1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
|
<pre>Network Working Group C. Hutzler
Request for Comments: 5068
BCP: 134 D. Crocker
Category: Best Current Practice Brandenburg InternetWorking
P. Resnick
QUALCOMM Incorporated
E. Allman
Sendmail, Inc.
T. Finch
University of Cambridge Computing Service
November 2007
<span class="h1">Email Submission Operations: Access and Accountability Requirements</span>
Status of This Memo
This document specifies an Internet Best Current Practices for the
Internet Community, and requests discussion and suggestions for
improvements. Distribution of this memo is unlimited.
Abstract
Email has become a popular distribution service for a variety of
socially unacceptable, mass-effect purposes. The most obvious ones
include spam and worms. This note recommends conventions for the
operation of email submission and transport services between
independent operators, such as enterprises and Internet Service
Providers. Its goal is to improve lines of accountability for
controlling abusive uses of the Internet mail service. To this end,
this document offers recommendations for constructive operational
policies between independent operators of email submission and
transmission services.
Email authentication technologies are aimed at providing assurances
and traceability between internetworked networks. In many email
services, the weakest link in the chain of assurances is initial
submission of a message. This document offers recommendations for
constructive operational policies for this first step of email
sending, the submission (or posting) of email into the transmission
network. Relaying and delivery entail policies that occur subsequent
to submission and are outside the scope of this document.
<span class="grey">Hutzler, et al. Best Current Practice [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc5068">RFC 5068</a> Email Submission November 2007</span>
Table of Contents
<a href="#section-1">1</a>. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-3">3</a>
<a href="#section-2">2</a>. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-3">3</a>. Submission, Relaying, Delivery . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-3.1">3.1</a>. Best Practices for Submission Operation . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-3.2">3.2</a>. Transitioning to Submission Port . . . . . . . . . . . . . <a href="#page-6">6</a>
<a href="#section-4">4</a>. External Submission . . . . . . . . . . . . . . . . . . . . . <a href="#page-6">6</a>
<a href="#section-4.1">4.1</a>. Best Practices for Support of External Submissions . . . . <a href="#page-7">7</a>
5. Message Submission Authentication/Authorization
Technologies . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-8">8</a>
<a href="#section-6">6</a>. Security Considerations . . . . . . . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-7">7</a>. References . . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-7.1">7.1</a>. Normative References . . . . . . . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-7.2">7.2</a>. Informative References . . . . . . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#appendix-A">Appendix A</a>. Acknowledgments . . . . . . . . . . . . . . . . . . . <a href="#page-10">10</a>
<span class="grey">Hutzler, et al. Best Current Practice [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc5068">RFC 5068</a> Email Submission November 2007</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
The very characteristics that make email such a convenient
communications medium -- its near ubiquity, rapid delivery, low cost,
and support for exchanges without prior arrangement -- have made it a
fertile ground for the distribution of unwanted or malicious content.
Spam, fraud, and worms have become a serious problem, threatening the
viability of email and costing end users and providers millions of
dollars in damages and lost productivity. In recent years,
independent operators including enterprises and ISPs have turned to a
number of different technologies and procedures, in an attempt to
combat these problems. The results have been mixed, at best.
En route to its final destination, email will often travel between
multiple independent providers of email transmission services. These
services will generally have no prior arrangement with one another
and may employ different rules on the transmission. It is therefore
difficult both to debug problems that occur in mail transmission and
to assign accountability if undesired or malicious mail is injected
into the Internet mail infrastructure.
Many email authentication technologies exist. They provide some
accountability and traceability between disparate networks. This
document aims to build upon the availability of these technologies by
exploring best practices for authenticating and authorizing the first
step of an email's delivery, from a Mail User Agent (MUA) to a Mail
Submission Agent (MSA), known as submission. Without strong
practices on email submission, the use of authentication technologies
elsewhere in the service provides limited benefit.
This document specifies operational policies to be used for the first
step of email sending, the submission -- or posting from an MUA to an
MSA as defined below -- of email into the transmission service.
These policies will permit continued, smooth operation of Internet
email, with controls added to improve accountability. Relaying and
delivering employ policies that occur after submission and are
outside the scope of this document. The policies listed here are
appropriate for operators of all sizes of networks and may be
implemented by operators independently, without regard for whether
the other side of an email exchange has implemented them.
It is important to note that the adoption of these policies alone
will not solve the problems of spam and other undesirable email.
However, these policies provide a useful step in clarifying lines of
accountability and interoperability between operators. This helps
raise the bar against abusers and provides a foundation for
additional tools to preserve the utility of the Internet email
infrastructure.
<span class="grey">Hutzler, et al. Best Current Practice [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc5068">RFC 5068</a> Email Submission November 2007</span>
NOTE: This document does not delve into other anti-spam operational
issues such as standards for rejection of email. The authors note
that this could be a valuable effort to undertake and encourage
its pursuit.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Terminology</span>
The Internet email architecture distinguishes four message-handling
components:
o Mail User Agents (MUAs)
o Mail Submission Agents (MSAs)
o Mail Transfer Agents (MTAs)
o Mail Delivery Agents (MDAs)
At the origination end, an MUA works on behalf of end users to create
a message and perform initial "submission" into the transmission
infrastructure, via an MSA. An MSA accepts the message submission,
performs any necessary preprocessing on the message, and relays the
message to an MTA for transmission. MTAs 'relay' messages to other
MTAs, in a sequence reaching a destination MDA that, in turn,
'delivers' the email to the recipient's inbox. The inbox is part of
the recipient-side MUA that works on behalf of the end user to
process received mail.
These architectural components are often compressed, such as having
the same software do MSA, MTA and MDA functions. However the
requirements for each of these components of the architecture are
becoming more extensive, so that their software and even physical
platform separation is increasingly common.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Submission, Relaying, Delivery</span>
Originally the MSA, MTA, and MDA architectural components were
considered to be a single unit. This was reflected in the practice
of having MSA, MTA, and MDA transfers all be performed with SMTP
[<a href="./rfc2821" title=""Simple Mail Transfer Protocol"">RFC2821</a>] [<a href="./rfc0821" title=""Simple Mail Transfer Protocol"">RFC0821</a>], over TCP port 25. Internet mail permits email
to be exchanged without prior arrangement and without sender
authentication. That is, the confirmed identity of the originator of
the message is not necessarily known by the relaying MTAs or the MDA.
<span class="grey">Hutzler, et al. Best Current Practice [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc5068">RFC 5068</a> Email Submission November 2007</span>
It is important to distinguish MUA-to-MSA email submission, versus
MTA relaying, versus the final MTA-to-MDA transition. Submission
typically does entail a pre-established relationship between the user
of the client and operator of the server; equally, the MDA is
performing final delivery and can determine that it has an existing
relationship with the recipient. That is, MSAs and MDAs can take
advantage of having prior relationships with users in order to
constrain their transfer activities.
Specifically, an MSA can choose to reject all postings from MUAs for
which it has no existing relationship. Similarly, an MDA can choose
to reject all mail to recipients for which it has no arrangement to
perform delivery. Indeed, both of these policies are already in
common practice.
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. Best Practices for Submission Operation</span>
Submission Port Availability:
If external submissions are supported -- that is, from outside a
site's administrative domain -- then the domain's MSAs MUST
support the SUBMISSION port 587 [<a href="./rfc4409" title=""Message Submission for Mail"">RFC4409</a>]. Operators MAY
standardize on the SUBMISSION port for both external AND LOCAL
users; this can significantly simplify submission operations.
Submission Port Use:
MUAs SHOULD use the SUBMISSION port for message submission.
Submission Authentication:
MSAs MUST perform authentication on the identity asserted during
all mail transactions on the SUBMISSION port, even for a message
having a RCPT TO address that would not cause the message to be
relayed outside of the local administrative domain.
Submission Authorization:
An operator of an MSA MUST ensure that the authenticated identity
is authorized to submit email, based on an existing relationship
between the submitting entity and the operator. This requirement
applies to all mail submission mechanisms (MUA to MSA).
Submission Accountability after Submission:
For a reasonable period of time after submission, the message
SHOULD be traceable by the MSA operator to the authenticated
identity of the user who sent the message. Such tracing MAY be
<span class="grey">Hutzler, et al. Best Current Practice [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc5068">RFC 5068</a> Email Submission November 2007</span>
based on transactional identifiers stored in the headers (received
lines, etc.) or other fields in the message, on audit data stored
elsewhere, or on any other mechanism that supports sufficient
post-submission accountability. The specific length of time,
after message submission, that traceability is supported is not
specified here. However, issues regarding transit often occur as
much as one week after submission.
Note that [<a href="./rfc3848" title=""ESMTP and LMTP Transmission Types Registration"">RFC3848</a>] defines a means of recording submission-time
information in Received header fields. This information can help
receive-side analysis software establish a sending MSA's
accountability and then make decisions about processing the
message.
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. Transitioning to Submission Port</span>
In order to promote transition of initial message submission from
port 25 to port 587, MSAs MUST listen on port 587 by default and
SHOULD have the ability to listen on other ports. MSAs MUST require
authentication on port 587 and SHOULD require authentication on any
other port used for submission. MSAs MAY also listen on other ports.
Regardless of the ports on which messages are accepted, MSAs MUST NOT
permit relaying of unauthenticated messages to other domains. That
is, they must not be open relays.
As a default, MUAs SHOULD attempt to find the best possible
submission port from a list of alternatives. The SUBMISSION port 587
SHOULD be placed first in the list. Since most MUAs available today
do not permit falling back to alternate ports, sites SHOULD pre-
configure or encourage their users to connect on the SUBMISSION port
587, assuming that site supports that port.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. External Submission</span>
An MUA might need to submit mail across the Internet, rather than to
a local MSA, in order to obtain particular services from its home
site. Examples include active privacy protection against third-party
content monitoring, timely processing, and being subject to the most
appropriate authentication and accountability protocols. Further,
the privacy requirement might reasonably include protection against
monitoring by the operator of the MUA's access network. This
requirement creates a challenge for the provider operating the IP
network through which the MUA gains access. It makes that provider
an involuntary recruit to the task of solving mass-effect email
problems: When the MUA participates in a problem that affects large
numbers of Internet users, the provider is expected to effect
remedies and is often expected to prevent such occurrences.
<span class="grey">Hutzler, et al. Best Current Practice [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc5068">RFC 5068</a> Email Submission November 2007</span>
A proactive technique used by some providers is to block all use of
port 25 SMTP for mail that is being sent outbound, or to
automatically redirect this traffic through a local SMTP proxy,
except for hosts that are explicitly authorized. This can be
problematic for some users, notably legitimate mobile users
attempting to use their "home" MSA, even though those users might
already employ legitimate, port 25-based authentication.
This document offers no recommendation concerning the blocking of
SMTP port 25 or similar practices for controlling abuse of the
standard anonymous mail transfer port. Rather, it pursues the
mutually constructive benefit of using the official SUBMISSION port
587 [<a href="./rfc4409" title=""Message Submission for Mail"">RFC4409</a>].
NOTE: Many established practices for controlling abuse of port 25,
for mail that is being sent outbound, currently do exist. These
include the proxy of SMTP traffic to local hosts for screening,
combined with various forms of rate limits. The authors suggest
that a separate document on this topic would benefit the email
operations community.
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. Best Practices for Support of External Submissions</span>
Open Submission Port:
Access Providers MUST NOT block users from accessing the external
Internet using the SUBMISSION port 587 [<a href="./rfc4409" title=""Message Submission for Mail"">RFC4409</a>].
Traffic Identification -- External Posting (MSA) Versus Relaying
(MX):
When receiving email from outside their local operational
environment, email service providers MUST distinguish between
unauthenticated email addressed to local domains (MX traffic)
versus submission-related authenticated email that can be
addressed anywhere (MSA traffic). This allows the MTA to restrict
relaying operations, and thereby prevent "open" relays. Note that
there are situations where this may not apply, such as secondary
MXs and related implementations internal to an operator's network
and within their control.
Figure 1 depicts a local user (MUA.l) submitting a message to an MSA
(MSA). It also shows a remote user (MUA.r), such as might be in a
coffee shop offering "hotspot" wireless access, submitting a message
to their "home" MSA via an authenticated port 587 transaction. The
figure shows the alternative of using port 587 or port 25 within the
MSA's network. This document makes no recommendations about the use
<span class="grey">Hutzler, et al. Best Current Practice [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc5068">RFC 5068</a> Email Submission November 2007</span>
of port 25 for submission. The diagram merely seeks to note that it
is in common use and to acknowledge that port 25 can be used with
sufficient accountability within an organization's network.
HOME NETWORK DESTINATION
+-------+
| MUA.l |
+---+---+
port | port port port
587/25 V 25 25 -------- 25
+-----+ +-----+ ****** / \ ****** +-----+ +-----+
| MSA |->| MTA |->* AP *->| |->* AP *->| MTA |->| MDA |
+--^--+ +-----+ ****** | INTERNET | ****** +-----+ +-----+
| | |
+-------<--------------|----+ |
\ | /
---^----
|
******
AP = Access Provider * AP *
******
| port 587
+---+----+
| MUA.r |
+--------+
HOTSPOT
Figure 1: Example of Port 587 Usage via Internet
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Message Submission Authentication/Authorization Technologies</span>
There are many competent technologies and standards for
authenticating message submissions. Two component mechanisms that
have been standardized include SMTP AUTH [<a href="./rfc4954" title=""SMTP Service Extension for Authentication"">RFC4954</a>] and TLS [<a href="./rfc3207" title=""SMTP Service Extension for Secure SMTP over Transport Layer Security"">RFC3207</a>].
Depending upon the environment, different mechanisms can be more or
less effective and convenient. Mechanisms might also have to be used
in combination with each other to make a secure system.
Organizations SHOULD choose the most secure approaches that are
practical.
This document does not provide recommendations on specific security
implementations. It simply provides a warning that transmitting user
credentials in clear text over insecure networks SHOULD be avoided in
all scenarios as this could allow attackers to listen for this
traffic and steal account data. In these cases, it is strongly
suggested that an appropriate security technology MUST be used.
<span class="grey">Hutzler, et al. Best Current Practice [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc5068">RFC 5068</a> Email Submission November 2007</span>
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Security Considerations</span>
Email transfer between independent administrations can be the source
of large volumes of unwanted email and email containing malicious
content designed to attack the recipient's system. This document
addresses the requirements and procedures to permit such exchanges
while reducing the likelihood that malicious mail will be
transmitted.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. References</span>
<span class="h3"><a class="selflink" id="section-7.1" href="#section-7.1">7.1</a>. Normative References</span>
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
[<a id="ref-RFC2821">RFC2821</a>] Klensin, J., "Simple Mail Transfer Protocol", <a href="./rfc2821">RFC 2821</a>,
April 2001.
[<a id="ref-RFC4409">RFC4409</a>] Gellens, R. and J. Klensin, "Message Submission for Mail",
<a href="./rfc4409">RFC 4409</a>, April 2006.
<span class="h3"><a class="selflink" id="section-7.2" href="#section-7.2">7.2</a>. Informative References</span>
[<a id="ref-RFC0821">RFC0821</a>] Postel, J., "Simple Mail Transfer Protocol", STD 10,
<a href="./rfc821">RFC 821</a>, August 1982.
[<a id="ref-RFC3207">RFC3207</a>] Hoffman, P., "SMTP Service Extension for Secure SMTP over
Transport Layer Security", <a href="./rfc3207">RFC 3207</a>, February 2002.
[<a id="ref-RFC3848">RFC3848</a>] Newman, C., "ESMTP and LMTP Transmission Types
Registration", <a href="./rfc3848">RFC 3848</a>, July 2005.
[<a id="ref-RFC4954">RFC4954</a>] Siemborski, R., Ed. and A. Melnikov, Ed., "SMTP Service
Extension for Authentication", <a href="./rfc4954">RFC 4954</a>, July 2007.
<span class="grey">Hutzler, et al. Best Current Practice [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc5068">RFC 5068</a> Email Submission November 2007</span>
<span class="h2"><a class="selflink" id="appendix-A" href="#appendix-A">Appendix A</a>. Acknowledgments</span>
These recommendations were first formulated during informal
discussions among members of Anti-Spam Technical Alliance (ASTA) and
some participants from the Internet Research Task Force's Anti-Spam
Research Group (ASRG).
Later reviews and suggestions were provided by: M. Allman, L.H.
Aestrand, N. Borenstein, S. Bortzmeyer, K. Chon, R. Clayton, B. Cole,
W. Dnes, V. Duchovni, E. Edelstein, F. Ellermann, M. Elvey, J.D.
Falk, N. Freed, J. Glube, A. Herzberg, J. Klensin, J. Levine, S.
Moonesamy, K. Moore, R. Nelson, C. Newman, C. O'Malley, S.
Ramasubramanian, R. Rognlie, J. St. Sauver, W. Schlitt, B. Shein, B.
Sullivan.
Authors' Addresses
Carl Hutzler
2512 Freetown Drive
Reston, VA 20191
Phone: 703-915-6862
EMail: cdhutzler@aol.com
URI: <a href="http://carlhutzler.com/blog/">http://carlhutzler.com/blog/</a>
Dave Crocker
Brandenburg InternetWorking
675 Spruce Dr.
Sunnyvale, CA 94086
USA
Phone: +1.408.246.8253
EMail: dcrocker@bbiw.net
URI: <a href="http://bbiw.net">http://bbiw.net</a>
Peter Resnick
QUALCOMM Incorporated
5775 Morehouse Drive
San Diego, CA 92121-1714
USA
Phone: +1 858 651 4478
EMail: presnick@qualcomm.com
URI: <a href="http://www.qualcomm.com/~presnick/">http://www.qualcomm.com/~presnick/</a>
<span class="grey">Hutzler, et al. Best Current Practice [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc5068">RFC 5068</a> Email Submission November 2007</span>
Eric Allman
Sendmail, Inc.
6745 Christie Ave., Suite 350
Emeryville, CA
USA
Phone: +1 510 594 5501
EMail: eric+ietf-smtp@sendmail.org
Tony Finch
University of Cambridge Computing Service
New Museums Site
Pembroke Street
Cambridge CB2 3QH
ENGLAND
Phone: +44 797 040 1426
EMail: dot@dotat.at
URI: <a href="http://dotat.at/">http://dotat.at/</a>
<span class="grey">Hutzler, et al. Best Current Practice [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc5068">RFC 5068</a> Email Submission November 2007</span>
Full Copyright Statement
Copyright (C) The IETF Trust (2007).
This document is subject to the rights, licenses and restrictions
contained in <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a>, and except as set forth therein, the authors
retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and <a href="https://www.rfc-editor.org/bcp/bcp79">BCP 79</a>.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
<a href="http://www.ietf.org/ipr">http://www.ietf.org/ipr</a>.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.
Hutzler, et al. Best Current Practice [Page 12]
</pre>
|