RFC2931</a>] security mechanisms. "DNS Name Service based on
Secure Multicast DNS for IPv6 Mobile Ad Hoc Networks" [<a href="#ref-LLMNRSec" title=""DNS Name Service based on Secure Multicast DNS for IPv6 Mobile Ad Hoc Networks"">LLMNRSec</a>]
describes the use of TSIG to secure LLMNR, based on group keys.
While group keys can be used to demonstrate membership in a
group, they do not protect against forgery by an attacker that
is a member of the group.
(b) IPsec Encapsulating Security Payload (ESP) with a NULL
encryption algorithm MAY be used to authenticate unicast LLMNR
queries and responses, or LLMNR responses to multicast queries.
In a small network without a certificate authority, this can be
most easily accomplished through configuration of a group pre-
shared key for trusted hosts. As with TSIG, this does not
protect against forgery by an attacker with access to the group
pre-shared key.
(c) LLMNR implementations MAY support DNSSEC [<a href="./rfc4033" title=""DNS Security Introduction and Requirements"">RFC4033</a>]. In order to
support DNSSEC, LLMNR implementations MAY be configured with
trust anchors, or they MAY make use of keys obtained from DNS
queries. Since LLMNR does not support "delegated trust" (CD or
AD bits), LLMNR implementations cannot make use of DNSSEC unless
they are DNSSEC-aware and support validation. Unlike approaches
[a] or [b], DNSSEC permits a responder to demonstrate ownership
of a name, not just membership within a trusted group. As a
result, it enables protection against forgery.
<span class="h3"><a class="selflink" id="section-5.4" href="#section-5.4">5.4</a>. Cache and Port Separation</span>
In order to prevent responses to LLMNR queries from polluting the DNS
cache, LLMNR implementations MUST use a distinct, isolated cache for
LLMNR on each interface. LLMNR operates on a separate port from DNS,
reducing the likelihood that a DNS server will unintentionally
respond to an LLMNR query.
If a DNS server is running on a host that supports LLMNR, the LLMNR
responder on that host MUST respond to LLMNR queries only for the
RRSets relating to the host on which the server is running, but MUST
NOT respond for other records for which the DNS server is
authoritative. DNS servers MUST NOT send LLMNR queries in order to
resolve DNS queries.
<span class="grey">Aboba, et al. Informational [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc4795">RFC 4795</a> LLMNR January 2007</span>
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. IANA Considerations</span>
This specification creates a new namespace: the LLMNR namespace.
In order to avoid creating any new administrative procedures,
administration of the LLMNR namespace will piggyback on the
administration of the DNS namespace.
The rights to use a fully qualified domain name (FQDN) within LLMNR
are obtained by acquiring the rights to use that name within DNS.
Those wishing to use an FQDN within LLMNR should first acquire the
rights to use the corresponding FQDN within DNS. Using an FQDN
within LLMNR without ownership of the corresponding name in DNS
creates the possibility of conflict and therefore is discouraged.
LLMNR responders may self-allocate a name within the single-label
namespace first defined in [<a href="./rfc1001" title=""Protocol standard for a NetBIOS service on a TCP/UDP transport: Concepts and methods"">RFC1001</a>]. Since single-label names are
not unique, no registration process is required.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Constants</span>
The following timing constants are used in this protocol; they are
not intended to be user configurable.
JITTER_INTERVAL 100 ms
LLMNR_TIMEOUT 1 second (if set statically on all interfaces)
100 ms (IEEE 802 media, including IEEE 802.11)
<span class="grey">Aboba, et al. Informational [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc4795">RFC 4795</a> LLMNR January 2007</span>
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. References</span>
<span class="h3"><a class="selflink" id="section-8.1" href="#section-8.1">8.1</a>. Normative References</span>
[<a id="ref-RFC1001">RFC1001</a>] NetBIOS Working Group in the Defense Advanced Research
Projects Agency, Internet Activities Board, and End-
to-End Services Task Force, "Protocol standard for a
NetBIOS service on a TCP/UDP transport: Concepts and
methods", STD 19, <a href="./rfc1001">RFC 1001</a>, March 1987.
[<a id="ref-RFC1035">RFC1035</a>] Mockapetris, P., "Domain names - implementation and
specification", STD 13, <a href="./rfc1035">RFC 1035</a>, November 1987.
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
[<a id="ref-RFC2181">RFC2181</a>] Elz, R. and R. Bush, "Clarifications to the DNS
Specification", <a href="./rfc2181">RFC 2181</a>, July 1997.
[<a id="ref-RFC2308">RFC2308</a>] Andrews, M., "Negative Caching of DNS Queries (DNS
NCACHE)", <a href="./rfc2308">RFC 2308</a>, March 1998.
[<a id="ref-RFC2671">RFC2671</a>] Vixie, P., "Extension Mechanisms for DNS (EDNS0)", <a href="./rfc2671">RFC</a>
<a href="./rfc2671">2671</a>, August 1999.
[<a id="ref-RFC2845">RFC2845</a>] Vixie, P., Gudmundsson, O., Eastlake 3rd, D., and B.
Wellington, "Secret Key Transaction Authentication for
DNS (TSIG)", <a href="./rfc2845">RFC 2845</a>, May 2000.
[<a id="ref-RFC2931">RFC2931</a>] Eastlake 3rd, D., "DNS Request and Transaction
Signatures ( SIG(0)s )", <a href="./rfc2931">RFC 2931</a>, September 2000.
[<a id="ref-RFC4291">RFC4291</a>] Hinden, R. and S. Deering, "IP Version 6 Addressing
Architecture", <a href="./rfc4291">RFC 4291</a>, February 2006.
<span class="h3"><a class="selflink" id="section-8.2" href="#section-8.2">8.2</a>. Informative References</span>
[<a id="ref-DNSPerf">DNSPerf</a>] Jung, J., et al., "DNS Performance and the
Effectiveness of Caching", IEEE/ACM Transactions on
Networking, Volume 10, Number 5, pp. 589, October
2002.
[<a id="ref-DNSDisc">DNSDisc</a>] Durand, A., Hagino, I., and D. Thaler, "Well known
site local unicast addresses to communicate with
recursive DNS servers", Work in Progress, October
2002.
<span class="grey">Aboba, et al. Informational [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc4795">RFC 4795</a> LLMNR January 2007</span>
[<a id="ref-IEEE-802.11i">IEEE-802.11i</a>] Institute of Electrical and Electronics Engineers,
"Supplement to Standard for Telecommunications and
Information Exchange Between Systems - LAN/MAN
Specific Requirements - Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY)
Specifications: Specification for Enhanced Security",
IEEE 802.11i, July 2004.
[<a id="ref-LLMNREnable">LLMNREnable</a>] Guttman, E., <a style="text-decoration: none" href='https://www.google.com/search?sitesearch=datatracker.ietf.org%2Fdoc%2Fhtml%2F&q=inurl:draft-+%22DHCP+LLMNR+Enable+Option%22'>"DHCP LLMNR Enable Option"</a>, Work in
Progress, April 2002.
[<a id="ref-LLMNRSec">LLMNRSec</a>] Jeong, J., Park, J. and H. Kim, "DNS Name Service
based on Secure Multicast DNS for IPv6 Mobile Ad Hoc
Networks", ICACT 2004, Phoenix Park, Korea, February
9-11, 2004.
[<a id="ref-POSIX">POSIX</a>] IEEE Std. 1003.1-2001 Standard for Information
Technology -- Portable Operating System Interface
(POSIX). Open Group Technical Standard: Base
Specifications, Issue 6, December 2001. ISO/IEC
9945:2002. <a href="http://www.opengroup.org/austin">http://www.opengroup.org/austin</a>
[<a id="ref-RFC1536">RFC1536</a>] Kumar, A., Postel, J., Neuman, C., Danzig, P., and S.
Miller, "Common DNS Implementation Errors and
Suggested Fixes", <a href="./rfc1536">RFC 1536</a>, October 1993.
[<a id="ref-RFC2131">RFC2131</a>] Droms, R., "Dynamic Host Configuration Protocol", <a href="./rfc2131">RFC</a>
<a href="./rfc2131">2131</a>, March 1997.
[<a id="ref-RFC2365">RFC2365</a>] Meyer, D., "Administratively Scoped IP Multicast", <a href="https://www.rfc-editor.org/bcp/bcp23">BCP</a>
<a href="https://www.rfc-editor.org/bcp/bcp23">23</a>, <a href="./rfc2365">RFC 2365</a>, July 1998.
[<a id="ref-RFC2937">RFC2937</a>] Smith, C., "The Name Service Search Option for DHCP",
<a href="./rfc2937">RFC 2937</a>, September 2000.
[<a id="ref-RFC3315">RFC3315</a>] Droms, R., Bound, J., Volz, B., Lemon, T., Perkins,
C., and M. Carney, "Dynamic Host Configuration
Protocol for IPv6 (DHCPv6)", <a href="./rfc3315">RFC 3315</a>, July 2003.
[<a id="ref-RFC3493">RFC3493</a>] Gilligan, R., Thomson, S., Bound, J., McCann, J., and
W. Stevens, "Basic Socket Interface Extensions for
IPv6", <a href="./rfc3493">RFC 3493</a>, February 2003.
[<a id="ref-RFC3542">RFC3542</a>] Stevens, W., Thomas, M., Nordmark, E., and T. Jinmei,
"Advanced Sockets Application Program Interface (API)
for IPv6", <a href="./rfc3542">RFC 3542</a>, May 2003.
<span class="grey">Aboba, et al. Informational [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc4795">RFC 4795</a> LLMNR January 2007</span>
[<a id="ref-RFC3833">RFC3833</a>] Atkins, D. and R. Austein, "Threat Analysis of the
Domain Name System (DNS)", <a href="./rfc3833">RFC 3833</a>, August 2004.
[<a id="ref-RFC3927">RFC3927</a>] Cheshire, S., Aboba, B., and E. Guttman, "Dynamic
Configuration of IPv4 Link-Local Addresses", <a href="./rfc3927">RFC 3927</a>,
May 2005.
[<a id="ref-RFC4033">RFC4033</a>] Arends, R., Austein, R., Larson, M., Massey, D., and
S. Rose, "DNS Security Introduction and Requirements",
<a href="./rfc4033">RFC 4033</a>, March 2005.
[<a id="ref-RFC4086">RFC4086</a>] Eastlake, D., 3rd, Schiller, J., and S. Crocker,
"Randomness Requirements for Security", <a href="https://www.rfc-editor.org/bcp/bcp106">BCP 106</a>, <a href="./rfc4086">RFC</a>
<a href="./rfc4086">4086</a>, June 2005.
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. Acknowledgments</span>
This work builds upon original work done on multicast DNS by Bill
Manning and Bill Woodcock. Bill Manning's work was funded under
DARPA grant #F30602-99-1-0523. The authors gratefully acknowledge
their contribution to the current specification. Constructive input
has also been received from Mark Andrews, Rob Austein, Randy Bush,
Stuart Cheshire, Ralph Droms, Robert Elz, James Gilroy, Olafur
Gudmundsson, Andreas Gustafsson, Erik Guttman, Myron Hattig,
Christian Huitema, Olaf Kolkman, Mika Liljeberg, Keith Moore,
Tomohide Nagashima, Thomas Narten, Erik Nordmark, Markku Savela, Mike
St. Johns, Sander van Valkenburg, and Brian Zill.
<span class="grey">Aboba, et al. Informational [Page 29]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-30" ></span>
<span class="grey"><a href="./rfc4795">RFC 4795</a> LLMNR January 2007</span>
Authors' Addresses
Bernard Aboba
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052
Phone: +1 425 706 6605
EMail: bernarda@microsoft.com
Dave Thaler
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052
Phone: +1 425 703 8835
EMail: dthaler@microsoft.com
Levon Esibov
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052
EMail: levone@microsoft.com
<span class="grey">Aboba, et al. Informational [Page 30]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-31" ></span>
<span class="grey"><a href="./rfc4795">RFC 4795</a> LLMNR January 2007</span>
Full Copyright Statement
Copyright (C) The IETF Trust (2007).
This document is subject to the rights, licenses and restrictions
contained in <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a>, and except as set forth therein, the authors
retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and <a href="https://www.rfc-editor.org/bcp/bcp79">BCP 79</a>.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
<a href="http://www.ietf.org/ipr">http://www.ietf.org/ipr</a>.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Aboba, et al. Informational [Page 31]
</pre>
|