1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
|
<pre>Network Working Group J. Salowey
Request for Comments: 5288 A. Choudhury
Category: Standards Track D. McGrew
Cisco Systems, Inc.
August 2008
<span class="h1">AES Galois Counter Mode (GCM) Cipher Suites for TLS</span>
Status of This Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Abstract
This memo describes the use of the Advanced Encryption Standard (AES)
in Galois/Counter Mode (GCM) as a Transport Layer Security (TLS)
authenticated encryption operation. GCM provides both
confidentiality and data origin authentication, can be efficiently
implemented in hardware for speeds of 10 gigabits per second and
above, and is also well-suited to software implementations. This
memo defines TLS cipher suites that use AES-GCM with RSA, DSA, and
Diffie-Hellman-based key exchange mechanisms.
Table of Contents
<a href="#section-1">1</a>. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-2">2</a>
<a href="#section-2">2</a>. Conventions Used in This Document . . . . . . . . . . . . . . . <a href="#page-2">2</a>
<a href="#section-3">3</a>. AES-GCM Cipher Suites . . . . . . . . . . . . . . . . . . . . . <a href="#page-2">2</a>
<a href="#section-4">4</a>. TLS Versions . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-3">3</a>
<a href="#section-5">5</a>. IANA Considerations . . . . . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-6">6</a>. Security Considerations . . . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-6.1">6.1</a>. Counter Reuse . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-6.2">6.2</a>. Recommendations for Multiple Encryption Processors . . . . <a href="#page-4">4</a>
<a href="#section-7">7</a>. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-8">8</a>. References . . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-6">6</a>
<a href="#section-8.1">8.1</a>. Normative References . . . . . . . . . . . . . . . . . . . <a href="#page-6">6</a>
<a href="#section-8.2">8.2</a>. Informative References . . . . . . . . . . . . . . . . . . <a href="#page-6">6</a>
<span class="grey">Salowey, et al. Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc5288">RFC 5288</a> AES-GCM Cipher suites August 2008</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
This document describes the use of AES [<a href="#ref-AES" title=""Advanced Encryption Standard (AES)"">AES</a>] in Galois Counter Mode
(GCM) [<a href="#ref-GCM" title=""Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC"">GCM</a>] (AES-GCM) with various key exchange mechanisms as a
cipher suite for TLS. AES-GCM is an authenticated encryption with
associated data (AEAD) cipher (as defined in TLS 1.2 [<a href="./rfc5246" title=""The Transport Layer Security (TLS) Protocol Version 1.2"">RFC5246</a>])
providing both confidentiality and data origin authentication. The
following sections define cipher suites based on RSA, DSA, and
Diffie-Hellman key exchanges; ECC-based (Elliptic Curve Cryptography)
cipher suites are defined in a separate document [<a href="./rfc5289" title=""TLS Elliptic Curve Cipher Suites with SHA-256/384 and AES Galois Counter Mode"">RFC5289</a>].
AES-GCM is not only efficient and secure, but hardware
implementations can achieve high speeds with low cost and low
latency, because the mode can be pipelined. Applications that
require high data throughput can benefit from these high-speed
implementations. AES-GCM has been specified as a mode that can be
used with IPsec ESP [<a href="./rfc4106" title=""The Use of Galois/Counter Mode (GCM) in IPsec Encapsulating Security Payload (ESP)"">RFC4106</a>] and 802.1AE Media Access Control (MAC)
Security [<a href="#ref-IEEE8021AE" title=""Media Access Control Security"">IEEE8021AE</a>].
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Conventions Used in This Document</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. AES-GCM Cipher Suites</span>
The following cipher suites use the new authenticated encryption
modes defined in TLS 1.2 with AES in Galois Counter Mode (GCM) [<a href="#ref-GCM" title=""Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC"">GCM</a>]:
CipherSuite TLS_RSA_WITH_AES_128_GCM_SHA256 = {0x00,0x9C}
CipherSuite TLS_RSA_WITH_AES_256_GCM_SHA384 = {0x00,0x9D}
CipherSuite TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 = {0x00,0x9E}
CipherSuite TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 = {0x00,0x9F}
CipherSuite TLS_DH_RSA_WITH_AES_128_GCM_SHA256 = {0x00,0xA0}
CipherSuite TLS_DH_RSA_WITH_AES_256_GCM_SHA384 = {0x00,0xA1}
CipherSuite TLS_DHE_DSS_WITH_AES_128_GCM_SHA256 = {0x00,0xA2}
CipherSuite TLS_DHE_DSS_WITH_AES_256_GCM_SHA384 = {0x00,0xA3}
CipherSuite TLS_DH_DSS_WITH_AES_128_GCM_SHA256 = {0x00,0xA4}
CipherSuite TLS_DH_DSS_WITH_AES_256_GCM_SHA384 = {0x00,0xA5}
CipherSuite TLS_DH_anon_WITH_AES_128_GCM_SHA256 = {0x00,0xA6}
CipherSuite TLS_DH_anon_WITH_AES_256_GCM_SHA384 = {0x00,0xA7}
These cipher suites use the AES-GCM authenticated encryption with
associated data (AEAD) algorithms AEAD_AES_128_GCM and
AEAD_AES_256_GCM described in [<a href="./rfc5116" title=""An Interface and Algorithms for Authenticated Encryption"">RFC5116</a>]. Note that each of these
AEAD algorithms uses a 128-bit authentication tag with GCM (in
particular, as described in <a href="./rfc4366#section-3.5">Section 3.5 of [RFC4366]</a>, the
<span class="grey">Salowey, et al. Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc5288">RFC 5288</a> AES-GCM Cipher suites August 2008</span>
"truncated_hmac" extension does not have an effect on cipher suites
that do not use HMAC). The "nonce" SHALL be 12 bytes long consisting
of two parts as follows: (this is an example of a "partially
explicit" nonce; see <a href="./rfc5116#section-3.2.1">Section 3.2.1 in [RFC5116]</a>).
struct {
opaque salt[4];
opaque nonce_explicit[8];
} GCMNonce;
The salt is the "implicit" part of the nonce and is not sent in the
packet. Instead, the salt is generated as part of the handshake
process: it is either the client_write_IV (when the client is
sending) or the server_write_IV (when the server is sending). The
salt length (SecurityParameters.fixed_iv_length) is 4 octets.
The nonce_explicit is the "explicit" part of the nonce. It is chosen
by the sender and is carried in each TLS record in the
GenericAEADCipher.nonce_explicit field. The nonce_explicit length
(SecurityParameters.record_iv_length) is 8 octets.
Each value of the nonce_explicit MUST be distinct for each distinct
invocation of the GCM encrypt function for any fixed key. Failure to
meet this uniqueness requirement can significantly degrade security.
The nonce_explicit MAY be the 64-bit sequence number.
The RSA, DHE_RSA, DH_RSA, DHE_DSS, DH_DSS, and DH_anon key exchanges
are performed as defined in [<a href="./rfc5246" title=""The Transport Layer Security (TLS) Protocol Version 1.2"">RFC5246</a>].
The Pseudo Random Function (PRF) algorithms SHALL be as follows:
For cipher suites ending with _SHA256, the PRF is the TLS PRF
[<a href="./rfc5246" title=""The Transport Layer Security (TLS) Protocol Version 1.2"">RFC5246</a>] with SHA-256 as the hash function.
For cipher suites ending with _SHA384, the PRF is the TLS PRF
[<a href="./rfc5246" title=""The Transport Layer Security (TLS) Protocol Version 1.2"">RFC5246</a>] with SHA-384 as the hash function.
Implementations MUST send TLS Alert bad_record_mac for all types of
failures encountered in processing the AES-GCM algorithm.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. TLS Versions</span>
These cipher suites make use of the authenticated encryption with
additional data defined in TLS 1.2 [<a href="./rfc5246" title=""The Transport Layer Security (TLS) Protocol Version 1.2"">RFC5246</a>]. They MUST NOT be
negotiated in older versions of TLS. Clients MUST NOT offer these
cipher suites if they do not offer TLS 1.2 or later. Servers that
select an earlier version of TLS MUST NOT select one of these cipher
suites. Because TLS has no way for the client to indicate that it
<span class="grey">Salowey, et al. Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc5288">RFC 5288</a> AES-GCM Cipher suites August 2008</span>
supports TLS 1.2 but not earlier, a non-compliant server might
potentially negotiate TLS 1.1 or earlier and select one of the cipher
suites in this document. Clients MUST check the TLS version and
generate a fatal "illegal_parameter" alert if they detect an
incorrect version.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. IANA Considerations</span>
IANA has assigned the following values for the cipher suites defined
in this document:
CipherSuite TLS_RSA_WITH_AES_128_GCM_SHA256 = {0x00,0x9C}
CipherSuite TLS_RSA_WITH_AES_256_GCM_SHA384 = {0x00,0x9D}
CipherSuite TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 = {0x00,0x9E}
CipherSuite TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 = {0x00,0x9F}
CipherSuite TLS_DH_RSA_WITH_AES_128_GCM_SHA256 = {0x00,0xA0}
CipherSuite TLS_DH_RSA_WITH_AES_256_GCM_SHA384 = {0x00,0xA1}
CipherSuite TLS_DHE_DSS_WITH_AES_128_GCM_SHA256 = {0x00,0xA2}
CipherSuite TLS_DHE_DSS_WITH_AES_256_GCM_SHA384 = {0x00,0xA3}
CipherSuite TLS_DH_DSS_WITH_AES_128_GCM_SHA256 = {0x00,0xA4}
CipherSuite TLS_DH_DSS_WITH_AES_256_GCM_SHA384 = {0x00,0xA5}
CipherSuite TLS_DH_anon_WITH_AES_128_GCM_SHA256 = {0x00,0xA6}
CipherSuite TLS_DH_anon_WITH_AES_256_GCM_SHA384 = {0x00,0xA7}
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Security Considerations</span>
The security considerations in [<a href="./rfc5246" title=""The Transport Layer Security (TLS) Protocol Version 1.2"">RFC5246</a>] apply to this document as
well. The remainder of this section describes security
considerations specific to the cipher suites described in this
document.
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. Counter Reuse</span>
AES-GCM security requires that the counter is never reused. The IV
construction in <a href="#section-3">Section 3</a> is designed to prevent counter reuse.
Implementers should also understand the practical considerations of
IV handling outlined in Section 9 of [<a href="#ref-GCM" title=""Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC"">GCM</a>].
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>. Recommendations for Multiple Encryption Processors</span>
If multiple cryptographic processors are in use by the sender, then
the sender MUST ensure that, for a particular key, each value of the
nonce_explicit used with that key is distinct. In this case, each
encryption processor SHOULD include, in the nonce_explicit, a fixed
value that is distinct for each processor. The recommended format is
nonce_explicit = FixedDistinct || Variable
<span class="grey">Salowey, et al. Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc5288">RFC 5288</a> AES-GCM Cipher suites August 2008</span>
where the FixedDistinct field is distinct for each encryption
processor, but is fixed for a given processor, and the Variable field
is distinct for each distinct nonce used by a particular encryption
processor. When this method is used, the FixedDistinct fields used
by the different processors MUST have the same length.
In the terms of Figure 2 in [<a href="./rfc5116" title=""An Interface and Algorithms for Authenticated Encryption"">RFC5116</a>], the Salt is the Fixed-Common
part of the nonce (it is fixed, and it is common across all
encryption processors), the FixedDistinct field exactly corresponds
to the Fixed-Distinct field, the Variable field corresponds to the
Counter field, and the explicit part exactly corresponds to the
nonce_explicit.
For clarity, we provide an example for TLS in which there are two
distinct encryption processors, each of which uses a one-byte
FixedDistinct field:
Salt = eedc68dc
FixedDistinct = 01 (for the first encryption processor)
FixedDistinct = 02 (for the second encryption processor)
The GCMnonces generated by the first encryption processor, and their
corresponding nonce_explicit, are:
GCMNonce nonce_explicit
------------------------ ----------------------------
eedc68dc0100000000000000 0100000000000000
eedc68dc0100000000000001 0100000000000001
eedc68dc0100000000000002 0100000000000002
...
The GCMnonces generated by the second encryption processor, and their
corresponding nonce_explicit, are
GCMNonce nonce_explicit
------------------------ ----------------------------
eedc68dc0200000000000000 0200000000000000
eedc68dc0200000000000001 0200000000000001
eedc68dc0200000000000002 0200000000000002
...
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Acknowledgements</span>
This document borrows heavily from [<a href="./rfc5289" title=""TLS Elliptic Curve Cipher Suites with SHA-256/384 and AES Galois Counter Mode"">RFC5289</a>]. The authors would like
to thank Alex Lam, Simon Josefsson, and Pasi Eronen for providing
useful comments during the review of this document.
<span class="grey">Salowey, et al. Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc5288">RFC 5288</a> AES-GCM Cipher suites August 2008</span>
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. References</span>
<span class="h3"><a class="selflink" id="section-8.1" href="#section-8.1">8.1</a>. Normative References</span>
[<a id="ref-AES">AES</a>] National Institute of Standards and Technology,
"Advanced Encryption Standard (AES)", FIPS 197,
November 2001.
[<a id="ref-GCM">GCM</a>] Dworkin, M., "Recommendation for Block Cipher Modes of
Operation: Galois/Counter Mode (GCM) and GMAC",
National Institute of Standards and Technology SP 800-
38D, November 2007.
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
[<a id="ref-RFC5116">RFC5116</a>] McGrew, D., "An Interface and Algorithms for
Authenticated Encryption", <a href="./rfc5116">RFC 5116</a>, January 2008.
[<a id="ref-RFC5246">RFC5246</a>] Dierks, T. and E. Rescorla, "The Transport Layer
Security (TLS) Protocol Version 1.2", <a href="./rfc5246">RFC 5246</a>,
August 2008.
<span class="h3"><a class="selflink" id="section-8.2" href="#section-8.2">8.2</a>. Informative References</span>
[<a id="ref-IEEE8021AE">IEEE8021AE</a>] Institute of Electrical and Electronics Engineers,
"Media Access Control Security", IEEE Standard 802.1AE,
August 2006.
[<a id="ref-RFC4106">RFC4106</a>] Viega, J. and D. McGrew, "The Use of Galois/Counter
Mode (GCM) in IPsec Encapsulating Security Payload
(ESP)", <a href="./rfc4106">RFC 4106</a>, June 2005.
[<a id="ref-RFC4366">RFC4366</a>] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen,
J., and T. Wright, "Transport Layer Security (TLS)
Extensions", <a href="./rfc4366">RFC 4366</a>, April 2006.
[<a id="ref-RFC5289">RFC5289</a>] Rescorla, E., "TLS Elliptic Curve Cipher Suites with
SHA-256/384 and AES Galois Counter Mode", <a href="./rfc5289">RFC 5289</a>,
August 2008.
<span class="grey">Salowey, et al. Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc5288">RFC 5288</a> AES-GCM Cipher suites August 2008</span>
Authors' Addresses
Joseph Salowey
Cisco Systems, Inc.
2901 3rd. Ave
Seattle, WA 98121
USA
EMail: jsalowey@cisco.com
Abhijit Choudhury
Cisco Systems, Inc.
3625 Cisco Way
San Jose, CA 95134
USA
EMail: abhijitc@cisco.com
David McGrew
Cisco Systems, Inc.
170 W Tasman Drive
San Jose, CA 95134
USA
EMail: mcgrew@cisco.com
<span class="grey">Salowey, et al. Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc5288">RFC 5288</a> AES-GCM Cipher suites August 2008</span>
Full Copyright Statement
Copyright (C) The IETF Trust (2008).
This document is subject to the rights, licenses and restrictions
contained in <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a>, and except as set forth therein, the authors
retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and <a href="https://www.rfc-editor.org/bcp/bcp79">BCP 79</a>.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
<a href="http://www.ietf.org/ipr">http://www.ietf.org/ipr</a>.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.
Salowey, et al. Standards Track [Page 8]
</pre>
|