1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
|
<pre>Network Working Group JP. Vasseur, Ed.
Request for Comments: 5330 Cisco Systems, Inc
Category: Standards Track M. Meyer
BT
K. Kumaki
KDDI R&D Labs
A. Bonda
Telecom Italia
October 2008
<span class="h1">A Link-Type sub-TLV to Convey the Number of</span>
<span class="h1">Traffic Engineering Label Switched Paths Signalled with</span>
<span class="h1">Zero Reserved Bandwidth across a Link</span>
Status of This Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Abstract
Several Link-type sub-Type-Length-Values (sub-TLVs) have been defined
for Open Shortest Path First (OSPF) and Intermediate System to
Intermediate System (IS-IS) in the context of Multiprotocol Label
Switching (MPLS) Traffic Engineering (TE), in order to advertise some
link characteristics such as the available bandwidth, traffic
engineering metric, administrative group, and so on. By making
statistical assumptions about the aggregated traffic carried onto a
set of TE Label Switched Paths (LSPs) signalled with zero bandwidth
(referred to as "unconstrained TE LSP" in this document), algorithms
can be designed to load balance (existing or newly configured)
unconstrained TE LSP across a set of equal cost paths. This requires
knowledge of the number of unconstrained TE LSPs signalled across a
link. This document specifies a new Link-type Traffic Engineering
sub-TLV used to advertise the number of unconstrained TE LSPs
signalled across a link.
<span class="grey">Vasseur, et al. Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc5330">RFC 5330</a> Sub-TLV for Unconstrained TE LSP October 2008</span>
Table of Contents
<a href="#section-1">1</a>. Introduction ....................................................<a href="#page-2">2</a>
<a href="#section-2">2</a>. Terminology .....................................................<a href="#page-3">3</a>
<a href="#section-2.1">2.1</a>. Requirements Language ......................................<a href="#page-4">4</a>
<a href="#section-3">3</a>. Protocol Extensions .............................................<a href="#page-4">4</a>
<a href="#section-3.1">3.1</a>. IS-IS ......................................................<a href="#page-4">4</a>
<a href="#section-3.2">3.2</a>. OSPF .......................................................<a href="#page-4">4</a>
<a href="#section-4">4</a>. Elements of Procedure ...........................................<a href="#page-5">5</a>
<a href="#section-5">5</a>. IANA Considerations .............................................<a href="#page-5">5</a>
<a href="#section-6">6</a>. Security Considerations .........................................<a href="#page-5">5</a>
<a href="#section-7">7</a>. Acknowledgements ................................................<a href="#page-6">6</a>
<a href="#section-8">8</a>. References ......................................................<a href="#page-6">6</a>
<a href="#section-8.1">8.1</a>. Normative References .......................................<a href="#page-6">6</a>
<a href="#section-8.2">8.2</a>. Informative References .....................................<a href="#page-6">6</a>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
It is not uncommon to deploy MPLS Traffic Engineering for the sake of
fast recovery, relying on a local protection recovery mechanism such
as MPLS TE Fast Reroute (see [<a href="./rfc4090" title=""Fast Reroute Extensions to RSVP-TE for LSP Tunnels"">RFC4090</a>]). In this case, a deployment
model consists of deploying a full mesh of TE LSPs signalled with
zero bandwidth (also referred to as unconstrained TE LSP in this
document) between a set of LSRs (Label Switching Routers) and
protecting these TE LSPs against link, SRLG (Shared Risk Link Group),
and/or node failures with pre-established backup tunnels. The
traffic routed onto such unconstrained TE LSPs simply follows the IGP
shortest path, but is protected with MPLS TE Fast Reroute. This is
because the TE LSP computed by the path computation algorithm (e.g.,
CSPF) will be no different than the IGP (Interior Gateway Protocol)
shortest path should the TE metric be equal to the IGP metric.
When a reoptimization process is triggered for an existing TE LSP,
the decision on whether to reroute that TE LSP onto a different path
is governed by the discovery of a lower cost path satisfying the
constraints (other metrics, such as the percentage of reserved
bandwidth or the number of hops, can also be used). Unfortunately,
metrics such as the path cost or the number of hops may be
ineffective in various circumstances. For example, in the case of a
symmetrical network with ECMPs (Equal Cost Multi-Paths), if the
network operator uses unconstrained TE LSP, this may lead to a poorly
load balanced traffic; indeed, several paths between a source and a
destination of a TE LSP may exist that have the same cost, and the
reservable amount of bandwidth along each path cannot be used as a
tie-breaker.
<span class="grey">Vasseur, et al. Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc5330">RFC 5330</a> Sub-TLV for Unconstrained TE LSP October 2008</span>
By making statistical assumptions about the aggregated traffic
carried by a set of unconstrained TE LSPs, algorithms can be designed
to load balance (existing or newly configured) unconstrained TE LSPs
across a set of equal cost paths. This requires knowledge of the
number of unconstrained TE LSPs signalled across each link.
Note that the specification of load balancing algorithms is
outside the scope of this document and is referred to for the sake
of illustration of the motivation for gathering such information.
Furthermore, the knowledge of the number of unconstrained TE LSPs
signalled across each link can be used for other purposes -- for
example, to evaluate the number of affected unconstrained TE LSPs in
case of a link failure.
A set of Link-type sub-TLVs have been defined for OSPF and IS-IS (see
[<a href="./rfc3630" title=""Traffic Engineering (TE) Extensions to OSPF Version 2"">RFC3630</a>] and [<a href="./rfc5305" title=""IS-IS extensions for Traffic Engineering"">RFC5305</a>]) in the context of MPLS Traffic Engineering
in order to advertise various link characteristics such as the
available bandwidth, traffic engineering metric, administrative
group, and so on. As currently defined in [<a href="./rfc3630" title=""Traffic Engineering (TE) Extensions to OSPF Version 2"">RFC3630</a>] and [<a href="./rfc5305" title=""IS-IS extensions for Traffic Engineering"">RFC5305</a>],
the information related to the number of unconstrained TE LSPs is not
available. This document specifies a new Link-type Traffic
Engineering sub-TLV used to indicate the number of unconstrained TE
LSPs signalled across a link.
Unconstrained TE LSPs that are configured and provisioned through a
management system MAY be omitted from the count that is reported.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Terminology</span>
Terminology used in this document:
CSPF: Constrained Shortest Path First
IGP : Interior Gateway Protocol
LSA: Link State Advertisement
LSP: Link State Packet
MPLS: Multiprotocol Label Switching
LSR: Label Switching Router
SRLG: Shared Risk Link Group
TE LSP: Traffic Engineering Label Switched Path
<span class="grey">Vasseur, et al. Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc5330">RFC 5330</a> Sub-TLV for Unconstrained TE LSP October 2008</span>
Unconstrained TE LSP: A TE LSP signalled with a bandwidth equal to 0
<span class="h3"><a class="selflink" id="section-2.1" href="#section-2.1">2.1</a>. Requirements Language</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in <a href="./rfc2119">RFC 2119</a> [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Protocol Extensions</span>
Two Unconstrained TE LSP Count sub-TLVs are defined that specify the
number of TE LSPs signalled with zero bandwidth across a link.
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. IS-IS</span>
The IS-IS Unconstrained TE LSP Count sub-TLV is OPTIONAL and MUST NOT
appear more than once within the extended IS reachability TLV (type
22) specified in [<a href="./rfc5305" title=""IS-IS extensions for Traffic Engineering"">RFC5305</a>] or the Multi-Topology (MT) Intermediate
Systems TLV (type 222) specified in [<a href="./rfc5120" title=""M-ISIS: Multi Topology (MT) Routing in Intermediate System to Intermediate Systems (IS-ISs)"">RFC5120</a>]. If a second instance
of the Unconstrained TE LSP Count sub-TLV is present, the receiving
system MUST only process the first instance of the sub-TLV.
The IS-IS Unconstrained TE LSP Count sub-TLV format is defined below:
Type (1 octet): 23
Length (1 octet): 2
Value (2 octets): number of unconstrained TE LSPs signalled across
the link.
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. OSPF</span>
The OSPF Unconstrained TE LSP Count sub-TLV is OPTIONAL and MUST NOT
appear more than once within the Link TLV (Type 2) that is itself
carried within either the Traffic Engineering LSA specified in
[<a href="./rfc3630" title=""Traffic Engineering (TE) Extensions to OSPF Version 2"">RFC3630</a>] or the OSPFv3 Intra-Area-TE LSA (function code 10) defined
in [<a href="./rfc5329" title=""Traffic Engineering Extensions to OSPF Version 3"">RFC5329</a>]. If a second instance of the Unconstrained TE LSP Count
sub-TLV is present, the receiving system MUST only process the first
instance of the sub-TLV.
<span class="grey">Vasseur, et al. Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc5330">RFC 5330</a> Sub-TLV for Unconstrained TE LSP October 2008</span>
The OSPF Unconstrained TE LSP Count sub-TLV format is defined below:
Type (2 octets): 23
Length (2 octets): 4
Value (4 octets): number of unconstrained TE LSPs signalled across
the link.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Elements of Procedure</span>
The absence of the Unconstrained TE LSP Count sub-TLV SHOULD be
interpreted as an absence of information about the link.
Similar to other MPLS Traffic Engineering link characteristics,
LSA/LSP origination trigger mechanisms are outside the scope of this
document. Care must be given to not trigger the systematic flooding
of a new IS-IS LSP or OSPF LSA with a too high granularity in case of
change in the number of unconstrained TE LSPs.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. IANA Considerations</span>
IANA has defined a sub-registry for the sub-TLVs carried in the IS-IS
TLV 22 and has assigned a new TLV codepoint for the Unconstrained TE
LSP Count sub-TLV carried within the TLV 22.
Value TLV Name Reference
23 Unconstrained TE LSP Count (sub-)TLV <a href="./rfc5330">RFC 5330</a>
IANA has defined a sub-registry for the sub-TLVs carried in an OSPF
TE Link TLV (type 2) and has assigned a new sub-TLV codepoint for the
Unconstrained TE LSP Count sub-TLV carried within the TE Link TLV.
Value TLV Name Reference
23 Unconstrained TE LSP Count (sub-)TLV <a href="./rfc5330">RFC 5330</a>
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Security Considerations</span>
The function described in this document does not create any new
security issues for the OSPF and IS-IS protocols. Security
considerations are covered in [<a href="./rfc2328" title=""OSPF Version 2"">RFC2328</a>] and [<a href="./rfc5340" title=""OSPF for IPv6"">RFC5340</a>] for the base
OSPF protocol and in [<a href="./rfc1195" title=""Use of OSI IS-IS for routing in TCP/IP and dual environments"">RFC1195</a>] and [<a href="./rfc5304" title=""Intermediate System to Intermediate System (IS-IS) Cryptographic Authentication"">RFC5304</a>] for IS-IS.
A security framework for MPLS and Generalized MPLS can be found in
[G/MPLS].
<span class="grey">Vasseur, et al. Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc5330">RFC 5330</a> Sub-TLV for Unconstrained TE LSP October 2008</span>
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Acknowledgements</span>
The authors would like to thank Jean-Louis Le Roux, Adrian Farrel,
Daniel King, Acee Lindem, Lou Berger, Attila Takacs, Pasi Eronen,
Russ Housley, Tim Polk, and Loa Anderson for their useful inputs.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. References</span>
<span class="h3"><a class="selflink" id="section-8.1" href="#section-8.1">8.1</a>. Normative References</span>
[<a id="ref-RFC1195">RFC1195</a>] Callon, R., "Use of OSI IS-IS for routing in TCP/IP and
dual environments", <a href="./rfc1195">RFC 1195</a>, December 1990.
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
[<a id="ref-RFC2328">RFC2328</a>] Moy, J., "OSPF Version 2", STD 54, <a href="./rfc2328">RFC 2328</a>, April 1998.
[<a id="ref-RFC3630">RFC3630</a>] Katz, D., Kompella, K., and D. Yeung, "Traffic Engineering
(TE) Extensions to OSPF Version 2", <a href="./rfc3630">RFC 3630</a>, September
2003.
[<a id="ref-RFC5304">RFC5304</a>] Li, T. and R. Atkinson, "Intermediate System to
Intermediate System (IS-IS) Cryptographic Authentication",
<a href="./rfc5304">RFC 5304</a>, October 2008.
[<a id="ref-RFC5305">RFC5305</a>] Li, T. and H. Smit, "IS-IS extensions for Traffic
Engineering", <a href="./rfc5305">RFC 5305</a>, October 2008.
[<a id="ref-RFC5329">RFC5329</a>] Ishiguro, K., Manral, V., Davey, A., and A. Lindem, Ed.,
"Traffic Engineering Extensions to OSPF Version 3", <a href="./rfc5329">RFC</a>
<a href="./rfc5329">5329</a>, September 2008.
[<a id="ref-RFC5340">RFC5340</a>] Coltun, R., Ferguson, D., Moy, J., and A. Lindem, "OSPF
for IPv6", <a href="./rfc5340">RFC 5340</a>, July 2008.
<span class="h3"><a class="selflink" id="section-8.2" href="#section-8.2">8.2</a>. Informative References</span>
[G/MPLS] Fang, L., Ed., "Security Framework for MPLS and GMPLS
Networks", Work In Progress, July 2008.
[<a id="ref-RFC4090">RFC4090</a>] Pan, P., Ed., Swallow, G., Ed., and A. Atlas, Ed., "Fast
Reroute Extensions to RSVP-TE for LSP Tunnels", <a href="./rfc4090">RFC 4090</a>,
May 2005.
[<a id="ref-RFC5120">RFC5120</a>] Przygienda, T., Shen, N., and N. Sheth, "M-ISIS: Multi
Topology (MT) Routing in Intermediate System to
Intermediate Systems (IS-ISs)", <a href="./rfc5120">RFC 5120</a>, February 2008.
<span class="grey">Vasseur, et al. Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc5330">RFC 5330</a> Sub-TLV for Unconstrained TE LSP October 2008</span>
Authors' Addresses
JP Vasseur (editor)
Cisco Systems, Inc
1414 Massachusetts Avenue
Boxborough, MA 01719
USA
EMail: jpv@cisco.com
Matthew R. Meyer
BT
Boston, MA
USA
EMail: matthew.meyer@bt.com
Kenji Kumaki
KDDI R&D Laboratories, Inc.
2-1-15 Ohara Fujimino
Saitama 356-8502, JAPAN
EMail: ke-kumaki@kddi.com
Alberto Tempia Bonda
Telecom Italia
via G. Reiss Romoli 274
Torino, 10148
ITALIA
EMail: alberto.tempiabonda@telecomitalia.it
<span class="grey">Vasseur, et al. Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc5330">RFC 5330</a> Sub-TLV for Unconstrained TE LSP October 2008</span>
Full Copyright Statement
Copyright (C) The IETF Trust (2008).
This document is subject to the rights, licenses and restrictions
contained in <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a>, and except as set forth therein, the authors
retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and <a href="https://www.rfc-editor.org/bcp/bcp79">BCP 79</a>.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
<a href="http://www.ietf.org/ipr">http://www.ietf.org/ipr</a>.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.
Vasseur, et al. Standards Track [Page 8]
</pre>
|