1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
|
<pre>Network Working Group K. Scott
Request for Comments: 5050 The MITRE Corporation
Category: Experimental S. Burleigh
NASA Jet Propulsion Laboratory
November 2007
<span class="h1">Bundle Protocol Specification</span>
Status of This Memo
This memo defines an Experimental Protocol for the Internet
community. It does not specify an Internet standard of any kind.
Discussion and suggestions for improvement are requested.
Distribution of this memo is unlimited.
IESG Note
This RFC is not a candidate for any level of Internet Standard. The
IETF disclaims any knowledge of the fitness of this RFC for any
purpose and in particular notes that the decision to publish is not
based on IETF review for such things as security, congestion control,
or inappropriate interaction with deployed protocols. The RFC Editor
has chosen to publish this document at its discretion. Readers of
this document should exercise caution in evaluating its value for
implementation and deployment. See <a href="./rfc3932">RFC 3932</a> for more information.
Abstract
This document describes the end-to-end protocol, block formats, and
abstract service description for the exchange of messages (bundles)
in Delay Tolerant Networking (DTN).
This document was produced within the IRTF's Delay Tolerant
Networking Research Group (DTNRG) and represents the consensus of all
of the active contributors to this group. See <a href="http://www.dtnrg.org">http://www.dtnrg.org</a>
for more information.
<span class="grey">Scott & Burleigh Experimental [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
Table of Contents
<a href="#section-1">1</a>. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-3">3</a>
<a href="#section-2">2</a>. Requirements Notation . . . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-3">3</a>. Service Description . . . . . . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-3.1">3.1</a>. Definitions . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-3.2">3.2</a>. Implementation Architectures . . . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-3.3">3.3</a>. Services Offered by Bundle Protocol Agents . . . . . . . . <a href="#page-11">11</a>
<a href="#section-4">4</a>. Bundle Format . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-11">11</a>
<a href="#section-4.1">4.1</a>. Self-Delimiting Numeric Values (SDNVs) . . . . . . . . . . <a href="#page-12">12</a>
<a href="#section-4.2">4.2</a>. Bundle Processing Control Flags . . . . . . . . . . . . . <a href="#page-13">13</a>
<a href="#section-4.3">4.3</a>. Block Processing Control Flags . . . . . . . . . . . . . . <a href="#page-15">15</a>
<a href="#section-4.4">4.4</a>. Endpoint IDs . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-16">16</a>
<a href="#section-4.5">4.5</a>. Formats of Bundle Blocks . . . . . . . . . . . . . . . . . <a href="#page-17">17</a>
<a href="#section-4.5.1">4.5.1</a>. Primary Bundle Block . . . . . . . . . . . . . . . . . <a href="#page-19">19</a>
<a href="#section-4.5.2">4.5.2</a>. Canonical Bundle Block Format . . . . . . . . . . . . <a href="#page-22">22</a>
<a href="#section-4.5.3">4.5.3</a>. Bundle Payload Block . . . . . . . . . . . . . . . . . <a href="#page-23">23</a>
<a href="#section-4.6">4.6</a>. Extension Blocks . . . . . . . . . . . . . . . . . . . . . <a href="#page-24">24</a>
<a href="#section-4.7">4.7</a>. Dictionary Revision . . . . . . . . . . . . . . . . . . . <a href="#page-24">24</a>
<a href="#section-5">5</a>. Bundle Processing . . . . . . . . . . . . . . . . . . . . . . <a href="#page-24">24</a>
<a href="#section-5.1">5.1</a>. Generation of Administrative Records . . . . . . . . . . . <a href="#page-25">25</a>
<a href="#section-5.2">5.2</a>. Bundle Transmission . . . . . . . . . . . . . . . . . . . <a href="#page-26">26</a>
<a href="#section-5.3">5.3</a>. Bundle Dispatching . . . . . . . . . . . . . . . . . . . . <a href="#page-26">26</a>
<a href="#section-5.4">5.4</a>. Bundle Forwarding . . . . . . . . . . . . . . . . . . . . <a href="#page-27">27</a>
<a href="#section-5.4.1">5.4.1</a>. Forwarding Contraindicated . . . . . . . . . . . . . . <a href="#page-28">28</a>
<a href="#section-5.4.2">5.4.2</a>. Forwarding Failed . . . . . . . . . . . . . . . . . . <a href="#page-29">29</a>
<a href="#section-5.5">5.5</a>. Bundle Expiration . . . . . . . . . . . . . . . . . . . . <a href="#page-29">29</a>
<a href="#section-5.6">5.6</a>. Bundle Reception . . . . . . . . . . . . . . . . . . . . . <a href="#page-30">30</a>
<a href="#section-5.7">5.7</a>. Local Bundle Delivery . . . . . . . . . . . . . . . . . . <a href="#page-31">31</a>
<a href="#section-5.8">5.8</a>. Bundle Fragmentation . . . . . . . . . . . . . . . . . . . <a href="#page-32">32</a>
<a href="#section-5.9">5.9</a>. Application Data Unit Reassembly . . . . . . . . . . . . . <a href="#page-33">33</a>
<a href="#section-5.10">5.10</a>. Custody Transfer . . . . . . . . . . . . . . . . . . . . . <a href="#page-34">34</a>
<a href="#section-5.10.1">5.10.1</a>. Custody Acceptance . . . . . . . . . . . . . . . . . . <a href="#page-34">34</a>
<a href="#section-5.10.2">5.10.2</a>. Custody Release . . . . . . . . . . . . . . . . . . . <a href="#page-35">35</a>
<a href="#section-5.11">5.11</a>. Custody Transfer Success . . . . . . . . . . . . . . . . . <a href="#page-35">35</a>
<a href="#section-5.12">5.12</a>. Custody Transfer Failure . . . . . . . . . . . . . . . . . <a href="#page-35">35</a>
<a href="#section-5.13">5.13</a>. Bundle Deletion . . . . . . . . . . . . . . . . . . . . . <a href="#page-36">36</a>
<a href="#section-5.14">5.14</a>. Discarding a Bundle . . . . . . . . . . . . . . . . . . . <a href="#page-36">36</a>
<a href="#section-5.15">5.15</a>. Canceling a Transmission . . . . . . . . . . . . . . . . . <a href="#page-36">36</a>
<a href="#section-5.16">5.16</a>. Polling . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-36">36</a>
<a href="#section-6">6</a>. Administrative Record Processing . . . . . . . . . . . . . . . <a href="#page-37">37</a>
<a href="#section-6.1">6.1</a>. Administrative Records . . . . . . . . . . . . . . . . . . <a href="#page-37">37</a>
<a href="#section-6.1.1">6.1.1</a>. Bundle Status Reports . . . . . . . . . . . . . . . . <a href="#page-38">38</a>
<a href="#section-6.1.2">6.1.2</a>. Custody Signals . . . . . . . . . . . . . . . . . . . <a href="#page-41">41</a>
<a href="#section-6.2">6.2</a>. Generation of Administrative Records . . . . . . . . . . . <a href="#page-44">44</a>
<a href="#section-6.3">6.3</a>. Reception of Custody Signals . . . . . . . . . . . . . . . <a href="#page-44">44</a>
<span class="grey">Scott & Burleigh Experimental [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
<a href="#section-7">7</a>. Services Required of the Convergence Layer . . . . . . . . . . <a href="#page-44">44</a>
<a href="#section-7.1">7.1</a>. The Convergence Layer . . . . . . . . . . . . . . . . . . <a href="#page-44">44</a>
<a href="#section-7.2">7.2</a>. Summary of Convergence Layer Services . . . . . . . . . . <a href="#page-45">45</a>
<a href="#section-8">8</a>. Security Considerations . . . . . . . . . . . . . . . . . . . <a href="#page-45">45</a>
<a href="#section-9">9</a>. IANA Considerations . . . . . . . . . . . . . . . . . . . . . <a href="#page-47">47</a>
<a href="#section-10">10</a>. References . . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-47">47</a>
<a href="#section-10.1">10.1</a>. Normative References . . . . . . . . . . . . . . . . . . . <a href="#page-47">47</a>
<a href="#section-10.2">10.2</a>. Informative References . . . . . . . . . . . . . . . . . . <a href="#page-47">47</a>
<a href="#appendix-A">Appendix A</a>. Contributors . . . . . . . . . . . . . . . . . . . . <a href="#page-49">49</a>
<a href="#appendix-B">Appendix B</a>. Comments . . . . . . . . . . . . . . . . . . . . . . <a href="#page-49">49</a>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
This document describes version 6 of the Delay Tolerant Networking
(DTN) "bundle" protocol (BP). Delay Tolerant Networking is an end-
to-end architecture providing communications in and/or through highly
stressed environments. Stressed networking environments include
those with intermittent connectivity, large and/or variable delays,
and high bit error rates. To provide its services, BP sits at the
application layer of some number of constituent internets, forming a
store-and-forward overlay network. Key capabilities of BP include:
o Custody-based retransmission
o Ability to cope with intermittent connectivity
o Ability to take advantage of scheduled, predicted, and
opportunistic connectivity (in addition to continuous
connectivity)
o Late binding of overlay network endpoint identifiers to
constituent internet addresses
For descriptions of these capabilities and the rationale for the DTN
architecture, see [<a href="#ref-ARCH" title=""Delay-Tolerant Network Architecture"">ARCH</a>] and [<a href="#ref-SIGC" title=""A Delay-Tolerant Network Architecture for Challenged Internets"">SIGC</a>]. [<a href="#ref-TUT" title=""Delay-Tolerant Networks (DTNs): A Tutorial"">TUT</a>] contains a tutorial-level
overview of DTN concepts.
This is an experimental protocol, produced within the IRTF's Delay
Tolerant Networking Research Group (DTNRG) and represents the
consensus of all of the active contributors to this group. If this
protocol is used on the Internet, IETF standard protocols for
security and congestion control should be used.
BP's location within the standard protocol stack is as shown in
Figure 1. BP uses the "native" internet protocols for communications
within a given internet. Note that "internet" in the preceding is
used in a general sense and does not necessarily refer to TCP/IP.
The interface between the common bundle protocol and a specific
<span class="grey">Scott & Burleigh Experimental [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
internetwork protocol suite is termed a "convergence layer adapter".
Figure 1 shows three distinct transport and network protocols
(denoted T1/N1, T2/N2, and T3/N3).
+-----------+ +-----------+
| BP app | | BP app |
+---------v-| +->>>>>>>>>>v-+ +->>>>>>>>>>v-+ +-^---------+
| BP v | | ^ BP v | | ^ BP v | | ^ BP |
+---------v-+ +-^---------v-+ +-^---------v-+ +-^---------+
| Trans1 v | + ^ T1/T2 v | + ^ T2/T3 v | | ^ Trans3 |
+---------v-+ +-^---------v-+ +-^---------v + +-^---------+
| Net1 v | | ^ N1/N2 v | | ^ N2/N3 v | | ^ Net3 |
+---------v-+ +-^---------v + +-^---------v-+ +-^---------+
| >>>>>>>>^ >>>>>>>>>>^ >>>>>>>>^ |
+-----------+ +-------------+ +-------------+ +-----------+
| | | |
|<--- An internet --->| |<--- An internet --->|
| | | |
Figure 1: The Bundle Protocol Sits at
the Application Layer of the Internet Model
This document describes the format of the protocol data units (called
bundles) passed between entities participating in BP communications.
The entities are referred to as "bundle nodes". This document does
not address:
o Operations in the convergence layer adapters that bundle nodes use
to transport data through specific types of internets. (However,
the document does discuss the services that must be provided by
each adapter at the convergence layer.)
o The bundle routing algorithm.
o Mechanisms for populating the routing or forwarding information
bases of bundle nodes.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Requirements Notation</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
<span class="grey">Scott & Burleigh Experimental [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Service Description</span>
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. Definitions</span>
Bundle - A bundle is a protocol data unit of the DTN bundle
protocol. Each bundle comprises a sequence of two or more
"blocks" of protocol data, which serve various purposes. Multiple
instances of the same bundle (the same unit of DTN protocol data)
might exist concurrently in different parts of a network --
possibly in different representations -- in the memory local to
one or more bundle nodes and/or in transit between nodes. In the
context of the operation of a bundle node, a bundle is an instance
of some bundle in the network that is in that node's local memory.
Bundle payload - A bundle payload (or simply "payload") is the
application data whose conveyance to the bundle's destination is
the purpose for the transmission of a given bundle. The terms
"bundle content", "bundle payload", and "payload" are used
interchangeably in this document. The "nominal" payload for a
bundle forwarded in response to a bundle transmission request is
the application data unit whose location is provided as a
parameter to that request. The nominal payload for a bundle
forwarded in response to reception of that bundle is the payload
of the received bundle.
Fragment - A fragment is a bundle whose payload block contains a
fragmentary payload. A fragmentary payload is either the first N
bytes or the last N bytes of some other payload -- either a
nominal payload or a fragmentary payload -- of length M, such that
0 < N < M.
Bundle node - A bundle node (or, in the context of this document,
simply a "node") is any entity that can send and/or receive
bundles. In the most familiar case, a bundle node is instantiated
as a single process running on a general-purpose computer, but in
general the definition is meant to be broader: a bundle node might
alternatively be a thread, an object in an object-oriented
operating system, a special-purpose hardware device, etc. Each
bundle node has three conceptual components, defined below: a
"bundle protocol agent", a set of zero or more "convergence layer
adapters", and an "application agent".
Bundle protocol agent - The bundle protocol agent (BPA) of a node is
the node component that offers the BP services and executes the
procedures of the bundle protocol. The manner in which it does so
is wholly an implementation matter. For example, BPA
functionality might be coded into each node individually; it might
be implemented as a shared library that is used in common by any
<span class="grey">Scott & Burleigh Experimental [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
number of bundle nodes on a single computer; it might be
implemented as a daemon whose services are invoked via inter-
process or network communication by any number of bundle nodes on
one or more computers; it might be implemented in hardware.
Convergence layer adapters - A convergence layer adapter (CLA) sends
and receives bundles on behalf of the BPA, utilizing the services
of some 'native' internet protocol that is supported in one of the
internets within which the node is functionally located. The
manner in which a CLA sends and receives bundles is wholly an
implementation matter, exactly as described for the BPA.
Application agent - The application agent (AA) of a node is the node
component that utilizes the BP services to effect communication
for some purpose. The application agent in turn has two elements,
an administrative element and an application-specific element.
The application-specific element of an AA constructs, requests
transmission of, accepts delivery of, and processes application-
specific application data units; the only interface between the
BPA and the application-specific element of the AA is the BP
service interface. The administrative element of an AA constructs
and requests transmission of administrative records (status
reports and custody signals), and it accepts delivery of and
processes any custody signals that the node receives. In addition
to the BP service interface, there is a (conceptual) private
control interface between the BPA and the administrative element
of the AA that enables each to direct the other to take action
under specific circumstances. In the case of a node that serves
simply as a "router" in the overlay network, the AA may have no
application-specific element at all. The application-specific
elements of other nodes' AAs may perform arbitrarily complex
application functions, perhaps even offering multiplexed DTN
communication services to a number of other applications. As with
the BPA, the manner in which the AA performs its functions is
wholly an implementation matter; in particular, the administrative
element of an AA might be built into the library or daemon or
hardware that implements the BPA, and the application-specific
element of an AA might be implemented either in software or in
hardware.
Bundle endpoint - A bundle endpoint (or simply "endpoint") is a set
of zero or more bundle nodes that all identify themselves for BP
purposes by some single text string, called a "bundle endpoint ID"
(or, in this document, simply "endpoint ID"; endpoint IDs are
described in detail in <a href="#section-4.4">Section 4.4</a> below). The special case of an
endpoint that never contains more than one node is termed a
"singleton" endpoint; every bundle node must be a member of at
least one singleton endpoint. Singletons are the most familiar
<span class="grey">Scott & Burleigh Experimental [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
sort of endpoint, but in general the endpoint notion is meant to
be broader. For example, the nodes in a sensor network might
constitute a set of bundle nodes that identify themselves by a
single common endpoint ID and thus form a single bundle endpoint.
*Note* too that a given bundle node might identify itself by
multiple endpoint IDs and thus be a member of multiple bundle
endpoints.
Forwarding - When the bundle protocol agent of a node determines
that a bundle must be "forwarded" to an endpoint, it causes the
bundle to be sent to all of the nodes that the bundle protocol
agent currently believes are in the "minimum reception group" of
that endpoint. The minimum reception group of an endpoint may be
any one of the following: (a) ALL of the nodes registered in an
endpoint that is permitted to contain multiple nodes (in which
case forwarding to the endpoint is functionally similar to
"multicast" operations in the Internet, though possibly very
different in implementation); (b) ANY N of the nodes registered in
an endpoint that is permitted to contain multiple nodes, where N
is in the range from zero to the cardinality of the endpoint (in
which case forwarding to the endpoint is functionally similar to
"anycast" operations in the Internet); or (c) THE SOLE NODE
registered in a singleton endpoint (in which case forwarding to
the endpoint is functionally similar to "unicast" operations in
the Internet). The nature of the minimum reception group for a
given endpoint can be determined from the endpoint's ID (again,
see <a href="#section-4.4">Section 4.4</a> below): for some endpoint ID "schemes", the nature
of the minimum reception group is fixed - in a manner that is
defined by the scheme - for all endpoints identified under the
scheme; for other schemes, the nature of the minimum reception
group is indicated by some lexical feature of the "scheme-specific
part" of the endpoint ID, in a manner that is defined by the
scheme.
Registration - A registration is the state machine characterizing a
given node's membership in a given endpoint. Any number of
registrations may be concurrently associated with a given
endpoint, and any number of registrations may be concurrently
associated with a given node. Any single registration must at any
time be in one of two states: Active or Passive. A registration
always has an associated "delivery failure action", the action
that is to be taken when a bundle that is "deliverable" (see
below) subject to that registration is received at a time when the
registration is in the Passive state. Delivery failure action
must be one of the following:
* defer "delivery" (see below) of the bundle subject to this
registration until (a) this bundle is the least recently
<span class="grey">Scott & Burleigh Experimental [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
received of all bundles currently deliverable subject to this
registration and (b) either the registration is polled or else
the registration is in the Active state; or
* "abandon" (see below) delivery of the bundle subject to this
registration.
An additional implementation-specific delivery deferral procedure
may optionally be associated with the registration. While the
state of a registration is Active, reception of a bundle that is
deliverable subject to this registration must cause the bundle to
be delivered automatically as soon as it is the least recently
received bundle that is currently deliverable subject to the
registration. While the state of a registration is Passive,
reception of a bundle that is deliverable subject to this
registration must cause delivery of the bundle to be abandoned or
deferred as mandated by the registration's current delivery
failure action; in the latter case, any additional delivery
deferral procedure associated with the registration must also be
performed.
Delivery - Upon reception, the processing of a bundle that has been
sent to a given node depends on whether or not the receiving node
is registered in the bundle's destination endpoint. If it is, and
if the payload of the bundle is non-fragmentary (possibly as a
result of successful payload reassembly from fragmentary payloads,
including the original payload of the received bundle), then the
bundle is normally "delivered" to the node's application agent
subject to the registration characterizing the node's membership
in the destination endpoint. A bundle is considered to have been
delivered at a node subject to a registration as soon as the
application data unit that is the payload of the bundle, together
with the value of the bundle's "Acknowledgement by application is
requested" flag and any other relevant metadata (an implementation
matter), has been presented to the node's application agent in a
manner consistent with the state of that registration and, as
applicable, the registration's delivery failure action.
Deliverability, Abandonment - A bundle is considered "deliverable"
subject to a registration if and only if (a) the bundle's
destination endpoint is the endpoint with which the registration
is associated, (b) the bundle has not yet been delivered subject
to this registration, and (c) delivery of the bundle subject to
this registration has not been abandoned. To "abandon" delivery
of a bundle subject to a registration is simply to declare it no
longer deliverable subject to that registration; normally only
registrations' registered delivery failure actions cause
deliveries to be abandoned.
<span class="grey">Scott & Burleigh Experimental [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
Deletion, Discarding - A bundle protocol agent "discards" a bundle
by simply ceasing all operations on the bundle and functionally
erasing all references to it; the specific procedures by which
this is accomplished are an implementation matter. Bundles are
discarded silently; i.e., the discarding of a bundle does not
result in generation of an administrative record. "Retention
constraints" are elements of the bundle state that prevent a
bundle from being discarded; a bundle cannot be discarded while it
has any retention constraints. A bundle protocol agent "deletes"
a bundle in response to some anomalous condition by notifying the
bundle's report-to endpoint of the deletion (provided such
notification is warranted; see <a href="#section-5.13">Section 5.13</a> for details) and then
arbitrarily removing all of the bundle's retention constraints,
enabling the bundle to be discarded.
Transmission - A transmission is a sustained effort by a node's
bundle protocol agent to cause a bundle to be sent to all nodes in
the minimum reception group of some endpoint (which may be the
bundle's destination or may be some intermediate forwarding
endpoint) in response to a transmission request issued by the
node's application agent. Any number of transmissions may be
concurrently undertaken by the bundle protocol agent of a given
node.
Custody - To "accept custody" upon forwarding a bundle is to commit
to retaining a copy of the bundle -- possibly re-forwarding the
bundle when necessary -- until custody of that bundle is
"released". Custody of a bundle whose destination is a singleton
endpoint is released when either (a) notification is received that
some other node has accepted custody of the same bundle; (b)
notification is received that the bundle has been delivered at the
(sole) node registered in the bundle's destination endpoint; or
(c) the bundle is explicitly deleted for some reason, such as
lifetime expiration. The condition(s) under which custody of a
bundle whose destination is not a singleton endpoint may be
released are not defined in this specification. To "refuse
custody" of a bundle is to decide not to accept custody of the
bundle. A "custodial node" of a bundle is a node that has
accepted custody of the bundle and has not yet released that
custody. A "custodian" of a bundle is a singleton endpoint whose
sole member is one of the bundle's custodial nodes.
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. Implementation Architectures</span>
The above definitions are intended to enable the bundle protocol's
operations to be specified in a manner that minimizes bias toward any
particular implementation architecture. To illustrate the range of
interoperable implementation models that might conform to this
<span class="grey">Scott & Burleigh Experimental [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
specification, four example architectures are briefly described
below.
1. Bundle protocol application server
A single bundle protocol application server, constituting a
single bundle node, runs as a daemon process on each computer.
The daemon's functionality includes all functions of the bundle
protocol agent, all convergence layer adapters, and both the
administrative and application-specific elements of the
application agent. The application-specific element of the
application agent functions as a server, offering bundle protocol
service over a local area network: it responds to remote
procedure calls from application processes (on the same computer
and/or remote computers) that need to communicate via the bundle
protocol. The server supports its clients by creating a new
(conceptual) node for each one and registering each such node in
a client-specified endpoint. The conceptual nodes managed by the
server function as clients' bundle protocol service access
points.
2. Peer application nodes
Any number of bundle protocol application processes, each one
constituting a single bundle node, run in ad-hoc fashion on each
computer. The functionality of the bundle protocol agent, all
convergence layer adapters, and the administrative element of the
application agent is provided by a library to which each node
process is dynamically linked at run time. The application-
specific element of each node's application agent is node-
specific application code.
3. Sensor network nodes
Each node of the sensor network is the self-contained
implementation of a single bundle node. All functions of the
bundle protocol agent, all convergence layer adapters, and the
administrative element of the application agent are implemented
in simplified form in Application-Specific Integrated Circuits
(ASICs), while the application-specific element of each node's
application agent is implemented in a programmable
microcontroller. Forwarding is rudimentary: all bundles are
forwarded on a hard-coded default route.
<span class="grey">Scott & Burleigh Experimental [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
4. Dedicated bundle router
Each computer constitutes a single bundle node that functions
solely as a high-performance bundle forwarder. Many standard
functions of the bundle protocol agent, the convergence layer
adapters, and the administrative element of the application agent
are implemented in ASICs, but some functions are implemented in a
high-speed processor to enable reprogramming as necessary. The
node's application agent has no application-specific element.
Substantial non-volatile storage resources are provided, and
arbitrarily complex forwarding algorithms are supported.
<span class="h3"><a class="selflink" id="section-3.3" href="#section-3.3">3.3</a>. Services Offered by Bundle Protocol Agents</span>
The bundle protocol agent of each node is expected to provide the
following services to the node's application agent:
o commencing a registration (registering a node in an endpoint);
o terminating a registration;
o switching a registration between Active and Passive states;
o transmitting a bundle to an identified bundle endpoint;
o canceling a transmission;
o polling a registration that is in the passive state;
o delivering a received bundle.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Bundle Format</span>
Each bundle shall be a concatenated sequence of at least two block
structures. The first block in the sequence must be a primary bundle
block, and no bundle may have more than one primary bundle block.
Additional bundle protocol blocks of other types may follow the
primary block to support extensions to the bundle protocol, such as
the Bundle Security Protocol [<a href="#ref-BSP" title=""Bundle Security Protocol Specification"">BSP</a>]. At most one of the blocks in the
sequence may be a payload block. The last block in the sequence must
have the "last block" flag (in its block processing control flags)
set to 1; for every other block in the bundle after the primary
block, this flag must be set to zero.
<span class="grey">Scott & Burleigh Experimental [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. Self-Delimiting Numeric Values (SDNVs)</span>
The design of the bundle protocol attempts to reconcile minimal
consumption of transmission bandwidth with:
o extensibility to address requirements not yet identified, and
o scalability across a wide range of network scales and payload
sizes.
A key strategic element in the design is the use of self-delimiting
numeric values (SDNVs). The SDNV encoding scheme is closely adapted
from the Abstract Syntax Notation One Basic Encoding Rules for
subidentifiers within an object identifier value [<a href="#ref-ASN1" title=""Abstract Syntax Notation One (ASN.1), "">ASN1</a>]. An SDNV is
a numeric value encoded in N octets, the last of which has its most
significant bit (MSB) set to zero; the MSB of every other octet in
the SDNV must be set to 1. The value encoded in an SDNV is the
unsigned binary number obtained by concatenating into a single bit
string the 7 least significant bits of each octet of the SDNV.
The following examples illustrate the encoding scheme for various
hexadecimal values.
0xABC : 1010 1011 1100
is encoded as
{1 00 10101} {0 0111100}
= 10010101 00111100
0x1234 : 0001 0010 0011 0100
= 1 0010 0011 0100
is encoded as
{1 0 100100} {0 0110100}
= 10100100 00110100
0x4234 : 0100 0010 0011 0100
= 100 0010 0011 0100
is encoded as
{1 000000 1} {1 0000100} {0 0110100}
= 10000001 10000100 00110100
0x7F : 0111 1111
= 111 1111
is encoded as
{0 1111111}
= 01111111
Figure 2: SDNV Example
<span class="grey">Scott & Burleigh Experimental [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
Note: Care must be taken to make sure that the value to be encoded is
(in concept) padded with high-order zero bits to make its bitwise
length a multiple of 7 before encoding. Also note that, while there
is no theoretical limit on the size of an SDNV field, the overhead of
the SDNV scheme is 1:7, i.e., one bit of overhead for every 7 bits of
actual data to be encoded. Thus, a 7-octet value (a 56-bit quantity
with no leading zeroes) would be encoded in an 8-octet SDNV; an
8-octet value (a 64-bit quantity with no leading zeroes) would be
encoded in a 10-octet SDNV (one octet containing the high-order bit
of the value padded with six leading zero bits, followed by nine
octets containing the remaining 63 bits of the value). 148 bits of
overhead would be consumed in encoding a 1024-bit RSA encryption key
directly in an SDNV. In general, an N-bit quantity with no leading
zeroes is encoded in an SDNV occupying ceil(N/7) octets, where ceil
is the integer ceiling function.
Implementations of the bundle protocol may handle as an invalid
numeric value any SDNV that encodes an integer that is larger than
(2^64 - 1).
An SDNV can be used to represent both very large and very small
integer values. However, SDNV is clearly not the best way to
represent every numeric value. For example, an SDNV is a poor way to
represent an integer whose value typically falls in the range 128 to
255. In general, though, we believe that SDNV representation of
numeric values in bundle blocks yields the smallest block sizes
without sacrificing scalability.
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. Bundle Processing Control Flags</span>
The bundle processing control flags field in the primary bundle block
of each bundle is an SDNV; the value encoded in this SDNV is a string
of bits used to invoke selected bundle processing control features.
The significance of the value in each currently defined position of
this bit string is described here. Note that in the figure and
descriptions, the bit label numbers denote position (from least
significant ('0') to most significant) within the decoded bit string,
and not within the representation of the bits on the wire. This is
why the descriptions in this section and the next do not follow
standard RFC conventions with bit 0 on the left; if fields are added
in the future, the SDNV will grow to the left, and using this
representation allows the references here to remain valid.
<span class="grey">Scott & Burleigh Experimental [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
2 1 0
0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Status Report|Class of Svc.| General |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 3: Bundle Processing Control Flags Bit Layout
The bits in positions 0 through 6 are flags that characterize the
bundle as follows:
0 -- Bundle is a fragment.
1 -- Application data unit is an administrative record.
2 -- Bundle must not be fragmented.
3 -- Custody transfer is requested.
4 -- Destination endpoint is a singleton.
5 -- Acknowledgement by application is requested.
6 -- Reserved for future use.
The bits in positions 7 through 13 are used to indicate the bundle's
class of service. The bits in positions 8 and 7 constitute a two-bit
priority field indicating the bundle's priority, with higher values
being of higher priority: 00 = bulk, 01 = normal, 10 = expedited, 11
is reserved for future use. Within this field, bit 8 is the most
significant bit. The bits in positions 9 through 13 are reserved for
future use.
The bits in positions 14 through 20 are status report request flags.
These flags are used to request status reports as follows:
14 -- Request reporting of bundle reception.
15 -- Request reporting of custody acceptance.
16 -- Request reporting of bundle forwarding.
17 -- Request reporting of bundle delivery.
18 -- Request reporting of bundle deletion.
19 -- Reserved for future use.
<span class="grey">Scott & Burleigh Experimental [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
20 -- Reserved for future use.
If the bundle processing control flags indicate that the bundle's
application data unit is an administrative record, then the custody
transfer requested flag must be zero and all status report request
flags must be zero. If the custody transfer requested flag is 1,
then the sending node requests that the receiving node accept custody
of the bundle. If the bundle's source endpoint ID is "dtn:none" (see
below), then the bundle is not uniquely identifiable and all bundle
protocol features that rely on bundle identity must therefore be
disabled: the bundle's custody transfer requested flag must be zero,
the "Bundle must not be fragmented" flag must be 1, and all status
report request flags must be zero.
<span class="h3"><a class="selflink" id="section-4.3" href="#section-4.3">4.3</a>. Block Processing Control Flags</span>
The block processing control flags field in every block other than
the primary bundle block is an SDNV; the value encoded in this SDNV
is a string of bits used to invoke selected block processing control
features. The significance of the values in all currently defined
positions of this bit string, in order from least significant
position in the decoded bit string (labeled '0') to most significant
(labeled '6'), is described here.
0
6 5 4 3 2 1 0
+-+-+-+-+-+-+-+
| Flags |
+-+-+-+-+-+-+-+
Figure 4: Block Processing Control Flags Bit Layout
0 - Block must be replicated in every fragment.
1 - Transmit status report if block can't be processed.
2 - Delete bundle if block can't be processed.
3 - Last block.
4 - Discard block if it can't be processed.
5 - Block was forwarded without being processed.
6 - Block contains an EID-reference field.
<span class="grey">Scott & Burleigh Experimental [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
For each bundle whose primary block's bundle processing control flags
(see above) indicate that the bundle's application data unit is an
administrative record, the "Transmit status report if block can't be
processed" flag in the block processing flags field of every other
block in the bundle must be zero.
The 'Block must be replicated in every fragment' bit in the block
processing flags must be set to zero on all blocks that follow the
payload block.
<span class="h3"><a class="selflink" id="section-4.4" href="#section-4.4">4.4</a>. Endpoint IDs</span>
The destinations of bundles are bundle endpoints, identified by text
strings termed "endpoint IDs" (see <a href="#section-3.1">Section 3.1</a>). Each endpoint ID
conveyed in any bundle block takes the form of a Uniform Resource
Identifier (URI; [<a href="#ref-URI" title=""Uniform Resource Identifier (URI): Generic Syntax"">URI</a>]). As such, each endpoint ID can be
characterized as having this general structure:
< scheme name > : < scheme-specific part, or "SSP" >
As used for the purposes of the bundle protocol, neither the length
of a scheme name nor the length of an SSP may exceed 1023 bytes.
Bundle blocks cite a number of endpoint IDs for various purposes of
the bundle protocol. Many, though not necessarily all, of the
endpoint IDs referred to in the blocks of a given bundle are conveyed
in the "dictionary" byte array in the bundle's primary block. This
array is simply the concatenation of any number of null-terminated
scheme names and SSPs.
"Endpoint ID references" are used to cite endpoint IDs that are
contained in the dictionary; all endpoint ID citations in the primary
bundle block are endpoint ID references, and other bundle blocks may
contain endpoint ID references as well. Each endpoint ID reference
is an ordered pair of SDNVs:
o The first SDNV contains the offset within the dictionary of the
first character of the referenced endpoint ID's scheme name.
o The second SDNV contains the offset within the dictionary of the
first character of the referenced endpoint ID's SSP.
This encoding enables a degree of block compression: when the source
and report-to of a bundle are the same endpoint, for example, the
text of that endpoint's ID may be cited twice yet appear only once in
the dictionary.
<span class="grey">Scott & Burleigh Experimental [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
The scheme identified by the < scheme name > in an endpoint ID is a
set of syntactic and semantic rules that fully explain how to parse
and interpret the SSP. The set of allowable schemes is effectively
unlimited. Any scheme conforming to [<a href="#ref-URIREG" title=""Guidelines and Registration Procedures for New URI Schemes"">URIREG</a>] may be used in a bundle
protocol endpoint ID. In addition, a single additional scheme is
defined by the present document:
o The "dtn" scheme, which is used at minimum in the representation
of the null endpoint ID "dtn:none". The forwarding of a bundle to
the null endpoint is never contraindicated, and the minimum
reception group for the null endpoint is the empty set.
Note that, although the endpoint IDs conveyed in bundle blocks are
expressed as URIs, implementations of the BP service interface may
support expression of endpoint IDs in some internationalized manner
(e.g., Internationalized Resource Identifiers (IRIs); see [<a href="./rfc3987" title=""Internationalized Resource Identifiers (IRIs)"">RFC3987</a>]).
<span class="h3"><a class="selflink" id="section-4.5" href="#section-4.5">4.5</a>. Formats of Bundle Blocks</span>
This section describes the formats of the primary block and payload
block. Rules for processing these blocks appear in <a href="#section-5">Section 5</a> of this
document.
Note that supplementary DTN protocol specifications (including, but
not restricted to, the Bundle Security Protocol [<a href="#ref-BSP" title=""Bundle Security Protocol Specification"">BSP</a>]) may require
that BP implementations conforming to those protocols construct and
process additional blocks.
The format of the two basic BP blocks is shown in Figure 5 below.
<span class="grey">Scott & Burleigh Experimental [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
Primary Bundle Block
+----------------+----------------+----------------+----------------+
| Version | Proc. Flags (*) |
+----------------+----------------+----------------+----------------+
| Block length (*) |
+----------------+----------------+---------------------------------+
| Destination scheme offset (*) | Destination SSP offset (*) |
+----------------+----------------+----------------+----------------+
| Source scheme offset (*) | Source SSP offset (*) |
+----------------+----------------+----------------+----------------+
| Report-to scheme offset (*) | Report-to SSP offset (*) |
+----------------+----------------+----------------+----------------+
| Custodian scheme offset (*) | Custodian SSP offset (*) |
+----------------+----------------+----------------+----------------+
| Creation Timestamp time (*) |
+---------------------------------+---------------------------------+
| Creation Timestamp sequence number (*) |
+---------------------------------+---------------------------------+
| Lifetime (*) |
+----------------+----------------+----------------+----------------+
| Dictionary length (*) |
+----------------+----------------+----------------+----------------+
| Dictionary byte array (variable) |
+----------------+----------------+---------------------------------+
| [Fragment offset (*)] |
+----------------+----------------+---------------------------------+
| [Total application data unit length (*)] |
+----------------+----------------+---------------------------------+
Bundle Payload Block
+----------------+----------------+----------------+----------------+
| Block type | Proc. Flags (*)| Block length(*) |
+----------------+----------------+----------------+----------------+
/ Bundle Payload (variable) /
+-------------------------------------------------------------------+
Figure 5: Bundle Block Formats
(*) Notes:
The bundle processing control ("Proc.") flags field in the Primary
Bundle Block is an SDNV and is therefore variable length. A three-
octet SDNV is shown here for convenience in representation.
The block length field of the Primary Bundle Block is an SDNV and is
therefore variable length. A four-octet SDNV is shown here for
convenience in representation.
<span class="grey">Scott & Burleigh Experimental [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
Each of the eight offset fields in the Primary Bundle Block is an
SDNV and is therefore variable length. Two-octet SDNVs are shown
here for convenience in representation.
The Creation Timestamp time field in the Primary Bundle Block is an
SDNV and is therefore variable length. A four-octet SDNV is shown
here for convenience in representation.
The Creation Timestamp sequence number field in the Primary Bundle
Block is an SDNV and is therefore variable length. A four-octet SDNV
is shown here for convenience in representation.
The Lifetime field in the Primary Bundle Block is an SDNV and is
therefore variable length. A four-octet SDNV is shown here for
convenience in representation.
The dictionary length field of the Primary Bundle Block is an SDNV
and is therefore variable length. A four-octet SDNV is shown here
for convenience in representation.
The fragment offset field of the Primary Bundle Block is present only
if the Fragment flag in the block's processing flags byte is set to
1. It is an SDNV and is therefore variable length; a four-octet SDNV
is shown here for convenience in representation.
The total application data unit length field of the Primary Bundle
Block is present only if the Fragment flag in the block's processing
flags byte is set to 1. It is an SDNV and is therefore variable
length; a four-octet SDNV is shown here for convenience in
representation.
The block processing control ("Proc.") flags field of the Payload
Block is an SDNV and is therefore variable length. A one-octet SDNV
is shown here for convenience in representation.
The block length field of the Payload Block is an SDNV and is
therefore variable length. A two-octet SDNV is shown here for
convenience in representation.
<span class="h4"><a class="selflink" id="section-4.5.1" href="#section-4.5.1">4.5.1</a>. Primary Bundle Block</span>
The primary bundle block contains the basic information needed to
route bundles to their destinations. The fields of the primary
bundle block are:
<span class="grey">Scott & Burleigh Experimental [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
Version: A 1-byte field indicating the version of the bundle
protocol that constructed this block. The present document
describes version 0x06 of the bundle protocol.
Bundle Processing Control Flags: The Bundle Processing Control
Flags field is an SDNV that contains the bundle processing control
flags discussed in <a href="#section-4.2">Section 4.2</a> above.
Block Length: The Block Length field is an SDNV that contains the
aggregate length of all remaining fields of the block.
Destination Scheme Offset: The Destination Scheme Offset field
contains the offset within the dictionary byte array of the scheme
name of the endpoint ID of the bundle's destination, i.e., the
endpoint containing the node(s) at which the bundle is to be
delivered.
Destination SSP Offset: The Destination SSP Offset field contains
the offset within the dictionary byte array of the scheme-specific
part of the endpoint ID of the bundle's destination.
Source Scheme Offset: The Source Scheme Offset field contains the
offset within the dictionary byte array of the scheme name of the
endpoint ID of the bundle's nominal source, i.e., the endpoint
nominally containing the node from which the bundle was initially
transmitted.
Source SSP Offset: The Source SSP Offset field contains the offset
within the dictionary byte array of the scheme-specific part of
the endpoint ID of the bundle's nominal source.
Report-to Scheme Offset: The Report-to Scheme Offset field contains
the offset within the dictionary byte array of the scheme name of
the ID of the endpoint to which status reports pertaining to the
forwarding and delivery of this bundle are to be transmitted.
Report-to SSP Offset: The Report-to SSP Offset field contains the
offset within the dictionary byte array of the scheme-specific
part of the ID of the endpoint to which status reports pertaining
to the forwarding and delivery of this bundle are to be
transmitted.
Custodian Scheme Offset: The "current custodian endpoint ID" of a
primary bundle block identifies an endpoint whose membership
includes the node that most recently accepted custody of the
bundle upon forwarding this bundle. The Custodian Scheme Offset
field contains the offset within the dictionary byte array of the
scheme name of the current custodian endpoint ID.
<span class="grey">Scott & Burleigh Experimental [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
Custodian SSP Offset: The Custodian SSP Offset field contains the
offset within the dictionary byte array of the scheme-specific
part of the current custodian endpoint ID.
Creation Timestamp: The creation timestamp is a pair of SDNVs that,
together with the source endpoint ID and (if the bundle is a
fragment) the fragment offset and payload length, serve to
identify the bundle. The first SDNV of the timestamp is the
bundle's creation time, while the second is the bundle's creation
timestamp sequence number. Bundle creation time is the time --
expressed in seconds since the start of the year 2000, on the
Coordinated Universal Time (UTC) scale [<a href="#ref-UTC" title=""Coordinated universal time UTC: historical background and perspectives"">UTC</a>] -- at which the
transmission request was received that resulted in the creation of
the bundle. Sequence count is the latest value (as of the time at
which that transmission request was received) of a monotonically
increasing positive integer counter managed by the source node's
bundle protocol agent that may be reset to zero whenever the
current time advances by one second. A source Bundle Protocol
Agent must never create two distinct bundles with the same source
endpoint ID and bundle creation timestamp. The combination of
source endpoint ID and bundle creation timestamp therefore serves
to identify a single transmission request, enabling it to be
acknowledged by the receiving application (provided the source
endpoint ID is not "dtn:none").
Lifetime: The lifetime field is an SDNV that indicates the time at
which the bundle's payload will no longer be useful, encoded as a
number of seconds past the creation time. When the current time
is greater than the creation time plus the lifetime, bundle nodes
need no longer retain or forward the bundle; the bundle may be
deleted from the network.
Dictionary Length: The Dictionary Length field is an SDNV that
contains the length of the dictionary byte array.
Dictionary: The Dictionary field is an array of bytes formed by
concatenating the null-terminated scheme names and SSPs of all
endpoint IDs referenced by any fields in this Primary Block
together with, potentially, other endpoint IDs referenced by
fields in other TBD DTN protocol blocks. Its length is given by
the value of the Dictionary Length field.
Fragment Offset: If the Bundle Processing Control Flags of this
Primary block indicate that the bundle is a fragment, then the
Fragment Offset field is an SDNV indicating the offset from the
start of the original application data unit at which the bytes
comprising the payload of this bundle were located. If not, then
the Fragment Offset field is omitted from the block.
<span class="grey">Scott & Burleigh Experimental [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
Total Application Data Unit Length: If the Bundle Processing
Control Flags of this Primary block indicate that the bundle is a
fragment, then the Total Application Data Unit Length field is an
SDNV indicating the total length of the original application data
unit of which this bundle's payload is a part. If not, then the
Total Application Data Unit Length field is omitted from the
block.
<span class="h4"><a class="selflink" id="section-4.5.2" href="#section-4.5.2">4.5.2</a>. Canonical Bundle Block Format</span>
Every bundle block of every type other than the primary bundle block
comprises the following fields, in this order:
o Block type code, expressed as an 8-bit unsigned binary integer.
Bundle block type code 1 indicates that the block is a bundle
payload block. Block type codes 192 through 255 are not defined
in this specification and are available for private and/or
experimental use. All other values of the block type code are
reserved for future use.
o Block processing control flags, an unsigned integer expressed as
an SDNV. The individual bits of this integer are used to invoke
selected block processing control features.
o Block EID reference count and EID references (optional). If and
only if the block references EID elements in the primary block's
dictionary, the 'block contains an EID-reference field' flag in
the block processing control flags is set to 1 and the block
includes an EID reference field consisting of a count of EID
references expressed as an SDNV followed by the EID references
themselves. Each EID reference is a pair of SDNVs. The first
SDNV of each EID reference contains the offset of a scheme name in
the primary block's dictionary, and the second SDNV of each
reference contains the offset of a scheme-specific part in the
dictionary.
o Block data length, an unsigned integer expressed as an SDNV. The
Block data length field contains the aggregate length of all
remaining fields of the block, i.e., the block-type-specific data
fields.
o Block-type-specific data fields, whose format and order are type-
specific and whose aggregate length in octets is the value of the
block data length field. All multi-byte block-type-specific data
fields are represented in network byte order.
<span class="grey">Scott & Burleigh Experimental [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
+-----------+-----------+-----------+-----------+
|Block type | Block processing ctrl flags (SDNV)|
+-----------+-----------+-----------+-----------+
| Block length (SDNV) |
+-----------+-----------+-----------+-----------+
/ Block body data (variable) /
+-----------+-----------+-----------+-----------+
Figure 6: Block Layout without EID Reference List
+-----------+-----------+-----------+-----------+
|Block Type | Block processing ctrl flags (SDNV)|
+-----------+-----------+-----------+-----------+
| EID Reference Count (SDNV) |
+-----------+-----------+-----------+-----------+
| Ref_scheme_1 (SDNV) | Ref_ssp_1 (SDNV) |
+-----------+-----------+-----------+-----------+
| Ref_scheme_2 (SDNV) | Ref_ssp_2 (SDNV) |
+-----------+-----------+-----------+-----------+
| Block length (SDNV) |
+-----------+-----------+-----------+-----------+
/ Block body data (variable) /
+-----------+-----------+-----------+-----------+
Figure 7: Block Layout Showing Two EID References
<span class="h4"><a class="selflink" id="section-4.5.3" href="#section-4.5.3">4.5.3</a>. Bundle Payload Block</span>
The fields of the bundle payload block are:
Block Type: The Block Type field is a 1-byte field that indicates
the type of the block. For the bundle payload block, this field
contains the value 1.
Block Processing Control Flags: The Block Processing Control Flags
field is an SDNV that contains the block processing control flags
discussed in <a href="#section-4.3">Section 4.3</a> above.
Block Length: The Block Length field is an SDNV that contains the
aggregate length of all remaining fields of the block - which is
to say, the length of the bundle's payload.
Payload: The Payload field contains the application data carried by
this bundle.
That is, bundle payload blocks follow the canonical format of the
previous section with the restriction that the 'block contains an
<span class="grey">Scott & Burleigh Experimental [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
EID-reference field' bit of the block processing control flags is
never set. The block body data for payload blocks is the application
data carried by the bundle.
<span class="h3"><a class="selflink" id="section-4.6" href="#section-4.6">4.6</a>. Extension Blocks</span>
"Extension blocks" are all blocks other than the primary and payload
blocks. Because extension blocks are not defined in the Bundle
Protocol specification (the present document), not all nodes
conforming to this specification will necessarily instantiate Bundle
Protocol implementations that include procedures for processing (that
is, recognizing, parsing, acting on, and/or producing) all extension
blocks. It is therefore possible for a node to receive a bundle that
includes extension blocks that the node cannot process.
Whenever a bundle is forwarded that contains one or more extension
blocks that could not be processed, the "Block was forwarded without
being processed" flag must be set to 1 within the block processing
flags of each such block. For each block flagged in this way, the
flag may optionally be cleared (i.e., set to zero) by another node
that subsequently receives the bundle and is able to process that
block; the specifications defining the various extension blocks are
expected to define the circumstances under which this flag may be
cleared, if any.
<span class="h3"><a class="selflink" id="section-4.7" href="#section-4.7">4.7</a>. Dictionary Revision</span>
Any strings (scheme names and SSPs) in a bundle's dictionary that are
referenced neither from the bundle's primary block nor from the block
EID reference field of any extension block may be removed from the
dictionary at the time the bundle is forwarded.
Whenever removal of a string from the dictionary causes the offsets
(within the dictionary byte array) of any other strings to change,
all endpoint ID references that refer to those strings must be
adjusted at the same time. Note that these references may be in the
primary block and/or in the block EID reference fields of extension
blocks.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Bundle Processing</span>
The bundle processing procedures mandated in this section and in
<a href="#section-6">Section 6</a> govern the operation of the Bundle Protocol Agent and the
Application Agent administrative element of each bundle node. They
are neither exhaustive nor exclusive. That is, supplementary DTN
protocol specifications (including, but not restricted to, the Bundle
Security Protocol [<a href="#ref-BSP" title=""Bundle Security Protocol Specification"">BSP</a>]) may require that additional measures be
taken at specified junctures in these procedures. Such additional
<span class="grey">Scott & Burleigh Experimental [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
measures shall not override or supersede the mandated bundle protocol
procedures, except that they may in some cases make these procedures
moot by requiring, for example, that implementations conforming to
the supplementary protocol terminate the processing of a given
incoming or outgoing bundle due to a fault condition recognized by
that protocol.
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. Generation of Administrative Records</span>
All initial transmission of bundles is in response to bundle
transmission requests presented by nodes' application agents. When
required to "generate" an administrative record (a bundle status
report or a custody signal), the bundle protocol agent itself is
responsible for causing a new bundle to be transmitted, conveying
that record. In concept, the bundle protocol agent discharges this
responsibility by directing the administrative element of the node's
application agent to construct the record and request its
transmission as detailed in <a href="#section-6">Section 6</a> below. In practice, the manner
in which administrative record generation is accomplished is an
implementation matter, provided the constraints noted in <a href="#section-6">Section 6</a>
are observed.
Under some circumstances, the requesting of status reports could
result in an unacceptable increase in the bundle traffic in the
network. For this reason, the generation of status reports is
mandatory only in one case, the deletion of a bundle for which
custody transfer is requested. In all other cases, the decision on
whether or not to generate a requested status report is left to the
discretion of the bundle protocol agent. Mechanisms that could
assist in making such decisions, such as pre-placed agreements
authorizing the generation of status reports under specified
circumstances, are beyond the scope of this specification.
Notes on administrative record terminology:
o A "bundle reception status report" is a bundle status report with
the "reporting node received bundle" flag set to 1.
o A "custody acceptance status report" is a bundle status report
with the "reporting node accepted custody of bundle" flag set to
1.
o A "bundle forwarding status report" is a bundle status report with
the "reporting node forwarded the bundle" flag set to 1.
o A "bundle delivery status report" is a bundle status report with
the "reporting node delivered the bundle" flag set to 1.
<span class="grey">Scott & Burleigh Experimental [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
o A "bundle deletion status report" is a bundle status report with
the "reporting node deleted the bundle" flag set to 1.
o A "Succeeded" custody signal is a custody signal with the "custody
transfer succeeded" flag set to 1.
o A "Failed" custody signal is a custody signal with the "custody
transfer succeeded" flag set to zero.
o The "current custodian" of a bundle is the endpoint identified by
the current custodian endpoint ID in the bundle's primary block.
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. Bundle Transmission</span>
The steps in processing a bundle transmission request are:
Step 1: If custody transfer is requested for this bundle
transmission and, moreover, custody acceptance by the source node
is required, then either the bundle protocol agent must commit to
accepting custody of the bundle -- in which case processing
proceeds from Step 2 -- or the request cannot be honored and all
remaining steps of this procedure must be skipped. The bundle
protocol agent must not commit to accepting custody of a bundle if
the conditions under which custody of the bundle may be accepted
are not satisfied. The conditions under which a node may accept
custody of a bundle whose destination is not a singleton endpoint
are not defined in this specification.
Step 2: Transmission of the bundle is initiated. An outbound
bundle must be created per the parameters of the bundle
transmission request, with current custodian endpoint ID set to
the null endpoint ID "dtn:none" and with the retention constraint
"Dispatch pending". The source endpoint ID of the bundle must be
either the ID of an endpoint of which the node is a member or the
null endpoint ID "dtn:none".
Step 3: Processing proceeds from Step 1 of <a href="#section-5.4">Section 5.4</a>.
<span class="h3"><a class="selflink" id="section-5.3" href="#section-5.3">5.3</a>. Bundle Dispatching</span>
The steps in dispatching a bundle are:
Step 1: If the bundle's destination endpoint is an endpoint of
which the node is a member, the bundle delivery procedure defined
in <a href="#section-5.7">Section 5.7</a> must be followed.
Step 2: Processing proceeds from Step 1 of <a href="#section-5.4">Section 5.4</a>.
<span class="grey">Scott & Burleigh Experimental [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
<span class="h3"><a class="selflink" id="section-5.4" href="#section-5.4">5.4</a>. Bundle Forwarding</span>
The steps in forwarding a bundle are:
Step 1: The retention constraint "Forward pending" must be added to
the bundle, and the bundle's "Dispatch pending" retention
constraint must be removed.
Step 2: The bundle protocol agent must determine whether or not
forwarding is contraindicated for any of the reasons listed in
Figure 12. In particular:
* The bundle protocol agent must determine which endpoint(s) to
forward the bundle to. The bundle protocol agent may choose
either to forward the bundle directly to its destination
endpoint (if possible) or to forward the bundle to some other
endpoint(s) for further forwarding. The manner in which this
decision is made may depend on the scheme name in the
destination endpoint ID but in any case is beyond the scope of
this document. If the agent finds it impossible to select any
endpoint(s) to forward the bundle to, then forwarding is
contraindicated.
* Provided the bundle protocol agent succeeded in selecting the
endpoint(s) to forward the bundle to, the bundle protocol agent
must select the convergence layer adapter(s) whose services
will enable the node to send the bundle to the nodes of the
minimum reception group of each selected endpoint. The manner
in which the appropriate convergence layer adapters are
selected may depend on the scheme name in the destination
endpoint ID but in any case is beyond the scope of this
document. If the agent finds it impossible to select
convergence layer adapters to use in forwarding this bundle,
then forwarding is contraindicated.
Step 3: If forwarding of the bundle is determined to be
contraindicated for any of the reasons listed in Figure 12, then
the Forwarding Contraindicated procedure defined in <a href="#section-5.4.1">Section 5.4.1</a>
must be followed; the remaining steps of <a href="#section-5">Section 5</a> are skipped at
this time.
Step 4: If the bundle's custody transfer requested flag (in the
bundle processing flags field) is set to 1, then the custody
transfer procedure defined in <a href="#section-5.10.2">Section 5.10.2</a> must be followed.
<span class="grey">Scott & Burleigh Experimental [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
Step 5: For each endpoint selected for forwarding, the bundle
protocol agent must invoke the services of the selected
convergence layer adapter(s) in order to effect the sending of the
bundle to the nodes constituting the minimum reception group of
that endpoint. Determining the time at which the bundle is to be
sent by each convergence layer adapter is an implementation
matter.
To keep from possibly invalidating bundle security, the sequencing
of the blocks in a forwarded bundle must not be changed as it
transits a node; received blocks must be transmitted in the same
relative order as that in which they were received. While blocks
may be added to bundles as they transit intermediate nodes,
removal of blocks that do not have their 'Discard block if it
can't be processed' flag in the block processing control flags set
to 1 may cause security to fail.
Step 6: When all selected convergence layer adapters have informed
the bundle protocol agent that they have concluded their data
sending procedures with regard to this bundle:
* If the "request reporting of bundle forwarding" flag in the
bundle's status report request field is set to 1, then a bundle
forwarding status report should be generated, destined for the
bundle's report-to endpoint ID. If the bundle has the
retention constraint "custody accepted" and all of the nodes in
the minimum reception group of the endpoint selected for
forwarding are known to be unable to send bundles back to this
node, then the reason code on this bundle forwarding status
report must be "forwarded over unidirectional link"; otherwise,
the reason code must be "no additional information".
* The bundle's "Forward pending" retention constraint must be
removed.
<span class="h4"><a class="selflink" id="section-5.4.1" href="#section-5.4.1">5.4.1</a>. Forwarding Contraindicated</span>
The steps in responding to contraindication of forwarding for some
reason are:
Step 1: The bundle protocol agent must determine whether or not to
declare failure in forwarding the bundle for this reason. Note:
this decision is likely to be influenced by the reason for which
forwarding is contraindicated.
<span class="grey">Scott & Burleigh Experimental [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
Step 2: If forwarding failure is declared, then the Forwarding
Failed procedure defined in <a href="#section-5.4.2">Section 5.4.2</a> must be followed.
Otherwise, (a) if the bundle's custody transfer requested flag (in
the bundle processing flags field) is set to 1, then the custody
transfer procedure defined in <a href="#section-5.10">Section 5.10</a> must be followed; (b)
when -- at some future time - the forwarding of this bundle ceases
to be contraindicated, processing proceeds from Step 5 of
<a href="#section-5.4">Section 5.4</a>.
<span class="h4"><a class="selflink" id="section-5.4.2" href="#section-5.4.2">5.4.2</a>. Forwarding Failed</span>
The steps in responding to a declaration of forwarding failure for
some reason are:
Step 1: If the bundle's custody transfer requested flag (in the
bundle processing flags field) is set to 1, custody transfer
failure must be handled. Procedures for handling failure of
custody transfer for a bundle whose destination is not a singleton
endpoint are not defined in this specification. For a bundle
whose destination is a singleton endpoint, the bundle protocol
agent must handle the custody transfer failure by generating a
"Failed" custody signal for the bundle, destined for the bundle's
current custodian; the custody signal must contain a reason code
corresponding to the reason for which forwarding was determined to
be contraindicated. (Note that discarding the bundle will not
delete it from the network, since the current custodian still has
a copy.)
Step 2: If the bundle's destination endpoint is an endpoint of
which the node is a member, then the bundle's "Forward pending"
retention constraint must be removed. Otherwise, the bundle must
be deleted: the bundle deletion procedure defined in <a href="#section-5.13">Section 5.13</a>
must be followed, citing the reason for which forwarding was
determined to be contraindicated.
<span class="h3"><a class="selflink" id="section-5.5" href="#section-5.5">5.5</a>. Bundle Expiration</span>
A bundle expires when the current time is greater than the bundle's
creation time plus its lifetime as specified in the primary bundle
block. Bundle expiration may occur at any point in the processing of
a bundle. When a bundle expires, the bundle protocol agent must
delete the bundle for the reason "lifetime expired": the bundle
deletion procedure defined in <a href="#section-5.13">Section 5.13</a> must be followed.
<span class="grey">Scott & Burleigh Experimental [Page 29]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-30" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
<span class="h3"><a class="selflink" id="section-5.6" href="#section-5.6">5.6</a>. Bundle Reception</span>
The steps in processing a bundle received from another node are:
Step 1: The retention constraint "Dispatch pending" must be added
to the bundle.
Step 2: If the "request reporting of bundle reception" flag in the
bundle's status report request field is set to 1, then a bundle
reception status report with reason code "No additional
information" should be generated, destined for the bundle's
report-to endpoint ID.
Step 3: For each block in the bundle that is an extension block
that the bundle protocol agent cannot process:
* If the block processing flags in that block indicate that a
status report is requested in this event, then a bundle
reception status report with reason code "Block unintelligible"
should be generated, destined for the bundle's report-to
endpoint ID.
* If the block processing flags in that block indicate that the
bundle must be deleted in this event, then the bundle protocol
agent must delete the bundle for the reason "Block
unintelligible"; the bundle deletion procedure defined in
<a href="#section-5.13">Section 5.13</a> must be followed and all remaining steps of the
bundle reception procedure must be skipped.
* If the block processing flags in that block do NOT indicate
that the bundle must be deleted in this event but do indicate
that the block must be discarded, then the bundle protocol
agent must remove this block from the bundle.
* If the block processing flags in that block indicate NEITHER
that the bundle must be deleted NOR that the block must be
discarded, then the bundle protocol agent must set to 1 the
"Block was forwarded without being processed" flag in the block
processing flags of the block.
Step 4: If the bundle's custody transfer requested flag (in the
bundle processing flags field) is set to 1 and the bundle has the
same source endpoint ID, creation timestamp, and (if the bundle is
a fragment) fragment offset and payload length as another bundle
that (a) has not been discarded and (b) currently has the
retention constraint "Custody accepted", custody transfer
redundancy must be handled. Otherwise, processing proceeds from
Step 5. Procedures for handling redundancy in custody transfer
<span class="grey">Scott & Burleigh Experimental [Page 30]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-31" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
for a bundle whose destination is not a singleton endpoint are not
defined in this specification. For a bundle whose destination is
a singleton endpoint, the bundle protocol agent must handle
custody transfer redundancy by generating a "Failed" custody
signal for this bundle with reason code "Redundant reception",
destined for this bundle's current custodian, and removing this
bundle's "Dispatch pending" retention constraint.
Step 5: Processing proceeds from Step 1 of <a href="#section-5.3">Section 5.3</a>.
<span class="h3"><a class="selflink" id="section-5.7" href="#section-5.7">5.7</a>. Local Bundle Delivery</span>
The steps in processing a bundle that is destined for an endpoint of
which this node is a member are:
Step 1: If the received bundle is a fragment, the application data
unit reassembly procedure described in <a href="#section-5.9">Section 5.9</a> must be
followed. If this procedure results in reassembly of the entire
original application data unit, processing of this bundle (whose
fragmentary payload has been replaced by the reassembled
application data unit) proceeds from Step 2; otherwise, the
retention constraint "Reassembly pending" must be added to the
bundle and all remaining steps of this procedure are skipped.
Step 2: Delivery depends on the state of the registration whose
endpoint ID matches that of the destination of the bundle:
* If the registration is in the Active state, then the bundle
must be delivered subject to this registration (see <a href="#section-3.1">Section 3.1</a>
above) as soon as all previously received bundles that are
deliverable subject to this registration have been delivered.
* If the registration is in the Passive state, then the
registration's delivery failure action must be taken (see
<a href="#section-3.1">Section 3.1</a> above).
Step 3: As soon as the bundle has been delivered:
* If the "request reporting of bundle delivery" flag in the
bundle's status report request field is set to 1, then a bundle
delivery status report should be generated, destined for the
bundle's report-to endpoint ID. Note that this status report
only states that the payload has been delivered to the
application agent, not that the application agent has processed
that payload.
<span class="grey">Scott & Burleigh Experimental [Page 31]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-32" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
* If the bundle's custody transfer requested flag (in the bundle
processing flags field) is set to 1, custodial delivery must be
reported. Procedures for reporting custodial delivery for a
bundle whose destination is not a singleton endpoint are not
defined in this specification. For a bundle whose destination
is a singleton endpoint, the bundle protocol agent must report
custodial delivery by generating a "Succeeded" custody signal
for the bundle, destined for the bundle's current custodian.
<span class="h3"><a class="selflink" id="section-5.8" href="#section-5.8">5.8</a>. Bundle Fragmentation</span>
It may at times be necessary for bundle protocol agents to reduce the
sizes of bundles in order to forward them. This might be the case,
for example, if the endpoint to which a bundle is to be forwarded is
accessible only via intermittent contacts and no upcoming contact is
long enough to enable the forwarding of the entire bundle.
The size of a bundle can be reduced by "fragmenting" the bundle. To
fragment a bundle whose payload is of size M is to replace it with
two "fragments" -- new bundles with the same source endpoint ID and
creation timestamp as the original bundle -- whose payloads are the
first N and the last (M - N) bytes of the original bundle's payload,
where 0 < N < M. Note that fragments may themselves be fragmented,
so fragmentation may in effect replace the original bundle with more
than two fragments. (However, there is only one 'level' of
fragmentation, as in IP fragmentation.)
Any bundle whose primary block's bundle processing flags do NOT
indicate that it must not be fragmented may be fragmented at any
time, for any purpose, at the discretion of the bundle protocol
agent.
Fragmentation shall be constrained as follows:
o The concatenation of the payloads of all fragments produced by
fragmentation must always be identical to the payload of the
bundle that was fragmented. Note that the payloads of fragments
resulting from different fragmentation episodes, in different
parts of the network, may be overlapping subsets of the original
bundle's payload.
o The bundle processing flags in the primary block of each fragment
must be modified to indicate that the bundle is a fragment, and
both fragment offset and total application data unit length must
be provided at the end of each fragment's primary bundle block.
o The primary blocks of the fragments will differ from that of the
fragmented bundle as noted above.
<span class="grey">Scott & Burleigh Experimental [Page 32]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-33" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
o The payload blocks of fragments will differ from that of the
fragmented bundle as noted above.
o All blocks that precede the payload block at the time of
fragmentation must be replicated in the fragment with the lowest
offset.
o All blocks that follow the payload block at the time of
fragmentation must be replicated in the fragment with the highest
offset.
o If the 'Block must be replicated in every fragment' bit is set to
1, then the block must be replicated in every fragment.
o If the 'Block must be replicated in every fragment' bit is set to
zero, the block should be replicated in only one fragment.
o The relative order of all blocks that are present in a fragment
must be the same as in the bundle prior to fragmentation.
<span class="h3"><a class="selflink" id="section-5.9" href="#section-5.9">5.9</a>. Application Data Unit Reassembly</span>
If the concatenation -- as informed by fragment offsets and payload
lengths -- of the payloads of all previously received fragments with
the same source endpoint ID and creation timestamp as this fragment,
together with the payload of this fragment, forms a byte array whose
length is equal to the total application data unit length in the
fragment's primary block, then:
o This byte array -- the reassembled application data unit -- must
replace the payload of this fragment.
o The "Reassembly pending" retention constraint must be removed from
every other fragment whose payload is a subset of the reassembled
application data unit.
Note: reassembly of application data units from fragments occurs at
destination endpoints as necessary; an application data unit may also
be reassembled at some other endpoint on the route to the
destination.
<span class="grey">Scott & Burleigh Experimental [Page 33]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-34" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
<span class="h3"><a class="selflink" id="section-5.10" href="#section-5.10">5.10</a>. Custody Transfer</span>
The conditions under which a node may accept custody of a bundle
whose destination is not a singleton endpoint are not defined in this
specification.
The decision as to whether or not to accept custody of a bundle whose
destination is a singleton endpoint is an implementation matter that
may involve both resource and policy considerations; however, if the
bundle protocol agent has committed to accepting custody of the
bundle (as described in Step 1 of <a href="#section-5.2">Section 5.2</a>), then custody must be
accepted.
If the bundle protocol agent elects to accept custody of the bundle,
then it must follow the custody acceptance procedure defined in
<a href="#section-5.10.1">Section 5.10.1</a>.
<span class="h4"><a class="selflink" id="section-5.10.1" href="#section-5.10.1">5.10.1</a>. Custody Acceptance</span>
Procedures for acceptance of custody of a bundle whose destination is
not a singleton endpoint are not defined in this specification.
Procedures for acceptance of custody of a bundle whose destination is
a singleton endpoint are defined as follows.
The retention constraint "Custody accepted" must be added to the
bundle.
If the "request reporting of custody acceptance" flag in the bundle's
status report request field is set to 1, a custody acceptance status
report should be generated, destined for the report-to endpoint ID of
the bundle. However, if a bundle reception status report was
generated for this bundle (Step 1 of <a href="#section-5.6">Section 5.6</a>), then this report
should be generated by simply turning on the "Reporting node accepted
custody of bundle" flag in that earlier report's status flags byte.
The bundle protocol agent must generate a "Succeeded" custody signal
for the bundle, destined for the bundle's current custodian.
The bundle protocol agent must assert the new current custodian for
the bundle. It does so by changing the current custodian endpoint ID
in the bundle's primary block to the endpoint ID of one of the
singleton endpoints in which the node is registered. This may entail
appending that endpoint ID's null-terminated scheme name and SSP to
the dictionary byte array in the bundle's primary block, and in some
case it may also enable the (optional) removal of the current
custodian endpoint ID's scheme name and/or SSP from the dictionary.
<span class="grey">Scott & Burleigh Experimental [Page 34]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-35" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
The bundle protocol agent may set a custody transfer countdown timer
for this bundle; upon expiration of this timer prior to expiration of
the bundle itself and prior to custody transfer success for this
bundle, the custody transfer failure procedure detailed in
<a href="#section-5.12">Section 5.12</a> must be followed. The manner in which the countdown
interval for such a timer is determined is an implementation matter.
The bundle should be retained in persistent storage if possible.
<span class="h4"><a class="selflink" id="section-5.10.2" href="#section-5.10.2">5.10.2</a>. Custody Release</span>
Procedures for release of custody of a bundle whose destination is
not a singleton endpoint are not defined in this specification.
When custody of a bundle is released, where the destination of the
bundle is a singleton endpoint, the "Custody accepted" retention
constraint must be removed from the bundle and any custody transfer
timer that has been established for this bundle must be destroyed.
<span class="h3"><a class="selflink" id="section-5.11" href="#section-5.11">5.11</a>. Custody Transfer Success</span>
Procedures for determining custody transfer success for a bundle
whose destination is not a singleton endpoint are not defined in this
specification.
Upon receipt of a "Succeeded" custody signal at a node that is a
custodial node of the bundle identified in the custody signal, where
the destination of the bundle is a singleton endpoint, custody of the
bundle must be released as described in <a href="#section-5.10.2">Section 5.10.2</a>.
<span class="h3"><a class="selflink" id="section-5.12" href="#section-5.12">5.12</a>. Custody Transfer Failure</span>
Procedures for determining custody transfer failure for a bundle
whose destination is not a singleton endpoint are not defined in this
specification. Custody transfer for a bundle whose destination is a
singleton endpoint is determined to have failed at a custodial node
for that bundle when either (a) that node's custody transfer timer
for that bundle (if any) expires or (b) a "Failed" custody signal for
that bundle is received at that node.
Upon determination of custody transfer failure, the action taken by
the bundle protocol agent is implementation-specific and may depend
on the nature of the failure. For example, if custody transfer
failure was inferred from expiration of a custody transfer timer or
was asserted by a "Failed" custody signal with the "Depleted storage"
reason code, the bundle protocol agent might choose to re-forward the
bundle, possibly on a different route (<a href="#section-5.4">Section 5.4</a>). Receipt of a
"Failed" custody signal with the "Redundant reception" reason code,
<span class="grey">Scott & Burleigh Experimental [Page 35]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-36" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
on the other hand, might cause the bundle protocol agent to release
custody of the bundle and to revise its algorithm for computing
countdown intervals for custody transfer timers.
<span class="h3"><a class="selflink" id="section-5.13" href="#section-5.13">5.13</a>. Bundle Deletion</span>
The steps in deleting a bundle are:
Step 1: If the retention constraint "Custody accepted" currently
prevents this bundle from being discarded, and the destination of
the bundle is a singleton endpoint, then:
* Custody of the node is released as described in <a href="#section-5.10.2">Section 5.10.2</a>.
* A bundle deletion status report citing the reason for deletion
must be generated, destined for the bundle's report-to endpoint
ID.
Otherwise, if the "request reporting of bundle deletion" flag in
the bundle's status report request field is set to 1, then a
bundle deletion status report citing the reason for deletion
should be generated, destined for the bundle's report-to endpoint
ID.
Step 2: All of the bundle's retention constraints must be removed.
<span class="h3"><a class="selflink" id="section-5.14" href="#section-5.14">5.14</a>. Discarding a Bundle</span>
As soon as a bundle has no remaining retention constraints it may be
discarded.
<span class="h3"><a class="selflink" id="section-5.15" href="#section-5.15">5.15</a>. Canceling a Transmission</span>
When requested to cancel a specified transmission, where the bundle
created upon initiation of the indicated transmission has not yet
been discarded, the bundle protocol agent must delete that bundle for
the reason "transmission cancelled". For this purpose, the procedure
defined in <a href="#section-5.13">Section 5.13</a> must be followed.
<span class="h3"><a class="selflink" id="section-5.16" href="#section-5.16">5.16</a>. Polling</span>
When requested to poll a specified registration that is in the
Passive state, the bundle protocol agent must immediately deliver the
least recently received bundle that is deliverable subject to the
indicated registration, if any.
<span class="grey">Scott & Burleigh Experimental [Page 36]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-37" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Administrative Record Processing</span>
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. Administrative Records</span>
Administrative records are standard application data units that are
used in providing some of the features of the Bundle Protocol. Two
types of administrative records have been defined to date: bundle
status reports and custody signals.
Every administrative record consists of a four-bit record type code
followed by four bits of administrative record flags, followed by
record content in type-specific format. Record type codes are
defined as follows:
+---------+--------------------------------------------+
| Value | Meaning |
+=========+============================================+
| 0001 | Bundle status report. |
+---------+--------------------------------------------+
| 0010 | Custody signal. |
+---------+--------------------------------------------+
| (other) | Reserved for future use. |
+---------+--------------------------------------------+
Figure 8: Administrative Record Type Codes
+---------+--------------------------------------------+
| Value | Meaning |
+=========+============================================+
| 0001 | Record is for a fragment; fragment |
| | offset and length fields are present. |
+---------+--------------------------------------------+
| (other) | Reserved for future use. |
+---------+--------------------------------------------+
Figure 9: Administrative Record Flags
All time values in administrative records are UTC times expressed in
"DTN time" representation. A DTN time consists of an SDNV indicating
the number of seconds since the start of the year 2000, followed by
an SDNV indicating the number of nanoseconds since the start of the
indicated second.
The contents of the various types of administrative records are
described below.
<span class="grey">Scott & Burleigh Experimental [Page 37]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-38" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
<span class="h4"><a class="selflink" id="section-6.1.1" href="#section-6.1.1">6.1.1</a>. Bundle Status Reports</span>
The transmission of 'bundle status reports' under specified
conditions is an option that can be invoked when transmission of a
bundle is requested. These reports are intended to provide
information about how bundles are progressing through the system,
including notices of receipt, custody transfer, forwarding, final
delivery, and deletion. They are transmitted to the Report-to
endpoints of bundles.
+----------------+----------------+----------------+----------------+
| Status Flags | Reason code | Fragment offset (*) (if
+----------------+----------------+----------------+----------------+
present) | Fragment length (*) (if present) |
+----------------+----------------+----------------+----------------+
| Time of receipt of bundle X (a DTN time, if present) |
+----------------+----------------+----------------+----------------+
| Time of custody acceptance of bundle X (a DTN time, if present) |
+----------------+----------------+----------------+----------------+
| Time of forwarding of bundle X (a DTN time, if present) |
+----------------+----------------+----------------+----------------+
| Time of delivery of bundle X (a DTN time, if present) |
+----------------+----------------+----------------+----------------+
| Time of deletion of bundle X (a DTN time, if present) |
+----------------+----------------+----------------+----------------+
| Copy of bundle X's Creation Timestamp time (*) |
+----------------+----------------+----------------+----------------+
| Copy of bundle X's Creation Timestamp sequence number (*) |
+----------------+----------------+----------------+----------------+
| Length of X's source endpoint ID (*) | Source
+----------------+---------------------------------+ +
endpoint ID of bundle X (variable) |
+----------------+----------------+----------------+----------------+
Figure 10: Bundle Status Report Format
(*) Notes:
The Fragment Offset field, if present, is an SDNV and is therefore
variable length. A three-octet SDNV is shown here for convenience in
representation.
The Fragment Length field, if present, is an SDNV and is therefore
variable length. A three-octet SDNV is shown here for convenience in
representation.
<span class="grey">Scott & Burleigh Experimental [Page 38]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-39" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
The Creation Timestamp fields replicate the Creation Timestamp fields
in the primary block of the subject bundle. As such they are SDNVs
(see <a href="#section-4.5.1">Section 4.5.1</a> above) and are therefore variable length. Four-
octet SDNVs are shown here for convenience in representation.
The source endpoint ID length field is an SDNV and is therefore
variable length. A three-octet SDNV is shown here for convenience in
representation.
The fields in a bundle status report are:
Status Flags: A 1-byte field containing the following flags:
+----------+--------------------------------------------+
| Value | Meaning |
+==========+============================================+
| 00000001 | Reporting node received bundle. |
+----------+--------------------------------------------+
| 00000010 | Reporting node accepted custody of bundle.|
+----------+--------------------------------------------+
| 00000100 | Reporting node forwarded the bundle. |
+----------+--------------------------------------------+
| 00001000 | Reporting node delivered the bundle. |
+----------+--------------------------------------------+
| 00010000 | Reporting node deleted the bundle. |
+----------+--------------------------------------------+
| 00100000 | Unused. |
+----------+--------------------------------------------+
| 01000000 | Unused. |
+----------+--------------------------------------------+
| 10000000 | Unused. |
+----------+--------------------------------------------+
Figure 11: Status Flags for Bundle Status Reports
Reason Code: A 1-byte field explaining the value of the flags in
the status flags byte. The list of status report reason codes
provided here is neither exhaustive nor exclusive; supplementary
DTN protocol specifications (including, but not restricted to, the
Bundle Security Protocol [<a href="#ref-BSP" title=""Bundle Security Protocol Specification"">BSP</a>]) may define additional reason
codes. Status report reason codes are defined as follows:
<span class="grey">Scott & Burleigh Experimental [Page 39]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-40" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
+---------+--------------------------------------------+
| Value | Meaning |
+=========+============================================+
| 0x00 | No additional information. |
+---------+--------------------------------------------+
| 0x01 | Lifetime expired. |
+---------+--------------------------------------------+
| 0x02 | Forwarded over unidirectional link. |
+---------+--------------------------------------------+
| 0x03 | Transmission canceled. |
+---------+--------------------------------------------+
| 0x04 | Depleted storage. |
+---------+--------------------------------------------+
| 0x05 | Destination endpoint ID unintelligible. |
+---------+--------------------------------------------+
| 0x06 | No known route to destination from here. |
+---------+--------------------------------------------+
| 0x07 | No timely contact with next node on route.|
+---------+--------------------------------------------+
| 0x08 | Block unintelligible. |
+---------+--------------------------------------------+
| (other) | Reserved for future use. |
+---------+--------------------------------------------+
Figure 12: Status Report Reason Codes
Fragment Offset: If the bundle fragment bit is set in the status
flags, then the offset (within the original application data unit)
of the payload of the bundle that caused the status report to be
generated is included here.
Fragment length: If the bundle fragment bit is set in the status
flags, then the length of the payload of the subject bundle is
included here.
Time of Receipt (if present): If the bundle-received bit is set in
the status flags, then a DTN time indicating the time at which the
bundle was received at the reporting node is included here.
Time of Custody Acceptance (if present): If the custody-accepted
bit is set in the status flags, then a DTN time indicating the
time at which custody was accepted at the reporting node is
included here.
Time of Forward (if present): If the bundle-forwarded bit is set in
the status flags, then a DTN time indicating the time at which the
bundle was first forwarded at the reporting node is included here.
<span class="grey">Scott & Burleigh Experimental [Page 40]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-41" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
Time of Delivery (if present): If the bundle-delivered bit is set
in the status flags, then a DTN time indicating the time at which
the bundle was delivered at the reporting node is included here.
Time of Deletion (if present): If the bundle-deleted bit is set in
the status flags, then a DTN time indicating the time at which the
bundle was deleted at the reporting node is included here.
Creation Timestamp of Subject Bundle: A copy of the creation
timestamp of the bundle that caused the status report to be
generated.
Length of Source Endpoint ID: The length in bytes of the source
endpoint ID of the bundle that caused the status report to be
generated.
Source Endpoint ID text: The text of the source endpoint ID of the
bundle that caused the status report to be generated.
<span class="h4"><a class="selflink" id="section-6.1.2" href="#section-6.1.2">6.1.2</a>. Custody Signals</span>
Custody signals are administrative records that effect custody
transfer operations. They are transmitted to the endpoints that are
the current custodians of bundles.
Custody signals have the following format.
Custody signal regarding bundle 'X':
+----------------+----------------+----------------+----------------+
| Status | Fragment offset (*) (if present) |
+----------------+----------------+----------------+----------------+
| Fragment length (*) (if present) |
+----------------+----------------+----------------+----------------+
| Time of signal (a DTN time) |
+----------------+----------------+----------------+----------------+
| Copy of bundle X's Creation Timestamp time (*) |
+----------------+----------------+----------------+----------------+
| Copy of bundle X's Creation Timestamp sequence number (*) |
+----------------+----------------+----------------+----------------+
| Length of X's source endpoint ID (*) | Source
+----------------+---------------------------------+ +
endpoint ID of bundle X (variable) |
+----------------+----------------+----------------+----------------+
Figure 13: Custody Signal Format
<span class="grey">Scott & Burleigh Experimental [Page 41]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-42" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
(*) Notes:
The Fragment Offset field, if present, is an SDNV and is therefore
variable length. A three-octet SDNV is shown here for convenience in
representation.
The Fragment Length field, if present, is an SDNV and is therefore
variable length. A four-octet SDNV is shown here for convenience in
representation.
The Creation Timestamp fields replicate the Creation Timestamp fields
in the primary block of the subject bundle. As such they are SDNVs
(see <a href="#section-4.5.1">Section 4.5.1</a> above) and are therefore variable length. Four-
octet SDNVs are shown here for convenience in representation.
The source endpoint ID length field is an SDNV and is therefore
variable length. A three-octet SDNV is shown here for convenience in
representation.
The fields in a custody signal are:
Status: A 1-byte field containing a 1-bit "custody transfer
succeeded" flag followed by a 7-bit reason code explaining the
value of that flag. Custody signal reason codes are defined as
follows:
<span class="grey">Scott & Burleigh Experimental [Page 42]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-43" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
+---------+--------------------------------------------+
| Value | Meaning |
+=========+============================================+
| 0x00 | No additional information. |
+---------+--------------------------------------------+
| 0x01 | Reserved for future use. |
+---------+--------------------------------------------+
| 0x02 | Reserved for future use. |
+---------+--------------------------------------------+
| 0x03 | Redundant reception (reception by a node |
| | that is a custodial node for this bundle).|
+---------+--------------------------------------------+
| 0x04 | Depleted storage. |
+---------+--------------------------------------------+
| 0x05 | Destination endpoint ID unintelligible. |
+---------+--------------------------------------------+
| 0x06 | No known route to destination from here. |
+---------+--------------------------------------------+
| 0x07 | No timely contact with next node on route.|
+---------+--------------------------------------------+
| 0x08 | Block unintelligible. |
+---------+--------------------------------------------+
| (other) | Reserved for future use. |
+---------+--------------------------------------------+
Figure 14: Custody Signal Reason Codes
Fragment offset: If the bundle fragment bit is set in the status
flags, then the offset (within the original application data unit)
of the payload of the bundle that caused the status report to be
generated is included here.
Fragment length: If the bundle fragment bit is set in the status
flags, then the length of the payload of the subject bundle is
included here.
Time of Signal: A DTN time indicating the time at which the signal
was generated.
Creation Timestamp of Subject Bundle: A copy of the creation
timestamp of the bundle to which the signal applies.
Length of Source Endpoint ID: The length in bytes of the source
endpoint ID of the bundle to which the signal applied.
<span class="grey">Scott & Burleigh Experimental [Page 43]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-44" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
Source Endpoint ID text: The text of the source endpoint ID of the
bundle to which the signal applies.
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>. Generation of Administrative Records</span>
Whenever the application agent's administrative element is directed
by the bundle protocol agent to generate an administrative record
with reference to some bundle, the following procedure must be
followed:
Step 1: The administrative record must be constructed. If the
referenced bundle is a fragment, the administrative record must
have the Fragment flag set and must contain the fragment offset
and fragment length fields. The value of the fragment offset
field must be the value of the referenced bundle's fragment
offset, and the value of the fragment length field must be the
length of the referenced bundle's payload.
Step 2: A request for transmission of a bundle whose payload is
this administrative record must be presented to the bundle
protocol agent.
<span class="h3"><a class="selflink" id="section-6.3" href="#section-6.3">6.3</a>. Reception of Custody Signals</span>
For each received custody signal that has the "custody transfer
succeeded" flag set to 1, the administrative element of the
application agent must direct the bundle protocol agent to follow the
custody transfer success procedure in <a href="#section-5.11">Section 5.11</a>.
For each received custody signal that has the "custody transfer
succeeded" flag set to 0, the administrative element of the
application agent must direct the bundle protocol agent to follow the
custody transfer failure procedure in <a href="#section-5.12">Section 5.12</a>.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Services Required of the Convergence Layer</span>
<span class="h3"><a class="selflink" id="section-7.1" href="#section-7.1">7.1</a>. The Convergence Layer</span>
The successful operation of the end-to-end bundle protocol depends on
the operation of underlying protocols at what is termed the
"convergence layer"; these protocols accomplish communication between
nodes. A wide variety of protocols may serve this purpose, so long
as each convergence layer protocol adapter provides a defined minimal
set of services to the bundle protocol agent. This convergence layer
service specification enumerates those services.
<span class="grey">Scott & Burleigh Experimental [Page 44]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-45" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
<span class="h3"><a class="selflink" id="section-7.2" href="#section-7.2">7.2</a>. Summary of Convergence Layer Services</span>
Each convergence layer protocol adapter is expected to provide the
following services to the bundle protocol agent:
o sending a bundle to all bundle nodes in the minimum reception
group of the endpoint identified by a specified endpoint ID that
are reachable via the convergence layer protocol; and
o delivering to the bundle protocol agent a bundle that was sent by
a remote bundle node via the convergence layer protocol.
The convergence layer service interface specified here is neither
exhaustive nor exclusive. That is, supplementary DTN protocol
specifications (including, but not restricted to, the Bundle Security
Protocol [<a href="#ref-BSP" title=""Bundle Security Protocol Specification"">BSP</a>]) may expect convergence layer adapters that serve BP
implementations conforming to those protocols to provide additional
services.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Security Considerations</span>
The bundle protocol has taken security into concern from the outset
of its design. It was always assumed that security services would be
needed in the use of the bundle protocol. As a result, the bundle
protocol security architecture and the available security services
are specified in an accompanying document, the Bundle Security
Protocol specification [<a href="#ref-BSP" title=""Bundle Security Protocol Specification"">BSP</a>]; an informative overview of this
architecture is provided in [<a href="#ref-SECO" title=""Delay-Tolerant Networking Security Overview"">SECO</a>].
The bundle protocol has been designed with the notion that it will be
run over networks with scarce resources. For example, the networks
might have limited bandwidth, limited connectivity, constrained
storage in relay nodes, etc. Therefore, the bundle protocol must
ensure that only those entities authorized to send bundles over such
constrained environments are actually allowed to do so. All
unauthorized entities should be prevented from consuming valuable
resources.
Likewise, because of the potentially long latencies and delays
involved in the networks that make use of the bundle protocol, data
sources should be concerned with the integrity of the data received
at the intended destination(s) and may also be concerned with
ensuring confidentiality of the data as it traverses the network.
Without integrity, the bundle payload data might be corrupted while
in transit without the destination able to detect it. Similarly, the
data source can be concerned with ensuring that the data can only be
used by those authorized, hence the need for confidentiality.
<span class="grey">Scott & Burleigh Experimental [Page 45]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-46" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
Internal to the bundle-aware overlay network, the bundle nodes should
be concerned with the authenticity of other bundle nodes as well as
the preservation of bundle payload data integrity as it is forwarded
between bundle nodes.
As a result, bundle security is concerned with the authenticity,
integrity, and confidentiality of bundles conveyed among bundle
nodes. This is accomplished via the use of three independent
security-specific bundle blocks, which may be used together to
provide multiple bundle security services or independently of one
another, depending on perceived security threats, mandated security
requirements, and security policies that must be enforced.
The Bundle Authentication Block (BAB) ensures the authenticity and
integrity of bundles on a hop-by-hop basis between bundle nodes. The
BAB allows each bundle node to verify a bundle's authenticity before
processing or forwarding the bundle. In this way, entities that are
not authorized to send bundles will have unauthorized transmissions
blocked by security-aware bundle nodes.
Additionally, to provide "security-source" to "security-destination"
bundle authenticity and integrity, the Payload Security Block (PSB)
is used. A "security-source" may not actually be the origination
point of the bundle but instead may be the first point along the path
that is security-aware and is able to apply security services. For
example, an enclave of networked systems may generate bundles but
only their gateway may be required and/or able to apply security
services. The PSB allows any security-enabled entity along the
delivery path, in addition to the "security-destination" (the
recipient counterpart to the "security-source"), to ensure the
bundle's authenticity.
Finally, to provide payload confidentiality, the use of the
Confidentiality Block (CB) is available. The bundle payload may be
encrypted to provide "security-source" to "security-destination"
payload confidentiality/privacy. The CB indicates the cryptographic
algorithm and key IDs that were used to encrypt the payload.
Note that removal of strings from the dictionary at a given point in
a bundle's end-to-end path, and attendant adjustment of endpoint ID
references in the blocks of that bundle, may make it necessary to re-
compute values in one or more of the bundle's security blocks.
Bundle security must not be invalidated by forwarding nodes even
though they themselves might not use the Bundle Security Protocol.
In particular, the sequencing of the blocks in a forwarded bundle
must not be changed as it transits a node; received blocks must be
transmitted in the same relative order as that in which they were
<span class="grey">Scott & Burleigh Experimental [Page 46]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-47" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
received. While blocks may be added to bundles as they transit
intermediate nodes, removal of blocks that do not have their 'Discard
block if it can't be processed' flag in the block processing control
flags set to 1 may cause security to fail.
Inclusion of the Bundle Security Protocol in any Bundle Protocol
implementation is RECOMMENDED. Use of the Bundle Security Protocol
in Bundle Protocol operations is OPTIONAL.
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. IANA Considerations</span>
The "dtn:" URI scheme has been provisionally registered by IANA. See
<a href="http://www.iana.org/assignments/uri-schemes.html">http://www.iana.org/assignments/uri-schemes.html</a> for the latest
details.
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. References</span>
<span class="h3"><a class="selflink" id="section-10.1" href="#section-10.1">10.1</a>. Normative References</span>
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
[<a id="ref-URI">URI</a>] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
Resource Identifier (URI): Generic Syntax", <a href="./rfc3986">RFC 3986</a>,
STD 66, January 2005.
[<a id="ref-URIREG">URIREG</a>] Hansen, T., Hardie, T., and L. Masinter, "Guidelines and
Registration Procedures for New URI Schemes", <a href="./rfc4395">RFC 4395</a>,
<a href="https://www.rfc-editor.org/bcp/bcp115">BCP 115</a>, February 2006.
<span class="h3"><a class="selflink" id="section-10.2" href="#section-10.2">10.2</a>. Informative References</span>
[<a id="ref-ARCH">ARCH</a>] V. Cerf et. al., "Delay-Tolerant Network Architecture",
<a href="./rfc4838">RFC 4838</a>, April 2007.
[<a id="ref-ASN1">ASN1</a>] "Abstract Syntax Notation One (ASN.1), "ASN.1 Encoding
Rules: Specification of Basic Encoding Rules (BER),
Canonical Encoding Rules (CER) and Distinguished Encoding
Rules (DER)," ITU-T Rec. X.690 (2002) | ISO/IEC 8825-
1:2002", 2003.
[<a id="ref-BSP">BSP</a>] Symington, S., "Bundle Security Protocol Specification",
Work Progress, October 2007.
[<a id="ref-RFC3987">RFC3987</a>] Duerst, M. and M. Suignard, "Internationalized Resource
Identifiers (IRIs)", <a href="./rfc3987">RFC 3987</a>, January 2005.
<span class="grey">Scott & Burleigh Experimental [Page 47]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-48" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
[<a id="ref-SECO">SECO</a>] Farrell, S., Symington, S., Weiss, H., and P. Lovell,
"Delay-Tolerant Networking Security Overview",
Work Progress, July 2007.
[<a id="ref-SIGC">SIGC</a>] Fall, K., "A Delay-Tolerant Network Architecture for
Challenged Internets", SIGCOMM 2003 .
[<a id="ref-TUT">TUT</a>] Warthman, F., "Delay-Tolerant Networks (DTNs): A
Tutorial", <<a href="http://www.dtnrg.org">http://www.dtnrg.org</a>>.
[<a id="ref-UTC">UTC</a>] Arias, E. and B. Guinot, ""Coordinated universal time UTC:
historical background and perspectives" in Journees
systemes de reference spatio-temporels", 2004.
<span class="grey">Scott & Burleigh Experimental [Page 48]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-49" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
<span class="h2"><a class="selflink" id="appendix-A" href="#appendix-A">Appendix A</a>. Contributors</span>
This was an effort of the Delay Tolerant Networking Research Group.
The following DTNRG participants contributed significant technical
material and/or inputs: Dr. Vinton Cerf of Google, Scott Burleigh,
Adrian Hooke, and Leigh Torgerson of the Jet Propulsion Laboratory,
Michael Demmer of the University of California at Berkeley, Robert
Durst, Keith Scott, and Susan Symington of The MITRE Corporation,
Kevin Fall of Intel Research, Stephen Farrell of Trinity College
Dublin, Peter Lovell of SPARTA, Inc., Manikantan Ramadas of Ohio
University (most of <a href="#section-4.1">Section 4.1</a>), and Howard Weiss of SPARTA, Inc.
(text of <a href="#section-8">Section 8</a>).
<span class="h2"><a class="selflink" id="appendix-B" href="#appendix-B">Appendix B</a>. Comments</span>
Please refer comments to dtn-interest@mailman.dtnrg.org. The Delay
Tolerant Networking Research Group (DTNRG) Web site is located at
<a href="http://www.dtnrg.org">http://www.dtnrg.org</a>.
Authors' Addresses
Keith L. Scott
The MITRE Corporation
7515 Colshire Drive
McLean, VA 21102
US
Phone: +1 703 983 6547
Fax: +1 703 983 7142
EMail: kscott@mitre.org
Scott Burleigh
NASA Jet Propulsion Laboratory
4800 Oak Grove Dr.
Pasadena, CA 91109-8099
US
Phone: +1 818 393 3353
Fax: +1 818 354 1075
EMail: Scott.Burleigh@jpl.nasa.gov
<span class="grey">Scott & Burleigh Experimental [Page 49]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-50" ></span>
<span class="grey"><a href="./rfc5050">RFC 5050</a> Bundle Protocol Specification November 2007</span>
Full Copyright Statement
Copyright (C) The IETF Trust (2007).
This document is subject to the rights, licenses and restrictions
contained in <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and at www.rfc-editor.org/copyright.html, and
except as set forth therein, the authors retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and <a href="https://www.rfc-editor.org/bcp/bcp79">BCP 79</a>.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
<a href="http://www.ietf.org/ipr">http://www.ietf.org/ipr</a>.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.
Scott & Burleigh Experimental [Page 50]
</pre>
|