1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
|
<pre>Network Working Group B. Friedman
Request for Comments: 4813 L. Nguyen
Category: Experimental A. Roy
D. Yeung
Cisco Systems
A. Zinin
Alcatel
February 2007
<span class="h1">OSPF Link-Local Signaling</span>
Status of This Memo
This memo defines an Experimental Protocol for the Internet
community. It does not specify an Internet standard of any kind.
Discussion and suggestions for improvement are requested.
Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The IETF Trust (2007).
Abstract
OSPF is a link-state intra-domain routing protocol used in IP
networks. OSPF routers exchange information on a link using packets
that follow a well-defined format. The format of OSPF packets is not
flexible enough to enable applications to exchange arbitrary data,
which may be necessary in certain situations. This memo describes a
vendor-specific, backward-compatible technique to perform link-local
signaling, i.e., exchange arbitrary data on a link.
<span class="grey">Friedman, et al. Experimental [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc4813">RFC 4813</a> OSPF Link-Local Signaling February 2007</span>
Table of Contents
<a href="#section-1">1</a>. Introduction ....................................................<a href="#page-2">2</a>
<a href="#section-2">2</a>. Proposed Solution ...............................................<a href="#page-2">2</a>
<a href="#section-2.1">2.1</a>. Options Field ..............................................<a href="#page-3">3</a>
<a href="#section-2.2">2.2</a>. LLS Data Block .............................................<a href="#page-4">4</a>
<a href="#section-2.3">2.3</a>. LLS TLVs ...................................................<a href="#page-5">5</a>
<a href="#section-2.4">2.4</a>. Predefined TLV .............................................<a href="#page-5">5</a>
<a href="#section-2.4.1">2.4.1</a>. Extended Options TLV ................................<a href="#page-5">5</a>
<a href="#section-2.4.2">2.4.2</a>. Cryptographic Authentication TLV ....................<a href="#page-6">6</a>
<a href="#section-3">3</a>. Backward Compatibility ..........................................<a href="#page-7">7</a>
<a href="#section-4">4</a>. Security Considerations .........................................<a href="#page-7">7</a>
<a href="#section-5">5</a>. IANA Considerations .............................................<a href="#page-7">7</a>
<a href="#section-6">6</a>. References ......................................................<a href="#page-8">8</a>
<a href="#section-6.1">6.1</a>. Normative References .......................................<a href="#page-8">8</a>
<a href="#section-6.2">6.2</a>. Informative References .....................................<a href="#page-8">8</a>
<a href="#appendix-A">Appendix A</a>. Acknowledgements ......................................<a href="#page-9">9</a>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
Formats of OSPF [<a href="./rfc2328" title=""OSPF Version 2"">RFC2328</a>] packets are not very flexible to provide an
acceptable mechanism for opaque data transfer. However, this appears
to be very useful to allow OSPF routers to do so. An example where
such a technique could be used is exchanging some capabilities on a
link (standard OSPF utilizes the Options field in Hello and Exchange
packets, but there are not so many bits left in it).
One potential way of solving this task could be introducing a new
packet type. However, that would mean introducing extra packets on
the network, which may not be desirable, so this document describes
how to exchange data using existing, standard OSPF packet types.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Proposed Solution</span>
To perform link-local signaling (LLS), OSPF routers add a special
data block at the end of OSPF packets or right after the
authentication data block when cryptographic authentication is used.
Like with OSPF cryptographic authentication, the length of the LLS-
block is not included into the length of OSPF packet, but is included
in the IP packet length. Figure 1 illustrates how the LLS data block
is attached.
<span class="grey">Friedman, et al. Experimental [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc4813">RFC 4813</a> OSPF Link-Local Signaling February 2007</span>
+---------------------+ --
| IP Header | ^
| Length = HL+X+Y+Z | | Header Length
| | v
+---------------------+ --
| OSPF Header | ^
| Length = X | |
|.....................| | X
| | |
| OSPF Data | |
| | v
+---------------------+ --
| | ^
| Authentication Data | | Y
| | v
+---------------------+ --
| | ^
| LLS Data | | Z
| | v
+---------------------+ --
Figure 1: Attaching LLS Data Block
The LLS data block may be attached to OSPF packets of two types --
type 1 (OSPF Hello), and type 2 (OSPF DBD). The data included in the
LLS block attached to a Hello packet may be used for dynamic
signaling, since Hello packets may be sent at any moment in time.
However, delivery of LLS data in Hello packets is not guaranteed.
The data sent with Database Description (DBD) packets is guaranteed
to be delivered as part of the adjacency forming process.
This memo does not specify how the data transmitted by the LLS
mechanism should be interpreted by OSPF routers. The interface
between the OSPF LLS component and its clients is implementation-
specific.
<span class="h3"><a class="selflink" id="section-2.1" href="#section-2.1">2.1</a>. Options Field</span>
A new bit, called L (L stands for LLS), is introduced to the OSPF
Options field (see Figure 2). The value of the bit is 0x10. Routers
set the L-bit in Hello and DBD packets to indicate that the packet
contains the LLS data block.
<span class="grey">Friedman, et al. Experimental [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc4813">RFC 4813</a> OSPF Link-Local Signaling February 2007</span>
+---+---+---+---+---+---+---+---+
| * | O | DC| L |N/P| MC| E | * |
+---+---+---+---+---+---+---+-+-+
Figure 2: The Options Field
L-bit
This bit is set only in Hello and DBD packets. It is not set in
OSPF Link State Advertisements (LSAs) and may be used in them for
different purposes.
<span class="h3"><a class="selflink" id="section-2.2" href="#section-2.2">2.2</a>. LLS Data Block</span>
The data block used for link-local signaling is formatted as
described below (see Figure 3 for illustration).
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Checksum | LLS Data Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| LLS TLVs |
. .
. .
. .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 3: Format of the LLS Data Block
Checksum
The Checksum field contains the standard IP checksum of the entire
contents of the LLS block.
LLS Length
The 16-bit LLS Data Length field contains the length (in 32-bit
words) of the LLS block including the header and payload.
Implementations should not use the Length field in the IP packet
header to determine the length of the LLS data block.
Note that if the OSPF packet is cryptographically authenticated, the
LLS data block must also be cryptographically authenticated. In this
case, the regular LLS checksum is not calculated and the LLS block
will contain a cryptographic authentication TLV (see <a href="#section-2.4.2">Section 2.4.2</a>).
<span class="grey">Friedman, et al. Experimental [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc4813">RFC 4813</a> OSPF Link-Local Signaling February 2007</span>
The rest of the block contains a set of Type/Length/Value (TLV)
triplets as described in <a href="#section-2.3">Section 2.3</a>. All TLVs must be 32-bit
aligned (with padding if necessary).
<span class="h3"><a class="selflink" id="section-2.3" href="#section-2.3">2.3</a>. LLS TLVs</span>
The contents of the LLS data block is constructed using TLVs. See
Figure 4 for the TLV format.
The Type field contains the TLV ID that is unique for each type of
TLVs. The Length field contains the length of the Value field (in
bytes) that is variable and contains arbitrary data.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
. .
. Value .
. .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 4: Format of LLS TLVs
Note that TLVs are always padded to 32-bit boundary, but padding
bytes are not included in the TLV Length field (though it is included
in the LLS Data Length field of the LLS block header).
<span class="h3"><a class="selflink" id="section-2.4" href="#section-2.4">2.4</a>. Predefined TLV</span>
<span class="h4"><a class="selflink" id="section-2.4.1" href="#section-2.4.1">2.4.1</a>. Extended Options TLV</span>
This subsection describes a TLV called Extended Options (EO) TLV.
The format of EO-TLV is shown in Figure 5.
Bits in the Value field do not have any semantics from the point of
view of the LLS mechanism. This field may be used to announce some
OSPF capabilities that are link-specific. Also, other OSPF
extensions may allocate bits in the bit vector to perform boolean
link-local signaling.
The length of the Value field in EO-TLV is 4 bytes.
The value of the Type field in EO-TLV is 1.
EO-TLV should only appear once in the LLS data block.
<span class="grey">Friedman, et al. Experimental [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc4813">RFC 4813</a> OSPF Link-Local Signaling February 2007</span>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 1 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Extended Options |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 5: Format of EO-TLV
Currently, [<a href="./rfc4811" title=""OSPF Out-of-Band Link State Database (LSDB) Resynchronization"">RFC4811</a>] and [<a href="./rfc4812" title=""OSPF Restart Signaling"">RFC4812</a>] use bits in the Extended Options
field of the EO-TLV. The Extended Options bits are also defined in
<a href="#section-5">Section 5</a>.
<span class="h4"><a class="selflink" id="section-2.4.2" href="#section-2.4.2">2.4.2</a>. Cryptographic Authentication TLV</span>
This document defines a special TLV that is used for cryptographic
authentication (CA-TLV) of the LLS data block. This TLV should be
included in the LLS block when the cryptographic (MD5) authentication
is enabled on the corresponding interface. The message digest of the
LLS block should be calculated using the same key as that used for
the main OSPF packet. The cryptographic sequence number is included
in the TLV and must be the same as the one in the main OSPF packet
for the LLS block to be considered authentic.
The TLV is constructed as shown Figure 6.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 2 | AuthLen |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sequence Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
. .
. AuthData .
. .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 6: Format of Cryptographic Authentication TLV
The value of the Type field for CA-TLV is 2.
The Length field in the header contains the length of the data
portion of the TLV that includes 4 bytes for the sequence number and
the length of the message digest (MD5) block for the whole LLS block
<span class="grey">Friedman, et al. Experimental [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc4813">RFC 4813</a> OSPF Link-Local Signaling February 2007</span>
in bytes (this will always be 16 bytes for MD5). So the AuthLen
field will have value of 20.
The Sequence Number field contains the cryptographic sequence number
that is used to prevent simple replay attacks. For the LLS block to
be considered authentic, the sequence number in the CA-TLV must match
the sequence number in the OSPF packet.
The AuthData field contains the message digest calculated for the LLS
data block.
The CA-TLV may appear in the LLS block only once. Also, when
present, this TLV should be the last in the LLS block.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Backward Compatibility</span>
The modifications to OSPF packet formats are compatible with standard
OSPF because LLS-incapable routers will not consider the extra data
after the packet; i.e., the LLS data block will be ignored by routers
that do not support the LLS extension.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Security Considerations</span>
The function described in this document does not create any new
security issues for the OSPF protocol. The described technique
provides the same level of security as the OSPF protocol by allowing
LLS data to be authenticated (see <a href="#section-2.4.2">Section 2.4.2</a> for more details).
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. IANA Considerations</span>
LLS TLV types are maintained by the IANA. Extensions to OSPF that
require a new LLS TLV type must be reviewed by a designated expert
from the routing area.
Following the policies outlined in [<a href="./rfc2434" title="">RFC2434</a>], LLS type values in the
range of 0-32767 are allocated through an IETF consensus action, and
LLS type values in the range of 32768-65536 are reserved for private
and experimental use.
This document assigns LLS types 1 and 2, as follows:
LLS Type Name Reference
0 Reserved
1 Extended Options [<a href="./rfc4813">RFC4813</a>]
2 Cryptographic Authentication [<a href="./rfc4813">RFC4813</a>]
3-32767 Reserved for assignment by the IANA
32768-65535 Private Use
<span class="grey">Friedman, et al. Experimental [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc4813">RFC 4813</a> OSPF Link-Local Signaling February 2007</span>
This document also assigns the following bits for the Extended
Options bits field in the EO-TLV outlined in <a href="#section-2.4.1">Section 2.4.1</a>:
Extended Options Bit Name Reference
0x00000001 LSDB Resynchronization (LR) [<a href="./rfc4811" title=""OSPF Out-of-Band Link State Database (LSDB) Resynchronization"">RFC4811</a>]
0x00000002 Restart Signal (RS-bit) [<a href="./rfc4812" title=""OSPF Restart Signaling"">RFC4812</a>]
Other Extended Options bits will be allocated through an IETF
consensus action.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. References</span>
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. Normative References</span>
[<a id="ref-RFC2328">RFC2328</a>] Moy, J., "OSPF Version 2", STD 54, <a href="./rfc2328">RFC 2328</a>, April 1998.
[<a id="ref-RFC2434">RFC2434</a>] Narten, T. and H. Alvestrand, "Guidelines for Writing an
IANA Considerations Section in RFCs", <a href="https://www.rfc-editor.org/bcp/bcp26">BCP 26</a>, <a href="./rfc2434">RFC 2434</a>,
October 1998.
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>. Informative References</span>
[<a id="ref-RFC4811">RFC4811</a>] Nguyen, L., Roy, A., and A. Zinin, "OSPF Out-of-Band Link
State Database (LSDB) Resynchronization", <a href="./rfc4811">RFC 4811</a>,
February 2007.
[<a id="ref-RFC4812">RFC4812</a>] Nguyen, L., Roy, A., and A. Zinin, "OSPF Restart
Signaling", <a href="./rfc4812">RFC 4812</a>, February 2007.
<span class="grey">Friedman, et al. Experimental [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc4813">RFC 4813</a> OSPF Link-Local Signaling February 2007</span>
<span class="h2"><a class="selflink" id="appendix-A" href="#appendix-A">Appendix A</a>. Acknowledgments</span>
The authors would like to acknowledge Russ White for his review of
this document.
Authors' Addresses
Barry Friedman
Cisco Systems
225 West Tasman Drive
San Jose, CA 95134
USA
EMail: friedman@cisco.com
Liem Nguyen
Cisco Systems
225 West Tasman Drive
San Jose, CA 95134
USA
EMail: lhnguyen@cisco.com
Abhay Roy
Cisco Systems
225 West Tasman Drive
San Jose, CA 95134
USA
EMail: akr@cisco.com
Derek Yeung
Cisco Systems
225 West Tasman Drive
San Jose, CA 95134
USA
EMail: myeung@cisco.com
Alex Zinin
Alcatel
Sunnyvale, CA
USA
EMail: zinin@psg.com
<span class="grey">Friedman, et al. Experimental [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc4813">RFC 4813</a> OSPF Link-Local Signaling February 2007</span>
Full Copyright Statement
Copyright (C) The IETF Trust (2007).
This document is subject to the rights, licenses and restrictions
contained in <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a>, and except as set forth therein, the authors
retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and <a href="https://www.rfc-editor.org/bcp/bcp79">BCP 79</a>.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
<a href="http://www.ietf.org/ipr">http://www.ietf.org/ipr</a>.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.
Acknowledgement
Funding for the RFC Editor function is currently provided by the
Internet Society.
Friedman, et al. Experimental [Page 10]
</pre>
|