1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981
|
<pre>Network Working Group S. Turner
Request for Comments: 5275 IECA
Category: Standards Track June 2008
<span class="h1">CMS Symmetric Key Management and Distribution</span>
Status of This Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Abstract
This document describes a mechanism to manage (i.e., set up,
distribute, and rekey) keys used with symmetric cryptographic
algorithms. Also defined herein is a mechanism to organize users
into groups to support distribution of encrypted content using
symmetric cryptographic algorithms. The mechanism uses the
Cryptographic Message Syntax (CMS) protocol and Certificate
Management over CMS (CMC) protocol to manage the symmetric keys. Any
member of the group can then later use this distributed shared key to
decrypt other CMS encrypted objects with the symmetric key. This
mechanism has been developed to support Secure/Multipurpose Internet
Mail Extensions (S/MIME) Mail List Agents (MLAs).
<span class="grey">Turner Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
Table of Contents
<a href="#section-1">1</a>. Introduction ....................................................<a href="#page-4">4</a>
<a href="#section-1.1">1.1</a>. Conventions Used in This Document ..........................<a href="#page-4">4</a>
<a href="#section-1.2">1.2</a>. Applicability to E-mail ....................................<a href="#page-5">5</a>
<a href="#section-1.3">1.3</a>. Applicability to Repositories ..............................<a href="#page-5">5</a>
<a href="#section-1.4">1.4</a>. Using the Group Key ........................................<a href="#page-5">5</a>
<a href="#section-2">2</a>. Architecture ....................................................<a href="#page-6">6</a>
<a href="#section-3">3</a>. Protocol Interactions ...........................................<a href="#page-7">7</a>
<a href="#section-3.1">3.1</a>. Control Attributes .........................................<a href="#page-8">8</a>
<a href="#section-3.1.1">3.1.1</a>. GL Use KEK .........................................<a href="#page-10">10</a>
<a href="#section-3.1.2">3.1.2</a>. Delete GL ..........................................<a href="#page-14">14</a>
<a href="#section-3.1.3">3.1.3</a>. Add GL Member ......................................<a href="#page-14">14</a>
<a href="#section-3.1.4">3.1.4</a>. Delete GL Member ...................................<a href="#page-15">15</a>
<a href="#section-3.1.5">3.1.5</a>. Rekey GL ...........................................<a href="#page-16">16</a>
<a href="#section-3.1.6">3.1.6</a>. Add GL Owner .......................................<a href="#page-16">16</a>
<a href="#section-3.1.7">3.1.7</a>. Remove GL Owner ....................................<a href="#page-17">17</a>
<a href="#section-3.1.8">3.1.8</a>. GL Key Compromise ..................................<a href="#page-17">17</a>
<a href="#section-3.1.9">3.1.9</a>. GL Key Refresh .....................................<a href="#page-18">18</a>
<a href="#section-3.1.10">3.1.10</a>. GLA Query Request and Response ....................<a href="#page-18">18</a>
<a href="#section-3.1.10.1">3.1.10.1</a>. GLA Query Request ........................<a href="#page-18">18</a>
<a href="#section-3.1.10.2">3.1.10.2</a>. GLA Query Response .......................<a href="#page-19">19</a>
<a href="#section-3.1.10.3">3.1.10.3</a>. Request and Response Types ...............<a href="#page-19">19</a>
<a href="#section-3.1.11">3.1.11</a>. Provide Cert ......................................<a href="#page-19">19</a>
<a href="#section-3.1.12">3.1.12</a>. Update Cert .......................................<a href="#page-20">20</a>
<a href="#section-3.1.13">3.1.13</a>. GL Key ............................................<a href="#page-21">21</a>
<a href="#section-3.2">3.2</a>. Use of CMC, CMS, and PKIX .................................<a href="#page-23">23</a>
<a href="#section-3.2.1">3.2.1</a>. Protection Layers ..................................<a href="#page-23">23</a>
<a href="#section-3.2.1.1">3.2.1.1</a>. Minimum Protection ........................<a href="#page-23">23</a>
<a href="#section-3.2.1.2">3.2.1.2</a>. Additional Protection .....................<a href="#page-24">24</a>
<a href="#section-3.2.2">3.2.2</a>. Combining Requests and Responses ...................<a href="#page-24">24</a>
<a href="#section-3.2.3">3.2.3</a>. GLA Generated Messages .............................<a href="#page-26">26</a>
<a href="#section-3.2.4">3.2.4</a>. CMC Control Attributes and CMS Signed Attributes ...<a href="#page-27">27</a>
<a href="#section-3.2.4.1">3.2.4.1</a>. Using cMCStatusInfoExt ....................<a href="#page-27">27</a>
<a href="#section-3.2.4.2">3.2.4.2</a>. Using transactionId .......................<a href="#page-30">30</a>
<a href="#section-3.2.4.3">3.2.4.3</a>. Using Nonces and signingTime ..............<a href="#page-30">30</a>
3.2.4.4. CMC and CMS Attribute Support
Requirements ..............................<a href="#page-31">31</a>
<a href="#section-3.2.5">3.2.5</a>. Resubmitted GL Member Messages .....................<a href="#page-31">31</a>
<a href="#section-3.2.6">3.2.6</a>. PKIX Certificate and CRL Profile ...................<a href="#page-31">31</a>
<a href="#section-4">4</a>. Administrative Messages ........................................<a href="#page-32">32</a>
<a href="#section-4.1">4.1</a>. Assign KEK to GL ..........................................<a href="#page-32">32</a>
<a href="#section-4.2">4.2</a>. Delete GL from GLA ........................................<a href="#page-36">36</a>
<a href="#section-4.3">4.3</a>. Add Members to GL .........................................<a href="#page-38">38</a>
<a href="#section-4.3.1">4.3.1</a>. GLO Initiated Additions ............................<a href="#page-39">39</a>
<a href="#section-4.3.2">4.3.2</a>. Prospective Member Initiated Additions .............<a href="#page-47">47</a>
<a href="#section-4.4">4.4</a>. Delete Members from GL ....................................<a href="#page-49">49</a>
<a href="#section-4.4.1">4.4.1</a>. GLO Initiated Deletions ............................<a href="#page-50">50</a>
<span class="grey">Turner Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
<a href="#section-4.4.2">4.4.2</a>. Member Initiated Deletions .........................<a href="#page-56">56</a>
<a href="#section-4.5">4.5</a>. Request Rekey of GL .......................................<a href="#page-57">57</a>
<a href="#section-4.5.1">4.5.1</a>. GLO Initiated Rekey Requests .......................<a href="#page-59">59</a>
<a href="#section-4.5.2">4.5.2</a>. GLA Initiated Rekey Requests .......................<a href="#page-62">62</a>
<a href="#section-4.6">4.6</a>. Change GLO ................................................<a href="#page-63">63</a>
<a href="#section-4.7">4.7</a>. Indicate KEK Compromise ...................................<a href="#page-65">65</a>
<a href="#section-4.7.1">4.7.1</a>. GL Member Initiated KEK Compromise Message .........<a href="#page-66">66</a>
<a href="#section-4.7.2">4.7.2</a>. GLO Initiated KEK Compromise Message ...............<a href="#page-67">67</a>
<a href="#section-4.8">4.8</a>. Request KEK Refresh .......................................<a href="#page-69">69</a>
<a href="#section-4.9">4.9</a>. GLA Query Request and Response ............................<a href="#page-70">70</a>
<a href="#section-4.10">4.10</a>. Update Member Certificate ................................<a href="#page-73">73</a>
<a href="#section-4.10.1">4.10.1</a>. GLO and GLA Initiated Update Member Certificate ...<a href="#page-73">73</a>
<a href="#section-4.10.2">4.10.2</a>. GL Member Initiated Update Member Certificate .....<a href="#page-75">75</a>
<a href="#section-5">5</a>. Distribution Message ...........................................<a href="#page-77">77</a>
<a href="#section-5.1">5.1</a>. Distribution Process ......................................<a href="#page-78">78</a>
<a href="#section-6">6</a>. Algorithms .....................................................<a href="#page-79">79</a>
<a href="#section-6.1">6.1</a>. KEK Generation Algorithm ..................................<a href="#page-79">79</a>
<a href="#section-6.2">6.2</a>. Shared KEK Wrap Algorithm .................................<a href="#page-79">79</a>
<a href="#section-6.3">6.3</a>. Shared KEK Algorithm ......................................<a href="#page-79">79</a>
<a href="#section-7">7</a>. Message Transport ..............................................<a href="#page-80">80</a>
<a href="#section-8">8</a>. Security Considerations ........................................<a href="#page-80">80</a>
<a href="#section-9">9</a>. Acknowledgements ...............................................<a href="#page-81">81</a>
<a href="#section-10">10</a>. References ....................................................<a href="#page-81">81</a>
<a href="#section-10.1">10.1</a>. Normative References .....................................<a href="#page-81">81</a>
<a href="#section-10.2">10.2</a>. Informative References ...................................<a href="#page-82">82</a>
<a href="#appendix-A">Appendix A</a>. ASN.1 Module ..........................................<a href="#page-83">83</a>
<span class="grey">Turner Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
With the ever-expanding use of secure electronic communications
(e.g., S/MIME [<a href="#ref-MSG" title=""Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 3.1 Message Specification"">MSG</a>]), users require a mechanism to distribute
encrypted data to multiple recipients (i.e., a group of users).
There are essentially two ways to encrypt the data for recipients:
using asymmetric algorithms with public key certificates (PKCs) or
symmetric algorithms with symmetric keys.
With asymmetric algorithms, the originator forms an originator-
determined content-encryption key (CEK) and encrypts the content,
using a symmetric algorithm. Then, using an asymmetric algorithm and
the recipient's PKCs, the originator generates per-recipient
information that either (a) encrypts the CEK for a particular
recipient (ktri RecipientInfo CHOICE) or (b) transfers sufficient
parameters to enable a particular recipient to independently generate
the same KEK (kari RecipientInfo CHOICE). If the group is large,
processing of the per-recipient information may take quite some time,
not to mention the time required to collect and validate the PKCs for
each of the recipients. Each recipient identifies its per-recipient
information and uses the private key associated with the public key
of its PKC to decrypt the CEK and hence gain access to the encrypted
content.
With symmetric algorithms, the origination process is slightly
different. Instead of using PKCs, the originator uses a previously
distributed secret key-encryption key (KEK) to encrypt the CEK (kekri
RecipientInfo CHOICE). Only one copy of the encrypted CEK is
required because all the recipients already have the shared KEK
needed to decrypt the CEK and hence gain access to the encrypted
content.
The techniques to protect the shared KEK are beyond the scope of this
document. Only the members of the list and the key manager should
have the KEK in order to maintain confidentiality. Access control to
the information protected by the KEK is determined by the entity that
encrypts the information, as all members of the group have access.
If the entity performing the encryption wants to ensure that some
subset of the group does not gain access to the information, either a
different KEK should be used (shared only with this smaller group) or
asymmetric algorithms should be used.
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. Conventions Used in This Document</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>
[<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
<span class="grey">Turner Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
<span class="h3"><a class="selflink" id="section-1.2" href="#section-1.2">1.2</a>. Applicability to E-mail</span>
One primary audience for this distribution mechanism is e-mail.
Distribution lists, sometimes referred to as mail lists, support the
distribution of messages to recipients subscribed to the mail list.
There are two models for how the mail list can be used. If the
originator is a member of the mail list, the originator sends
messages encrypted with the shared KEK to the mail list (e.g.,
listserv or majordomo) and the message is distributed to the mail
list members. If the originator is not a member of the mail list
(does not have the shared KEK), the originator sends the message
(encrypted for the MLA) to the Mail List Agent (MLA), and then the
MLA uses the shared KEK to encrypt the message for the members. In
either case, the recipients of the mail list use the previously
distributed-shared KEK to decrypt the message.
<span class="h3"><a class="selflink" id="section-1.3" href="#section-1.3">1.3</a>. Applicability to Repositories</span>
Objects can also be distributed via a repository (e.g., Lightweight
Directory Access Protocol (LDAP) servers, X.500 Directory System
Agents (DSAs), Web-based servers). If an object is stored in a
repository encrypted with a symmetric key algorithm, anyone with the
shared KEK and access to that object can then decrypt that object.
The encrypted object and the encrypted, shared KEK can be stored in
the repository.
<span class="h3"><a class="selflink" id="section-1.4" href="#section-1.4">1.4</a>. Using the Group Key</span>
This document was written with three specific scenarios in mind: two
supporting Mail List Agents and one for general message distribution.
Scenario 1 depicts the originator sending a public key (PK) protected
message to an MLA who then uses the shared KEK(s) to redistribute the
message to the members of the list. Scenario 2 depicts the
originator sending a shared KEK protected message to an MLA who then
redistributes the message to the members of the list (the MLA only
adds additional recipients). The key used by the originator could be
a key shared either amongst all recipients or just between the member
and the MLA. Note that if the originator uses a key shared only with
the MLA, then the MLA will need to decrypt the message and reencrypt
the message for the list recipients. Scenario 3 shows an originator
sending a shared KEK protected message to a group of recipients
without an intermediate MLA.
<span class="grey">Turner Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
+----> +----> +---->
PK +-----+ S | S +-----+ S | S |
----> | MLA | --+----> ----> | MLA | --+----> ----+---->
+-----+ | +-----+ | |
+----> +----> +---->
Scenario 1 Scenario 2 Scenario 3
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Architecture</span>
Figure 1 depicts the architecture to support symmetric key
distribution. The Group List Agent (GLA) supports two distinct
functions with two different agents:
- The Key Management Agent (KMA), which is responsible for
generating the shared KEKs.
- The Group Management Agent (GMA), which is responsible for
managing the Group List (GL) to which the shared KEKs are
distributed.
+----------------------------------------------+
| Group List Agent | +-------+
| +------------+ + -----------------------+ | | Group |
| | Key | | Group Management Agent | |<-->| List |
| | Management |<-->| +------------+ | | | Owner |
| | Agent | | | Group List | | | +-------+
| +------------+ | +------------+ | |
| | / | \ | |
| +------------------------+ |
+----------------------------------------------+
/ | \
/ | \
+----------+ +---------+ +----------+
| Member 1 | | ... | | Member n |
+----------+ +---------+ +----------+
Figure 1 - Key Distribution Architecture
A GLA may support multiple KMAs. A GLA in general supports only one
GMA, but the GMA may support multiple GLs. Multiple KMAs may support
a GMA in the same fashion as GLAs support multiple KMAs. Assigning a
particular KMA to a GL is beyond the scope of this document.
Modeling real-world GL implementations shows that there are very
restrictive GLs, where a human determines GL membership, and very
open GLs, where there are no restrictions on GL membership. To
support this spectrum, the mechanism described herein supports both
<span class="grey">Turner Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
managed (i.e., where access control is applied) and unmanaged (i.e.,
where no access control is applied) GLs. The access control
mechanism for managed lists is beyond the scope of this document.
Note: If the distribution for the list is performed by an entity
other than the originator (e.g., an MLA distributing a mail message),
this entity can also enforce access control rules.
In either case, the GL must initially be constructed by an entity
hereafter called the Group List Owner (GLO). There may be multiple
entities who 'own' the GL and who are allowed to make changes to the
GL's properties or membership. The GLO determines if the GL will be
managed or unmanaged and is the only entity that may delete the GL.
GLO(s) may or may not be GL members. GLO(s) may also set up lists
that are closed, where the GLO solely determines GL membership.
Though Figure 1 depicts the GLA as encompassing both the KMA and GMA
functions, the two functions could be supported by the same entity or
they could be supported by two different entities. If two entities
are used, they could be located on one or two platforms. There is
however a close relationship between the KMA and GMA functions. If
the GMA stores all information pertaining to the GLs and the KMA
merely generates keys, a corrupted GMA could cause havoc. To protect
against a corrupted GMA, the KMA would be forced to double check the
requests it receives to ensure that the GMA did not tamper with them.
These duplicative checks blur the functionality of the two components
together. For this reason, the interactions between the KMA and GMA
are beyond the scope of this document.
Proprietary mechanisms may be used to separate the functions by
strengthening the trust relationship between the two entities.
Henceforth, the distinction between the two agents is not discussed
further; the term GLA will be used to address both functions. It
should be noted that a corrupt GLA can always cause havoc.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Protocol Interactions</span>
There are existing mechanisms (e.g., listserv and majordomo) to
manage GLs; however, this document does not address securing these
mechanisms, as they are not standardized. Instead, it defines
protocol interactions, as depicted in Figure 2, used by the GL
members, GLA, and GLO(s) to manage GLs and distribute shared KEKs.
The interactions have been divided into administration messages and
distribution messages. The administrative messages are the request
and response messages needed to set up the GL, delete the GL, add
members to the GL, delete members of the GL, request a group rekey,
add owners to the GL, remove owners of the GL, indicate a group key
compromise, refresh a group key, interrogate the GLA, and update
members' and owners' public key certificates. The distribution
<span class="grey">Turner Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
messages are the messages that distribute the shared KEKs. The
following sections describe the ASN.1 for both the administration and
distribution messages. <a href="#section-4">Section 4</a> describes how to use the
administration messages, and <a href="#section-5">Section 5</a> describes how to use the
distribution messages.
+-----+ +----------+
| GLO | <---+ +----> | Member 1 |
+-----+ | | +----------+
| |
+-----+ <------+ | +----------+
| GLA | <-------------+----> | ... |
+-----+ | +----------+
|
| +----------+
+----> | Member n |
+----------+
Figure 2 - Protocol Interactions
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. Control Attributes</span>
To avoid creating an entirely new protocol, the Certificate
Management over CMS (CMC) protocol was chosen as the foundation of
this protocol. The main reason for the choice was the layering
aspect provided by CMC where one or more control attributes are
included in message, protected with CMS, to request or respond to a
desired action. The CMC PKIData structure is used for requests, and
the CMC PKIResponse structure is used for responses. The content-
types PKIData and PKIResponse are then encapsulated in CMS's
SignedData or EnvelopedData, or a combination of the two (see <a href="#section-3.2">Section</a>
<a href="#section-3.2">3.2</a>). The following are the control attributes defined in this
document:
<span class="grey">Turner Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
Control
Attribute OID Syntax
------------------- ----------- -----------------
glUseKEK id-skd 1 GLUseKEK
glDelete id-skd 2 GeneralName
glAddMember id-skd 3 GLAddMember
glDeleteMember id-skd 4 GLDeleteMember
glRekey id-skd 5 GLRekey
glAddOwner id-skd 6 GLOwnerAdministration
glRemoveOwner id-skd 7 GLOwnerAdministration
glkCompromise id-skd 8 GeneralName
glkRefresh id-skd 9 GLKRefresh
glaQueryRequest id-skd 11 GLAQueryRequest
glaQueryResponse id-skd 12 GLAQueryResponse
glProvideCert id-skd 13 GLManageCert
glUpdateCert id-skd 14 GLManageCert
glKey id-skd 15 GLKey
In the following conformance tables, the column headings have the
following meanings: O for originate, R for receive, and F for
forward. There are three types of implementations: GLOs, GLAs, and
GL members. The GLO is an optional component, hence all GLO O and
GLO R messages are optional, and GLA F messages are optional. The
first table includes messages that conformant implementations MUST
support. The second table includes messages that MAY be implemented.
The second table should be interpreted as follows: if the control
attribute is implemented by a component, then it must be implemented
as indicated. For example, if a GLA is implemented that supports the
glAddMember control attribute, then it MUST support receiving the
glAddMember message. Note that "-" means not applicable.
Required
Implementation Requirement | Control
GLO | GLA | GL Member | Attribute
O R | O R F | O R |
------- | ----------------- | --------- | ----------
MAY - | MUST - MAY | - MUST | glProvideCert
MAY MAY | - MUST MAY | MUST - | glUpdateCert
- - | MUST - - | - MUST | glKey
<span class="grey">Turner Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
Optional
Implementation Requirement | Control
GLO | GLA | GL Member | Attribute
O R | O R F | O R |
------- | ----------------- | --------- | ----------
MAY - | - MAY - | - - | glUseKEK
MAY - | - MAY - | - - | glDelete
MAY MAY | - MUST MAY | MUST - | glAddMember
MAY MAY | - MUST MAY | MUST - | glDeleteMember
MAY - | - MAY - | - - | glRekey
MAY - | - MAY - | - - | glAddOwner
MAY - | - MAY - | - - | glRemoveOwner
MAY MAY | - MUST MAY | MUST - | glkCompromise
MAY - | - MUST - | MUST - | glkRefresh
MAY - | - SHOULD - | MAY - | glaQueryRequest
- MAY | SHOULD - - | - MAY | glaQueryResponse
glaQueryResponse is carried in the CMC PKIResponse content-type, all
other control attributes are carried in the CMC PKIData content-type.
The exception is glUpdateCert, which can be carried in either PKIData
or PKIResponse.
Success and failure messages use CMC (see <a href="#section-3.2.4">Section 3.2.4</a>).
<span class="h4"><a class="selflink" id="section-3.1.1" href="#section-3.1.1">3.1.1</a>. GL Use KEK</span>
The GLO uses glUseKEK to request that a shared KEK be assigned to a
GL. glUseKEK messages MUST be signed by the GLO. The glUseKEK
control attribute has the syntax GLUseKEK:
GLUseKEK ::= SEQUENCE {
glInfo GLInfo,
glOwnerInfo SEQUENCE SIZE (1..MAX) OF GLOwnerInfo,
glAdministration GLAdministration DEFAULT 1,
glKeyAttributes GLKeyAttributes OPTIONAL }
GLInfo ::= SEQUENCE {
glName GeneralName,
glAddress GeneralName }
GLOwnerInfo ::= SEQUENCE {
glOwnerName GeneralName,
glOwnerAddress GeneralName,
certificate Certificates OPTIONAL }
<span class="grey">Turner Standards Track [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
Certificates ::= SEQUENCE {
pKC [0] Certificate OPTIONAL,
-- See [<a href="#ref-PROFILE" title=""Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile"">PROFILE</a>]
aC [1] SEQUENCE SIZE (1.. MAX) OF
AttributeCertificate OPTIONAL,
-- See [<a href="#ref-ACPROF" title=""An Internet Attribute Certificate Profile for Authorization"">ACPROF</a>]
certPath [2] CertificateSet OPTIONAL }
-- From [<a href="#ref-CMS" title=""Cryptographic Message Syntax (CMS)"">CMS</a>]
-- CertificateSet and CertificateChoices are included only
-- for illustrative purposes as they are imported from [<a href="#ref-CMS" title=""Cryptographic Message Syntax (CMS)"">CMS</a>].
CertificateSet ::= SET SIZE (1..MAX) OF CertificateChoices
-- CertificateChoices supports X.509 public key certificates in
-- certificates and v2 attribute certificates in v2AttrCert.
GLAdministration ::= INTEGER {
unmanaged (0),
managed (1),
closed (2) }
GLKeyAttributes ::= SEQUENCE {
rekeyControlledByGLO [0] BOOLEAN DEFAULT FALSE,
recipientsNotMutuallyAware [1] BOOLEAN DEFAULT TRUE,
duration [2] INTEGER DEFAULT 0,
generationCounter [3] INTEGER DEFAULT 2,
requestedAlgorithm [4] AlgorithmIdentifier
DEFAULT { id-aes128-wrap } }
The fields in GLUseKEK have the following meaning:
- glInfo indicates the name of the GL in glName and the address of
the GL in glAddress. The glName and glAddress can be the same,
but this is not always the case. Both the name and address MUST
be unique for a given GLA.
- glOwnerInfo indicates:
-- glOwnerName indicates the name of the owner of the GL. One
of the names in glOwnerName MUST match one of the names in
the certificate (either the subject distinguished name or one
of the subject alternative names) used to sign this
SignedData.PKIData creating the GL (i.e., the immediate
signer).
-- glOwnerAddress indicates the GL owner's address.
<span class="grey">Turner Standards Track [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
-- certificates MAY be included. It contains the following
three fields:
--- certificates.pKC includes the encryption certificate for
the GLO. It will be used to encrypt responses for the
GLO.
--- certificates.aC MAY be included to convey any attribute
certificate (see [<a href="#ref-ACPROF" title=""An Internet Attribute Certificate Profile for Authorization"">ACPROF</a>]) associated with the
encryption certificate of the GLO included in
certificates.pKC.
--- certificates.certPath MAY also be included to convey
certificates that might aid the recipient in
constructing valid certification paths for the
certificate provided in certificates.pKC and the
attribute certificates provided in certificates.aC.
Theses certificates are optional because they might
already be included elsewhere in the message (e.g., in
the outer CMS layer).
-- glAdministration indicates how the GL ought to be
administered. The default is for the list to be managed.
Three values are supported for glAdministration:
--- Unmanaged - When the GLO sets glAdministration to
unmanaged, it is allowing prospective members to request
addition and deletion from the GL without GLO
intervention.
--- Managed - When the GLO sets glAdministration to managed,
it is allowing prospective members to request addition
and deletion from the GL, but the request is redirected
by the GLA to GLO for review. The GLO makes the
determination as to whether to honor the request.
--- Closed - When the GLO sets glAdministration to closed,
it is not allowing prospective members to request
addition or deletion from the GL. The GLA will only
accept glAddMember and glDeleteMember requests from the
GLO.
-- glKeyAttributes indicates the attributes the GLO wants the
GLA to assign to the shared KEK. If this field is omitted,
GL rekeys will be controlled by the GLA, the recipients are
allowed to know about one another, the algorithm will be
AES-128 (see <a href="#section-7">Section 7</a>), the shared KEK will be valid for a
calendar month (i.e., first of the month until the last day
<span class="grey">Turner Standards Track [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
of the month), and two shared KEKs will be distributed
initially. The fields in glKeyAttributes have the following
meaning:
--- rekeyControlledByGLO indicates whether the GL rekey
messages will be generated by the GLO or by the GLA.
The default is for the GLA to control rekeys. If GL
rekey is controlled by the GLA, the GL will continue to
be rekeyed until the GLO deletes the GL or changes the
GL rekey to be GLO controlled.
--- recipientsNotMutuallyAware indicates that the GLO wants
the GLA to distribute the shared KEK individually for
each of the GL members (i.e., a separate glKey message
is sent to each recipient). The default is for separate
glKey message not to be required.
Note: This supports lists where one member does not know
the identities of the other members. For example, a
list is configured granting submit permissions to only
one member. All other members are 'listening'. The
security policy of the list does not allow the members
to know who else is on the list. If a glKey is
constructed for all of the GL members, information about
each of the members may be derived from the information
in RecipientInfos.
To make sure the glkey message does not divulge
information about the other recipients, a separate glKey
message would be sent to each GL member.
--- duration indicates the length of time (in days) during
which the shared KEK is considered valid. The value
zero (0) indicates that the shared KEK is valid for a
calendar month in the UTC Zulu time zone. For example,
if the duration is zero (0), if the GL shared KEK is
requested on July 24, the first key will be valid until
the end of July and the next key will be valid for the
entire month of August. If the value is not zero (0),
the shared KEK will be valid for the number of days
indicated by the value. For example, if the value of
duration is seven (7) and the shared KEK is requested on
Monday but not generated until Tuesday (13 May 2008);
the shared KEKs will be valid from Tuesday (13 May 2008)
to Tuesday (20 May 2008). The exact time of the day is
determined when the key is generated.
<span class="grey">Turner Standards Track [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
--- generationCounter indicates the number of keys the GLO
wants the GLA to distribute. To ensure uninterrupted
function of the GL, two (2) shared KEKs at a minimum
MUST be initially distributed. The second shared KEK is
distributed with the first shared KEK, so that when the
first shared KEK is no longer valid the second key can
be used. If the GLA controls rekey, then it also
indicates the number of shared KEKs the GLO wants
outstanding at any one time. See Sections <a href="#section-4.5">4.5</a> and <a href="#section-5">5</a> for
more on rekey.
--- requestedAlgorithm indicates the algorithm and any
parameters the GLO wants the GLA to use with the shared
KEK. The parameters are conveyed via the
SMIMECapabilities attribute (see [<a href="#ref-MSG" title=""Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 3.1 Message Specification"">MSG</a>]). See <a href="#section-6">Section 6</a>
for more on algorithms.
<span class="h4"><a class="selflink" id="section-3.1.2" href="#section-3.1.2">3.1.2</a>. Delete GL</span>
GLOs use glDelete to request that a GL be deleted from the GLA. The
glDelete control attribute has the syntax GeneralName. The glDelete
message MUST be signed by the GLO. The name of the GL to be deleted
is included in GeneralName:
DeleteGL ::= GeneralName
<span class="h4"><a class="selflink" id="section-3.1.3" href="#section-3.1.3">3.1.3</a>. Add GL Member</span>
GLOs use the glAddMember to request addition of new members, and
prospective GL members use the glAddMember to request their own
addition to the GL. The glAddMember message MUST be signed by either
the GLO or the prospective GL member. The glAddMember control
attribute has the syntax GLAddMember:
GLAddMember ::= SEQUENCE {
glName GeneralName,
glMember GLMember }
GLMember ::= SEQUENCE {
glMemberName GeneralName,
glMemberAddress GeneralName OPTIONAL,
certificates Certificates OPTIONAL }
The fields in GLAddMembers have the following meaning:
- glName indicates the name of the GL to which the member should be
added.
<span class="grey">Turner Standards Track [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
- glMember indicates the particulars for the GL member. Both of
the following fields must be unique for a given GL:
-- glMemberName indicates the name of the GL member.
-- glMemberAddress indicates the GL member's address. It MUST
be included.
Note: In some instances, the glMemberName and glMemberAddress
may be the same, but this is not always the case.
-- certificates MUST be included. It contains the following
three fields:
--- certificates.pKC includes the member's encryption
certificate. It will be used, at least initially, to
encrypt the shared KEK for that member. If the message
is generated by a prospective GL member, the pKC MUST be
included. If the message is generated by a GLO, the pKC
SHOULD be included.
--- certificates.aC MAY be included to convey any attribute
certificate (see [<a href="#ref-ACPROF" title=""An Internet Attribute Certificate Profile for Authorization"">ACPROF</a>]) associated with the member's
encryption certificate.
--- certificates.certPath MAY also be included to convey
certificates that might aid the recipient in
constructing valid certification paths for the
certificate provided in certificates.pKC and the
attribute certificates provided in certificates.aC.
These certificates are optional because they might
already be included elsewhere in the message (e.g., in
the outer CMS layer).
<span class="h4"><a class="selflink" id="section-3.1.4" href="#section-3.1.4">3.1.4</a>. Delete GL Member</span>
GLOs use the glDeleteMember to request deletion of GL members, and GL
members use the glDeleteMember to request their own removal from the
GL. The glDeleteMember message MUST be signed by either the GLO or
the GL member. The glDeleteMember control attribute has the syntax
GLDeleteMember:
GLDeleteMember ::= SEQUENCE {
glName GeneralName,
glMemberToDelete GeneralName }
<span class="grey">Turner Standards Track [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
The fields in GLDeleteMembers have the following meaning:
- glName indicates the name of the GL from which the member should
be removed.
- glMemberToDelete indicates the name or address of the member to
be deleted.
<span class="h4"><a class="selflink" id="section-3.1.5" href="#section-3.1.5">3.1.5</a>. Rekey GL</span>
GLOs use the glRekey to request a GL rekey. The glRekey message MUST
be signed by the GLO. The glRekey control attribute has the syntax
GLRekey:
GLRekey ::= SEQUENCE {
glName GeneralName,
glAdministration GLAdministration OPTIONAL,
glNewKeyAttributes GLNewKeyAttributes OPTIONAL,
glRekeyAllGLKeys BOOLEAN OPTIONAL }
GLNewKeyAttributes ::= SEQUENCE {
rekeyControlledByGLO [0] BOOLEAN OPTIONAL,
recipientsNotMutuallyAware [1] BOOLEAN OPTIONAL,
duration [2] INTEGER OPTIONAL,
generationCounter [3] INTEGER OPTIONAL,
requestedAlgorithm [4] AlgorithmIdentifier OPTIONAL }
The fields in GLRekey have the following meaning:
- glName indicates the name of the GL to be rekeyed.
- glAdministration indicates if there is any change to how the GL
should be administered. See <a href="#section-3.1.1">Section 3.1.1</a> for the three options.
This field is only included if there is a change from the
previously registered glAdministration.
- glNewKeyAttributes indicates whether the rekey of the GLO is
controlled by the GLA or GL, what algorithm and parameters the
GLO wishes to use, the duration of the key, and how many keys
will be issued. The field is only included if there is a change
from the previously registered glKeyAttributes.
- glRekeyAllGLKeys indicates whether the GLO wants all of the
outstanding GL's shared KEKs rekeyed. If it is set to TRUE then
all outstanding KEKs MUST be issued. If it is set to FALSE then
all outstanding KEKs need not be reissued.
<span class="grey">Turner Standards Track [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
<span class="h4"><a class="selflink" id="section-3.1.6" href="#section-3.1.6">3.1.6</a>. Add GL Owner</span>
GLOs use the glAddOwner to request that a new GLO be allowed to
administer the GL. The glAddOwner message MUST be signed by a
registered GLO. The glAddOwner control attribute has the syntax
GLOwnerAdministration:
GLOwnerAdministration ::= SEQUENCE {
glName GeneralName,
glOwnerInfo GLOwnerInfo }
The fields in GLAddOwners have the following meaning:
- glName indicates the name of the GL to which the new GLO should
be associated.
- glOwnerInfo indicates the name, address, and certificates of the
new GLO. As this message includes names of new GLOs, the
certificates.pKC MUST be included, and it MUST include the
encryption certificate of the new GLO.
<span class="h4"><a class="selflink" id="section-3.1.7" href="#section-3.1.7">3.1.7</a>. Remove GL Owner</span>
GLOs use the glRemoveOwner to request that a GLO be disassociated
with the GL. The glRemoveOwner message MUST be signed by a
registered GLO. The glRemoveOwner control attribute has the syntax
GLOwnerAdministration:
GLOwnerAdministration ::= SEQUENCE {
glName GeneralName,
glOwnerInfo GLOwnerInfo }
The fields in GLRemoveOwners have the following meaning:
- glName indicates the name of the GL to which the GLO should be
disassociated.
- glOwnerInfo indicates the name and address of the GLO to be
removed. The certificates field SHOULD be omitted, as it will be
ignored.
<span class="h4"><a class="selflink" id="section-3.1.8" href="#section-3.1.8">3.1.8</a>. GL Key Compromise</span>
GL members and GLOs use glkCompromise to indicate that the shared KEK
possessed has been compromised. The glKeyCompromise control
attribute has the syntax GeneralName. This message is always
redirected by the GLA to the GLO for further action. The
glkCompromise MAY be included in an EnvelopedData generated with the
<span class="grey">Turner Standards Track [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
compromised shared KEK. The name of the GL to which the compromised
key is associated is placed in GeneralName:
GLKCompromise ::= GeneralName
<span class="h4"><a class="selflink" id="section-3.1.9" href="#section-3.1.9">3.1.9</a>. GL Key Refresh</span>
GL members use the glkRefresh to request that the shared KEK be
redistributed to them. The glkRefresh control attribute has the
syntax GLKRefresh.
GLKRefresh ::= SEQUENCE {
glName GeneralName,
dates SEQUENCE SIZE (1..MAX) OF Date }
Date ::= SEQUENCE {
start GeneralizedTime,
end GeneralizedTime OPTIONAL }
The fields in GLKRefresh have the following meaning:
- glName indicates the name of the GL for which the GL member wants
shared KEKs.
- dates indicates a date range for keys the GL member wants. The
start field indicates the first date the GL member wants and the
end field indicates the last date. The end date MAY be omitted
to indicate the GL member wants all keys from the specified start
date to the current date. Note that a procedural mechanism is
needed to restrict users from accessing messages that they are
not allowed to access.
<span class="h4"><a class="selflink" id="section-3.1.10" href="#section-3.1.10">3.1.10</a>. GLA Query Request and Response</span>
There are situations where GLOs and GL members may need to determine
some information from the GLA about the GL. GLOs and GL members use
the glaQueryRequest, defined in <a href="#section-3.1.10.1">Section 3.1.10.1</a>, to request
information and GLAs use the glaQueryResponse, defined in <a href="#section-3.1.10.2">Section</a>
<a href="#section-3.1.10.2">3.1.10.2</a>, to return the requested information. <a href="#section-3.1.10.3">Section 3.1.10.3</a>
includes one request and response type and value; others may be
defined in additional documents.
<span class="h5"><a class="selflink" id="section-3.1.10.1" href="#section-3.1.10.1">3.1.10.1</a>. GLA Query Request</span>
GLOs and GL members use the glaQueryRequest to ascertain information
about the GLA. The glaQueryRequest control attribute has the syntax
GLAQueryRequest:
<span class="grey">Turner Standards Track [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
GLAQueryRequest ::= SEQUENCE {
glaRequestType OBJECT IDENTIFIER,
glaRequestValue ANY DEFINED BY glaRequestType }
<span class="h5"><a class="selflink" id="section-3.1.10.2" href="#section-3.1.10.2">3.1.10.2</a>. GLA Query Response</span>
GLAs return the glaQueryResponse after receiving a GLAQueryRequest.
The glaQueryResponse MUST be signed by a GLA. The glaQueryResponse
control attribute has the syntax GLAQueryResponse:
GLAQueryResponse ::= SEQUENCE {
glaResponseType OBJECT IDENTIFIER,
glaResponseValue ANY DEFINED BY glaResponseType }
<span class="h5"><a class="selflink" id="section-3.1.10.3" href="#section-3.1.10.3">3.1.10.3</a>. Request and Response Types</span>
Requests and responses are registered as a pair under the following
object identifier arc:
id-cmc-glaRR OBJECT IDENTIFIER ::= { id-cmc 99 }
This document defines one request/response pair for GL members and
GLOs to query the GLA for the list of algorithm it supports. The
following Object Identifier (OID) is included in the glaQueryType
field:
id-cmc-gla-skdAlgRequest OBJECT IDENTIFIER ::={ id-cmc-glaRR 1 }
SKDAlgRequest ::= NULL
If the GLA supports GLAQueryRequest and GLAQueryResponse messages,
the GLA may return the following OID in the glaQueryType field:
id-cmc-gla-skdAlgResponse OBJECT IDENTIFIER ::= { id-cmc-glaRR 2 }
The glaQueryValue has the form of the smimeCapabilities attributes as
defined in [<a href="#ref-MSG" title=""Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 3.1 Message Specification"">MSG</a>].
<span class="h4"><a class="selflink" id="section-3.1.11" href="#section-3.1.11">3.1.11</a>. Provide Cert</span>
GLAs and GLOs use the glProvideCert to request that a GL member
provide an updated or new encryption certificate. The glProvideCert
message MUST be signed by either GLA or GLO. If the GL member's PKC
has been revoked, the GLO or GLA MUST NOT use it to generate the
EnvelopedData that encapsulates the glProvideCert request. The
glProvideCert control attribute has the syntax GLManageCert:
<span class="grey">Turner Standards Track [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
GLManageCert ::= SEQUENCE {
glName GeneralName,
glMember GLMember }
The fields in GLManageCert have the following meaning:
- glName indicates the name of the GL to which the GL member's new
certificate is to be associated.
- glMember indicates particulars for the GL member:
-- glMemberName indicates the GL member's name.
-- glMemberAddress indicates the GL member's address. It MAY be
omitted.
-- certificates SHOULD be omitted.
<span class="h4"><a class="selflink" id="section-3.1.12" href="#section-3.1.12">3.1.12</a> Update Cert</span>
GL members and GLOs use the glUpdateCert to provide a new certificate
for the GL. GL members can generate an unsolicited glUpdateCert or
generate a response glUpdateCert as a result of receiving a
glProvideCert message. GL members MUST sign the glUpdateCert. If
the GL member's encryption certificate has been revoked, the GL
member MUST NOT use it to generate the EnvelopedData that
encapsulates the glUpdateCert request or response. The glUpdateCert
control attribute has the syntax GLManageCert:
GLManageCert ::= SEQUENCE {
glName GeneralName,
glMember GLMember }
The fields in GLManageCert have the following meaning:
- glName indicates the name of the GL to which the GL member's new
certificate should be associated.
- glMember indicates the particulars for the GL member:
-- glMemberName indicates the GL member's name.
-- glMemberAddress indicates the GL member's address. It MAY be
omitted.
-- certificates MAY be omitted if the GLManageCert message is
sent to request the GL member's certificate; otherwise, it
MUST be included. It includes the following three fields:
<span class="grey">Turner Standards Track [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
--- certificates.pKC includes the member's encryption
certificate that will be used to encrypt the shared KEK
for that member.
--- certificates.aC MAY be included to convey one or more
attribute certificates associated with the member's
encryption certificate.
--- certificates.certPath MAY also be included to convey
certificates that might aid the recipient in
constructing valid certification paths for the
certificate provided in certificates.pKC and the
attribute certificates provided in certificates.aC.
These certificates are optional because they might
already be included elsewhere in the message (e.g., in
the outer CMS layer).
<span class="h4"><a class="selflink" id="section-3.1.13" href="#section-3.1.13">3.1.13</a>. GL Key</span>
The GLA uses the glKey to distribute the shared KEK. The glKey
message MUST be signed by the GLA. The glKey control attribute has
the syntax GLKey:
GLKey ::= SEQUENCE {
glName GeneralName,
glIdentifier KEKIdentifier, -- See [<a href="#ref-CMS" title=""Cryptographic Message Syntax (CMS)"">CMS</a>]
glkWrapped RecipientInfos, -- See [<a href="#ref-CMS" title=""Cryptographic Message Syntax (CMS)"">CMS</a>]
glkAlgorithm AlgorithmIdentifier,
glkNotBefore GeneralizedTime,
glkNotAfter GeneralizedTime }
-- KEKIdentifier is included only for illustrative purposes as
-- it is imported from [<a href="#ref-CMS" title=""Cryptographic Message Syntax (CMS)"">CMS</a>].
KEKIdentifier ::= SEQUENCE {
keyIdentifier OCTET STRING,
date GeneralizedTime OPTIONAL,
other OtherKeyAttribute OPTIONAL }
The fields in GLKey have the following meaning:
- glName is the name of the GL.
- glIdentifier is the key identifier of the shared KEK. See
Section 6.2.3 of [<a href="#ref-CMS" title=""Cryptographic Message Syntax (CMS)"">CMS</a>] for a description of the subfields.
<span class="grey">Turner Standards Track [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
- glkWrapped is the wrapped shared KEK for the GL for a particular
duration. The RecipientInfos MUST be generated as specified in
Section 6.2 of [<a href="#ref-CMS" title=""Cryptographic Message Syntax (CMS)"">CMS</a>]. The ktri RecipientInfo choice MUST be
supported. The key in the EncryptedKey field (i.e., the
distributed shared KEK) MUST be generated according to the
section concerning random number generation in the security
considerations of [<a href="#ref-CMS" title=""Cryptographic Message Syntax (CMS)"">CMS</a>].
- glkAlgorithm identifies the algorithm with which the shared KEK
is used. Since no encrypted data content is being conveyed at
this point, the parameters encoded with the algorithm should be
the structure defined for smimeCapabilities rather than encrypted
content.
- glkNotBefore indicates the date at which the shared KEK is
considered valid. GeneralizedTime values MUST be expressed in
UTC (Zulu) and MUST include seconds (i.e., times are
YYYYMMDDHHMMSSZ), even where the number of seconds is zero.
GeneralizedTime values MUST NOT include fractional seconds.
- glkNotAfter indicates the date after which the shared KEK is
considered invalid. GeneralizedTime values MUST be expressed in
UTC (Zulu) and MUST include seconds (i.e., times are
YYYYMMDDHHMMSSZ), even where the number of seconds is zero.
GeneralizedTime values MUST NOT include fractional seconds.
If the glKey message is in response to a glUseKEK message:
- The GLA MUST generate separate glKey messages for each recipient
if glUseKEK.glKeyAttributes.recipientsNotMutuallyAware is set to
TRUE. For each recipient, you want to generate a message that
contains that recipient's key (i.e., one message with one
attribute).
- The GLA MUST generate the requested number of glKey messages.
The value in glUseKEK.glKeyAttributes.generationCounter indicates
the number of glKey messages requested.
If the glKey message is in response to a glRekey message:
- The GLA MUST generate separate glKey messages for each recipient
if glRekey.glNewKeyAttributes.recipientsNotMutuallyAware is set
to TRUE.
- The GLA MUST generate the requested number of glKey messages.
The value in glUseKEK.glKeyAttributes.generationCounter indicates
the number of glKey messages requested.
<span class="grey">Turner Standards Track [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
- The GLA MUST generate one glKey message for each outstanding
shared KEKs for the GL when glRekeyAllGLKeys is set to TRUE.
If the glKey message was not in response to a glRekey or glUseKEK
(e.g., where the GLA controls rekey):
- The GLA MUST generate separate glKey messages for each recipient
when glUseKEK.glNewKeyAttributes.recipientsNotMutuallyAware that
set up the GL was set to TRUE.
- The GLA MAY generate glKey messages prior to the duration on the
last outstanding shared KEK expiring, where the number of glKey
messages generated is generationCounter minus one (1). Other
distribution mechanisms can also be supported to support this
functionality.
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. Use of CMC, CMS, and PKIX</span>
The following sections outline the use of CMC, CMS, and the PKIX
certificate and CRL profile.
<span class="h4"><a class="selflink" id="section-3.2.1" href="#section-3.2.1">3.2.1</a>. Protection Layers</span>
The following sections outline the protection required for the
control attributes defined in this document.
Note: There are multiple ways to encapsulate SignedData and
EnvelopedData. The first is to use a MIME wrapper around each
ContentInfo, as specified in [<a href="#ref-MSG" title=""Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 3.1 Message Specification"">MSG</a>]. The second is not to use a MIME
wrapper around each ContentInfo, as specified in Transporting S/MIME
Objects in X.400 [<a href="#ref-X400TRANS" title=""Transporting Secure/Multipurpose Internet Mail Extensions (S/MIME) Objects in X.400"">X400TRANS</a>].
<span class="h5"><a class="selflink" id="section-3.2.1.1" href="#section-3.2.1.1">3.2.1.1</a>. Minimum Protection</span>
At a minimum, a SignedData MUST protect each request and response
encapsulated in PKIData and PKIResponse. The following is a
depiction of the minimum wrappings:
Minimum Protection
------------------
SignedData
PKIData or PKIResponse
controlSequence
Prior to taking any action on any request or response SignedData(s)
MUST be processed according to [<a href="#ref-CMS" title=""Cryptographic Message Syntax (CMS)"">CMS</a>].
<span class="grey">Turner Standards Track [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
<span class="h5"><a class="selflink" id="section-3.2.1.2" href="#section-3.2.1.2">3.2.1.2</a>. Additional Protection</span>
An additional EnvelopedData MAY also be used to provide
confidentiality of the request and response. An additional
SignedData MAY also be added to provide authentication and integrity
of the encapsulated EnvelopedData. The following is a depiction of
the optional additional wrappings:
Authentication and Integrity
Confidentiality Protection of Confidentiality Protection
-------------------------- -----------------------------
EnvelopedData SignedData
SignedData EnvelopedData
PKIData or PKIResponse SignedData
controlSequence PKIData or PKIResponse
controlSequence
If an incoming message is encrypted, the confidentiality of the
message MUST be preserved. All EnvelopedData objects MUST be
processed as specified in [<a href="#ref-CMS" title=""Cryptographic Message Syntax (CMS)"">CMS</a>]. If a SignedData is added over an
EnvelopedData, a ContentHints attribute SHOULD be added. See <a href="#section-2.9">Section</a>
<a href="#section-2.9">2.9</a> of Extended Security Services for S/MIME [<a href="#ref-ESS" title=""Enhanced Security Services for S/MIME"">ESS</a>].
If the GLO or GL member applies confidentiality to a request, the
EnvelopedData MUST include the GLA as a recipient. If the GLA
forwards the GL member request to the GLO, then the GLA MUST decrypt
the EnvelopedData content, strip the confidentiality layer, and apply
its own confidentiality layer as an EnvelopedData with the GLO as a
recipient.
<span class="h4"><a class="selflink" id="section-3.2.2" href="#section-3.2.2">3.2.2</a>. Combining Requests and Responses</span>
Multiple requests and responses corresponding to a GL MAY be included
in one PKIData.controlSequence or PKIResponse.controlSequence.
Requests and responses for multiple GLs MAY be combined in one
PKIData or PKIResponse by using PKIData.cmsSequence and
PKIResponse.cmsSequence. A separate cmsSequence MUST be used for
different GLs. That is, requests corresponding to two different GLs
are included in different cmsSequences. The following is a diagram
depicting multiple requests and responses combined in one PKIData and
PKIResponse:
<span class="grey">Turner Standards Track [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
Multiple Requests and Responses
Request Response
------- --------
SignedData SignedData
PKIData PKIResponse
cmsSequence cmsSequence
SignedData SignedData
PKIData PKIResponse
controlSequence controlSequence
One or more requests One or more responses
corresponding to one GL corresponding to one GL
SignedData SignedData
PKIData PKIResponse
controlSequence controlSequence
One or more requests One or more responses
corresponding to another GL corresponding to another GL
When applying confidentiality to multiple requests and responses, all
of the requests/responses MAY be included in one EnvelopedData. The
following is a depiction:
Confidentiality of Multiple Requests and Responses
Wrapped Together
----------------
EnvelopedData
SignedData
PKIData
cmsSequence
SignedData
PKIResponse
controlSequence
One or more requests
corresponding to one GL
SignedData
PKIData
controlSequence
One or more requests
corresponding to one GL
<span class="grey">Turner Standards Track [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
Certain combinations of requests in one PKIData.controlSequence and
one PKIResponse.controlSequence are not allowed. The invalid
combinations listed here MUST NOT be generated:
Invalid Combinations
---------------------------
glUseKEK & glDeleteMember
glUseKEK & glRekey
glUseKEK & glDelete
glDelete & glAddMember
glDelete & glDeleteMember
glDelete & glRekey
glDelete & glAddOwner
glDelete & glRemoveOwner
To avoid unnecessary errors, certain requests and responses SHOULD be
processed prior to others. The following is the priority of message
processing, if not listed it is an implementation decision as to
which to process first: glUseKEK before glAddMember, glRekey before
glAddMember, and glDeleteMember before glRekey. Note that there is a
processing priority, but it does not imply an ordering within the
content.
<span class="h4"><a class="selflink" id="section-3.2.3" href="#section-3.2.3">3.2.3</a>. GLA Generated Messages</span>
When the GLA generates a success or fail message, it generates one
for each request. SKDFailInfo values of unsupportedDuration,
unsupportedDeliveryMethod, unsupportedAlgorithm, noGLONameMatch,
nameAlreadyInUse, alreadyAnOwner, and notAnOwner are not returned to
GL members.
If GLKeyAttributes.recipientsNotMutuallyAware is set to TRUE, a
separate PKIResponse.cMCStatusInfoExt and PKIData.glKey MUST be
generated for each recipient. However, it is valid to send one
message with multiple attributes to the same recipient.
If the GL has multiple GLOs, the GLA MUST send cMCStatusInfoExt
messages to the requesting GLO. The mechanism to determine which GLO
made the request is beyond the scope of this document.
If a GL is managed and the GLA receives a glAddMember,
glDeleteMember, or glkCompromise message, the GLA redirects the
request to the GLO for review. An additional, SignedData MUST be
applied to the redirected request as follows:
<span class="grey">Turner Standards Track [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
GLA Forwarded Requests
----------------------
SignedData
PKIData
cmsSequence
SignedData
PKIData
controlSequence
<span class="h4"><a class="selflink" id="section-3.2.4" href="#section-3.2.4">3.2.4</a>. CMC Control Attributes and CMS Signed Attributes</span>
CMC carries control attributes as CMS signed attributes. These
attributes are defined in [<a href="#ref-CMC" title=""Certificate Management over CMS (CMC)"">CMC</a>] and [<a href="#ref-CMS" title=""Cryptographic Message Syntax (CMS)"">CMS</a>]. Some of these attributes
are REQUIRED; others are OPTIONAL. The required attributes are as
follows: cMCStatusInfoExt transactionId, senderNonce, recipientNonce,
queryPending, and signingTime. Other attributes can also be used;
however, their use is beyond the scope of this document. The
following sections specify requirements in addition to those already
specified in [<a href="#ref-CMC" title=""Certificate Management over CMS (CMC)"">CMC</a>] and [<a href="#ref-CMS" title=""Cryptographic Message Syntax (CMS)"">CMS</a>].
<span class="h5"><a class="selflink" id="section-3.2.4.1" href="#section-3.2.4.1">3.2.4.1</a>. Using cMCStatusInfoExt</span>
cMCStatusInfoExt is used by GLAs to indicate to GLOs and GL members
that a request was unsuccessful. Two classes of failure codes are
used within this document. Errors from the CMCFailInfo list, found
in <a href="#section-5.1.4">Section 5.1.4</a> of CMC, are encoded as defined in CMC. Error codes
defined in this document are encoded using the ExtendedFailInfo field
of the cmcStatusInfoExt structure. If the same failure code applies
to multiple commands, a single cmcStatusInfoExt structure can be used
with multiple items in cMCStatusInfoExt.bodyList. The GLA MAY also
return other pertinent information in statusString. The SKDFailInfo
object identifier and value are:
id-cet-skdFailInfo OBJECT IDENTIFIER ::= { iso(1)
identified-organization(3) dod(6) internet(1) security(5)
mechanisms(5) pkix(7) cet(15) skdFailInfo(1) }
SKDFailInfo ::= INTEGER {
unspecified (0),
closedGL (1),
unsupportedDuration (2),
noGLACertificate (3),
invalidCert (4),
unsupportedAlgorithm (5),
noGLONameMatch (6),
invalidGLName (7),
nameAlreadyInUse (8),
noSpam (9),
<span class="grey">Turner Standards Track [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
-- obsolete (10),
alreadyAMember (11),
notAMember (12),
alreadyAnOwner (13),
notAnOwner (14) }
The values have the following meaning:
- unspecified indicates that the GLA is unable or unwilling to
perform the requested action and does not want to indicate the
reason.
- closedGL indicates that members can only be added or deleted by
the GLO.
- unsupportedDuration indicates that the GLA does not support
generating keys that are valid for the requested duration.
- noGLACertificate indicates that the GLA does not have a valid
certificate.
- invalidCert indicates that the member's encryption certificate
was not verifiable (i.e., signature did not validate,
certificate's serial number present on a CRL, the certificate
expired, etc.).
- unsupportedAlgorithm indicates the GLA does not support the
requested algorithm.
- noGLONameMatch indicates that one of the names in the certificate
used to sign a request does not match the name of a registered
GLO.
- invalidGLName indicates that the GLA does not support the glName
present in the request.
- nameAlreadyInUse indicates that the glName is already assigned on
the GLA.
- noSpam indicates that the prospective GL member did not sign the
request (i.e., if the name in glMember.glMemberName does not
match one of the names (either the subject distinguished name or
one of the subject alternative names) in the certificate used to
sign the request).
- alreadyAMember indicates that the prospective GL member is
already a GL member.
<span class="grey">Turner Standards Track [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
- notAMember indicates that the prospective GL member to be deleted
is not presently a GL member.
- alreadyAnOwner indicates that the prospective GLO is already a
GLO.
- notAnOwner indicates that the prospective GLO to be deleted is
not presently a GLO.
cMCStatusInfoExt is used by GLAs to indicate to GLOs and GL members
that a request was successfully completed. If the request was
successful, the GLA returns a cMCStatusInfoExt response with
cMCStatus.success and optionally other pertinent information in
statusString.
When the GL is managed and the GLO has reviewed GL member initiated
glAddMember, glDeleteMember, and glkComrpomise requests, the GLO uses
cMCStatusInfoExt to indicate the success or failure of the request.
If the request is allowed, cMCStatus.success is returned and
statusString is optionally returned to convey additional information.
If the request is denied, cMCStatus.failed is returned and
statusString is optionally returned to convey additional information.
Additionally, the appropriate SKDFailInfo can be included in
cMCStatusInfoExt.extendedFailInfo.
cMCStatusInfoExt is used by GLOs, GLAs, and GL members to indicate
that signature verification failed. If the signature failed to
verify over any control attribute except a cMCStatusInfoExt, a
cMCStatusInfoExt control attribute MUST be returned indicating
cMCStatus.failed and otherInfo.failInfo.badMessageCheck. If the
signature over the outermost PKIData failed, the bodyList value is
zero (0). If the signature over any other PKIData failed, the
bodyList value is the bodyPartId value from the request or response.
GLOs and GL members who receive cMCStatusInfoExt messages whose
signatures are invalid SHOULD generate a new request to avoid
badMessageCheck message loops.
cMCStatusInfoExt is also used by GLOs and GLAs to indicate that a
request could not be performed immediately. If the request could not
be processed immediately by the GLA or GLO, the cMCStatusInfoExt
control attribute MUST be returned indicating cMCStatus.pending and
otherInfo.pendInfo. When requests are redirected to the GLO for
approval (for managed lists), the GLA MUST NOT return a
cMCStatusInfoExt indicating query pending.
<span class="grey">Turner Standards Track [Page 29]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-30" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
cMCStatusInfoExt is also used by GLAs to indicate that a
glaQueryRequest is not supported. If the glaQueryRequest is not
supported, the cMCStatusInfoExt control attribute MUST be returned
indicating cMCStatus.noSupport and statusString is optionally
returned to convey additional information.
cMCStatusInfoExt is also used by GL members, GLOs, and GLAs to
indicate that the signingTime (see <a href="#section-3.2.4.3">Section 3.2.4.3</a>) is not close
enough to the locally specified time. If the local time is not close
enough to the time specified in signingTime, a cMCStatus.failed and
otherInfo.failInfo.badTime MAY be returned.
<span class="h5"><a class="selflink" id="section-3.2.4.2" href="#section-3.2.4.2">3.2.4.2</a>. Using transactionId</span>
transactionId MAY be included by GLOs, GLAs, or GL members to
identify a given transaction. All subsequent requests and responses
related to the original request MUST include the same transactionId
control attribute. If GL members include a transactionId and the
request is redirected to the GLO, the GLA MAY include an additional
transactionId in the outer PKIData. If the GLA included an
additional transactionId in the outer PKIData, when the GLO generates
a cMCStatusInfoExt response it generates one for the GLA with the
GLA's transactionId and one for the GL member with the GL member's
transactionId.
<span class="h5"><a class="selflink" id="section-3.2.4.3" href="#section-3.2.4.3">3.2.4.3</a>. Using Nonces and signingTime</span>
The use of nonces (see Section 5.6 of [<a href="#ref-CMC" title=""Certificate Management over CMS (CMC)"">CMC</a>]) and an indication of
when the message was signed (see Section 11.3 of [<a href="#ref-CMS" title=""Cryptographic Message Syntax (CMS)"">CMS</a>]) can be used
to provide application-level replay prevention.
To protect the GL, all messages MUST include the signingTime
attribute. Message originators and recipients can then use the time
provided in this attribute to determine whether they have previously
received the message.
If the originating message includes a senderNonce, the response to
the message MUST include the received senderNonce value as the
recipientNonce and a new value as the senderNonce value in the
response.
If a GLA aggregates multiple messages together or forwards a message
to a GLO, the GLA MAY optionally generate a new nonce value and
include that in the wrapping message. When the response comes back
from the GLO, the GLA builds a response to the originator(s) of the
message(s) and deals with each of the nonce values from the
originating messages.
<span class="grey">Turner Standards Track [Page 30]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-31" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
For these attributes, it is necessary to maintain state information
on exchanges to compare one result to another. The time period for
which this information is maintained is a local policy.
<span class="h5"><a class="selflink" id="section-3.2.4.4" href="#section-3.2.4.4">3.2.4.4</a>. CMC and CMS Attribute Support Requirements</span>
The following are the implementation requirements for CMC control
attributes and CMS signed attributes for an implementation to be
considered conformant to this specification:
Implementation Requirement |
GLO | GLA | GL Member | Attribute
O R | O R F | O R |
--------- | ------------- | --------- | ----------
MUST MUST | MUST MUST - | MUST MUST | cMCStatusInfoExt
MAY MAY | MUST MUST - | MAY MAY | transactionId
MAY MAY | MUST MUST - | MAY MAY | senderNonce
MAY MAY | MUST MUST - | MAY MAY | recepientNonce
MUST MUST | MUST MUST - | MUST MUST | SKDFailInfo
MUST MUST | MUST MUST - | MUST MUST | signingTime
<span class="h4"><a class="selflink" id="section-3.2.5" href="#section-3.2.5">3.2.5</a>. Resubmitted GL Member Messages</span>
When the GL is managed, the GLA forwards the GL member requests to
the GLO for GLO approval by creating a new request message containing
the GL member request(s) as a cmsSequence item. If the GLO approves
the request, it can either add a new layer of wrapping and send it
back to the GLA or create a new message and send it to the GLA.
(Note in this case there are now 3 layers of PKIData messages with
appropriate signing layers.)
<span class="h4"><a class="selflink" id="section-3.2.6" href="#section-3.2.6">3.2.6</a>. PKIX Certificate and CRL Profile</span>
Signatures, certificates, and CRLs are verified according to the PKIX
profile [<a href="#ref-PROFILE" title=""Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile"">PROFILE</a>].
Name matching is performed according to the PKIX profile [<a href="#ref-PROFILE" title=""Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile"">PROFILE</a>].
All distinguished name forms must follow the UTF8String convention
noted in the PKIX profile [<a href="#ref-PROFILE" title=""Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile"">PROFILE</a>].
A certificate per GL would be issued to the GLA.
GL policy may mandate that the GL member's address be included in the
GL member's certificate.
<span class="grey">Turner Standards Track [Page 31]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-32" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Administrative Messages</span>
There are a number of administrative messages that must be exchanged
to manage a GL. The following sections describe each request and
response message combination in detail. The procedures defined in
this section are not prescriptive.
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. Assign KEK to GL</span>
Prior to generating a group key, a GL needs to be set up and a shared
KEK assigned to the GL. Figure 3 depicts the protocol interactions
to set up and assign a shared KEK. Note that error messages are not
depicted in Figure 3. Additionally, behavior for the optional
transactionId, senderNonce, and recipientNonce CMC control attributes
is not addressed in these procedures.
+-----+ 1 2 +-----+
| GLA | <-------> | GLO |
+-----+ +-----+
Figure 3 - Create Group List
The process is as follows:
1 - The GLO is the entity responsible for requesting the creation of
the GL. The GLO sends a
SignedData.PKIData.controlSequence.glUseKEK request to the GLA (1
in Figure 3). The GLO MUST include glName, glAddress,
glOwnerName, glOwnerAddress, and glAdministration. The GLO MAY
also include their preferences for the shared KEK in
glKeyAttributes by indicating whether the GLO controls the rekey
in rekeyControlledByGLO, whether separate glKey messages should
be sent to each recipient in recipientsNotMutuallyAware, the
requested algorithm to be used with the shared KEK in
requestedAlgorithm, the duration of the shared KEK, and how many
shared KEKs should be initially distributed in generationCounter.
The GLO MUST also include the signingTime attribute with this
request.
1.a - If the GLO knows of members to be added to the GL, the
glAddMember request(s) MAY be included in the same
controlSequence as the glUseKEK request (see <a href="#section-3.2.2">Section 3.2.2</a>).
The GLO indicates the same glName in the glAddMember request
as in glUseKEK.glInfo.glName. Further glAddMember procedures
are covered in <a href="#section-4.3">Section 4.3</a>.
<span class="grey">Turner Standards Track [Page 32]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-33" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
1.b - The GLO can apply confidentiality to the request by
encapsulating the SignedData.PKIData in an EnvelopedData (see
<a href="#section-3.2.1.2">Section 3.2.1.2</a>).
1.c - The GLO can also optionally apply another SignedData over the
EnvelopedData (see <a href="#section-3.2.1.2">Section 3.2.1.2</a>).
2 - Upon receipt of the request, the GLA checks the signingTime and
verifies the signature on the innermost SignedData.PKIData. If
an additional SignedData and/or EnvelopedData encapsulates the
request (see Sections <a href="#section-3.2.1.2">3.2.1.2</a> and <a href="#section-3.2.2">3.2.2</a>), the GLA verifies the
outer signature(s) and/or decrypts the outer layer(s) prior to
verifying the signature on the innermost SignedData.
2.a - If the signingTime attribute value is not within the locally
accepted time window, the GLA MAY return a response
indicating cMCStatus.failed and otherInfo.failInfo.badTime
and a signingTime attribute.
2.b - Else if signature processing continues and if the signatures
do not verify, the GLA returns a cMCStatusInfoExt response
indicating cMCStatus.failed and
otherInfo.failInfo.badMessageCheck. Additionally, a
signingTime attribute is included with the response.
2.c - Else if the signatures do verify but the GLA does not have a
valid certificate, the GLA returns a cMCStatusInfoExt with
cMCStatus.failed and otherInfo.extendedFailInfo.SKDFailInfo
value of noValidGLACertificate. Additionally, a signingTime
attribute is included with the response. Instead of
immediately returning the error code, the GLA attempts to get
a certificate, possibly using [<a href="#ref-CMC" title=""Certificate Management over CMS (CMC)"">CMC</a>].
2.d - Else the signatures are valid and the GLA does have a valid
certificate, the GLA checks that one of the names in the
certificate used to sign the request matches one of the names
in glUseKEK.glOwnerInfo.glOwnerName.
2.d.1 - If the names do not match, the GLA returns a response
indicating cMCStatusInfoExt with cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value of
noGLONameMatch. Additionally, a signingTime attribute is
included with the response.
<span class="grey">Turner Standards Track [Page 33]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-34" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
2.d.2 - Else if the names all match, the GLA checks that the
glName and glAddress are not already in use. The GLA
also checks any glAddMember included within the
controlSequence with this glUseKEK. Further processing
of the glAddMember is covered in <a href="#section-4.3">Section 4.3</a>.
2.d.2.a - If the glName is already in use, the GLA returns a
response indicating cMCStatusInfoExt with
cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value of
nameAlreadyInUse. Additionally, a signingTime
attribute is included with the response.
2.d.2.b - Else if the requestedAlgorithm is not supported, the
GLA returns a response indicating cMCStatusInfoExt
with cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value of
unsupportedAlgorithm. Additionally, a signingTime
attribute is included with the response.
2.d.2.c - Else if the duration cannot be supported, determining
this is beyond the scope of this document, the GLA
returns a response indicating cMCStatusInfoExt with
cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value of
unsupportedDuration. Additionally, a signingTime
attribute is included with the response.
2.d.2.d - Else if the GL cannot be supported for other reasons,
which the GLA does not wish to disclose, the GLA
returns a response indicating cMCStatusInfoExt with
cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value of
unspecified. Additionally, a signingTime attribute
is included with the response.
2.d.2.e - Else if the glName is not already in use, the
duration can be supported, and the requestedAlgorithm
is supported, the GLA MUST return a cMCStatusInfoExt
indicating cMCStatus.success and a signingTime
attribute. (2 in Figure 3). The GLA also takes
administrative actions, which are beyond the scope of
this document, to store the glName, glAddress,
glKeyAttributes, glOwnerName, and glOwnerAddress.
The GLA also sends a glKey message as described in
<a href="#section-5">section 5</a>.
<span class="grey">Turner Standards Track [Page 34]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-35" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
2.d.2.e.1 - The GLA can apply confidentiality to the response
by encapsulating the SignedData.PKIResponse in an
EnvelopedData if the request was encapsulated in
an EnvelopedData (see <a href="#section-3.2.1.2">Section 3.2.1.2</a>).
2.d.2.e.2 - The GLA can also optionally apply another
SignedData over the EnvelopedData (see <a href="#section-3.2.1.2">Section</a>
<a href="#section-3.2.1.2">3.2.1.2</a>).
3 - Upon receipt of the cMCStatusInfoExt responses, the GLO checks
the signingTime and verifies the GLA signature(s). If an
additional SignedData and/or EnvelopedData encapsulates the
response (see <a href="#section-3.2.1.2">Section 3.2.1.2</a> or 3.2.2), the GLO verifies the
outer signature and/or decrypts the outer layer prior to
verifying the signature on the innermost SignedData.
3.a - If the signingTime attribute value is not within the locally
accepted time window, the GLO MAY return a response
indicating cMCStatus.failed and otherInfo.failInfo.badTime
and a signingTime attribute.
3.b - Else if signature processing continues and if the signatures
do verify, the GLO MUST check that one of the names in the
certificate used to sign the response matches the name of the
GL.
3.b.1 - If the name of the GL does not match the name present in
the certificate used to sign the message, the GLO should
not believe the response.
3.b.2 - Else if the name of the GL does match the name present in
the certificate and:
3.b.2.a - If the signatures do verify and the response was
cMCStatusInfoExt indicating cMCStatus.success, the
GLO has successfully created the GL.
3.b.2.b - Else if the signatures are valid and the response is
cMCStatusInfoExt.cMCStatus.failed with any reason,
the GLO can reattempt to create the GL using the
information provided in the response. The GLO can
also use the glaQueryRequest to determine the
algorithms and other characteristics supported by the
GLA (see <a href="#section-4.9">Section 4.9</a>).
<span class="grey">Turner Standards Track [Page 35]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-36" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. Delete GL from GLA</span>
From time to time, there are instances when a GL is no longer needed.
In this case, the GLO deletes the GL. Figure 4 depicts the protocol
interactions to delete a GL. Note that behavior for the optional
transactionId, senderNonce, and recipientNonce CMC control attributes
is not addressed in these procedures.
+-----+ 1 2 +-----+
| GLA | <-------> | GLO |
+-----+ +-----+
Figure 4 - Delete Group List
The process is as follows:
1 - The GLO is responsible for requesting the deletion of the GL.
The GLO sends a SignedData.PKIData.controlSequence.glDelete
request to the GLA (1 in Figure 4). The name of the GL to be
deleted is included in GeneralName. The GLO MUST also include
the signingTime attribute and can also include a transactionId
and senderNonce attributes.
1.a - The GLO can optionally apply confidentiality to the request
by encapsulating the SignedData.PKIData in an EnvelopedData
(see <a href="#section-3.2.1.2">Section 3.2.1.2</a>).
1.b - The GLO MAY optionally apply another SignedData over the
EnvelopedData (see <a href="#section-3.2.1.2">Section 3.2.1.2</a>).
2 - Upon receipt of the request, the GLA checks the signingTime and
verifies the signature on the innermost SignedData.PKIData. If
an additional SignedData and/or EnvelopedData encapsulates the
request (see <a href="#section-3.2.1.2">Section 3.2.1.2</a> or 3.2.2), the GLA verifies the
outer signature and/or decrypts the outer layer prior to
verifying the signature on the innermost SignedData.
2.a - If the signingTime attribute value is not within the locally
accepted time window, the GLA MAY return a response
indicating cMCStatus.failed and otherInfo.failInfo.badTime
and a signingTime attribute.
2.b - Else if signature processing continues and if the signatures
cannot be verified, the GLA returns a cMCStatusInfoExt
response indicating cMCStatus.failed and
otherInfo.failInfo.badMessageCheck. Additionally, a
signingTime attribute is included with the response.
<span class="grey">Turner Standards Track [Page 36]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-37" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
2.c - Else if the signatures verify, the GLA makes sure the GL is
supported by checking the name of the GL matches a glName
stored on the GLA.
2.c.1 - If the glName is not supported by the GLA, the GLA
returns a response indicating cMCStatusInfoExt with
cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value of
invalidGLName. Additionally, a signingTime attribute is
included with the response.
2.c.2 - Else if the glName is supported by the GLA, the GLA
ensures that a registered GLO signed the glDelete request
by checking if one of the names present in the digital
signature certificate used to sign the glDelete request
matches a registered GLO.
2.c.2.a - If the names do not match, the GLA returns a response
indicating cMCStatusInfoExt with cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value of
noGLONameMatch. Additionally, a signingTime
attribute is included with the response.
2.c.2.b - Else if the names do match, but the GL cannot be
deleted for other reasons, which the GLA does not
wish to disclose, the GLA returns a response
indicating cMCStatusInfoExt with cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value of
unspecified. Additionally, a signingTime attribute
is included with the response. Actions beyond the
scope of this document must then be taken to delete
the GL from the GLA.
2.c.2.c - Else if the names do match, the GLA returns a
cMCStatusInfoExt indicating cMCStatus.success and a
signingTime attribute (2 in Figure 4). The GLA ought
not accept further requests for member additions,
member deletions, or group rekeys for this GL.
2.c.2.c.1 - The GLA can apply confidentiality to the response
by encapsulating the SignedData.PKIResponse in an
EnvelopedData if the request was encapsulated in
an EnvelopedData (see <a href="#section-3.2.1.2">Section 3.2.1.2</a>).
2.c.2.c.2 - The GLA MAY optionally apply another SignedData
over the EnvelopedData (see <a href="#section-3.2.1.2">Section 3.2.1.2</a>).
<span class="grey">Turner Standards Track [Page 37]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-38" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
3 - Upon receipt of the cMCStatusInfoExt response, the GLO checks the
signingTime and verifies the GLA signature(s). If an additional
SignedData and/or EnvelopedData encapsulates the response (see
<a href="#section-3.2.1.2">Section 3.2.1.2</a> or 3.2.2), the GLO verifies the outer signature
and/or decrypts the outer layer prior to verifying the signature
on the innermost SignedData.
3.a - If the signingTime attribute value is not within the locally
accepted time window, the GLO MAY return a response
indicating cMCStatus.failed and otherInfo.failInfo.badTime
and a signingTime attribute.
3.b - Else if signature processing continues and if the signatures
verify, the GLO checks that one of the names in the
certificate used to sign the response matches the name of the
GL.
3.b.1 - If the name of the GL does not match the name present in
the certificate used to sign the message, the GLO should
not believe the response.
3.b.2 - Else if the name of the GL does match the name present in
the certificate and:
3.b.2.a - If the signatures verify and the response was
cMCStatusInfoExt indicating cMCStatus.success, the
GLO has successfully deleted the GL.
3.b.2.b - Else if the signatures do verify and the response was
cMCStatusInfoExt.cMCStatus.failed with any reason,
the GLO can reattempt to delete the GL using the
information provided in the response.
<span class="h3"><a class="selflink" id="section-4.3" href="#section-4.3">4.3</a>. Add Members to GL</span>
To add members to GLs, either the GLO or prospective members use the
glAddMember request. The GLA processes GLO and prospective GL member
requests differently though. GLOs can submit the request at any time
to add members to the GL, and the GLA, once it has verified the
request came from a registered GLO, should process it. If a
prospective member sends the request, the GLA needs to determine how
the GL is administered. When the GLO initially configured the GL, it
set the GL to be unmanaged, managed, or closed (see <a href="#section-3.1.1">Section 3.1.1</a>).
In the unmanaged case, the GLA merely processes the member's request.
In the managed case, the GLA forwards the requests from the
prospective members to the GLO for review. Where there are multiple
GLOs for a GL, which GLO the request is forwarded to is beyond the
scope of this document. The GLO reviews the request and either
<span class="grey">Turner Standards Track [Page 38]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-39" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
rejects it or submits a reformed request to the GLA. In the closed
case, the GLA will not accept requests from prospective members. The
following sections describe the processing for the GLO(s), GLA, and
prospective GL members depending on where the glAddMeber request
originated, either from a GLO or from prospective members. Figure 5
depicts the protocol interactions for the three options. Note that
the error messages are not depicted. Additionally, note that
behavior for the optional transactionId, senderNonce, and
recipientNonce CMC control attributes is not addressed in these
procedures.
+-----+ 2,B{A} 3 +----------+
| GLO | <--------+ +-------> | Member 1 |
+-----+ | | +----------+
1 | |
+-----+ <--------+ | 3 +----------+
| GLA | A +-------> | ... |
+-----+ <-------------+ +----------+
|
| 3 +----------+
+-------> | Member n |
+----------+
Figure 5 - Member Addition
An important decision that needs to be made on a group-by-group basis
is whether to rekey the group every time a new member is added.
Typically, unmanaged GLs should not be rekeyed when a new member is
added, as the overhead associated with rekeying the group becomes
prohibitive, as the group becomes large. However, managed and closed
GLs can be rekeyed to maintain the confidentiality of the traffic
sent by group members. An option to rekeying managed or closed GLs
when a member is added is to generate a new GL with a different group
key. Group rekeying is discussed in Sections <a href="#section-4.5">4.5</a> and <a href="#section-5">5</a>.
<span class="h4"><a class="selflink" id="section-4.3.1" href="#section-4.3.1">4.3.1</a>. GLO Initiated Additions</span>
The process for GLO initiated glAddMember requests is as follows:
1 - The GLO collects the pertinent information for the member(s) to
be added (this may be done through an out-of-bands means). The
GLO then sends a SignedData.PKIData.controlSequence with a
separate glAddMember request for each member to the GLA (1 in
Figure 5). The GLO includes the GL name in glName, the member's
name in glMember.glMemberName, the member's address in
glMember.glMemberAddress, and the member's encryption certificate
in glMember.certificates.pKC. The GLO can also include any
attribute certificates associated with the member's encryption
<span class="grey">Turner Standards Track [Page 39]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-40" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
certificate in glMember.certificates.aC, and the certification
path associated with the member's encryption and attribute
certificates in glMember.certificates.certPath. The GLO MUST
also include the signingTime attribute with this request.
1.a - The GLO can optionally apply confidentiality to the request
by encapsulating the SignedData.PKIData in an EnvelopedData
(see <a href="#section-3.2.1.2">Section 3.2.1.2</a>).
1.b - The GLO can also optionally apply another SignedData over the
EnvelopedData (see <a href="#section-3.2.1.2">Section 3.2.1.2</a>).
2 - Upon receipt of the request, the GLA checks the signingTime and
verifies the signature on the innermost SignedData.PKIData. If
an additional SignedData and/or EnvelopedData encapsulates the
request (see <a href="#section-3.2.1.2">Section 3.2.1.2</a> or 3.2.2), the GLA verifies the
outer signature and/or decrypts the outer layer prior to
verifying the signature on the innermost SignedData.
2.a - If the signingTime attribute value is not within the locally
accepted time window, the GLA MAY return a response
indicating cMCStatus.failed and otherInfo.failInfo.badTime
and a signingTime attribute.
2.b - Else if signature processing continues and if the signatures
cannot be verified, the GLA returns a cMCStatusInfoExt
response indicating cMCStatus.failed and
otherInfo.failInfo.badMessageCheck. Additionally, a
signingTime attribute is included with the response.
2.c - Else if the signatures verify, the glAddMember request is
included in a controlSequence with the glUseKEK request, and
the processing in <a href="#section-4.1">Section 4.1</a> item 2.d is successfully
completed, the GLA returns a cMCStatusInfoExt indicating
cMCStatus.success and a signingTime attribute (2 in Figure
5).
2.c.1 - The GLA can apply confidentiality to the response by
encapsulating the SignedData.PKIData in an EnvelopedData
if the request was encapsulated in an EnvelopedData (see
<a href="#section-3.2.1.2">Section 3.2.1.2</a>).
2.c.2 - The GLA can also optionally apply another SignedData over
the EnvelopedData (see <a href="#section-3.2.1.2">Section 3.2.1.2</a>).
<span class="grey">Turner Standards Track [Page 40]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-41" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
2.d - Else if the signatures verify and the GLAddMember request is
not included in a controlSequence with the GLCreate request,
the GLA makes sure the GL is supported by checking that the
glName matches a glName stored on the GLA.
2.d.1 - If the glName is not supported by the GLA, the GLA
returns a response indicating cMCStatusInfoExt with
cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value of
invalidGLName. Additionally, a signingTime attribute is
included with the response.
2.d.2 - Else if the glName is supported by the GLA, the GLA
checks to see if the glMemberName is present on the GL.
2.d.2.a - If the glMemberName is present on the GL, the GLA
returns a response indicating cMCStatusInfoExt with
cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value of
alreadyAMember. Additionally, a signingTime
attribute is included with the response.
2.d.2.b - Else if the glMemberName is not present on the GL,
the GLA checks how the GL is administered.
2.d.2.b.1 - If the GL is closed, the GLA checks that a
registered GLO signed the request by checking
that one of the names in the digital signature
certificate used to sign the request matches a
registered GLO.
2.d.2.b.1.a - If the names do not match, the GLA returns a
response indicating cMCStatusInfoExt with
cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value
of noGLONameMatch. Additionally, a
signingTime attribute is included with the
response.
2.d.2.b.1.b - Else if the names match, the GLA verifies the
member's encryption certificate.
2.d.2.b.1.b.1 - If the member's encryption certificate
cannot be verified, the GLA can return a
response indicating cMCStatusInfoExt with
cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo
value of invalidCert to the GLO.
<span class="grey">Turner Standards Track [Page 41]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-42" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
Additionally, a signingTime attribute is
included with the response. If the GLA
does not return a
cMCStatusInfoExt.cMCStatus.failed
response, the GLA issues a glProvideCert
request (see <a href="#section-4.10">Section 4.10</a>).
2.d.2.b.1.b.2 - Else if the member's certificate
verifies, the GLA returns a
cMCStatusInfoExt indicating
cMCStatus.success and a signingTime
attribute (2 in Figure 5). The GLA also
takes administrative actions, which are
beyond the scope of this document, to add
the member to the GL stored on the GLA.
The GLA also distributes the shared KEK
to the member via the mechanism described
in <a href="#section-5">Section 5</a>.
2.d.2.b.1.b.2.a - The GLA applies confidentiality to
the response by encapsulating the
SignedData.PKIData in an
EnvelopedData if the request was
encapsulated in an EnvelopedData (see
<a href="#section-3.2.1.2">Section 3.2.1.2</a>).
2.d.2.b.1.b.2.b - The GLA can also optionally apply
another SignedData over the
EnvelopedData (see <a href="#section-3.2.1.2">Section 3.2.1.2</a>).
2.d.2.b.2 - Else if the GL is managed, the GLA checks that
either a registered GLO or the prospective member
signed the request. For GLOs, one of the names
in the certificate used to sign the request needs
to match a registered GLO. For the prospective
member, the name in glMember.glMemberName needs
to match one of the names in the certificate used
to sign the request.
2.d.2.b.2.a - If the signer is neither a registered GLO nor
the prospective GL member, the GLA returns a
response indicating cMCStatusInfoExt with
cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value
of noSpam. Additionally, a signingTime
attribute is included with the response.
<span class="grey">Turner Standards Track [Page 42]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-43" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
2.d.2.b.2.b - Else if the signer is a registered GLO, the
GLA verifies the member's encryption
certificate.
2.d.2.b.2.b.1 - If the member's certificate cannot be
verified, the GLA can return a response
indicating cMCStatusInfoExt with
cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo
value of invalidCert. Additionally, a
signingTime attribute is included with
the response. If the GLA does not return
a cMCStatus.failed response, the GLA MUST
issue a glProvideCert request (see
<a href="#section-4.10">Section 4.10</a>).
2.d.2.b.2.b.2 - Else if the member's certificate
verifies, the GLA MUST return a
cMCStatusInfoExt indicating
cMCStatus.success and a signingTime
attribute to the GLO (2 in Figure 5).
The GLA also takes administrative
actions, which are beyond the scope of
this document, to add the member to the
GL stored on the GLA. The GLA also
distributes the shared KEK to the member
via the mechanism described in <a href="#section-5">Section 5</a>.
The GL policy may mandate that the GL
member's address be included in the GL
member's certificate.
2.d.2.b.2.b.2.a - The GLA applies confidentiality to
the response by encapsulating the
SignedData.PKIData in an
EnvelopedData if the request was
encapsulated in an EnvelopedData (see
<a href="#section-3.2.1.2">Section 3.2.1.2</a>).
2.d.2.b.2.b.2.b - The GLA can also optionally apply
another SignedData over the
EnvelopedData (see <a href="#section-3.2.1.2">Section 3.2.1.2</a>).
2.d.2.b.2.c - Else if the signer is the prospective member,
the GLA forwards the glAddMember request (see
<a href="#section-3.2.3">Section 3.2.3</a>) to a registered GLO (B{A} in
Figure 5). If there is more than one
registered GLO, the GLO to which the request
is forwarded is beyond the scope of this
<span class="grey">Turner Standards Track [Page 43]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-44" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
document. Further processing of the
forwarded request by GLOs is addressed in 3
of <a href="#section-4.3.2">Section 4.3.2</a>.
2.d.2.b.2.c.1 - The GLA applies confidentiality to the
forwarded request by encapsulating the
SignedData.PKIData in an EnvelopedData if
the original request was encapsulated in
an EnvelopedData (see <a href="#section-3.2.1.2">Section 3.2.1.2</a>).
2.d.2.b.2.c.2 - The GLA can also optionally apply another
SignedData over the EnvelopedData (see
<a href="#section-3.2.1.2">Section 3.2.1.2</a>).
2.d.2.b.3 - Else if the GL is unmanaged, the GLA checks that
either a registered GLO or the prospective member
signed the request. For GLOs, one of the names
in the certificate used to sign the request needs
to match the name of a registered GLO. For the
prospective member, the name in
glMember.glMemberName needs to match one of the
names in the certificate used to sign the
request.
2.d.2.b.3.a - If the signer is neither a registered GLO nor
the prospective member, the GLA returns a
response indicating cMCStatusInfoExt with
cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value
of noSpam. Additionally, a signingTime
attribute is included with the response.
2.d.2.b.3.b - Else if the signer is either a registered GLO
or the prospective member, the GLA verifies
the member's encryption certificate.
2.d.2.b.3.b.1 - If the member's certificate cannot be
verified, the GLA can return a response
indicating cMCStatusInfoExt with
cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo
value of invalidCert and a signingTime
attribute to either the GLO or the
prospective member depending on where the
request originated. If the GLA does not
return a cMCStatus.failed response, the
GLA issues a glProvideCert request (see
<span class="grey">Turner Standards Track [Page 44]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-45" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
<a href="#section-4.10">Section 4.10</a>) to either the GLO or
prospective member depending on where the
request originated.
2.d.2.b.3.b.2 - Else if the member's certificate
verifies, the GLA returns a
cMCStatusInfoExt indicating
cMCStatus.success and a signingTime
attribute to the GLO (2 in Figure 5) if
the GLO signed the request and to the GL
member (3 in Figure 5) if the GL member
signed the request. The GLA also takes
administrative actions, which are beyond
the scope of this document, to add the
member to the GL stored on the GLA. The
GLA also distributes the shared KEK to
the member via the mechanism described in
<a href="#section-5">Section 5</a>.
2.d.2.b.3.b.2.a - The GLA applies confidentiality to
the response by encapsulating the
SignedData.PKIData in an
EnvelopedData if the request was
encapsulated in an EnvelopedData (see
<a href="#section-3.2.1.2">Section 3.2.1.2</a>).
2.d.2.b.3.b.2.b - The GLA can also optionally apply
another SignedData over the
EnvelopedData (see <a href="#section-3.2.1.2">Section 3.2.1.2</a>).
3 - Upon receipt of the cMCStatusInfoExt response, the GLO checks the
signingTime and verifies the GLA signature(s). If an additional
SignedData and/or EnvelopedData encapsulates the response (see
<a href="#section-3.2.1.2">Section 3.2.1.2</a> or 3.2.2), the GLO verifies the outer signature
and/or decrypts the outer layer prior to verifying the signature
on the innermost SignedData.
3.a - If the signingTime attribute value is not within the locally
accepted time window, the GLO MAY return a response
indicating cMCStatus.failed and otherInfo.failInfo.badTime
and a signingTime attribute.
3.b - Else if signature processing continues and if the signatures
verify, the GLO checks that one of the names in the
certificate used to sign the response matches the name of the
GL.
<span class="grey">Turner Standards Track [Page 45]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-46" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
3.b.1 - If the name of the GL does not match the name present in
the certificate used to sign the message, the GLO should
not believe the response.
3.b.2 - Else if the name of the GL matches the name present in
the certificate and:
3.b.2.a - If the signatures verify and the response is
cMCStatusInfoExt indicating cMCStatus.success, the
GLA has added the member to the GL. If the member
was added to a managed list and the original request
was signed by the member, the GLO sends a
cMCStatusInfoExt.cMCStatus.success and a signingTime
attribute to the GL member.
3.b.2.b - Else if the GLO received a
cMCStatusInfoExt.cMCStatus.failed with any reason,
the GLO can reattempt to add the member to the GL
using the information provided in the response.
4 - Upon receipt of the cMCStatusInfoExt response, the prospective
member checks the signingTime and verifies the GLA signatures or
GLO signatures. If an additional SignedData and/or EnvelopedData
encapsulates the response (see <a href="#section-3.2.1.2">Section 3.2.1.2</a> or 3.2.2), the GLO
verifies the outer signature and/or decrypts the outer layer
prior to verifying the signature on the innermost SignedData.
4.a - If the signingTime attribute value is not within the locally
accepted time window, the prospective member MAY return a
response indicating cMCStatus.failed and
otherInfo.failInfo.badTime and a signingTime attribute.
4.b - Else if signature processing continues and if the signatures
verify, the GL member checks that one of the names in the
certificate used to sign the response matches the name of the
GL.
4.b.1 - If the name of the GL does not match the name present in
the certificate used to sign the message, the GL member
should not believe the response.
4.b.2 - Else if the name of the GL matches the name present in the
certificate and:
4.b.2.a - If the signatures verify, the prospective member has
been added to the GL.
<span class="grey">Turner Standards Track [Page 46]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-47" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
4.b.2.b - Else if the prospective member received a
cMCStatusInfoExt.cMCStatus.failed, for any reason,
the prospective member MAY reattempt to add itself to
the GL using the information provided in the
response.
<span class="h4"><a class="selflink" id="section-4.3.2" href="#section-4.3.2">4.3.2</a>. Prospective Member Initiated Additions</span>
The process for prospective member initiated glAddMember requests is
as follows:
1 - The prospective GL member sends a
SignedData.PKIData.controlSequence.glAddMember request to the GLA
(A in Figure 5). The prospective GL member includes: the GL name
in glName, their name in glMember.glMemberName, their address in
glMember.glMemberAddress, and their encryption certificate in
glMember.certificates.pKC. The prospective GL member can also
include any attribute certificates associated with their
encryption certificate in glMember.certificates.aC, and the
certification path associated with their encryption and attribute
certificates in glMember.certificates.certPath. The prospective
member MUST also include the signingTime attribute with this
request.
1.a - The prospective GL member can optionally apply
confidentiality to the request by encapsulating the
SignedData.PKIData in an EnvelopedData (see <a href="#section-3.2.1.2">Section 3.2.1.2</a>).
1.b - The prospective GL member MAY optionally apply another
SignedData over the EnvelopedData (see <a href="#section-3.2.1.2">Section 3.2.1.2</a>).
2 - Upon receipt of the request, the GLA verifies the request as per
2 in <a href="#section-4.3.1">Section 4.3.1</a>.
3 - Upon receipt of the forwarded request, the GLO checks the
signingTime and verifies the prospective GL member signature on
the innermost SignedData.PKIData and the GLA signature on the
outer layer. If an EnvelopedData encapsulates the innermost
layer (see <a href="#section-3.2.1.2">Section 3.2.1.2</a> or 3.2.2), the GLO decrypts the outer
layer prior to verifying the signature on the innermost
SignedData.
Note: For cases where the GL is closed and either a) a
prospective member sends directly to the GLO or b) the GLA has
mistakenly forwarded the request to the GLO, the GLO should first
determine whether to honor the request.
<span class="grey">Turner Standards Track [Page 47]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-48" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
3.a - If the signingTime attribute value is not within the locally
accepted time window, the GLO MAY return a response
indicating cMCStatus.failed and otherInfo.failInfo.badTime.
3.b - Else if signature processing continues and if the signatures
verify, the GLO checks to make sure one of the names in the
certificate used to sign the request matches the name in
glMember.glMemberName.
3.b.1 - If the names do not match, the GLO sends a
SignedData.PKIResponse.controlSequence message back to
the prospective member with
cMCStatusInfoExt.cMCStatus.failed indicating why the
prospective member was denied in
cMCStausInfo.statusString. This stops people from adding
people to GLs without their permission. Additionally, a
signingTime attribute is included with the response.
3.b.2 - Else if the names match, the GLO determines whether the
prospective member is allowed to be added. The mechanism
is beyond the scope of this document; however, the GLO
should check to see that the glMember.glMemberName is not
already on the GL.
3.b.2.a - If the GLO determines the prospective member is not
allowed to join the GL, the GLO can return a
SignedData.PKIResponse.controlSequence message back
to the prospective member with
cMCStatusInfoExt.cMCtatus.failed indicating why the
prospective member was denied in
cMCStatus.statusString. Additionally, a signingTime
attribute is included with the response.
3.b.2.b - Else if the GLO determines the prospective member is
allowed to join the GL, the GLO verifies the member's
encryption certificate.
3.b.2.b.1 - If the member's certificate cannot be verified,
the GLO returns a
SignedData.PKIResponse.controlSequence back to
the prospective member with
cMCStatusInfoExt.cMCtatus.failed indicating that
the member's encryption certificate did not
verify in cMCStatus.statusString. Additionally,
a signingTime attribute is included with the
response. If the GLO does not return a
cMCStatusInfoExt response, the GLO sends a
<span class="grey">Turner Standards Track [Page 48]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-49" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
SignedData.PKIData.controlSequence.glProvideCert
message to the prospective member requesting a
new encryption certificate (see <a href="#section-4.10">Section 4.10</a>).
3.b.2.b.2 - Else if the member's certificate verifies, the
GLO resubmits the glAddMember request (see
<a href="#section-3.2.5">Section 3.2.5</a>) to the GLA (1 in Figure 5).
3.b.2.b.2.a - The GLO applies confidentiality to the new
GLAddMember request by encapsulating the
SignedData.PKIData in an EnvelopedData if the
initial request was encapsulated in an
EnvelopedData (see <a href="#section-3.2.1.2">Section 3.2.1.2</a>).
3.b.2.b.2.b - The GLO can also optionally apply another
SignedData over the EnvelopedData (see
<a href="#section-3.2.1.2">Section 3.2.1.2</a>).
4 - Processing continues as in 2 of <a href="#section-4.3.1">Section 4.3.1</a>.
<span class="h3"><a class="selflink" id="section-4.4" href="#section-4.4">4.4</a>. Delete Members from GL</span>
To delete members from GLs, either the GLO or members to be removed
use the glDeleteMember request. The GLA processes the GLO, and
members requesting their own removal make requests differently. The
GLO can submit the request at any time to delete members from the GL,
and the GLA, once it has verified the request came from a registered
GLO, should delete the member. If a member sends the request, the
GLA needs to determine how the GL is administered. When the GLO
initially configured the GL, it set the GL to be unmanaged, managed,
or closed (see <a href="#section-3.1.1">Section 3.1.1</a>). In the unmanaged case, the GLA merely
processes the member's request. In the managed case, the GLA
forwards the requests from the member to the GLO for review. Where
there are multiple GLOs for a GL, which GLO the request is forwarded
to is beyond the scope of this document. The GLO reviews the request
and either rejects it or submits a reformed request to the GLA. In
the closed case, the GLA will not accept requests from members. The
following sections describe the processing for the GLO(s), GLA, and
GL members depending on where the request originated, either from a
GLO or from members wanting to be removed. Figure 6 depicts the
protocol interactions for the three options. Note that the error
messages are not depicted. Additionally, behavior for the optional
transactionId, senderNonce, and recipientNonce CMC control attributes
is not addressed in these procedures.
<span class="grey">Turner Standards Track [Page 49]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-50" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
+-----+ 2,B{A} 3 +----------+
| GLO | <--------+ +-------> | Member 1 |
+-----+ | | +----------+
1 | |
+-----+ <--------+ | 3 +----------+
| GLA | A +-------> | ... |
+-----+ <-------------+ +----------+
|
| 3 +----------+
+-------> | Member n |
+----------+
Figure 6 - Member Deletion
If the member is not removed from the GL, it will continue to receive
and be able to decrypt data protected with the shared KEK and will
continue to receive rekeys. For unmanaged lists, there is no point
to a group rekey because there is no guarantee that the member
requesting to be removed has not already added itself back on the GL
under a different name. For managed and closed GLs, the GLO needs to
take steps to ensure that the member being deleted is not on the GL
twice. After ensuring this, managed and closed GLs can be rekeyed to
maintain the confidentiality of the traffic sent by group members.
If the GLO is sure the member has been deleted, the group rekey
mechanism can be used to distribute the new key (see Sections <a href="#section-4.5">4.5</a> and
5).
<span class="h4"><a class="selflink" id="section-4.4.1" href="#section-4.4.1">4.4.1</a>. GLO Initiated Deletions</span>
The process for GLO initiated glDeleteMember requests is as follows:
1 - The GLO collects the pertinent information for the member(s) to
be deleted (this can be done through an out-of-band means). The
GLO then sends a SignedData.PKIData.controlSequence with a
separate glDeleteMember request for each member to the GLA (1 in
Figure 6). The GLO MUST include the GL name in glName and the
member's name in glMemberToDelete. If the GL from which the
member is being deleted is a closed or managed GL, the GLO MUST
also generate a glRekey request and include it with the
glDeletemember request (see <a href="#section-4.5">Section 4.5</a>). The GLO MUST also
include the signingTime attribute with this request.
1.a - The GLO can optionally apply confidentiality to the request
by encapsulating the SignedData.PKIData in an EnvelopedData
(see <a href="#section-3.2.1.2">Section 3.2.1.2</a>).
1.b - The GLO can also optionally apply another SignedData over the
EnvelopedData (see <a href="#section-3.2.1.2">Section 3.2.1.2</a>).
<span class="grey">Turner Standards Track [Page 50]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-51" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
2 - Upon receipt of the request, the GLA checks the signingTime
attribute and verifies the signature on the innermost
SignedData.PKIData. If an additional SignedData and/or
EnvelopedData encapsulates the request (see <a href="#section-3.2.1.2">Section 3.2.1.2</a> or
3.2.2), the GLA verifies the outer signature and/or decrypts the
outer layer prior to verifying the signature on the innermost
SignedData.
2.a - If the signingTime attribute value is not within the locally
accepted time window, the GLA MAY return a response
indicating cMCStatus.failed and otherInfo.failInfo.badTime
and a signingTime attribute.
2.b - Else if signature processing continues and if the signatures
cannot be verified, the GLA returns a cMCStatusInfoExt
response indicating cMCStatus.failed and
otherInfo.failInfo.badMessageCheck. Additionally, a
signingTime attribute is included with the response.
2.c - Else if the signatures verify, the GLA makes sure the GL is
supported by the GLA by checking that the glName matches a
glName stored on the GLA.
2.c.1 - If the glName is not supported by the GLA, the GLA
returns a response indicating cMCStatusInfoExt with
cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value of
invalidGLName. Additionally, a signingTime attribute is
included with the response.
2.c.2 - Else if the glName is supported by the GLA, the GLA
checks to see if the glMemberName is present on the GL.
2.c.2.a - If the glMemberName is not present on the GL, the GLA
returns a response indicating cMCStatusInfoExt with
cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value of
notAMember. Additionally, a signingTime attribute is
included with the response.
2.c.2.b - Else if the glMemberName is already on the GL, the
GLA checks how the GL is administered.
2.c.2.b.1 - If the GL is closed, the GLA checks that the
registered GLO signed the request by checking
that one of the names in the digital signature
certificate used to sign the request matches the
registered GLO.
<span class="grey">Turner Standards Track [Page 51]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-52" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
2.c.2.b.1.a - If the names do not match, the GLA returns a
response indicating cMCStatusInfoExt with
cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value
of closedGL. Additionally, a signingTime
attribute is included with the response.
2.c.2.b.1.b - Else if the names do match, the GLA returns a
cMCStatusInfoExt.cMCStatus.success and a
signingTime attribute (2 in Figure 5). The
GLA also takes administrative actions, which
are beyond the scope of this document, to
delete the member with the GL stored on the
GLA. Note that the GL also needs to be
rekeyed as described in <a href="#section-5">Section 5</a>.
2.c.2.b.1.b.1 - The GLA applies confidentiality to the
response by encapsulating the
SignedData.PKIData in an EnvelopedData if
the request was encapsulated in an
EnvelopedData (see <a href="#section-3.2.1.2">Section 3.2.1.2</a>).
2.c.2.b.1.b.2 - The GLA can also optionally apply another
SignedData over the EnvelopedData (see
<a href="#section-3.2.1.2">Section 3.2.1.2</a>).
2.c.2.b.2 - Else if the GL is managed, the GLA checks that
either a registered GLO or the prospective member
signed the request. For GLOs, one of the names
in the certificate used to sign the request needs
to match a registered GLO. For the prospective
member, the name in glMember.glMemberName needs
to match one of the names in the certificate used
to sign the request.
2.c.2.b.2.a - If the signer is neither a registered GLO nor
the prospective GL member, the GLA returns a
response indicating cMCStatusInfoExt with
cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value
of noSpam. Additionally, a signingTime
attribute is included with the response.
2.c.2.b.2.b - Else if the signer is a registered GLO, the
GLA returns a
cMCStatusInfoExt.cMCStatus.success and a
signingTime attribute(2 in Figure 6). The
GLA also takes administrative actions, which
<span class="grey">Turner Standards Track [Page 52]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-53" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
are beyond the scope of this document, to
delete the member with the GL stored on the
GLA. Note that the GL will also be rekeyed
as described in <a href="#section-5">Section 5</a>.
2.c.2.b.2.b.1 - The GLA applies confidentiality to the
response by encapsulating the
SignedData.PKIData in an EnvelopedData if
the request was encapsulated in an
EnvelopedData (see <a href="#section-3.2.1.2">Section 3.2.1.2</a>).
2.c.2.b.2.b.2 - The GLA can also optionally apply another
SignedData over the EnvelopedData (see
<a href="#section-3.2.1.2">Section 3.2.1.2</a>).
2.c.2.b.2.c - Else if the signer is the prospective member,
the GLA forwards the glDeleteMember request
(see <a href="#section-3.2.3">Section 3.2.3</a>) to the GLO (B{A} in
Figure 6). If there is more than one
registered GLO, the GLO to which the request
is forwarded to is beyond the scope of this
document. Further processing of the
forwarded request by GLOs is addressed in 3
of <a href="#section-4.4.2">Section 4.4.2</a>.
2.c.2.b.2.c.1 - The GLA applies confidentiality to the
forwarded request by encapsulating the
SignedData.PKIData in an EnvelopedData if
the request was encapsulated in an
EnvelopedData (see <a href="#section-3.2.1.2">Section 3.2.1.2</a>).
2.c.2.b.2.c.2 - The GLA can also optionally apply another
SignedData over the EnvelopedData (see
<a href="#section-3.2.1.2">Section 3.2.1.2</a>).
2.c.2.b.3 - Else if the GL is unmanaged, the GLA checks that
either a registered GLO or the prospective member
signed the request. For GLOs, one of the names
in the certificate used to sign the request needs
to match the name of a registered GLO. For the
prospective member, the name in
glMember.glMemberName needs to match one of the
names in the certificate used to sign the
request.
<span class="grey">Turner Standards Track [Page 53]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-54" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
2.c.2.b.3.a - If the signer is neither the GLO nor the
prospective member, the GLA returns a
response indicating cMCStatusInfoExt with
cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value
of noSpam. Additionally, a signingTime
attribute is included with the response.
2.c.2.b.3.b - Else if the signer is either a registered GLO
or the member, the GLA returns a
cMCStatusInfoExt.cMCStatus.success and a
signingTime attribute to the GLO (2 in Figure
6) if the GLO signed the request and to the
GL member (3 in Figure 6) if the GL member
signed the request. The GLA also takes
administrative actions, which are beyond the
scope of this document, to delete the member
with the GL stored on the GLA.
2.c.2.b.3.b.1 - The GLA applies confidentiality to the
response by encapsulating the
SignedData.PKIData in an EnvelopedData if
the request was encapsulated in an
EnvelopedData (see <a href="#section-3.2.1.2">Section 3.2.1.2</a>).
2.c.2.b.3.b.2 - The GLA can also optionally apply another
SignedData over the EnvelopedData (see
<a href="#section-3.2.1.2">Section 3.2.1.2</a>).
3 - Upon receipt of the cMCStatusInfoExt response, the GLO checks the
signingTime and verifies the GLA signatures. If an additional
SignedData and/or EnvelopedData encapsulates the response (see
<a href="#section-3.2.1.2">Section 3.2.1.2</a> or 3.2.2), the GLO verifies the outer signature
and/or decrypts the outer layer prior to verifying the signature
on the innermost SignedData.
3.a - If the signingTime attribute value is not within the locally
accepted time window, the GLO MAY return a response
indicating cMCStatus.failed and otherInfo.failInfo.badTime
and a signingTime attribute.
3.b - Else if signature processing continues and if the signatures
do verify, the GLO checks that one of the names in the
certificate used to sign the response matches the name of the
GL.
<span class="grey">Turner Standards Track [Page 54]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-55" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
3.b.1 - If the name of the GL does not match the name present in
the certificate used to sign the message, the GLO should
not believe the response.
3.b.2 - Else if the name of the GL matches the name present in
the certificate and:
3.b.2.a - If the signatures verify and the response is
cMCStatusInfoExt.cMCStatus.success, the GLO has
deleted the member from the GL. If member was
deleted from a managed list and the original request
was signed by the member, the GLO sends a
cMCStatusInfoExt.cMCStatus.success and a signingTime
attribute to the GL member.
3.b.2.b - Else if the GLO received a
cMCStatusInfoExt.cMCStatus.failed with any reason,
the GLO may reattempt to delete the member from the
GL using the information provided in the response.
4 - Upon receipt of the cMCStatusInfoExt response, the member checks
the signingTime and verifies the GLA signature(s) or GLO
signature(s). If an additional SignedData and/or EnvelopedData
encapsulates the response (see <a href="#section-3.2.1.2">Section 3.2.1.2</a> or 3.2.2), the GLO
verifies the outer signature and/or decrypts the outer layer
prior to verifying the signature on the innermost SignedData.
4.a - If the signingTime attribute value is not within the locally
accepted time window, the prospective member MAY return a
response indicating cMCStatus.failed and
otherInfo.failInfo.badTime and a signingTime attribute.
4.b - Else if signature processing continues and if the signatures
verify, the GL member checks that one of the names in the
certificate used to sign the response matches the name of the
GL.
4.b.1 - If the name of the GL does not match the name present in
the certificate used to sign the message, the GL member
should not believe the response.
4.b.2 - Else if the name of the GL matches the name present in
the certificate and:
4.b.2.a - If the signature(s) verify, the member has been
deleted from the GL.
<span class="grey">Turner Standards Track [Page 55]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-56" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
4.b.2.b - Else if the member received a
cMCStatusInfoExt.cMCStatus.failed with any reason,
the member can reattempt to delete itself from the GL
using the information provided in the response.
<span class="h4"><a class="selflink" id="section-4.4.2" href="#section-4.4.2">4.4.2</a>. Member Initiated Deletions</span>
The process for member initiated deletion of its own membership using
the glDeleteMember requests is as follows:
1 - The member sends a
SignedData.PKIData.controlSequence.glDeleteMember request to the
GLA (A in Figure 6). The member includes the name of the GL in
glName and the member's own name in glMemberToDelete. The GL
member MUST also include the signingTime attribute with this
request.
1.a - The member can optionally apply confidentiality to the
request by encapsulating the SignedData.PKIData in an
EnvelopedData (see <a href="#section-3.2.1.2">Section 3.2.1.2</a>).
1.b - The member can also optionally apply another SignedData over
the EnvelopedData (see <a href="#section-3.2.1.2">Section 3.2.1.2</a>).
2 - Upon receipt of the request, the GLA verifies the request as per
2 in <a href="#section-4.4.1">Section 4.4.1</a>.
3 - Upon receipt of the forwarded request, the GLO checks the
signingTime and verifies the member signature on the innermost
SignedData.PKIData and the GLA signature on the outer layer. If
an EnvelopedData encapsulates the innermost layer (see <a href="#section-3.2.1.2">Section</a>
<a href="#section-3.2.1.2">3.2.1.2</a> or 3.2.2), the GLO decrypts the outer layer prior to
verifying the signature on the innermost SignedData.
Note: For cases where the GL is closed and either (a) a
prospective member sends directly to the GLO or (b) the GLA has
mistakenly forwarded the request to the GLO, the GLO should first
determine whether to honor the request.
3.a - If the signingTime attribute value is not within the locally
accepted time window, the GLO MAY return a response
indicating cMCStatus.failed and otherInfo.failInfo.badTime
and a signingTime attribute.
<span class="grey">Turner Standards Track [Page 56]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-57" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
3.b - Else if signature processing continues if the signatures
cannot be verified, the GLO returns a cMCStatusInfoExt
response indicating cMCStatus.failed and
otherInfo.failInfo.badMessageCheck and a signingTime
attribute.
3.c - Else if the signatures verify, the GLO checks to make sure
one of the names in the certificates used to sign the request
matches the name in glMemberToDelete.
3.c.1 - If the names do not match, the GLO sends a
SignedData.PKIResponse.controlSequence message back to
the prospective member with
cMCStatusInfoExt.cMCtatus.failed indicating why the
prospective member was denied in
cMCStatusInfoExt.statusString. This stops people from
adding people to GLs without their permission.
Additionally, a signingTime attribute is included with
the response.
3.c.2 - Else if the names match, the GLO resubmits the
glDeleteMember request (see <a href="#section-3.2.5">Section 3.2.5</a>) to the GLA (1
in Figure 6). The GLO makes sure the glMemberName is
already on the GL. The GLO also generates a glRekey
request and include it with the GLDeleteMember request
(see <a href="#section-4.5">Section 4.5</a>).
3.c.2.a - The GLO applies confidentiality to the new
GLDeleteMember request by encapsulating the
SignedData.PKIData in an EnvelopedData if the initial
request was encapsulated in an EnvelopedData (see
<a href="#section-3.2.1.2">Section 3.2.1.2</a>).
3.c.2.b - The GLO can also optionally apply another SignedData
over the EnvelopedData (see <a href="#section-3.2.1.2">Section 3.2.1.2</a>).
4 - Further processing is as in 2 of <a href="#section-4.4.1">Section 4.4.1</a>.
<span class="h3"><a class="selflink" id="section-4.5" href="#section-4.5">4.5</a>. Request Rekey of GL</span>
From time to time, the GL will need to be rekeyed. Some situations
follow:
- When a member is removed from a closed or managed GL. In this
case, the PKIData.controlSequence containing the glDeleteMember
ought to contain a glRekey request.
<span class="grey">Turner Standards Track [Page 57]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-58" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
- Depending on policy, when a member is removed from an unmanaged
GL. If the policy is to rekey the GL, the
PKIData.controlSequence containing the glDeleteMember could also
contain a glRekey request or an out-of-bands means could be used
to tell the GLA to rekey the GL. Rekeying of unmanaged GLs when
members are deleted is not advised.
- When the current shared KEK has been compromised.
- When the current shared KEK is about to expire. Consider two
cases:
-- If the GLO controls the GL rekey, the GLA should not assume
that a new shared KEK should be distributed, but instead wait
for the glRekey message.
-- If the GLA controls the GL rekey, the GLA should initiate a
glKey message as specified in <a href="#section-5">Section 5</a>.
If the generationCounter (see <a href="#section-3.1.1">Section 3.1.1</a>) is set to a value
greater than one (1) and the GLO controls the GL rekey, the GLO may
generate a glRekey any time before the last shared KEK has expired.
To be on the safe side, the GLO ought to request a rekey one (1)
duration before the last shared KEK expires.
The GLA and GLO are the only entities allowed to initiate a GL rekey.
The GLO indicated whether they are going to control rekeys or whether
the GLA is going to control rekeys when they assigned the shared KEK
to GL (see <a href="#section-3.1.1">Section 3.1.1</a>). The GLO initiates a GL rekey at any time.
The GLA can be configured to automatically rekey the GL prior to the
expiration of the shared KEK (the length of time before the
expiration is an implementation decision). The GLA can also
automatically rekey GLs that have been compromised, but this is
covered in <a href="#section-5">Section 5</a>. Figure 7 depicts the protocol interactions to
request a GL rekey. Note that error messages are not depicted.
Additionally, behavior for the optional transactionId, senderNonce,
and recipientNonce CMC control attributes is not addressed in these
procedures.
+-----+ 1 2,A +-----+
| GLA | <-------> | GLO |
+-----+ +-----+
Figure 7 - GL Rekey Request
<span class="grey">Turner Standards Track [Page 58]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-59" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
<span class="h4"><a class="selflink" id="section-4.5.1" href="#section-4.5.1">4.5.1</a>. GLO Initiated Rekey Requests</span>
The process for GLO initiated glRekey requests is as follows:
1 - The GLO sends a SignedData.PKIData.controlSequence.glRekey
request to the GLA (1 in Figure 7). The GLO includes the glName.
If glAdministration and glKeyNewAttributes are omitted then there
is no change from the previously registered GL values for these
fields. If the GLO wants to force a rekey for all outstanding
shared KEKs, it includes the glRekeyAllGLKeys set to TRUE. The
GLO MUST also include a signingTime attribute with this request.
1.a - The GLO can optionally apply confidentiality to the request
by encapsulating the SignedData.PKIData in an EnvelopedData
(see <a href="#section-3.2.1.2">Section 3.2.1.2</a>).
1.b - The GLO can also optionally apply another SignedData over the
EnvelopedData (see <a href="#section-3.2.1.2">Section 3.2.1.2</a>).
2 - Upon receipt of the request, the GLA checks the signingTime and
verifies the signature on the innermost SignedData.PKIData. If
an additional SignedData and/or EnvelopedData encapsulates the
request (see <a href="#section-3.2.1.2">Section 3.2.1.2</a> or 3.2.2), the GLA verifies the
outer signature and/or decrypts the outer layer prior to
verifying the signature on the innermost SignedData.
2.a - If the signingTime attribute value is not within the locally
accepted time window, the GLA MAY return a response
indicating cMCStatus.failed and otherInfo.failInfo.badTime
and a signingTime attribute.
2.b - Else if signature processing continues and if the signatures
do not verify, the GLA returns a cMCStatusInfoExt response
indicating cMCStatus.failed and
otherInfo.failInfo.badMessageCheck. Additionally, a
signingTime attribute is included with the response.
2.c - Else if the signatures do verify, the GLA makes sure the GL
is supported by the GLA by checking that the glName matches a
glName stored on the GLA.
2.c.1 - If the glName present does not match a GL stored on the
GLA, the GLA returns a response indicating
cMCStatusInfoExt with cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value of
invalidGLName. Additionally, a signingTime attribute is
included with the response.
<span class="grey">Turner Standards Track [Page 59]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-60" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
2.c.2 - Else if the glName present matches a GL stored on the
GLA, the GLA checks that a registered GLO signed the
request by checking that one of the names in the
certificate used to sign the request is a registered GLO.
2.c.2.a - If the names do not match, the GLA returns a response
indicating cMCStatusInfoExt with cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value of
noGLONameMatch. Additionally, a signingTime
attribute is included with the response.
2.c.2.b - Else if the names match, the GLA checks the
glNewKeyAttribute values.
2.c.2.b.1 - If the new value for requestedAlgorithm is not
supported, the GLA returns a response indicating
cMCStatusInfoExt with cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value of
unsupportedAlgorithm. Additionally, a
signingTime attribute is included with the
response.
2.c.2.b.2 - Else if the new value duration is not supportable
(determining this is beyond the scope of this
document), the GLA returns a response indicating
cMCStatusInfoExt with cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value of
unsupportedDuration. Additionally, a signingTime
attribute is included with the response.
2.c.2.b.3 - Else if the GL is not supportable for other
reasons that the GLA does not wish to disclose,
the GLA returns a response indicating
cMCStatusInfoExt with cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value of
unspecified. Additionally, a signingTime
attribute is included with the response.
2.c.2.b.4 - Else if the new requestedAlgorithm and duration
are supportable or the glNewKeyAttributes was
omitted, the GLA returns a
cMCStatusInfoExt.cMCStatus.success and a
sigingTime attribute (2 in Figure 7). The GLA
also uses the glKey message to distribute the
rekey shared KEK (see <a href="#section-5">Section 5</a>).
<span class="grey">Turner Standards Track [Page 60]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-61" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
2.c.2.b.4.a - The GLA applies confidentiality to response
by encapsulating the SignedData.PKIData in an
EnvelopedData if the request was encapsulated
in an EnvelopedData (see <a href="#section-3.2.1.2">Section 3.2.1.2</a>).
2.c.2.b.4.b - The GLA can also optionally apply another
SignedData over the EnvelopedData (see
<a href="#section-3.2.1.2">Section 3.2.1.2</a>).
3 - Upon receipt of the cMCStatusInfoExt response, the GLO checks the
signingTime and verifies the GLA signature(s). If an additional
SignedData and/or EnvelopedData encapsulates the forwarded
response (see <a href="#section-3.2.1.2">Section 3.2.1.2</a> or 3.2.2), the GLO verifies the
outer signature and/or decrypts the forwarded response prior to
verifying the signature on the innermost SignedData.
3.a - If the signingTime attribute value is not within the locally
accepted time window, the GLA MAY return a response
indicating cMCStatus.failed and otherInfo.failInfo.badTime
and a signingTime attribute.
3.b - Else if signature processing continues and if the signatures
verify, the GLO checks that one of the names in the
certificate used to sign the response matches the name of the
GL.
3.b.1 - If the name of the GL does not match the name present in
the certificate used to sign the message, the GLO should
not believe the response.
3.b.2 - Else if the name of the GL matches the name present in
the certificate and:
3.b.2.a - If the signatures verify and the response is
cMCStatusInfoExt.cMCStatus.success, the GLO has
successfully rekeyed the GL.
3.b.2.b - Else if the GLO received a
cMCStatusInfoExt.cMCStatus.failed with any reason,
the GLO can reattempt to rekey the GL using the
information provided in the response.
<span class="grey">Turner Standards Track [Page 61]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-62" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
<span class="h4"><a class="selflink" id="section-4.5.2" href="#section-4.5.2">4.5.2</a>. GLA Initiated Rekey Requests</span>
If the GLA is in charge of rekeying the GL the GLA will automatically
issue a glKey message (see <a href="#section-5">Section 5</a>). In addition the GLA will
generate a cMCStatusInfoExt to indicate to the GL that a successful
rekey has occurred. The process for GLA initiated rekey is as
follows:
1 - The GLA generates for all GLOs a
SignedData.PKIData.controlSequence.cMCStatusInfoExt.cMCStatus
success and includes a signingTime attribute (A in Figure 7).
1.a - The GLA can optionally apply confidentiality to the request
by encapsulating the SignedData.PKIData in an EnvelopedData
(see <a href="#section-3.2.1.2">Section 3.2.1.2</a>).
1.b - The GLA can also optionally apply another SignedData over the
EnvelopedData (see <a href="#section-3.2.1.2">Section 3.2.1.2</a>).
2 - Upon receipt of the cMCStatusInfoExt.cMCStatus.success response,
the GLO checks the signingTime and verifies the GLA signature(s).
If an additional SignedData and/or EnvelopedData encapsulates the
forwarded response (see <a href="#section-3.2.1.2">Section 3.2.1.2</a> or 3.2.2), the GLO MUST
verify the outer signature and/or decrypt the outer layer prior
to verifying the signature on the innermost SignedData.
2.a - If the signingTime attribute value is not within the locally
accepted time window, the GLO MAY return a response
indicating cMCStatus.failed and otherInfo.failInfo.badTime
and a signingTime attribute.
2.b - Else if signature processing continues and if the signatures
verify, the GLO checks that one of the names in the
certificate used to sign the response matches the name of the
GL.
2.b.1 - If the name of the GL does not match the name present in
the certificate used to sign the message, the GLO ought
not believe the response.
2.b.2 - Else if the name of the GL does match the name present in
the certificate and the response is
cMCStatusInfoExt.cMCStatus.success, the GLO knows the GLA
has successfully rekeyed the GL.
<span class="grey">Turner Standards Track [Page 62]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-63" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
<span class="h3"><a class="selflink" id="section-4.6" href="#section-4.6">4.6</a>. Change GLO</span>
Management of managed and closed GLs can become difficult for one GLO
if the GL membership grows large. To support distributing the
workload, GLAs support having GLs be managed by multiple GLOs. The
glAddOwner and glRemoveOwner messages are designed to support adding
and removing registered GLOs. Figure 8 depicts the protocol
interactions to send glAddOwner and glRemoveOwner messages and the
resulting response messages. Note that error messages are not shown.
Additionally, behavior for the optional transactionId, senderNonce,
and recipientNonce CMC control attributes is not addressed in these
procedures.
+-----+ 1 2 +-----+
| GLA | <-------> | GLO |
+-----+ +-----+
Figure 8 - GLO Add and Delete Owners
The process for glAddOwner and glDeleteOwner is as follows:
1 - The GLO sends a SignedData.PKIData.controlSequence.glAddOwner or
glRemoveOwner request to the GLA (1 in Figure 8). The GLO
includes the GL name in glName, and the name and address of the
GLO in glOwnerName and glOwnerAddress, respectively. The GLO
MUST also include the signingTime attribute with this request.
1.a - The GLO can optionally apply confidentiality to the request
by encapsulating the SignedData.PKIData in an EnvelopedData
(see <a href="#section-3.2.1.2">Section 3.2.1.2</a>).
1.b - The GLO can also optionally apply another SignedData over the
EnvelopedData (see <a href="#section-3.2.1.2">Section 3.2.1.2</a>).
2 - Upon receipt of the glAddOwner or glRemoveOwner request, the GLA
checks the signingTime and verifies the GLO signature(s). If an
additional SignedData and/or EnvelopedData encapsulates the
request (see <a href="#section-3.2.1.2">Section 3.2.1.2</a> or 3.2.2), the GLA verifies the
outer signature and/or decrypts the outer layer prior to
verifying the signature on the innermost SignedData.
2.a - If the signingTime attribute value is not within the locally
accepted time window, the GLA MAY return a response
indicating cMCStatus.failed and otherInfo.failInfo.badTime
and a signingTime attribute.
<span class="grey">Turner Standards Track [Page 63]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-64" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
2.b - Else if signature processing continues and if the signatures
cannot be verified, the GLA returns a cMCStatusInfoExt
response indicating cMCStatus.failed and
otherInfo.failInfo.badMessageCheck. Additionally, a
signingTime attribute is included with the response.
2.c - Else if the signatures verify, the GLA makes sure the GL is
supported by checking that the glName matches a glName stored
on the GLA.
2.c.1 - If the glName is not supported by the GLA, the GLA
returns a response indicating cMCStatusInfoExt with
cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value of
invalidGLName. Additionally, a signingTime attribute is
included with the response.
2.c.2 - Else if the glName is supported by the GLA, the GLA
ensures that a registered GLO signed the glAddOwner or
glRemoveOwner request by checking that one of the names
present in the digital signature certificate used to sign
the glAddOwner or glDeleteOwner request matches the name
of a registered GLO.
2.c.2.a - If the names do not match, the GLA returns a response
indicating cMCStatusInfoExt with cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value of
noGLONameMatch. Additionally, a signingTime
attribute is included with the response.
2.c.2.b - Else if the names match, the GLA returns a
cMCStatusInfoExt.cMCStatus.success and a signingTime
attribute (2 in Figure 4). The GLA also takes
administrative actions to associate the new
glOwnerName with the GL in the case of glAddOwner or
to disassociate the old glOwnerName with the GL in
the cased of glRemoveOwner.
2.c.2.b.1 - The GLA applies confidentiality to the response
by encapsulating the SignedData.PKIResponse in an
EnvelopedData if the request was encapsulated in
an EnvelopedData (see <a href="#section-3.2.1.2">Section 3.2.1.2</a>).
2.c.2.b.2 - The GLA can also optionally apply another
SignedData over the EnvelopedData (see <a href="#section-3.2.1.2">Section</a>
<a href="#section-3.2.1.2">3.2.1.2</a>).
<span class="grey">Turner Standards Track [Page 64]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-65" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
3 - Upon receipt of the cMCStatusInfoExt response, the GLO checks the
signingTime and verifies the GLA's signature(s). If an
additional SignedData and/or EnvelopedData encapsulates the
response (see <a href="#section-3.2.1.2">Section 3.2.1.2</a> or 3.2.2), the GLO verifies the
outer signature and/or decrypts the outer layer prior to
verifying the signature on the innermost SignedData.
3.a - If the signingTime attribute value is not within the locally
accepted time window, the GLO MAY return a response
indicating cMCStatus.failed and otherInfo.failInfo.badTime
and a signingTime attribute.
3.b - Else if signature processing continues and if the signatures
verify, the GLO checks that one of the names in the
certificate used to sign the response matches the name of the
GL.
3.b.1 - If the name of the GL does not match the name present in
the certificate used to sign the message, the GLO should
not believe the response.
3.b.2 - Else if the name of the GL does match the name present in
the certificate and:
3.b.2.a - If the signatures verify and the response was
cMCStatusInfoExt.cMCStatus.success, the GLO has
successfully added or removed the GLO.
3.b.2.b - Else if the signatures verify and the response was
cMCStatusInfoExt.cMCStatus.failed with any reason,
the GLO can reattempt to add or delete the GLO using
the information provided in the response.
<span class="h3"><a class="selflink" id="section-4.7" href="#section-4.7">4.7</a>. Indicate KEK Compromise</span>
There will be times when the shared KEK is compromised. GL members
and GLOs use glkCompromise to tell the GLA that the shared KEK has
been compromised. Figure 9 depicts the protocol interactions for GL
Key Compromise. Note that error messages are not shown.
Additionally, behavior for the optional transactionId, senderNonce,
and recipientNonce CMC control attributes is not addressed in these
procedures.
<span class="grey">Turner Standards Track [Page 65]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-66" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
+-----+ 2{1} 4 +----------+
| GLO | <----------+ +-------> | Member 1 |
+-----+ 5,3{1} | | +----------+
+-----+ <----------+ | 4 +----------+
| GLA | 1 +-------> | ... |
+-----+ <---------------+ +----------+
| 4 +----------+
+-------> | Member n |
+----------+
Figure 9 - GL Key Compromise
<span class="h4"><a class="selflink" id="section-4.7.1" href="#section-4.7.1">4.7.1</a>. GL Member Initiated KEK Compromise Message</span>
The process for GL member initiated glkCompromise messages is as
follows:
1 - The GL member sends a
SignedData.PKIData.controlSequence.glkCompromise request to the
GLA (1 in Figure 9). The GL member includes the name of the GL
in GeneralName. The GL member MUST also include the signingTime
attribute with this request.
1.a - The GL member can optionally apply confidentiality to the
request by encapsulating the SignedData.PKIData in an
EnvelopedData (see <a href="#section-3.2.1.2">Section 3.2.1.2</a>). The glkCompromise can
be included in an EnvelopedData generated with the
compromised shared KEK.
1.b - The GL member can also optionally apply another SignedData
over the EnvelopedData (see <a href="#section-3.2.1.2">Section 3.2.1.2</a>).
2 - Upon receipt of the glkCompromise request, the GLA checks the
signingTime and verifies the GL member signature(s). If an
additional SignedData and/or EnvelopedData encapsulates the
request (see <a href="#section-3.2.1.2">Section 3.2.1.2</a> or 3.2.2), the GLA verifies the
outer signature and/or decrypts the outer layer prior to
verifying the signature on the innermost SignedData.
2.a - If the signingTime attribute value is not within the locally
accepted time window, the GLA MAY return a response
indicating cMCStatus.failed and otherInfo.failInfo.badTime
and a signingTime attribute.
<span class="grey">Turner Standards Track [Page 66]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-67" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
2.b - Else if signature processing continues and if the signatures
cannot be verified, the GLA returns a cMCStatusInfoExt
response indicating cMCStatus.failed and
otherInfo.failInfo.badMessageCheck. Additionally, a
signingTime attribute is included with the response.
2.c - Else if the signatures verify, the GLA makes sure the GL is
supported by checking that the indicated GL name matches a
glName stored on the GLA.
2.c.1 - If the glName is not supported by the GLA, the GLA
returns a response indicating cMCStatusInfoExt with
cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value of
invalidGLName. Additionally, a signingTime attribute is
included with the response.
2.c.2 - Else if the glName is supported by the GLA, the GLA
checks who signed the request. For GLOs, one of the
names in the certificate used to sign the request needs
to match a registered GLO. For the member, the name in
glMember.glMemberName needs to match one of the names in
the certificate used to sign the request.
2.c.2.a - If the GLO signed the request, the GLA generates a
glKey message as described in <a href="#section-5">Section 5</a> to rekey the
GL (4 in Figure 9).
2.c.2.b - Else if someone other than the GLO signed the
request, the GLA forwards the glkCompromise message
(see <a href="#section-3.2.3">Section 3.2.3</a>) to the GLO (2{1} in Figure 9).
If there is more than one GLO, to which GLO the
request is forwarded is beyond the scope of this
document. Further processing by the GLO is discussed
in <a href="#section-4.7.2">Section 4.7.2</a>.
<span class="h4"><a class="selflink" id="section-4.7.2" href="#section-4.7.2">4.7.2</a>. GLO Initiated KEK Compromise Message</span>
The process for GLO initiated glkCompromise messages is as follows:
1 - The GLO either:
1.a - Generates the glkCompromise message itself by sending a
SignedData.PKIData.controlSequence.glkCompromise request to
the GLA (5 in Figure 9). The GLO includes the name of the GL
in GeneralName. The GLO MUST also include a signingTime
attribute with this request.
<span class="grey">Turner Standards Track [Page 67]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-68" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
1.a.1 - The GLO can optionally apply confidentiality to the
request by encapsulating the SignedData.PKIData in an
EnvelopedData (see <a href="#section-3.2.1.2">Section 3.2.1.2</a>). The glkCompromise
can be included in an EnvelopedData generated with the
compromised shared KEK.
1.a.2 - The GLO can also optionally apply another SignedData over
the EnvelopedData (see <a href="#section-3.2.1.2">Section 3.2.1.2</a>).
1.b - Otherwise, checks the signingTime and verifies the GLA and GL
member signatures on the forwarded glkCompromise message. If
an additional SignedData and/or EnvelopedData encapsulates
the request (see <a href="#section-3.2.1.2">Section 3.2.1.2</a> or 3.2.2), the GLO verifies
the outer signature and/or decrypts the outer layer prior to
verifying the signature on the innermost SignedData.
1.b.1 - If the signingTime attribute value is not within the
locally accepted time window, the GLO MAY return a
response indicating cMCStatus.failed and
otherInfo.failInfo.badTime and a signingTime attribute.
1.b.2 - Else if signature processing continues and if the
signatures cannot be verified, the GLO returns a
cMCStatusInfoExt response indicating cMCStatus.failed and
otherInfo.failInfo.badMessageCheck. Additionally, a
signingTime attribute is included with the response.
1.b.2.a - If the signatures verify, the GLO checks that the
names in the certificate match the name of the signer
(i.e., the name in the certificate used to sign the
GL member's request is the GL member).
1.b.2.a.1 - If either name does not match, the GLO ought not
trust the signer and it ought not forward the
message to the GLA.
1.b.2.a.2 - Else if the names match and the signatures
verify, the GLO determines whether to forward the
glkCompromise message back to the GLA (3{1} in
Figure 9). Further processing by the GLA is in 2
of <a href="#section-4.7.1">Section 4.7.1</a>. The GLO can also return a
response to the prospective member with
cMCStatusInfoExt.cMCtatus.success indicating that
the glkCompromise message was successfully
received.
<span class="grey">Turner Standards Track [Page 68]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-69" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
<span class="h3"><a class="selflink" id="section-4.8" href="#section-4.8">4.8</a>. Request KEK Refresh</span>
There will be times when GL members have irrecoverably lost their
shared KEK. The shared KEK is not compromised and a rekey of the
entire GL is not necessary. GL members use the glkRefresh message to
request that the shared KEK(s) be redistributed to them. Figure 10
depicts the protocol interactions for GL Key Refresh. Note that
error messages are not shown. Additionally, behavior for the
optional transactionId, senderNonce, and recipientNonce CMC control
attributes is not addressed in these procedures.
+-----+ 1 2 +----------+
| GLA | <-----------> | Member |
+-----+ +----------+
Figure 10 - GL KEK Refresh
The process for glkRefresh is as follows:
1 - The GL member sends a
SignedData.PKIData.controlSequence.glkRefresh request to the GLA
(1 in Figure 10). The GL member includes name of the GL in
GeneralName. The GL member MUST also include a signingTime
attribute with this request.
1.a - The GL member can optionally apply confidentiality to the
request by encapsulating the SignedData.PKIData in an
EnvelopedData (see <a href="#section-3.2.1.2">Section 3.2.1.2</a>).
1.b - The GL member can also optionally apply another SignedData
over the EnvelopedData (see <a href="#section-3.2.1.2">Section 3.2.1.2</a>).
2 - Upon receipt of the glkRefresh request, the GLA checks the
signingTime and verifies the GL member signature(s). If an
additional SignedData and/or EnvelopedData encapsulates the
request (see <a href="#section-3.2.1.2">Section 3.2.1.2</a> or 3.2.2), the GLA verifies the
outer signature and/or decrypt the outer layer prior to verifying
the signature on the innermost SignedData.
2.a - If the signingTime attribute value is not within the locally
accepted time window, the GLA MAY return a response
indicating cMCStatus.failed and otherInfo.failInfo.badTime
and a signingTime attribute.
<span class="grey">Turner Standards Track [Page 69]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-70" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
2.b - Else if signature processing continues and if the signatures
cannot be verified, the GLA returns a cMCStatusInfoExt
response indicating cMCStatus.failed and
otherInfo.failInfo.badMessageCheck. Additionally, a
signingTime attribute is included with the response.
2.c - Else if the signatures verify, the GLA makes sure the GL is
supported by checking that the GLGeneralName matches a glName
stored on the GLA.
2.c.1 - If the name of the GL is not supported by the GLA, the
GLA returns a response indicating cMCStatusInfoExt with
cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value of
invalidGLName. Additionally, a signingTime attribute is
included with the response.
2.c.2 - Else if the glName is supported by the GLA, the GLA
ensures that the GL member is on the GL.
2.c.2.a - If the glMemberName is not present on the GL, the GLA
returns a response indicating cMCStatusInfoExt with
cMCStatus.failed and
otherInfo.extendedFailInfo.SKDFailInfo value of
noSpam. Additionally, a signingTime attribute is
included with the response.
2.c.2.b - Else if the glMemberName is present on the GL, the
GLA returns a cMCStatusInfoExt.cMCStatus.success, a
signingTime attribute, and a glKey message (2 in
Figure 10) as described in <a href="#section-5">Section 5</a>.
<span class="h3"><a class="selflink" id="section-4.9" href="#section-4.9">4.9</a>. GLA Query Request and Response</span>
There will be certain times when a GLO is having trouble setting up a
GL because it does not know the algorithm(s) or some other
characteristic that the GLA supports. There can also be times when
prospective GL members or GL members need to know something about the
GLA (these requests are not defined in the document). The
glaQueryRequest and glaQueryResponse messages have been defined to
support determining this information. Figure 11 depicts the protocol
interactions for glaQueryRequest and glaQueryResponse. Note that
error messages are not shown. Additionally, behavior for the
optional transactionId, senderNonce, and recipientNonce CMC control
attributes is not addressed in these procedures.
<span class="grey">Turner Standards Track [Page 70]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-71" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
+-----+ 1 2 +------------------+
| GLA | <-------> | GLO or GL Member |
+-----+ +------------------+
Figure 11 - GLA Query Request and Response
The process for glaQueryRequest and glaQueryResponse is as follows:
1 - The GLO, GL member, or prospective GL member sends a
SignedData.PKIData.controlSequence.glaQueryRequest request to the
GLA (1 in Figure 11). The GLO, GL member, or prospective GL
member indicates the information it is interested in receiving
from the GLA. Additionally, a signingTime attribute is included
with this request.
1.a - The GLO, GL member, or prospective GL member can optionally
apply confidentiality to the request by encapsulating the
SignedData.PKIData in an EnvelopedData (see <a href="#section-3.2.1.2">Section 3.2.1.2</a>).
1.b - The GLO, GL member, or prospective GL member can also
optionally apply another SignedData over the EnvelopedData
(see <a href="#section-3.2.1.2">Section 3.2.1.2</a>).
2 - Upon receipt of the glaQueryRequest, the GLA determines if it
accepts glaQueryRequest messages.
2.a - If the GLA does not accept glaQueryRequest messages, the GLA
returns a cMCStatusInfoExt response indicating
cMCStatus.noSupport and any other information in
statusString.
2.b - Else if the GLA does accept GLAQueryRequests, the GLA checks
the signingTime and verifies the GLO, GL member, or
prospective GL member signature(s). If an additional
SignedData and/or EnvelopedData encapsulates the request (see
<a href="#section-3.2.1.2">Section 3.2.1.2</a> or 3.2.2), the GLA verifies the outer
signature and/or decrypts the outer layer prior to verifying
the signature on the innermost SignedData.
2.b.1 - If the signingTime attribute value is not within the
locally accepted time window, the GLA MAY return a
response indicating cMCStatus.failed and
otherInfo.failInfo.badTime and a signingTime attribute.
<span class="grey">Turner Standards Track [Page 71]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-72" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
2.b.2 - Else if the signature processing continues and if the
signatures cannot be verified, the GLA returns a
cMCStatusInfoExt response indicating cMCStatus.failed and
otherInfo.failInfo.badMessageCheck. Additionally, a
signingTime attribute is included with the response.
2.b.3 - Else if the signatures verify, the GLA returns a
glaQueryResponse (2 in Figure 11) with the correct
response if the glaRequestType is supported or returns a
cMCStatusInfoExt response indicating cMCStatus.noSupport
if the glaRequestType is not supported. Additionally, a
signingTime attribute is included with the response.
2.b.3.a - The GLA applies confidentiality to the response by
encapsulating the SignedData.PKIResponse in an
EnvelopedData if the request was encapsulated in an
EnvelopedData (see <a href="#section-3.2.1.2">Section 3.2.1.2</a>).
2.b.3.b - The GLA can also optionally apply another SignedData
over the EnvelopedData (see <a href="#section-3.2.1.2">Section 3.2.1.2</a>).
3 - Upon receipt of the glaQueryResponse, the GLO, GL member, or
prospective GL member checks the signingTime and verifies the GLA
signature(s). If an additional SignedData and/or EnvelopedData
encapsulates the response (see <a href="#section-3.2.1.2">Section 3.2.1.2</a> or 3.2.2), the
GLO, GL member, or prospective GL member verifies the outer
signature and/or decrypts the outer layer prior to verifying the
signature on the innermost SignedData.
3.a - If the signingTime attribute value is not within the locally
accepted time window, the GLO, GL member, or prospective GL
member MAY return a response indicating cMCStatus.failed and
otherInfo.failInfo.badTime and a signingTime attribute.
3.b - Else if signature processing continues and if the signatures
do not verify, the GLO, GL member, or prospective GL member
returns a cMCStatusInfoExt response indicating
cMCStatus.failed and otherInfo.failInfo.badMessageCheck.
Additionally, a signingTime attribute is included with the
response.
3.c - Else if the signatures verify, then the GLO, GL member, or
prospective GL member checks that one of the names in the
certificate used to sign the response matches the name of the
GL.
<span class="grey">Turner Standards Track [Page 72]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-73" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
3.c.1 - If the name of the GL does not match the name present in
the certificate used to sign the message, the GLO ought
not believe the response.
3.c.2 - Else if the name of the GL matches the name present in
the certificate and the response was glaQueryResponse,
then the GLO, GL member, or prospective GL member may use
the information contained therein.
<span class="h3"><a class="selflink" id="section-4.10" href="#section-4.10">4.10</a>. Update Member Certificate</span>
When the GLO generates a glAddMember request, when the GLA generates
a glKey message, or when the GLA processes a glAddMember, there can
be instances when the GL member's certificate has expired or is
invalid. In these instances, the GLO or GLA may request that the GL
member provide a new certificate to avoid the GLA from being unable
to generate a glKey message for the GL member. There might also be
times when the GL member knows that its certificate is about to
expire or has been revoked, and GL member will not be able to receive
GL rekeys. Behavior for the optional transactionId, senderNonce, and
recipientNonce CMC control attributes is not addressed in these
procedures.
<span class="h4"><a class="selflink" id="section-4.10.1" href="#section-4.10.1">4.10.1</a>. GLO and GLA Initiated Update Member Certificate</span>
The process for GLO initiated glUpdateCert is as follows:
1 - The GLO or GLA sends a
SignedData.PKIData.controlSequence.glProvideCert request to the
GL member. The GLO or GLA indicates the GL name in glName and
the GL member name in glMemberName. Additionally, a signingTime
attribute is included with this request.
1.a - The GLO or GLA can optionally apply confidentiality to the
request by encapsulating the SignedData.PKIData in an
EnvelopedData (see <a href="#section-3.2.1.2">Section 3.2.1.2</a>). If the GL member's PKC
has been revoked, the GLO or GLA ought not use it to generate
the EnvelopedData that encapsulates the glProvideCert
request.
1.b - The GLO or GLA can also optionally apply another SignedData
over the EnvelopedData (see <a href="#section-3.2.1.2">Section 3.2.1.2</a>).
<span class="grey">Turner Standards Track [Page 73]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-74" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
2 - Upon receipt of the glProvideCert message, the GL member checks
the signingTime and verifies the GLO or GLA signature(s). If an
additional SignedData and/or EnvelopedData encapsulates the
response (see <a href="#section-3.2.1.2">Section 3.2.1.2</a> or 3.2.2), the GL member verifies
the outer signature and/or decrypts the outer layer prior to
verifying the signature on the innermost SignedData.
2.a - If the signingTime attribute value is not within the locally
accepted time window, the GL member MAY return a response
indicating cMCStatus.failed and otherInfo.failInfo.badTime
and a signingTime attribute.
2.b - Else if signature processing continues and if the signatures
cannot be verified, the GL member returns a cMCStatusInfoExt
response indicating cMCStatus.failed and
otherInfo.failInfo.badMessageCheck. Additionally, a
signingTime attribute is included with the response.
2.c - Else if the signatures verify, the GL member generates a
Signed.PKIResponse.controlSequence.glUpdateCert that includes
the GL name in glName, the member's name in
glMember.glMemberName, the member's encryption certificate in
glMember.certificates.pKC. The GL member can also include
any attribute certificates associated with the member's
encryption certificate in glMember.certificates.aC, and the
certification path associated with the member's encryption
and attribute certificates in glMember.certificates.certPath.
Additionally, a signingTime attribute is included with the
response.
2.c.1 - The GL member can optionally apply confidentiality to the
request by encapsulating the SignedData.PKIResponse in an
EnvelopedData (see <a href="#section-3.2.1.2">Section 3.2.1.2</a>). If the GL member's
PKC has been revoked, the GL member ought not use it to
generate the EnvelopedData that encapsulates the
glProvideCert request.
2.c.2 - The GL member can also optionally apply another
SignedData over the EnvelopedData (see <a href="#section-3.2.1.2">Section 3.2.1.2</a>).
3 - Upon receipt of the glUpdateCert message, the GLO or GLA checks
the signingTime and verifies the GL member signature(s). If an
additional SignedData and/or EnvelopedData encapsulates the
response (see <a href="#section-3.2.1.2">Section 3.2.1.2</a> or 3.2.2), the GL member verifies
the outer signature and/or decrypts the outer layer prior to
verifying the signature on the innermost SignedData.
<span class="grey">Turner Standards Track [Page 74]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-75" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
3.a - If the signingTime attribute value is not within the locally
accepted time window, the GLO or GLA MAY return a response
indicating cMCStatus.failed and otherInfo.failInfo.badTime
and a signingTime attribute.
3.b - Else if signature processing continues and if the signatures
cannot be verified, the GLO or GLA returns a cMCStatusInfoExt
response indicating cMCStatus.failed and
otherInfo.failInfo.badMessageCheck. Additionally, a
signingTime attribute is included with the response.
3.c - Else if the signatures verify, the GLO or GLA verifies the
member's encryption certificate.
3.c.1 - If the member's encryption certificate cannot be
verified, the GLO returns either another glProvideCert
request or a cMCStatusInfoExt with cMCStatus.failed and
the reason why in cMCStatus.statusString. glProvideCert
should be returned only a certain number of times is
because if the GL member does not have a valid
certificate it will never be able to return one.
Additionally, a signingTime attribute is included with
either response.
3.c.2 - Else if the member's encryption certificate cannot be
verified, the GLA returns another glProvideCert request
to the GL member or a cMCStatusInfoExt with
cMCStatus.failed and the reason why in
cMCStatus.statusString to the GLO. glProvideCert should
be returned only a certain number of times because if the
GL member does not have a valid certificate it will never
be able to return one. Additionally, a signingTime
attribute is included with the response.
3.c.3 - Else if the member's encryption certificate verifies, the
GLO or GLA will use it in subsequent glAddMember requests
and glKey messages associated with the GL member.
<span class="h4"><a class="selflink" id="section-4.10.2" href="#section-4.10.2">4.10.2</a>. GL Member Initiated Update Member Certificate</span>
The process for an unsolicited GL member glUpdateCert is as follows:
1 - The GL member sends a Signed.PKIData.controlSequence.glUpdateCert
that includes the GL name in glName, the member's name in
glMember.glMemberName, the member's encryption certificate in
glMember.certificates.pKC. The GL member can also include any
attribute certificates associated with the member's encryption
certificate in glMember.certificates.aC, and the certification
<span class="grey">Turner Standards Track [Page 75]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-76" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
path associated with the member's encryption and attribute
certificates in glMember.certificates.certPath. The GL member
MUST also include a signingTime attribute with this request.
1.a - The GL member can optionally apply confidentiality to the
request by encapsulating the SignedData.PKIData in an
EnvelopedData (see <a href="#section-3.2.1.2">Section 3.2.1.2</a>). If the GL member's PKC
has been revoked, the GLO or GLA ought not use it to generate
the EnvelopedData that encapsulates the glProvideCert
request.
1.b - The GL member can also optionally apply another SignedData
over the EnvelopedData (see <a href="#section-3.2.1.2">Section 3.2.1.2</a>).
2 - Upon receipt of the glUpdateCert message, the GLA checks the
signingTime and verifies the GL member signature(s). If an
additional SignedData and/or EnvelopedData encapsulates the
response (see <a href="#section-3.2.1.2">Section 3.2.1.2</a> or 3.2.2), the GLA verifies the
outer signature and/or decrypts the outer layer prior to
verifying the signature on the innermost SignedData.
2.a - If the signingTime attribute value is not within the locally
accepted time window, the GLA MAY return a response
indicating cMCStatus.failed and otherInfo.failInfo.badTime
and a signingTime attribute.
2.b - Else if signature processing continues and if the signatures
cannot be verified, the GLA returns a cMCStatusInfoExt
response indicating cMCStatus.failed and
otherInfo.failInfo.badMessageCheck.
2.c - Else if the signatures verify, the GLA verifies the member's
encryption certificate.
2.c.1 - If the member's encryption certificate cannot be
verified, the GLA returns another glProvideCert request
to the GL member or a cMCStatusInfoExt with
cMCStatus.failed and the reason why in
cMCStatus.statusString to the GLO. glProvideCert ought
not be returned indefinitely; if the GL member does not
have a valid certificate it will never be able to return
one. Additionally, a signingTime attribute is included
with the response.
2.c.2 - Else if the member's encryption certificate verifies, the
GLA will use it in subsequent glAddMember requests and
glKey messages associated with the GL member. The GLA
also forwards the glUpdateCert message to the GLO.
<span class="grey">Turner Standards Track [Page 76]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-77" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Distribution Message</span>
The GLA uses the glKey message to distribute new, shared KEK(s) after
receiving glAddMember, glDeleteMember (for closed and managed GLs),
glRekey, glkCompromise, or glkRefresh requests and returning a
cMCStatusInfoExt response for the respective request. Figure 12
depicts the protocol interactions to send out glKey messages. Unlike
the procedures defined for the administrative messages, the
procedures defined in this section MUST be implemented by GLAs for
origination and by GL members on reception. Note that error messages
are not shown. Additionally, behavior for the optional
transactionId, senderNonce, and recipientNonce CMC control attributes
is not addressed in these procedures.
1 +----------+
+-------> | Member 1 |
| +----------+
+-----+ | 1 +----------+
| GLA | ----+-------> | ... |
+-----+ | +----------+
| 1 +----------+
+-------> | Member n |
+----------+
Figure 12 - GL Key Distribution
If the GL was set up with GLKeyAttributes.recipientsNotMutuallyAware
set to TRUE, a separate glKey message MUST be sent to each GL member
so as not to divulge information about the other GL members.
When the glKey message is generated as a result of a:
- glAddMember request,
- glkComrpomise indication,
- glkRefresh request,
- glDeleteMember request with the GL's glAdministration set to
managed or closed, and
- glRekey request with generationCounter set to zero (0).
The GLA MUST use either the kari (see Section 12.3.2 of [<a href="#ref-CMS" title=""Cryptographic Message Syntax (CMS)"">CMS</a>]) or
ktri (see Section 12.3.1 of [<a href="#ref-CMS" title=""Cryptographic Message Syntax (CMS)"">CMS</a>]) choice in
glKey.glkWrapped.RecipientInfo to ensure that only the intended
recipients receive the shared KEK. The GLA MUST support the ktri
choice.
<span class="grey">Turner Standards Track [Page 77]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-78" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
When the glKey message is generated as a result of a glRekey request
with generationCounter greater than zero (0) or when the GLA controls
rekeys, the GLA MAY use the kari, ktri, or kekri (see Section 12.3.3
of [<a href="#ref-CMS" title=""Cryptographic Message Syntax (CMS)"">CMS</a>]) in glKey.glkWrapped.RecipientInfo to ensure that only the
intended recipients receive the shared KEK. The GLA MUST support the
RecipientInfo.ktri choice.
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. Distribution Process</span>
When a glKey message is generated, the process is as follows:
1 - The GLA MUST send a SignedData.PKIData.controlSequence.glKey to
each member by including glName, glIdentifier, glkWrapped,
glkAlgorithm, glkNotBefore, and glkNotAfter. If the GLA cannot
generate a glKey message for the GL member because the GL
member's PKC has expired or is otherwise invalid, the GLA MAY
send a glUpdateCert to the GL member requesting a new certificate
be provided (see <a href="#section-4.10">Section 4.10</a>). The number of glKey messages
generated for the GL is described in <a href="#section-3.1.13">Section 3.1.13</a>.
Additionally, a signingTime attribute is included with the
distribution message(s).
1.a - The GLA MAY optionally apply another confidentiality layer to
the message by encapsulating the SignedData.PKIData in
another EnvelopedData (see <a href="#section-3.2.1.2">Section 3.2.1.2</a>).
1.b - The GLA MAY also optionally apply another SignedData over the
EnvelopedData.SignedData.PKIData (see <a href="#section-3.2.1.2">Section 3.2.1.2</a>).
2 - Upon receipt of the glKey message, the GL members MUST check the
signingTime and verify the signature over the innermost
SignedData.PKIData. If an additional SignedData and/or
EnvelopedData encapsulates the message (see <a href="#section-3.2.1.2">Section 3.2.1.2</a> or
3.2.2), the GL member MUST verify the outer signature and/or
decrypt the outer layer prior to verifying the signature on the
SignedData.PKIData.controlSequence.glKey.
2.a - If the signingTime attribute value is not within the locally
accepted time window, the GLA MAY return a response
indicating cMCStatus.failed and otherInfo.failInfo.badTime
and a signingTime attribute.
2.b - Else if signature processing continues and if the signatures
cannot be verified, the GL member MUST return a
cMCStatusInfoExt response indicating cMCStatus.failed and
otherInfo.failInfo.badMessageCheck. Additionally, a
signingTime attribute is included with the response.
<span class="grey">Turner Standards Track [Page 78]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-79" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
2.c - Else if the signatures verify, the GL member processes the
RecipientInfos according to [<a href="#ref-CMS" title=""Cryptographic Message Syntax (CMS)"">CMS</a>]. Once unwrapped, the GL
member should store the shared KEK in a safe place. When
stored, the glName, glIdentifier, and shared KEK should be
associated. Additionally, the GL member MUST return a
cMCStatusInfoExt indicating cMCStatus.success to tell the GLA
the KEK was received.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Algorithms</span>
This section lists the algorithms that MUST be implemented.
Additional algorithms that SHOULD be implemented are also included.
Further algorithms MAY also be implemented.
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. KEK Generation Algorithm</span>
Implementations MUST randomly generate content-encryption keys,
message-authentication keys, initialization vectors (IVs), and
padding. Also, the generation of public/private key pairs relies on
a random numbers. The use of inadequate pseudo-random number
generators (PRNGs) to generate cryptographic keys can result in
little or no security. An attacker may find it much easier to
reproduce the PRNG environment that produced the keys, searching the
resulting small set of possibilities, rather than brute force
searching the whole key space. The generation of quality random
numbers is difficult. <a href="./rfc4086">RFC 4086</a> [<a href="#ref-RANDOM" title=""Randomness Requirements for Security"">RANDOM</a>] offers important guidance in
this area, and Appendix 3 of FIPS Pub 186 [<a href="#ref-FIPS" title="FIPS Pub 186-2: Digital Signature Standard">FIPS</a>] provides one quality
PRNG technique.
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>. Shared KEK Wrap Algorithm</span>
In the mechanisms described in <a href="#section-5">Section 5</a>, the shared KEK being
distributed in glkWrapped MUST be protected by a key of equal or
greater length (e.g., if an AES 128-bit key is being distributed, a
key of 128 bits or greater must be used to protect the key).
The algorithm object identifiers included in glkWrapped are as
specified in [<a href="#ref-CMSALG" title=""Cryptographic Message Syntax (CMS) Algorithms"">CMSALG</a>] and [<a href="#ref-CMSAES" title=""Use of the Advanced Encryption Standard (AES) Encryption Algorithm in Cryptographic Message Syntax (CMS)"">CMSAES</a>].
<span class="h3"><a class="selflink" id="section-6.3" href="#section-6.3">6.3</a>. Shared KEK Algorithm</span>
The shared KEK distributed and indicated in glkAlgorithm MUST support
the symmetric key-encryption algorithms as specified in [<a href="#ref-CMSALG" title=""Cryptographic Message Syntax (CMS) Algorithms"">CMSALG</a>] and
[<a href="#ref-CMSAES" title=""Use of the Advanced Encryption Standard (AES) Encryption Algorithm in Cryptographic Message Syntax (CMS)"">CMSAES</a>].
<span class="grey">Turner Standards Track [Page 79]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-80" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Message Transport</span>
SMTP [<a href="#ref-SMTP" title=""Simple Mail Transfer Protocol"">SMTP</a>] MUST be supported. Other transport mechanisms MAY also
be supported.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Security Considerations</span>
As GLOs control setting up and tearing down the GL and rekeying the
GL, and can control member additions and deletions, GLOs play an
important role in the management of the GL, and only "trusted" GLOs
should be used.
If a member is deleted or removed from a closed or a managed GL, the
GL needs to be rekeyed. If the GL is not rekeyed after a member is
removed or deleted, the member still possesses the group key and will
be able to continue to decrypt any messages that can be obtained.
Members who store KEKs MUST associate the name of the GLA that
distributed the key so that the members can make sure subsequent
rekeys are originated from the same entity.
When generating keys, care should be taken to ensure that the key
size is not too small and duration too long because attackers will
have more time to attack the key. Key size should be selected to
adequately protect sensitive business communications.
GLOs and GLAs need to make sure that the generationCounter and
duration are not too large. For example, if the GLO indicates that
the generationCounter is 14 and the duration is one year, then 14
keys are generated each with a validity period of a year. An
attacker will have at least 13 years to attack the final key.
Assume that two or more parties have a shared KEK, and the shared KEK
is used to encrypt a second KEK for confidential distribution to
those parties. The second KEK might be used to encrypt a third KEK,
the third KEK might be used to encrypt a fourth KEK, and so on. If
any of the KEKs in such a chain is compromised, all of the subsequent
KEKs in the chain MUST also be considered compromised.
An attacker can attack the group's shared KEK by attacking one
member's copy of the shared KEK or attacking multiple members' copies
of the shared KEK. For the attacker, it may be easier to either
attack the group member with the weakest security protecting its copy
of the shared KEK or attack multiple group members.
<span class="grey">Turner Standards Track [Page 80]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-81" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
An aggregation of the information gathered during the attack(s) may
lead to the compromise of the group's shared KEK. Mechanisms to
protect the shared KEK should be commensurate with value of the data
being protected.
The nonce and signingTime attributes are used to protect against
replay attacks. However, these provisions are only helpful if
entities maintain state information about the messages they have sent
or received for comparison. If sufficient information is not
maintained on each exchange, nonces and signingTime are not helpful.
Local policy determines the amount and duration of state information
that is maintained. Additionally, without a unified time source,
there is the possibility of clocks drifting. Local policy determines
the acceptable difference between the local time and signingTime,
which must compensate for unsynchronized clocks. Implementations
MUST handle messages with siginingTime attributes that indicate they
were created in the future.
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. Acknowledgements</span>
Thanks to Russ Housley and Jim Schaad for providing much of the
background and review required to write this document.
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. References</span>
<span class="h3"><a class="selflink" id="section-10.1" href="#section-10.1">10.1</a>. Normative References</span>
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
[<a id="ref-CMS">CMS</a>] Housley, R., "Cryptographic Message Syntax (CMS)", <a href="./rfc3852">RFC</a>
<a href="./rfc3852">3852</a>, July 2004.
[<a id="ref-CMC">CMC</a>] Schaad, J. and M. Myers, "Certificate Management over
CMS (CMC)", <a href="./rfc5272">RFC 5272</a>, June 2008.
[<a id="ref-PROFILE">PROFILE</a>] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
Housley, R., and W. Polk, "Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation
List (CRL) Profile", <a href="./rfc5280">RFC 5280</a>, May 2008.
[<a id="ref-ACPROF">ACPROF</a>] Farrell, S. and R. Housley, "An Internet Attribute
Certificate Profile for Authorization", <a href="./rfc3281">RFC 3281</a>, April
2002.
<span class="grey">Turner Standards Track [Page 81]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-82" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
[<a id="ref-MSG">MSG</a>] Ramsdell, B., Ed., "Secure/Multipurpose Internet Mail
Extensions (S/MIME) Version 3.1 Message Specification",
<a href="./rfc3851">RFC 3851</a>, July 2004.
[<a id="ref-ESS">ESS</a>] Hoffman, P., Ed., "Enhanced Security Services for
S/MIME", <a href="./rfc2634">RFC 2634</a>, June 1999.
[<a id="ref-CMSALG">CMSALG</a>] Housley, R., "Cryptographic Message Syntax (CMS)
Algorithms", <a href="./rfc3370">RFC 3370</a>, August 2002.
[<a id="ref-CMSAES">CMSAES</a>] Schaad, J., "Use of the Advanced Encryption Standard
(AES) Encryption Algorithm in Cryptographic Message
Syntax (CMS)", <a href="./rfc3565">RFC 3565</a>, July 2003.
[<a id="ref-SMTP">SMTP</a>] Klensin, J., Ed., "Simple Mail Transfer Protocol", <a href="./rfc2821">RFC</a>
<a href="./rfc2821">2821</a>, April 2001.
<span class="h3"><a class="selflink" id="section-10.2" href="#section-10.2">10.2</a>. Informative References</span>
[<a id="ref-X400TRANS">X400TRANS</a>] Hoffman, P. and C. Bonatti, "Transporting
Secure/Multipurpose Internet Mail Extensions (S/MIME)
Objects in X.400", <a href="./rfc3855">RFC 3855</a>, July 2004.
[<a id="ref-RANDOM">RANDOM</a>] Eastlake, D., 3rd, Schiller, J., and S. Crocker,
"Randomness Requirements for Security", <a href="https://www.rfc-editor.org/bcp/bcp106">BCP 106</a>, <a href="./rfc4086">RFC</a>
<a href="./rfc4086">4086</a>, June 2005.
[<a id="ref-FIPS">FIPS</a>] National Institute of Standards and Technology, FIPS Pub
186-2: Digital Signature Standard, January 2000.
<span class="grey">Turner Standards Track [Page 82]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-83" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
<span class="h2"><a class="selflink" id="appendix-A" href="#appendix-A">Appendix A</a>. ASN.1 Module</span>
SMIMESymmetricKeyDistribution
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
pkcs-9(9) smime(16) modules(0) symkeydist(12) }
DEFINITIONS IMPLICIT TAGS ::=
BEGIN
-- EXPORTS All --
-- The types and values defined in this module are exported for use
-- in the other ASN.1 modules. Other applications may use them for
-- their own purposes.
IMPORTS
-- PKIX Part 1 - Implicit [<a href="#ref-PROFILE" title=""Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile"">PROFILE</a>]
GeneralName
FROM PKIX1Implicit88 { iso(1) identified-organization(3) dod(6)
internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
id-pkix1-implicit(19) }
-- PKIX Part 1 - Explicit [<a href="#ref-PROFILE" title=""Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile"">PROFILE</a>]
AlgorithmIdentifier, Certificate
FROM PKIX1Explicit88 { iso(1) identified-organization(3) dod(6)
internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
id-pkix1-explicit(18) }
-- Cryptographic Message Syntax [<a href="#ref-CMS" title=""Cryptographic Message Syntax (CMS)"">CMS</a>]
RecipientInfos, KEKIdentifier, CertificateSet
FROM CryptographicMessageSyntax2004 {iso(1) member-body(2)
us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) modules(0)
cms-2004(24) }
-- Advanced Encryption Standard (AES) with CMS [<a href="#ref-CMSAES" title=""Use of the Advanced Encryption Standard (AES) Encryption Algorithm in Cryptographic Message Syntax (CMS)"">CMSAES</a>]
id-aes128-wrap
FROM CMSAesRsaesOaep { iso(1) member-body(2) us(840)
rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) modules(0)
id-mod-cms-aes(19) }
-- Attribute Certificate Profile [<a href="#ref-ACPROF" title=""An Internet Attribute Certificate Profile for Authorization"">ACPROF</a>]
AttributeCertificate FROM
PKIXAttributeCertificate { iso(1) identified-organization(3)
dod(6) internet(1) security(5) mechanisms(5) pkix(7)
id-mod(0) id-mod-attribute-cert(12) };
<span class="grey">Turner Standards Track [Page 83]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-84" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
-- This defines the GL symmetric key distribution object identifier
-- arc.
id-skd OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) skd(8) }
-- This defines the GL Use KEK control attribute.
id-skd-glUseKEK OBJECT IDENTIFIER ::= { id-skd 1 }
GLUseKEK ::= SEQUENCE {
glInfo GLInfo,
glOwnerInfo SEQUENCE SIZE (1..MAX) OF GLOwnerInfo,
glAdministration GLAdministration DEFAULT 1,
glKeyAttributes GLKeyAttributes OPTIONAL }
GLInfo ::= SEQUENCE {
glName GeneralName,
glAddress GeneralName }
GLOwnerInfo ::= SEQUENCE {
glOwnerName GeneralName,
glOwnerAddress GeneralName,
certificates Certificates OPTIONAL }
GLAdministration ::= INTEGER {
unmanaged (0),
managed (1),
closed (2) }
GLKeyAttributes ::= SEQUENCE {
rekeyControlledByGLO [0] BOOLEAN DEFAULT FALSE,
recipientsNotMutuallyAware [1] BOOLEAN DEFAULT TRUE,
duration [2] INTEGER DEFAULT 0,
generationCounter [3] INTEGER DEFAULT 2,
requestedAlgorithm [4] AlgorithmIdentifier
DEFAULT { id-aes128-wrap } }
-- This defines the Delete GL control attribute.
-- It has the simple type GeneralName.
id-skd-glDelete OBJECT IDENTIFIER ::= { id-skd 2 }
DeleteGL ::= GeneralName
-- This defines the Add GL Member control attribute.
id-skd-glAddMember OBJECT IDENTIFIER ::= { id-skd 3 }
<span class="grey">Turner Standards Track [Page 84]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-85" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
GLAddMember ::= SEQUENCE {
glName GeneralName,
glMember GLMember }
GLMember ::= SEQUENCE {
glMemberName GeneralName,
glMemberAddress GeneralName OPTIONAL,
certificates Certificates OPTIONAL }
Certificates ::= SEQUENCE {
pKC [0] Certificate OPTIONAL,
-- See [<a href="#ref-PROFILE" title=""Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile"">PROFILE</a>]
aC [1] SEQUENCE SIZE (1.. MAX) OF
AttributeCertificate OPTIONAL,
-- See [<a href="#ref-ACPROF" title=""An Internet Attribute Certificate Profile for Authorization"">ACPROF</a>]
certPath [2] CertificateSet OPTIONAL }
-- From [<a href="#ref-CMS" title=""Cryptographic Message Syntax (CMS)"">CMS</a>]
-- This defines the Delete GL Member control attribute.
id-skd-glDeleteMember OBJECT IDENTIFIER ::= { id-skd 4 }
GLDeleteMember ::= SEQUENCE {
glName GeneralName,
glMemberToDelete GeneralName }
-- This defines the Delete GL Member control attribute.
id-skd-glRekey OBJECT IDENTIFIER ::= { id-skd 5 }
GLRekey ::= SEQUENCE {
glName GeneralName,
glAdministration GLAdministration OPTIONAL,
glNewKeyAttributes GLNewKeyAttributes OPTIONAL,
glRekeyAllGLKeys BOOLEAN OPTIONAL }
GLNewKeyAttributes ::= SEQUENCE {
rekeyControlledByGLO [0] BOOLEAN OPTIONAL,
recipientsNotMutuallyAware [1] BOOLEAN OPTIONAL,
duration [2] INTEGER OPTIONAL,
generationCounter [3] INTEGER OPTIONAL,
requestedAlgorithm [4] AlgorithmIdentifier OPTIONAL }
-- This defines the Add and Delete GL Owner control attributes.
id-skd-glAddOwner OBJECT IDENTIFIER ::= { id-skd 6 }
id-skd-glRemoveOwner OBJECT IDENTIFIER ::= { id-skd 7 }
<span class="grey">Turner Standards Track [Page 85]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-86" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
GLOwnerAdministration ::= SEQUENCE {
glName GeneralName,
glOwnerInfo GLOwnerInfo }
-- This defines the GL Key Compromise control attribute.
-- It has the simple type GeneralName.
id-skd-glKeyCompromise OBJECT IDENTIFIER ::= { id-skd 8 }
GLKCompromise ::= GeneralName
-- This defines the GL Key Refresh control attribute.
id-skd-glkRefresh OBJECT IDENTIFIER ::= { id-skd 9 }
GLKRefresh ::= SEQUENCE {
glName GeneralName,
dates SEQUENCE SIZE (1..MAX) OF Date }
Date ::= SEQUENCE {
start GeneralizedTime,
end GeneralizedTime OPTIONAL }
-- This defines the GLA Query Request control attribute.
id-skd-glaQueryRequest OBJECT IDENTIFIER ::= { id-skd 11 }
GLAQueryRequest ::= SEQUENCE {
glaRequestType OBJECT IDENTIFIER,
glaRequestValue ANY DEFINED BY glaRequestType }
-- This defines the GLA Query Response control attribute.
id-skd-glaQueryResponse OBJECT IDENTIFIER ::= { id-skd 12 }
GLAQueryResponse ::= SEQUENCE {
glaResponseType OBJECT IDENTIFIER,
glaResponseValue ANY DEFINED BY glaResponseType }
-- This defines the GLA Request/Response (glaRR) arc for
-- glaRequestType/glaResponseType.
id-cmc-glaRR OBJECT IDENTIFIER ::= { iso(1)
identified-organization(3) dod(6) internet(1) security(5)
mechanisms(5) pkix(7) cmc(7) glaRR(99) }
<span class="grey">Turner Standards Track [Page 86]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-87" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
-- This defines the Algorithm Request.
id-cmc-gla-skdAlgRequest OBJECT IDENTIFIER ::= { id-cmc-glaRR 1 }
SKDAlgRequest ::= NULL
-- This defines the Algorithm Response.
id-cmc-gla-skdAlgResponse OBJECT IDENTIFIER ::= { id-cmc-glaRR 2 }
-- Note that the response for algorithmSupported request is the
-- smimeCapabilities attribute as defined in MsgSpec [<a href="#ref-MSG" title=""Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 3.1 Message Specification"">MSG</a>].
-- This defines the control attribute to request an updated
-- certificate to the GLA.
id-skd-glProvideCert OBJECT IDENTIFIER ::= { id-skd 13 }
GLManageCert ::= SEQUENCE {
glName GeneralName,
glMember GLMember }
-- This defines the control attribute to return an updated
-- certificate to the GLA. It has the type GLManageCert.
id-skd-glManageCert OBJECT IDENTIFIER ::= { id-skd 14 }
-- This defines the control attribute to distribute the GL shared
-- KEK.
id-skd-glKey OBJECT IDENTIFIER ::= { id-skd 15 }
GLKey ::= SEQUENCE {
glName GeneralName,
glIdentifier KEKIdentifier, -- See [<a href="#ref-CMS" title=""Cryptographic Message Syntax (CMS)"">CMS</a>]
glkWrapped RecipientInfos, -- See [<a href="#ref-CMS" title=""Cryptographic Message Syntax (CMS)"">CMS</a>]
glkAlgorithm AlgorithmIdentifier,
glkNotBefore GeneralizedTime,
glkNotAfter GeneralizedTime }
-- This defines the CMC error types.
id-cet-skdFailInfo OBJECT IDENTIFIER ::= { iso(1)
identified-organization(3) dod(6) internet(1) security(5)
mechanisms(5) pkix(7) cet(15) skdFailInfo(1) }
<span class="grey">Turner Standards Track [Page 87]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-88" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
SKDFailInfo ::= INTEGER {
unspecified (0),
closedGL (1),
unsupportedDuration (2),
noGLACertificate (3),
invalidCert (4),
unsupportedAlgorithm (5),
noGLONameMatch (6),
invalidGLName (7),
nameAlreadyInUse (8),
noSpam (9),
-- obsolete (10),
alreadyAMember (11),
notAMember (12),
alreadyAnOwner (13),
notAnOwner (14) }
END -- SMIMESymmetricKeyDistribution
Author's Address
Sean Turner
IECA, Inc.
3057 Nutley Street, Suite 106
Fairfax, VA 22031
USA
EMail: turners@ieca.com
<span class="grey">Turner Standards Track [Page 88]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-89" ></span>
<span class="grey"><a href="./rfc5275">RFC 5275</a> CMS SymKeyDist June 2008</span>
Full Copyright Statement
Copyright (C) The IETF Trust (2008).
This document is subject to the rights, licenses and restrictions
contained in <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a>, and except as set forth therein, the authors
retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and <a href="https://www.rfc-editor.org/bcp/bcp79">BCP 79</a>.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
<a href="http://www.ietf.org/ipr">http://www.ietf.org/ipr</a>.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.
Turner Standards Track [Page 89]
</pre>
|