1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
|
<pre>Network Working Group N. Mavrogiannopoulos
Request for Comments: 5081 Independent
Category: Experimental November 2007
<span class="h1">Using OpenPGP Keys for Transport Layer Security (TLS) Authentication</span>
Status of This Memo
This memo defines an Experimental Protocol for the Internet
community. It does not specify an Internet standard of any kind.
Discussion and suggestions for improvement are requested.
Distribution of this memo is unlimited.
Abstract
This memo proposes extensions to the Transport Layer Security (TLS)
protocol to support the OpenPGP key format. The extensions discussed
here include a certificate type negotiation mechanism, and the
required modifications to the TLS Handshake Protocol.
Table of Contents
<a href="#section-1">1</a>. Introduction ....................................................<a href="#page-2">2</a>
<a href="#section-2">2</a>. Terminology .....................................................<a href="#page-2">2</a>
<a href="#section-3">3</a>. Changes to the Handshake Message Contents .......................<a href="#page-2">2</a>
<a href="#section-3.1">3.1</a>. Client Hello ...............................................<a href="#page-2">2</a>
<a href="#section-3.2">3.2</a>. Server Hello ...............................................<a href="#page-3">3</a>
<a href="#section-3.3">3.3</a>. Server Certificate .........................................<a href="#page-3">3</a>
<a href="#section-3.4">3.4</a>. Certificate Request ........................................<a href="#page-4">4</a>
<a href="#section-3.5">3.5</a>. Client Certificate .........................................<a href="#page-5">5</a>
<a href="#section-3.6">3.6</a>. Other Handshake Messages ...................................<a href="#page-5">5</a>
<a href="#section-4">4</a>. Security Considerations .........................................<a href="#page-5">5</a>
<a href="#section-5">5</a>. IANA Considerations .............................................<a href="#page-6">6</a>
<a href="#section-6">6</a>. Acknowledgements ................................................<a href="#page-6">6</a>
<a href="#section-7">7</a>. References ......................................................<a href="#page-6">6</a>
<a href="#section-7.1">7.1</a>. Normative References .......................................<a href="#page-6">6</a>
<a href="#section-7.2">7.2</a>. Informative References .....................................<a href="#page-7">7</a>
<span class="grey">Mavrogiannopoulos Experimental [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc5081">RFC 5081</a> Using OpenPGP Keys November 2007</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
The IETF has two sets of standards for public key certificates, one
set for use of X.509 certificates [<a href="#ref-PKIX" title=""Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile"">PKIX</a>] and one for OpenPGP
certificates [<a href="#ref-OpenPGP" title=""OpenPGP Message Format"">OpenPGP</a>]. At the time of writing, TLS [<a href="#ref-TLS" title=""The TLS Protocol Version 1.1"">TLS</a>] standards
are defined to use only X.509 certificates. This document specifies
a way to negotiate use of OpenPGP certificates for a TLS session, and
specifies how to transport OpenPGP certificates via TLS. The
proposed extensions are backward compatible with the current TLS
specification, so that existing client and server implementations
that make use of X.509 certificates are not affected.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Terminology</span>
The term "OpenPGP key" is used in this document as in the OpenPGP
specification [<a href="#ref-OpenPGP" title=""OpenPGP Message Format"">OpenPGP</a>]. We use the term "OpenPGP certificate" to
refer to OpenPGP keys that are enabled for authentication.
This document uses the same notation and terminology used in the TLS
Protocol specification [<a href="#ref-TLS" title=""The TLS Protocol Version 1.1"">TLS</a>].
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Changes to the Handshake Message Contents</span>
This section describes the changes to the TLS handshake message
contents when OpenPGP certificates are to be used for authentication.
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. Client Hello</span>
In order to indicate the support of multiple certificate types,
clients MUST include an extension of type "cert_type" (see <a href="#section-5">Section 5</a>)
to the extended client hello message. The hello extension mechanism
is described in [<a href="#ref-TLSEXT" title=""Transport Layer Security (TLS) Extensions"">TLSEXT</a>].
This extension carries a list of supported certificate types the
client can use, sorted by client preference. This extension MUST be
omitted if the client only supports X.509 certificates. The
"extension_data" field of this extension contains a
CertificateTypeExtension structure.
<span class="grey">Mavrogiannopoulos Experimental [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc5081">RFC 5081</a> Using OpenPGP Keys November 2007</span>
enum { client, server } ClientOrServerExtension;
enum { X.509(0), OpenPGP(1), (255) } CertificateType;
struct {
select(ClientOrServerExtension) {
case client:
CertificateType certificate_types<1..2^8-1>;
case server:
CertificateType certificate_type;
}
} CertificateTypeExtension;
No new cipher suites are required to use OpenPGP certificates. All
existing cipher suites that support a compatible, with the key, key
exchange method can be used in combination with OpenPGP certificates.
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. Server Hello</span>
If the server receives a client hello that contains the "cert_type"
extension and chooses a cipher suite that requires a certificate,
then two outcomes are possible. The server MUST either select a
certificate type from the certificate_types field in the extended
client hello or terminate the connection with a fatal alert of type
"unsupported_certificate".
The certificate type selected by the server is encoded in a
CertificateTypeExtension structure, which is included in the extended
server hello message using an extension of type "cert_type". Servers
that only support X.509 certificates MAY omit including the
"cert_type" extension in the extended server hello.
<span class="h3"><a class="selflink" id="section-3.3" href="#section-3.3">3.3</a>. Server Certificate</span>
The contents of the certificate message sent from server to client
and vice versa are determined by the negotiated certificate type and
the selected cipher suite's key exchange algorithm.
If the OpenPGP certificate type is negotiated, then it is required to
present an OpenPGP certificate in the certificate message. The
certificate must contain a public key that matches the selected key
exchange algorithm, as shown below.
<span class="grey">Mavrogiannopoulos Experimental [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc5081">RFC 5081</a> Using OpenPGP Keys November 2007</span>
Key Exchange Algorithm OpenPGP Certificate Type
RSA RSA public key that can be used for
encryption.
DHE_DSS DSS public key that can be used for
authentication.
DHE_RSA RSA public key that can be used for
authentication.
An OpenPGP certificate appearing in the certificate message is sent
using the binary OpenPGP format. The certificate MUST contain all
the elements required by Section 11.1 of [<a href="#ref-OpenPGP" title=""OpenPGP Message Format"">OpenPGP</a>].
The option is also available to send an OpenPGP fingerprint, instead
of sending the entire certificate. The process of fingerprint
generation is described in Section 12.2 of [<a href="#ref-OpenPGP" title=""OpenPGP Message Format"">OpenPGP</a>]. The peer shall
respond with a "certificate_unobtainable" fatal alert if the
certificate with the given fingerprint cannot be found. The
"certificate_unobtainable" fatal alert is defined in Section 4 of
[<a href="#ref-TLSEXT" title=""Transport Layer Security (TLS) Extensions"">TLSEXT</a>].
enum {
cert_fingerprint (0), cert (1), (255)
} OpenPGPCertDescriptorType;
opaque OpenPGPCertFingerprint<16..20>;
opaque OpenPGPCert<0..2^24-1>;
struct {
OpenPGPCertDescriptorType descriptorType;
select (descriptorType) {
case cert_fingerprint: OpenPGPCertFingerprint;
case cert: OpenPGPCert;
}
} Certificate;
<span class="h3"><a class="selflink" id="section-3.4" href="#section-3.4">3.4</a>. Certificate Request</span>
The semantics of this message remain the same as in the TLS
specification. However, if this message is sent, and the negotiated
certificate type is OpenPGP, the "certificate_authorities" list MUST
be empty.
<span class="grey">Mavrogiannopoulos Experimental [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc5081">RFC 5081</a> Using OpenPGP Keys November 2007</span>
<span class="h3"><a class="selflink" id="section-3.5" href="#section-3.5">3.5</a>. Client Certificate</span>
This message is only sent in response to the certificate request
message. The client certificate message is sent using the same
formatting as the server certificate message, and it is also required
to present a certificate that matches the negotiated certificate
type. If OpenPGP certificates have been selected and no certificate
is available from the client, then a certificate structure that
contains an empty OpenPGPCert vector MUST be sent. The server SHOULD
respond with a "handshake_failure" fatal alert if client
authentication is required.
<span class="h3"><a class="selflink" id="section-3.6" href="#section-3.6">3.6</a>. Other Handshake Messages</span>
All the other handshake messages are identical to the TLS
specification.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Security Considerations</span>
All security considerations discussed in [<a href="#ref-TLS" title=""The TLS Protocol Version 1.1"">TLS</a>], [<a href="#ref-TLSEXT" title=""Transport Layer Security (TLS) Extensions"">TLSEXT</a>], and
[<a href="#ref-OpenPGP" title=""OpenPGP Message Format"">OpenPGP</a>] apply to this document. Considerations about the use of
the web of trust or identity and certificate verification procedure
are outside the scope of this document. These are considered issues
to be handled by the application layer protocols.
The protocol for certificate type negotiation is identical in
operation to ciphersuite negotiation of the [<a href="#ref-TLS" title=""The TLS Protocol Version 1.1"">TLS</a>] specification with
the addition of default values when the extension is omitted. Since
those omissions have a unique meaning and the same protection is
applied to the values as with ciphersuites, it is believed that the
security properties of this negotiation are the same as with
ciphersuite negotiation.
When using OpenPGP fingerprints instead of the full certificates, the
discussion in Section 6.3 of [<a href="#ref-TLSEXT" title=""Transport Layer Security (TLS) Extensions"">TLSEXT</a>] for "Client Certificate URLs"
applies, especially when external servers are used to retrieve keys.
However, a major difference is that although the
"client_certificate_url" extension allows identifying certificates
without including the certificate hashes, this is not possible in the
protocol proposed here. In this protocol, the certificates, when not
sent, are always identified by their fingerprint, which serves as a
cryptographic hash of the certificate (see Section 12.2 of
[<a href="#ref-OpenPGP" title=""OpenPGP Message Format"">OpenPGP</a>]).
The information that is available to participating parties and
eavesdroppers (when confidentiality is not available through a
previous handshake) is the number and the types of certificates they
hold, plus the contents of certificates.
<span class="grey">Mavrogiannopoulos Experimental [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc5081">RFC 5081</a> Using OpenPGP Keys November 2007</span>
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. IANA Considerations</span>
This document defines a new TLS extension, "cert_type", assigned a
value of 9 from the TLS ExtensionType registry defined in [<a href="#ref-TLSEXT" title=""Transport Layer Security (TLS) Extensions"">TLSEXT</a>].
This value is used as the extension number for the extensions in both
the client hello message and the server hello message. The new
extension type is used for certificate type negotiation.
The "cert_type" extension contains an 8-bit CertificateType field,
for which a new registry, named "TLS Certificate Types", is
established in this document, to be maintained by IANA. The registry
is segmented in the following way:
1. Values 0 (X.509) and 1 (OpenPGP) are defined in this document.
2. Values from 2 through 223 decimal inclusive are assigned via IETF
Consensus [<a href="./rfc2434" title="">RFC2434</a>].
3. Values from 224 decimal through 255 decimal inclusive are
reserved for Private Use [<a href="./rfc2434" title="">RFC2434</a>].
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Acknowledgements</span>
This document was based on earlier work made by Will Price and
Michael Elkins.
The author wishes to thank Werner Koch, David Taylor, Timo Schulz,
Pasi Eronen, Jon Callas, Stephen Kent, Robert Sparks, and Hilarie
Orman for their suggestions on improving this document.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. References</span>
<span class="h3"><a class="selflink" id="section-7.1" href="#section-7.1">7.1</a>. Normative References</span>
[<a id="ref-TLS">TLS</a>] Dierks, T. and E. Rescorla, "The TLS Protocol Version
1.1", <a href="./rfc4346">RFC 4346</a>, April 2006.
[<a id="ref-OpenPGP">OpenPGP</a>] Callas, J., Donnerhacke, L., Finey, H., Shaw, D., and R.
Thayer, "OpenPGP Message Format", <a href="./rfc4880">RFC 4880</a>, November 2007.
[<a id="ref-TLSEXT">TLSEXT</a>] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J.,
and T. Wright, "Transport Layer Security (TLS)
Extensions", <a href="./rfc4366">RFC 4366</a>, April 2006.
[<a id="ref-RFC2434">RFC2434</a>] Narten, T. and H. Alvestrand, "Guidelines for Writing an
IANA Considerations Section in RFCs", <a href="./rfc2434">RFC 2434</a>,
October 1998.
<span class="grey">Mavrogiannopoulos Experimental [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc5081">RFC 5081</a> Using OpenPGP Keys November 2007</span>
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="./rfc2119">RFC 2119</a>, March 1997.
<span class="h3"><a class="selflink" id="section-7.2" href="#section-7.2">7.2</a>. Informative References</span>
[<a id="ref-PKIX">PKIX</a>] Housley, R., Ford, W., Polk, W., and D. Solo, "Internet
X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile", <a href="./rfc3280">RFC 3280</a>,
April 2002.
Author's Address
Nikos Mavrogiannopoulos
Independent
Arkadias 8
Halandri, Attiki 15234
Greece
EMail: nmav@gnutls.org
URI: <a href="http://www.gnutls.org/">http://www.gnutls.org/</a>
<span class="grey">Mavrogiannopoulos Experimental [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc5081">RFC 5081</a> Using OpenPGP Keys November 2007</span>
Full Copyright Statement
Copyright (C) The IETF Trust (2007).
This document is subject to the rights, licenses and restrictions
contained in <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a>, and except as set forth therein, the authors
retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and <a href="https://www.rfc-editor.org/bcp/bcp79">BCP 79</a>.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
<a href="http://www.ietf.org/ipr">http://www.ietf.org/ipr</a>.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.
Mavrogiannopoulos Experimental [Page 8]
</pre>
|