1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
|
<pre>Network Working Group Q. Xie
Request for Comments: 5353 R. Stewart
Category: Experimental The Resource Group
M. Stillman
Nokia
M. Tuexen
Muenster Univ. of Applied Sciences
A. Silverton
Sun Microsystems, Inc.
September 2008
<span class="h1">Endpoint Handlespace Redundancy Protocol (ENRP)</span>
Status of This Memo
This memo defines an Experimental Protocol for the Internet
community. It does not specify an Internet standard of any kind.
Discussion and suggestions for improvement are requested.
Distribution of this memo is unlimited.
Abstract
The Endpoint Handlespace Redundancy Protocol (ENRP) is designed to
work in conjunction with the Aggregate Server Access Protocol (ASAP)
to accomplish the functionality of the Reliable Server Pooling
(RSerPool) requirements and architecture. Within the operational
scope of RSerPool, ENRP defines the procedures and message formats of
a distributed, fault-tolerant registry service for storing,
bookkeeping, retrieving, and distributing pool operation and
membership information.
Table of Contents
<a href="#section-1">1</a>. Introduction ....................................................<a href="#page-3">3</a>
<a href="#section-1.1">1.1</a>. Definitions ................................................<a href="#page-3">3</a>
<a href="#section-1.2">1.2</a>. Conventions ................................................<a href="#page-4">4</a>
<a href="#section-2">2</a>. ENRP Message Definitions ........................................<a href="#page-4">4</a>
<a href="#section-2.1">2.1</a>. ENRP_PRESENCE Message ......................................<a href="#page-5">5</a>
<a href="#section-2.2">2.2</a>. ENRP_HANDLE_TABLE_REQUEST Message ..........................<a href="#page-6">6</a>
<a href="#section-2.3">2.3</a>. ENRP_HANDLE_TABLE_RESPONSE Message .........................<a href="#page-7">7</a>
<a href="#section-2.4">2.4</a>. ENRP_HANDLE_UPDATE Message .................................<a href="#page-9">9</a>
<a href="#section-2.5">2.5</a>. ENRP_LIST_REQUEST Message .................................<a href="#page-10">10</a>
<a href="#section-2.6">2.6</a>. ENRP_LIST_RESPONSE Message ................................<a href="#page-11">11</a>
<a href="#section-2.7">2.7</a>. ENRP_INIT_TAKEOVER Message ................................<a href="#page-12">12</a>
<a href="#section-2.8">2.8</a>. ENRP_INIT_TAKEOVER_ACK Message ............................<a href="#page-13">13</a>
<a href="#section-2.9">2.9</a>. ENRP_TAKEOVER_SERVER Message ..............................<a href="#page-14">14</a>
<a href="#section-2.10">2.10</a>. ENRP_ERROR Message .......................................<a href="#page-15">15</a>
<span class="grey">Xie, et al. Experimental [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc5353">RFC 5353</a> Endpoint Handlespace Redundancy September 2008</span>
<a href="#section-3">3</a>. ENRP Operation Procedures ......................................<a href="#page-15">15</a>
<a href="#section-3.1">3.1</a>. Methods for Communicating amongst ENRP Servers ............<a href="#page-16">16</a>
<a href="#section-3.2">3.2</a>. ENRP Server Initialization ................................<a href="#page-16">16</a>
<a href="#section-3.2.1">3.2.1</a>. Generate a Server Identifier .......................<a href="#page-16">16</a>
<a href="#section-3.2.2">3.2.2</a>. Acquire Peer Server List ...........................<a href="#page-17">17</a>
<a href="#section-3.2.2.1">3.2.2.1</a>. Finding the Mentor Server .................<a href="#page-17">17</a>
3.2.2.2. Request Complete Server List from
Mentor Peer ...............................<a href="#page-17">17</a>
<a href="#section-3.2.3">3.2.3</a>. Download ENRP Handlespace Data from Mentor Peer ....<a href="#page-18">18</a>
<a href="#section-3.3">3.3</a>. Server Handlespace Update .................................<a href="#page-20">20</a>
<a href="#section-3.3.1">3.3.1</a>. Announcing Additions or Updates of PE ..............<a href="#page-20">20</a>
<a href="#section-3.3.2">3.3.2</a>. Announcing Removal of PE ...........................<a href="#page-21">21</a>
<a href="#section-3.4">3.4</a>. Maintaining Peer List and Monitoring Peer Status ..........<a href="#page-22">22</a>
<a href="#section-3.4.1">3.4.1</a>. Discovering New Peer ...............................<a href="#page-22">22</a>
<a href="#section-3.4.2">3.4.2</a>. Server Sending Heartbeat ...........................<a href="#page-22">22</a>
<a href="#section-3.4.3">3.4.3</a>. Detecting Peer Server Failure ......................<a href="#page-23">23</a>
<a href="#section-3.5">3.5</a>. Taking Over a Failed Peer Server ..........................<a href="#page-23">23</a>
<a href="#section-3.5.1">3.5.1</a>. Initiating Server Take-over Arbitration ............<a href="#page-23">23</a>
<a href="#section-3.5.2">3.5.2</a>. Takeover Target Peer Server ........................<a href="#page-24">24</a>
<a href="#section-3.6">3.6</a>. Handlespace Data Auditing and Re-synchronization ..........<a href="#page-25">25</a>
<a href="#section-3.6.1">3.6.1</a>. Auditing Procedures ................................<a href="#page-25">25</a>
<a href="#section-3.6.2">3.6.2</a>. PE Checksum Calculation Algorithm ..................<a href="#page-26">26</a>
<a href="#section-3.6.3">3.6.3</a>. Re-Synchronization Procedures ......................<a href="#page-27">27</a>
3.7. Handling Unrecognized Messages or Unrecognized
Parameters ................................................<a href="#page-28">28</a>
<a href="#section-4">4</a>. Variables and Thresholds .......................................<a href="#page-28">28</a>
<a href="#section-4.1">4.1</a>. Variables .................................................<a href="#page-28">28</a>
<a href="#section-4.2">4.2</a>. Thresholds ................................................<a href="#page-28">28</a>
<a href="#section-5">5</a>. IANA Considerations ............................................<a href="#page-28">28</a>
<a href="#section-5.1">5.1</a>. A New Table for ENRP Message Types ........................<a href="#page-29">29</a>
<a href="#section-5.2">5.2</a>. A New Table for Update Action Types .......................<a href="#page-29">29</a>
<a href="#section-5.3">5.3</a>. Port Numbers ..............................................<a href="#page-30">30</a>
<a href="#section-5.4">5.4</a>. SCTP Payload Protocol Identifier ..........................<a href="#page-30">30</a>
<a href="#section-6">6</a>. Security Considerations ........................................<a href="#page-30">30</a>
<a href="#section-6.1">6.1</a>. Summary of RSerPool Security Threats ......................<a href="#page-30">30</a>
<a href="#section-6.2">6.2</a>. Implementing Security Mechanisms ..........................<a href="#page-32">32</a>
<a href="#section-6.3">6.3</a>. Chain of Trust ............................................<a href="#page-34">34</a>
<a href="#section-7">7</a>. Acknowledgments ................................................<a href="#page-35">35</a>
<a href="#section-8">8</a>. References .....................................................<a href="#page-36">36</a>
<a href="#section-8.1">8.1</a>. Normative References ......................................<a href="#page-36">36</a>
<a href="#section-8.2">8.2</a>. Informative References ....................................<a href="#page-37">37</a>
<span class="grey">Xie, et al. Experimental [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc5353">RFC 5353</a> Endpoint Handlespace Redundancy September 2008</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
ENRP is designed to work in conjunction with ASAP [<a href="./rfc5352" title=""Aggregate Server Access Protocol (ASAP)"">RFC5352</a>] to
accomplish the functionality of RSerPool as defined by its
requirements [<a href="./rfc3237" title=""Requirements for Reliable Server Pooling"">RFC3237</a>].
Within the operational scope of RSerPool, ENRP defines the procedures
and message formats of a distributed, fault-tolerant registry service
for storing, bookkeeping, retrieving, and distributing pool operation
and membership information.
Whenever appropriate, in the rest of this document, we will refer to
this RSerPool registry service as ENRP handlespace, or simply
handlespace, because it manages all pool handles.
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. Definitions</span>
This document uses the following terms:
Operational scope: The part of the network visible to pool users by
a specific instance of the reliable server pooling protocols.
Pool (or server pool): A collection of servers providing the same
application functionality.
Pool handle: A logical pointer to a pool. Each server pool will be
identifiable in the operational scope of the system by a unique
pool handle.
Pool element: A server entity having registered to a pool.
Pool user: A server pool user.
Pool element handle (or endpoint handle): A logical pointer to a
particular pool element in a pool, consisting of the pool handle
and a destination transport address of the pool element.
Handle space: A cohesive structure of pool handles and relations
that may be queried by an internal or external agent.
ENRP client channel: The communication channel through which an ASAP
User (either a Pool Element (PE) or Pool User (PU)) requests ENRP
handlespace service. The client channel is usually defined by the
transport address of the Home ENRP server and a well-known port
number.
<span class="grey">Xie, et al. Experimental [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc5353">RFC 5353</a> Endpoint Handlespace Redundancy September 2008</span>
ENRP server channel: Defined by a list of IP addresses (one for each
ENRP server in an operational scope) and a well-known port number.
All ENRP servers in an operational scope can send "group-cast"
messages to other servers through this channel. In a "group-
cast", the sending server sends multiple copies of the message,
one to each of its peer servers, over a set of point-to-point
Stream Control Transmission Protocol (SCTP) associations between
the sending server and the peers. The "group-cast" may be
conveniently implemented with the use of the "SCTP_SENDALL" option
on a one-to-many style SCTP socket.
Home ENRP server: The ENRP server to which a PE or PU currently
belongs. A PE MUST only have one Home ENRP server at any given
time, and both the PE and its Home ENRP server MUST keep track of
this master/slave relationship between them. A PU SHOULD select
one of the available ENRP servers as its Home ENRP server.
<span class="h3"><a class="selflink" id="section-1.2" href="#section-1.2">1.2</a>. Conventions</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. ENRP Message Definitions</span>
In this section, we define the format of all ENRP messages. These
are messages sent and received amongst ENRP servers in an operational
scope. Messages sent and received between a PE/PU and an ENRP server
are part of ASAP and are defined in [<a href="./rfc5352" title=""Aggregate Server Access Protocol (ASAP)"">RFC5352</a>]. A common format, that
is defined in [<a href="./rfc5354" title=""Aggregate Server Access Protocol (ASAP) and Endpoint Handlespace Redundancy Protocol (ENRP) Parameters"">RFC5354</a>], is used for all ENRP and ASAP messages.
Most ENRP messages contain a combination of fixed fields and TLV
(Type-Length-Value) parameters. The TLV parameters are also defined
in [<a href="./rfc5354" title=""Aggregate Server Access Protocol (ASAP) and Endpoint Handlespace Redundancy Protocol (ENRP) Parameters"">RFC5354</a>]. If a nested TLV parameter is not ended on a 32-bit
word boundary, it will be padded with all '0' octets to the next 32-
bit word boundary.
All messages, as well as their fields/parameters described below,
MUST be transmitted in network byte order (aka Big Endian, meaning
the most significant byte is transmitted first).
<span class="grey">Xie, et al. Experimental [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc5353">RFC 5353</a> Endpoint Handlespace Redundancy September 2008</span>
For ENRP, the following message types are defined in this section:
Type Message Name
----- -------------------------
0x00 - (Reserved by IETF)
0x01 - ENRP_PRESENCE
0x02 - ENRP_HANDLE_TABLE_REQUEST
0x03 - ENRP_HANDLE_TABLE_RESPONSE
0x04 - ENRP_HANDLE_UPDATE
0x05 - ENRP_LIST_REQUEST
0x06 - ENRP_LIST_RESPONSE
0x07 - ENRP_INIT_TAKEOVER
0x08 - ENRP_INIT_TAKEOVER_ACK
0x09 - ENRP_TAKEOVER_SERVER
0x0a - ENRP_ERROR
0x0b-0xff - (Reserved by IETF)
Figure 1
<span class="h3"><a class="selflink" id="section-2.1" href="#section-2.1">2.1</a>. ENRP_PRESENCE Message</span>
This ENRP message is used to announce (periodically) the presence of
an ENRP server, or to probe the status of a peer ENRP server. This
message is either sent on the ENRP server channel or sent point-to-
point to another ENRP server.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 0x01 |0|0|0|0|0|0|0|0| Message Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sending Server's ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Receiving Server's ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: PE Checksum Param :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: Server Information Param (optional) :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Sending Server's ID: 32 bits (unsigned integer)
This is the ID of the ENRP server that sent this message.
<span class="grey">Xie, et al. Experimental [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc5353">RFC 5353</a> Endpoint Handlespace Redundancy September 2008</span>
Receiving Server's ID: 32 bits (unsigned integer)
This is the ID of the ENRP server to which this message is
intended. If the message is not intended for an individual
server (e.g., the message is group-casted to a group of
servers), this field MUST be sent with all 0s. If the message
is sent point-to-point, this field MAY be sent with all 0s.
PE Checksum Parameter:
This is a TLV that contains the latest PE checksum of the ENRP
server that sends the ENRP_PRESENCE. This parameter SHOULD be
included for handlespace consistency auditing. See
<a href="#section-3.6.1">Section 3.6.1</a> for details.
Server Information Parameter:
If this parameter is present, it contains the server
information of the sender of this message (the Server
Information Parameter is defined in [<a href="./rfc5354" title=""Aggregate Server Access Protocol (ASAP) and Endpoint Handlespace Redundancy Protocol (ENRP) Parameters"">RFC5354</a>]). This parameter
is optional. However, if this message is sent in response to a
received "reply required" ENRP_PRESENCE from a peer, the sender
then MUST include its server information.
Note, at startup, an ENRP server MUST pick a randomly generated, non-
zero 32-bit unsigned integer as its ID and MUST use this same ID
until the ENRP server is rebooted.
<span class="h3"><a class="selflink" id="section-2.2" href="#section-2.2">2.2</a>. ENRP_HANDLE_TABLE_REQUEST Message</span>
An ENRP server sends this message to one of its peers to request a
copy of the handlespace data. This message is normally used during
server initialization or handlespace re-synchronization.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 0x02 |0|0|0|0|0|0|0|W| Message Length = 0xC |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sending Server's ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Receiving Server's ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
<span class="grey">Xie, et al. Experimental [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc5353">RFC 5353</a> Endpoint Handlespace Redundancy September 2008</span>
W (oWn-children-only) Flag: 1 bit
Set to '1' if the sender of this message is only requesting
information about the PEs owned by the message receiver.
Otherwise, set to '0'.
Sending Server's ID:
See <a href="#section-2.1">Section 2.1</a>.
Receiving Server's ID:
See <a href="#section-2.1">Section 2.1</a>.
<span class="h3"><a class="selflink" id="section-2.3" href="#section-2.3">2.3</a>. ENRP_HANDLE_TABLE_RESPONSE Message</span>
The PEER_NAME_TABLE_RESPONSE message is sent by an ENRP server in
response to a received PEER_NAME_TABLE_REQUEST message to assist
peer-server initialization or handlespace synchronization.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 0x03 |0|0|0|0|0|0|M|R| Message Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sending Server's ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Receiving Server's ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: :
: Pool Entry #1 (optional) :
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: :
: ... :
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: :
: Pool Entry #n (optional) :
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
M (More_to_send) Flag: 1 bit
Set to '1' if the sender of this message has more pool entries
to send in subsequent ENRP_HANDLE_TABLE_RESPONSE messages.
Otherwise, set to '0'.
<span class="grey">Xie, et al. Experimental [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc5353">RFC 5353</a> Endpoint Handlespace Redundancy September 2008</span>
R (Reject) Flag: 1 bit
MUST be set to '1' if the sender of this message is rejecting a
handlespace request. In this case, pool entries MUST NOT be
included. This might happen if the sender of this message is
in the middle of initializing its database or is under high
load.
Message Length: 16 bits (unsigned integer)
Indicates the entire length of the message, including the
header, in number of octets.
Note, the value in the Message Length field will NOT cover any
padding at the end of this message.
Sending Server's ID:
See <a href="#section-2.1">Section 2.1</a>.
Receiving Server's ID:
See <a href="#section-2.1">Section 2.1</a>.
Pool Entry #1-#n:
If the R flag is set to '0', at least one pool entry SHOULD be
present in this message. Each pool entry MUST start with a
Pool Handle parameter, as defined in <a href="./rfc5354#section-3.9">Section 3.9 of [RFC5354]</a>,
and is followed by one or more Pool Element parameters in TLV
format, as shown below:
+---------------------------+
: Pool Handle :
+---------------------------+
: PE #1 :
+---------------------------+
: PE #2 :
+---------------------------+
: ... :
+---------------------------+
: PE #n :
+---------------------------+
<span class="grey">Xie, et al. Experimental [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc5353">RFC 5353</a> Endpoint Handlespace Redundancy September 2008</span>
<span class="h3"><a class="selflink" id="section-2.4" href="#section-2.4">2.4</a>. ENRP_HANDLE_UPDATE Message</span>
The PEER_NAME_UPDATE message is sent by the Home ENRP server of a PE
to all peer servers to announce registration, re-registration, or de-
registration of the PE in the handlespace.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 0x04 |0|0|0|0|0|0|0|0| Message Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sending Server's ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Receiving Server's ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Update Action | (reserved) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: Pool Handle Parameter :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: Pool Element Parameter :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Message Length: 16 bits (unsigned integer)
Indicates the entire length of the message, including the
header, in number of octets.
Note, the value in the Message Length field will NOT cover any
padding at the end of this message.
Update Action: 16 bits (unsigned integer)
This field indicates the requested action of the specified PE.
The field MUST be set to one of the following values:
0x0000 - ADD_PE: Add or update the specified PE in the ENRP
handlespace.
0x0001 - DEL_PE: Delete the specified PE from the ENRP
handlespace.
0x0002 - 0xFFFF: Reserved by IETF.
Other values are reserved by IETF and MUST NOT be used.
<span class="grey">Xie, et al. Experimental [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc5353">RFC 5353</a> Endpoint Handlespace Redundancy September 2008</span>
Reserved: 16 bits
This field MUST be set to all 0s by the sender and ignored by
the receiver.
Sending Server's ID:
See <a href="#section-2.1">Section 2.1</a>.
Receiving Server's ID:
See <a href="#section-2.1">Section 2.1</a>.
Pool Handle:
Specifies to which the PE belongs.
Pool Element:
Specifies the PE.
<span class="h3"><a class="selflink" id="section-2.5" href="#section-2.5">2.5</a>. ENRP_LIST_REQUEST Message</span>
The PEER_LIST_REQUEST message is sent to request a current copy of
the ENRP server list. This message is normally sent from a newly
activated ENRP server to an established ENRP server as part of the
initialization process.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 0x05 |0|0|0|0|0|0|0|0| Message Length = 0xC |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sending Server's ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Receiving Server's ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Sending Server's ID:
See <a href="#section-2.1">Section 2.1</a>.
Receiving Server's ID:
See <a href="#section-2.1">Section 2.1</a>.
<span class="grey">Xie, et al. Experimental [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc5353">RFC 5353</a> Endpoint Handlespace Redundancy September 2008</span>
<span class="h3"><a class="selflink" id="section-2.6" href="#section-2.6">2.6</a>. ENRP_LIST_RESPONSE Message</span>
The PEER_LIST_RESPONSE message is sent in response from an ENRP
server that receives a PEER_LIST_REQUEST message to return
information about known ENRP servers.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 0x06 |0|0|0|0|0|0|0|R| Message Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sending Server's ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Receiving Server's ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: Server Information Parameter of Peer #1 :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: ... :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: Server Information Parameter of Peer #n :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
R (Reject) Flag: 1 bit
This flag MUST be set to '1' if the sender of this message is
rejecting a PEER_LIST_REQUEST message. If this case occurs,
the message MUST NOT include any Server Information Parameters.
Message Length: 16 bits (unsigned integer)
Indicates the entire length of the message in number of octets.
Note, the value in the Message Length field will NOT cover any
padding at the end of this message.
Sending Server's ID:
See <a href="#section-2.1">Section 2.1</a>.
Receiving Server's ID:
See <a href="#section-2.1">Section 2.1</a>.
Server Information Parameter of Peer #1-#n:
Each contains a Server Information Parameter of a peer known to
the sender. The Server Information Parameter is defined in
[<a href="./rfc5354" title=""Aggregate Server Access Protocol (ASAP) and Endpoint Handlespace Redundancy Protocol (ENRP) Parameters"">RFC5354</a>].
<span class="grey">Xie, et al. Experimental [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc5353">RFC 5353</a> Endpoint Handlespace Redundancy September 2008</span>
<span class="h3"><a class="selflink" id="section-2.7" href="#section-2.7">2.7</a>. ENRP_INIT_TAKEOVER Message</span>
The ENRP_INIT_TAKEOVER message is sent by an ENRP server (the
takeover initiator) to announce its intention of taking over a
specific peer ENRP server. It is sent to all its peers.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 0x07 |0|0|0|0|0|0|0|0| Message Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sending Server's ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Receiving Server's ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Targeting Server's ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Sending Server's ID:
See <a href="#section-2.1">Section 2.1</a>.
Receiving Server's ID:
See <a href="#section-2.1">Section 2.1</a>.
Targeting Server's ID: 32 bits (unsigned integer)
This is the ID of the peer ENRP that is the target of this
takeover attempt.
<span class="grey">Xie, et al. Experimental [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc5353">RFC 5353</a> Endpoint Handlespace Redundancy September 2008</span>
<span class="h3"><a class="selflink" id="section-2.8" href="#section-2.8">2.8</a>. ENRP_INIT_TAKEOVER_ACK Message</span>
The PEER_INIT_TAKEOVER_ACK message is sent in response to a takeover
initiator to acknowledge the reception of the PEER_INIT_TAKEOVER
message and that it does not object to the takeover.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 0x08 |0|0|0|0|0|0|0|0| Message Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sending Server's ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Receiving Server's ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Targeting Server's ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Sending Server's ID:
See <a href="#section-2.1">Section 2.1</a>.
Receiving Server's ID:
See <a href="#section-2.1">Section 2.1</a>.
Targeting Server's ID:
This is the ID of the peer ENRP that is the target of this
takeover attempt.
<span class="grey">Xie, et al. Experimental [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc5353">RFC 5353</a> Endpoint Handlespace Redundancy September 2008</span>
<span class="h3"><a class="selflink" id="section-2.9" href="#section-2.9">2.9</a>. ENRP_TAKEOVER_SERVER Message</span>
The PEER_TAKEOVER_REGISTRAR message is sent by the takeover initiator
to declare the enforcement of a takeover to all active peer ENRP
servers.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 0x09 |0|0|0|0|0|0|0|0| Message Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sending Server's ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Receiving Server's ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Targeting Server's ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Sending Server's ID:
See <a href="#section-2.1">Section 2.1</a>.
Receiving Server's ID:
See <a href="#section-2.1">Section 2.1</a>.
Targeting Server's ID:
This is the ID of the peer ENRP that is the target of this
takeover operation.
<span class="grey">Xie, et al. Experimental [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc5353">RFC 5353</a> Endpoint Handlespace Redundancy September 2008</span>
<span class="h3"><a class="selflink" id="section-2.10" href="#section-2.10">2.10</a>. ENRP_ERROR Message</span>
The ENRP_ERROR message is sent by a registrar to report an
operational error to a peer ENRP server.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 0x0a |0|0|0|0|0|0|0|0| Message Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sending Server's ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Receiving Server's ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: Operational Error Parameter :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Sending Server's ID:
See <a href="#section-2.1">Section 2.1</a>.
Receiving Server's ID:
See <a href="#section-2.1">Section 2.1</a>.
Operational Error Parameter:
This parameter, defined in [<a href="./rfc5354" title=""Aggregate Server Access Protocol (ASAP) and Endpoint Handlespace Redundancy Protocol (ENRP) Parameters"">RFC5354</a>], indicates the type of
error(s) being reported.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. ENRP Operation Procedures</span>
In this section, we discuss the operation procedures defined by ENRP.
An ENRP server MUST follow these procedures when sending, receiving,
or processing ENRP messages.
Many of the RSerPool events call for both server-to-server and PU/
PE-to-server message exchanges. Only the message exchanges and
activities between an ENRP server and its peer(s) are considered
within the ENRP scope and are defined in this document.
Procedures for exchanging messages between a PE/PU and ENRP servers
are defined in [<a href="./rfc5352" title=""Aggregate Server Access Protocol (ASAP)"">RFC5352</a>].
<span class="grey">Xie, et al. Experimental [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc5353">RFC 5353</a> Endpoint Handlespace Redundancy September 2008</span>
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. Methods for Communicating amongst ENRP Servers</span>
Within an RSerPool operational scope, ENRP servers need to
communicate with each other in order to exchange information, such as
the pool membership changes, handlespace data synchronization, etc.
Two types of communications are used amongst ENRP servers:
o point-to-point message exchanges from one ENPR server to a
specific peer server, and
o announcements from one server to all its peer servers in the
operational scope.
Point-to-point communication is always carried out over an SCTP
association between the sending server and the receiving server.
Announcements are sent out via "group-casts" over the ENRP server
channel.
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. ENRP Server Initialization</span>
This section describes the steps a new ENRP server needs to take in
order to join the other existing ENRP servers, or to initiate the
handlespace service if it is the first ENRP server started in the
operational scope.
<span class="h4"><a class="selflink" id="section-3.2.1" href="#section-3.2.1">3.2.1</a>. Generate a Server Identifier</span>
A new ENRP server MUST generate a non-zero, 32-bit server ID that is
as unique as possible among all the ENRP servers in the operational
scope, and this server ID MUST remain unchanged for the lifetime of
the server. Normally, a good 32-bit random number will be good
enough, as the server ID [<a href="./rfc4086" title=""Randomness Requirements for Security"">RFC4086</a>] provides some information on
randomness guidelines.
Note, there is a very remote chance (about 1 in about 4 billion) that
two ENRP servers in an operational scope will generate the same
server ID and hence cause a server ID conflict in the pool. However,
no severe consequence of such a conflict has been identified.
Note, the ENRP server ID space is separate from the PE Id space
defined in [<a href="./rfc5352" title=""Aggregate Server Access Protocol (ASAP)"">RFC5352</a>].
<span class="grey">Xie, et al. Experimental [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc5353">RFC 5353</a> Endpoint Handlespace Redundancy September 2008</span>
<span class="h4"><a class="selflink" id="section-3.2.2" href="#section-3.2.2">3.2.2</a>. Acquire Peer Server List</span>
At startup, the ENRP server (the initiating server) will first
attempt to learn of all existing peer ENRP servers in the same
operational scope, or to determine that it is alone in the scope.
The initiating server uses an existing peer server to bootstrap
itself into service. We call this peer server the mentor server.
<span class="h5"><a class="selflink" id="section-3.2.2.1" href="#section-3.2.2.1">3.2.2.1</a>. Finding the Mentor Server</span>
If the initiating server is told about one existing peer server
through some administrative means (such as DNS query, configuration
database, startup scripts, etc.), the initiating server MUST then use
this peer server as its mentor server.
If multiple existing peer servers are specified, the initiating
server MUST pick one of them as its mentor server and keep the others
as its backup mentor servers.
If no existing peer server is specified, the initiating server MUST
assume that it is alone in the operational scope, and MUST skip the
procedures in <a href="#section-3.2.2.2">Section 3.2.2.2</a> and <a href="#section-3.2.3">Section 3.2.3</a> and MUST consider its
initialization completed and start offering ENRP services.
<span class="h5"><a class="selflink" id="section-3.2.2.2" href="#section-3.2.2.2">3.2.2.2</a>. Request Complete Server List from Mentor Peer</span>
Once the initiating server finds its mentor peer server (by either
discovery or administrative means), the initiating server MUST send
an ENRP_LIST_REQUEST message to the mentor peer server to request a
copy of the complete server list maintained by the mentor peer (see
<a href="#section-3.4">Section 3.4</a> for maintaining a server list).
The initiating server SHOULD start a MAX-TIME-NO-RESPONSE timer every
time it finishes sending an ENRP_LIST_REQUEST message. If the timer
expires before receiving a response from the mentor peer, the
initiating server SHOULD abandon the interaction with the current
mentor server and send a new server list request to a backup mentor
peer, if one is available.
Upon the reception of this request, the mentor peer server SHOULD
reply with an ENRP_LIST_RESPONSE message and include in the message
body all existing ENRP servers known by the mentor peer.
Upon the reception of the ENRP_LIST_RESPONSE message from the mentor
peer, the initiating server MUST use the server information carried
in the message to initialize its own peer list.
<span class="grey">Xie, et al. Experimental [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc5353">RFC 5353</a> Endpoint Handlespace Redundancy September 2008</span>
However, if the mentor itself is in the process of startup and not
ready to provide a peer server list (for example, the mentor peer is
waiting for a response to its own ENRP_LIST_REQUEST to another
server), it MUST reject the request by the initiating server and
respond with an ENRP_LIST_RESPONSE message with the R flag set to
'1', and with no server information included in the response.
In the case where its ENRP_LIST_REQUEST is rejected by the mentor
peer, the initiating server SHOULD either wait for a few seconds and
re-send the ENRP_LIST_REQUEST to the mentor server, or if there is a
backup mentor peer available, select another mentor peer server and
send the ENRP_LIST_REQUEST to the new mentor server.
<span class="h4"><a class="selflink" id="section-3.2.3" href="#section-3.2.3">3.2.3</a>. Download ENRP Handlespace Data from Mentor Peer</span>
After a peer list download is completed, the initiating server MUST
request a copy of the current handlespace data from its mentor peer
server, by taking the following steps:
1. The initiating server MUST first send an
ENRP_HANDLE_TABLE_REQUEST message to the mentor peer, with the W
flag set to '0', indicating that the entire handlespace is
requested.
2. Upon the reception of this message, the mentor peer MUST start a
download session in which a copy of the current handlespace data
maintained by the mentor peer is sent to the initiating server in
one or more ENRP_HANDLE_TABLE_RESPONSE messages. (Note, the
mentor server may find it particularly desirable to use multiple
ENRP_HANDLE_TABLE_RESPONSE messages to send the handlespace when
the handlespace is large, especially when forming and sending out
a single response containing a large handlespace may interrupt
its other services.)
If more than one ENRP_HANDLE_TABLE_RESPONSE message is used
during the download, the mentor peer MUST use the M flag in each
ENRP_HANDLE_TABLE_RESPONSE message to indicate whether this
message is the last one for the download session. In particular,
the mentor peer MUST set the M flag to '1' in the outbound
ENRP_HANDLE_TABLE_RESPONSE if there is more data to be
transferred and MUST keep track of the progress of the current
download session. The mentor peer MUST set the M flag to '0' in
the last ENRP_HANDLE_TABLE_RESPONSE for the download session and
close the download session (i.e., removing any internal record of
the session) after sending out the last message.
<span class="grey">Xie, et al. Experimental [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc5353">RFC 5353</a> Endpoint Handlespace Redundancy September 2008</span>
3. During the downloading, every time the initiating server receives
an ENRP_HANDLE_TABLE_RESPONSE message, it MUST transfer the data
entries carried in the message into its local handlespace
database, and then check whether or not this message is the last
one for the download session.
If the M flag is set to '1' in the just processed
ENRP_HANDLE_TABLE_RESPONSE message, the initiating server MUST
send another ENRP_HANDLE_TABLE_REQUEST message to the mentor peer
to request for the next ENRP_HANDLE_TABLE_RESPONSE message.
4. When unpacking the data entries from a ENRP_HANDLE_TABLE_RESPONSE
message into its local handlespace database, the initiating
server MUST handle each pool entry carried in the message using
the following rules:
A. If the pool does not exist in the local handlespace, the
initiating server MUST create the pool in the local
handlespace and add the PE(s) in the pool entry to the pool.
When creating the pool, the initiation server MUST set the
overall member selection policy type of the pool to the
policy type indicated in the first PE.
B. If the pool already exists in the local handlespace, but the
PE(s) in the pool entry is not currently a member of the
pool, the initiating server MUST add the PE(s) to the pool.
C. If the pool already exists in the local handlespace AND the
PE(s) in the pool entry is already a member of the pool, the
initiating server SHOULD replace the attributes of the
existing PE(s) with the new information. ENRP will make sure
that the information stays up to date.
5. When the last ENRP_HANDLE_TABLE_RESPONSE message is received from
the mentor peer and unpacked into the local handlespace, the
initialization process is completed and the initiating server
SHOULD start to provide ENRP services.
Under certain circumstances, the mentor peer itself may not be able
to provide a handlespace download to the initiating server. For
example, the mentor peer is in the middle of initializing its own
handlespace database, or it currently has too many download sessions
open to other servers.
<span class="grey">Xie, et al. Experimental [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc5353">RFC 5353</a> Endpoint Handlespace Redundancy September 2008</span>
In such a case, the mentor peer MUST reject the request by the
initiating server and respond with an ENRP_HANDLE_TABLE_RESPONSE
message with the R flag set to '1', and with no pool entries included
in the response.
In the case where its ENRP_HANDLE_TABLE_REQUEST is rejected by the
mentor peer, the initiating server SHOULD either wait for a few
seconds and re-send the ENRP_HANDLE_TABLE_REQUEST to the mentor
server, or if there is a backup mentor peer available, select another
mentor peer server and send the ENRP_HANDLE_TABLE_REQUEST to the new
mentor server.
A handlespace download session that has been started may get
interrupted for some reason. To cope with this, the initiating
server SHOULD start a timer every time it finishes sending an
ENRP_HANDLE_TABLE_REQUEST to its mentor peer. If this timer expires
without receiving a response from the mentor peer, the initiating
server SHOULD abort the current download session and re-start a new
handlespace download with a backup mentor peer, if one is available.
Similarly, after sending out an ENRP_HANDLE_TABLE_RESPONSE, and the
mentor peer setting the M-bit to '1' to indicate that it has more
data to send, it SHOULD start a session timer. If this timer expires
without receiving another request from the initiating server, the
mentor peer SHOULD abort the session, cleaning out any resource and
record of the session.
<span class="h3"><a class="selflink" id="section-3.3" href="#section-3.3">3.3</a>. Server Handlespace Update</span>
This includes a set of update operations used by an ENRP server to
inform its peers when its local handlespace is modified, e.g.,
addition of a new PE, removal of an existing PE, change of pool or PE
properties.
<span class="h4"><a class="selflink" id="section-3.3.1" href="#section-3.3.1">3.3.1</a>. Announcing Additions or Updates of PE</span>
When a new PE is granted registration to the handlespace or an
existing PE is granted a re-registration, the Home ENRP server uses
this procedure to inform all its peers.
This is an ENRP announcement and is sent to all the peer of the Home
ENRP server. See <a href="#section-3.1">Section 3.1</a> on how announcements are sent.
An ENRP server MUST announce this update to all its peers in a
ENRP_HANDLE_UPDATE message with the Update Action field set to
'ADD_PE', indicating the addition of a new PE or the modification of
<span class="grey">Xie, et al. Experimental [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc5353">RFC 5353</a> Endpoint Handlespace Redundancy September 2008</span>
an existing PE. The complete new information of the PE and the pool
it belongs to MUST be indicated in the message with a PE parameter
and a Pool Handle parameter, respectively.
The Home ENRP server SHOULD fill in its server ID in the Sending
Server's ID field and leave the Receiving Server's ID blank (i.e.,
all 0s).
When a peer receives this ENRP_HANDLE_UPDATE message, it MUST take
the following actions:
1. If the named pool indicated by the pool handle does not exist in
its local copy of the handlespace, the peer MUST create the named
pool in its local handlespace and add the PE to the pool as the
first PE. It MUST then copy in all other attributes of the PE
carried in the message.
When the new pool is created, the overall member selection policy
of the pool MUST be set to the policy type indicated by the PE.
2. If the named pool already exists in the peer's local copy of the
handlespace *and* the PE does not exist, the peer MUST add the PE
to the pool as a new PE and copy in all attributes of the PE
carried in the message.
3. If the named pool exists *and* the PE is already a member of the
pool, the peer MUST replace the attributes of the PE with the new
information carried in the message.
<span class="h4"><a class="selflink" id="section-3.3.2" href="#section-3.3.2">3.3.2</a>. Announcing Removal of PE</span>
When an existing PE is granted de-registration or is removed from its
handlespace for some other reasons (e.g., purging an unreachable PE,
see <a href="./rfc5352#section-3.5">Section 3.5 in [RFC5352]</a>), the ENRP server MUST use this
procedure to inform all its peers about the change just made.
This is an ENRP announcement and is sent to all the peers of the Home
ENRP server. See <a href="#section-3.1">Section 3.1</a> on how announcements are sent.
An ENRP server MUST announce the PE removal to all its peers in an
ENRP_HANDLE_UPDATE message with the Update Action field set to
DEL_PE, indicating the removal of an existing PE. The complete
information of the PE and the pool it belongs to MUST be indicated in
the message with a PE parameter and a Pool Handle parameter,
respectively.
<span class="grey">Xie, et al. Experimental [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc5353">RFC 5353</a> Endpoint Handlespace Redundancy September 2008</span>
The sending server MUST fill in its server ID in the Sending Server's
ID field and leave the Receiving Server's ID blank (i.e., set to all
0s).
When a peer receives this ENRP_HANDLE_UPDATE message, it MUST first
find the pool and the PE in its own handlespace, and then remove the
PE from its local handlespace. If the removed PE is the last one in
the pool, the peer MUST also delete the pool from its local
handlespace.
If the peer fails to find the PE or the pool in its handlespace, it
SHOULD take no further actions.
<span class="h3"><a class="selflink" id="section-3.4" href="#section-3.4">3.4</a>. Maintaining Peer List and Monitoring Peer Status</span>
An ENRP server MUST keep an internal record on the status of each of
its known peers. This record is referred to as the server's "peer
list".
<span class="h4"><a class="selflink" id="section-3.4.1" href="#section-3.4.1">3.4.1</a>. Discovering New Peer</span>
If a message of any type is received from a previously unknown peer,
the ENRP server MUST consider this peer a new peer in the operational
scope and add it to the peer list.
The ENRP server MUST send an ENRP_PRESENCE message with the Reply-
required flag set to '1' to the source address found in the arrived
message. This will force the new peer to reply with its own
ENRP_PRESENCE containing its full server information (see
<a href="#section-2.1">Section 2.1</a>).
<span class="h4"><a class="selflink" id="section-3.4.2" href="#section-3.4.2">3.4.2</a>. Server Sending Heartbeat</span>
Every PEER-HEARTBEAT-CYCLE seconds, an ENRP server MUST announce its
continued presence to all its peer with a ENRP_PRESENCE message. In
the ENRP_PRESENCE message, the ENRP server MUST set the
'Replay_required' flag to '0', indicating that no response is
required.
The arrival of this periodic ENRP_PRESENCE message will cause all its
peers to update their internal variable "peer_last_heard" for the
sending server (see <a href="#section-3.4.3">Section 3.4.3</a> for more details).
<span class="grey">Xie, et al. Experimental [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc5353">RFC 5353</a> Endpoint Handlespace Redundancy September 2008</span>
<span class="h4"><a class="selflink" id="section-3.4.3" href="#section-3.4.3">3.4.3</a>. Detecting Peer Server Failure</span>
An ENRP server MUST keep an internal variable "peer_last_heard" for
each of its known peers and the value of this variable MUST be
updated to the current local time every time a message of any type
(point-to-point or announcement) is received from the corresponding
peer.
If a peer has not been heard for more than MAX-TIME-LAST-HEARD
seconds, the ENRP server MUST immediately send a point-to-point
ENRP_PRESENCE with the Reply_request flag set to '1' to that peer.
If the send fails or the peer does not reply after MAX-TIME-NO-
RESPONSE seconds, the ENRP server MUST consider the peer server dead
and SHOULD initiate the takeover procedure defined in <a href="#section-3.5">Section 3.5</a>.
<span class="h3"><a class="selflink" id="section-3.5" href="#section-3.5">3.5</a>. Taking Over a Failed Peer Server</span>
In the following descriptions, we call the ENRP server that detects
the failed peer server and initiates the takeover the "initiating
server" and the failed peer server the "target server". This allows
the PE to continue to operate in case of a failure of their Home ENRP
server.
<span class="h4"><a class="selflink" id="section-3.5.1" href="#section-3.5.1">3.5.1</a>. Initiating Server Take-over Arbitration</span>
The initiating server SHOULD first start the takeover arbitration
process by sending an ENRP_INIT_TAKEOVER message to all its peer
servers. See <a href="#section-3.1">Section 3.1</a> on how announcements are sent. In the
message, the initiating server MUST fill in the Sending Server's ID
and Targeting Server's ID. The goal is that only one ENRP server
takes over the PE from the target.
After announcing the ENRP_INIT_TAKEOVER message ("group-casting" to
all known peers, including the target server), the initiating server
SHOULD wait for an ENRP_INIT_TAKEOVER_ACK message from each of its
known peers, except that of the target server.
Each peer receiving an ENRP_INIT_TAKEOVER message from the initiating
server MUST take the following actions:
1. If the peer server determines that it (itself) is the target
server indicated in the ENRP_INIT_TAKEOVER message, it MUST
immediately announce an ENRP_PRESENCE message to all its peer
ENRP servers in an attempt to stop this takeover process. This
<span class="grey">Xie, et al. Experimental [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc5353">RFC 5353</a> Endpoint Handlespace Redundancy September 2008</span>
indicates a false failure-detection case by the initiating
server. The initiating server MUST stop the takeover operation
by marking the target server as "active" and taking no further
takeover actions.
2. If the peer server finds that it has already started its own
takeover arbitration process on the same target server, it MUST
perform the following arbitration:
A. If the peer's server ID is smaller in value than the Sending
Server's ID in the arrived ENRP_INIT_TAKEOVER message, the
peer server MUST immediately abort its own take-over attempt
by taking no further takeover actions of its own. Moreover,
the peer MUST mark the target server as "not active" on its
internal peer list so that its status will no longer be
monitored by the peer, and reply to the initiating server
with an ENRP_INIT_TAKEOVER_ACK message.
B. Otherwise, the peer MUST ignore the ENRP_INIT_TAKEOVER
message.
3. If the peer finds that it is neither the target server nor is in
its own takeover process, the peer MUST: a) mark the target
server as "not active" on its internal peer list so that its
status will no longer be monitored by this peer, and b) MUST
reply to the initiating server with an ENRP_INIT_TAKEOVER_ACK
message.
Once the initiating server has received the ENRP_INIT_TAKEOVER_ACK
message from all of its currently known peers (except for the target
server), it MUST consider that it has won the arbitration and MUST
proceed to complete the takeover, following the steps described in
<a href="#section-3.5.2">Section 3.5.2</a>.
However, if it receives an ENRP_PRESENCE from the target server at
any point in the arbitration process, the initiating server MUST
immediately stop the takeover process and mark the status of the
target server as "active".
<span class="h4"><a class="selflink" id="section-3.5.2" href="#section-3.5.2">3.5.2</a>. Takeover Target Peer Server</span>
The initiating ENRP server MUST first send, via an announcement, an
ENRP_TAKEOVER_SERVER message to inform all its active peers that the
takeover has been enforced. The target server's ID MUST be filled in
the message. The initiating server SHOULD then remove the target
server from its internal peer list.
<span class="grey">Xie, et al. Experimental [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc5353">RFC 5353</a> Endpoint Handlespace Redundancy September 2008</span>
Then, it SHOULD examine its local copy of the handlespace and claim
ownership of each of the PEs originally owned by the target server,
by following these steps:
1. mark itself as the Home ENRP server of each of the PEs originally
owned by the target server;
2. send a point-to-point ASAP_ENDPOINT_KEEP_ALIVE message, with the
'H' flag set to '1', to each of the PEs. This will trigger the
PE to adopt the initiating sever as its new Home ENRP server.
When a peer receives the ENRP_TAKEOVER_SERVER message from the
initiating server, it SHOULD update its local peer list and PE cache
by following these steps:
1. remove the target server from its internal peer list;
2. update the Home ENRP server of each PE in its local copy of the
handlespace to be the sender of the message, i.e., the initiating
server.
<span class="h3"><a class="selflink" id="section-3.6" href="#section-3.6">3.6</a>. Handlespace Data Auditing and Re-synchronization</span>
Message losses or certain temporary breaks in network connectivity
may result in data inconsistency in the local handlespace copy of
some of the ENRP servers in an operational scope. Therefore, each
ENRP server in the operational scope SHOULD periodically verify that
its local copy of handlespace data is still in sync with that of its
peers.
This section defines the auditing and re-synchronization procedures
for an ENRP server to maintain its handlespace data consistency.
<span class="h4"><a class="selflink" id="section-3.6.1" href="#section-3.6.1">3.6.1</a>. Auditing Procedures</span>
A checksum covering the data that should be the same is exchanged to
figure out whether or not the data is the same.
The auditing of handlespace consistency is based on the following
procedures:
1. An ENRP server SHOULD keep a separate PE checksum (a 16-bit
integer internal variable) for each of its known peers and for
itself. For an ENRP server with 'k' known peers, we denote these
internal variables as "pe_checksum_pr0", "pe_checksum_pr1", ...,
"pe_checksum_prk", where "pe_checksum_pr0" is the server's own PE
checksum. The list of what these checksums cover and a detailed
algorithm for calculating them is given in <a href="#section-3.6.2">Section 3.6.2</a>.
<span class="grey">Xie, et al. Experimental [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc5353">RFC 5353</a> Endpoint Handlespace Redundancy September 2008</span>
2. Each time an ENRP server sends out an ENRP_PRESENCE, it MUST
include in the message its current PE checksum (i.e.,
"pe_checksum_pr0").
3. When an ENRP server (server A) receives a PE checksum (carried in
an arrived ENRP_PRESENCE) from a peer ENRP server (server B),
server A SHOULD compare the PE checksum found in the
ENRP_PRESENCE with its own internal PE checksum of server B
(i.e., "pe_checksum_prB").
4. If the two values match, server A will consider that there is no
handlespace inconsistency between itself and server B, and it
should take no further actions.
5. If the two values do NOT match, server A SHOULD consider that
there is a handlespace inconsistency between itself and server B,
and a re-synchronization process SHOULD be carried out
immediately with server B (see <a href="#section-3.6.3">Section 3.6.3</a>).
<span class="h4"><a class="selflink" id="section-3.6.2" href="#section-3.6.2">3.6.2</a>. PE Checksum Calculation Algorithm</span>
When an ENRP server (server A) calculates an internal PE checksum for
a peer (server B), it MUST use the following algorithm.
Let us assume that in server A's internal handlespace, there are
currently 'M' PEs that are owned by server B. Each of the 'M' PEs
will then contribute to the checksum calculation with the following
byte block:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: Pool handle string of the pool the PE belongs (padded with :
: zeros to next 32-bit word boundary, if needed) :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PE Id (4 octets) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Note, these are not TLVs. This byte block gives each PE a unique
byte pattern in the scope. The 16-bit PE checksum for server B
"pe_checksum_prB" is then calculated over the byte blocks contributed
by the 'M' PEs one by one. The PE checksum calculation MUST use the
Internet algorithm described in [<a href="./rfc1071" title=""Computing the Internet checksum"">RFC1071</a>].
Server A MUST calculate its own PE checksum (i.e., "pe_checksum_pr0")
in the same fashion, using the byte blocks of all the PEs owned by
itself.
<span class="grey">Xie, et al. Experimental [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc5353">RFC 5353</a> Endpoint Handlespace Redundancy September 2008</span>
Note, whenever an ENRP finds that its internal handlespace has
changed (e.g., due to PE registration/de-registration, receiving peer
updates, removing failed PEs, downloading handlespace pieces from a
peer, etc.), it MUST immediately update all its internal PE checksums
that are affected by the change.
Implementation Note: when the internal handlespace changes (e.g., a
new PE added or an existing PE removed), an implementation need not
re-calculate the affected PE checksum; it can instead simply update
the checksum by adding or subtracting the byte block of the
corresponding PE from the previous checksum value.
<span class="h4"><a class="selflink" id="section-3.6.3" href="#section-3.6.3">3.6.3</a>. Re-Synchronization Procedures</span>
If an ENRP server determines that there is inconsistency between its
local handlespace data and a peer's handlespace data with regard to
the PEs owned by that peer, it MUST perform the following steps to
re-synchronize the data:
1. The ENRP server SHOULD first "mark" every PE it knows about that
is owned by the peer in its local handlespace database;
2. The ENRP server SHOULD then send an ENRP_HANDLE_TABLE_REQUEST
message with the W flag set to '1' to the peer to request a
complete list of PEs owned by the peer;
3. Upon reception of the ENRP_HANDLE_TABLE_REQUEST message with the
W flag set to '1', the peer server SHOULD immediately respond
with an ENRP_HANDLE_TABLE_RESPONSE message listing all PEs
currently owned by the peer.
4. Upon reception of the ENRP_HANDLE_TABLE_RESPONSE message, the
ENRP server SHOULD transfer the PE entries carried in the message
into its local handlespace database. If a PE entry being
transferred already exists in its local database, the ENRP server
MUST replace the entry with the copy found in the message and
remove the "mark" from the entry.
5. After transferring all the PE entries from the received
ENRP_HANDLE_TABLE_RESPONSE message into its local database, the
ENRP server SHOULD check whether there are still PE entries that
remain "marked" in its local handlespace. If so, the ENRP server
SHOULD silently remove those "marked" entries.
Note, similar to what is described in <a href="#section-3.2.3">Section 3.2.3</a>, the peer may
reject the ENRP_HANDLE_TABLE_REQUEST or use more than one
ENRP_HANDLE_TABLE_RESPONSE message to respond.
<span class="grey">Xie, et al. Experimental [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc5353">RFC 5353</a> Endpoint Handlespace Redundancy September 2008</span>
<span class="h3"><a class="selflink" id="section-3.7" href="#section-3.7">3.7</a>. Handling Unrecognized Messages or Unrecognized Parameters</span>
When an ENRP server receives an ENRP message with an unknown message
type or a message of known type that contains an unknown parameter,
it SHOULD handle the unknown message or the unknown parameter
according to the unrecognized message and parameter handling rules
defined in Sections <a href="#section-3">3</a> and <a href="#section-4">4</a> in [<a href="./rfc5354" title=""Aggregate Server Access Protocol (ASAP) and Endpoint Handlespace Redundancy Protocol (ENRP) Parameters"">RFC5354</a>].
According to the rules, if an error report to the message sender is
needed, the ENRP server that discovered the error SHOULD send back an
ENRP_ERROR message with a proper error cause code.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Variables and Thresholds</span>
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. Variables</span>
peer_last_heard - The local time that a peer server was last heard
(via receiving either a group-cast or point-to-point message from
the peer).
pe_checksum_pr - The internal 16-bit PE checksum that an ENRP server
keeps for a peer. A separate PE checksum is kept for each of its
known peers as well as for itself.
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. Thresholds</span>
PEER-HEARTBEAT-CYCLE - The period for an ENRP server to announce a
heartbeat message to all its known peers. (Default=30 secs.)
MAX-TIME-LAST-HEARD - Pre-set threshold for how long an ENRP server
will wait before considering a silent peer server potentially
dead. (Default=61 secs.)
MAX-TIME-NO-RESPONSE - Pre-set threshold for how long a message
sender will wait for a response after sending out a message.
(Default=5 secs.)
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. IANA Considerations</span>
This document (<a href="./rfc5353">RFC 5353</a>) is the reference for all registrations
described in this section. All registrations have been listed on the
RSerPool Parameters page.
<span class="grey">Xie, et al. Experimental [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc5353">RFC 5353</a> Endpoint Handlespace Redundancy September 2008</span>
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. A New Table for ENRP Message Types</span>
ENRP Message Types are maintained by IANA. Ten initial values have
been assigned by IANA, as described in Figure 1. IANA created a new
table, "ENRP Message Types":
Type Message Name Reference
----- ------------------------- ---------
0x00 (Reserved by IETF) <a href="./rfc5353">RFC 5353</a>
0x01 ENRP_PRESENCE <a href="./rfc5353">RFC 5353</a>
0x02 ENRP_HANDLE_TABLE_REQUEST <a href="./rfc5353">RFC 5353</a>
0x03 ENRP_HANDLE_TABLE_RESPONSE <a href="./rfc5353">RFC 5353</a>
0x04 ENRP_HANDLE_UPDATE <a href="./rfc5353">RFC 5353</a>
0x05 ENRP_LIST_REQUEST <a href="./rfc5353">RFC 5353</a>
0x06 ENRP_LIST_RESPONSE <a href="./rfc5353">RFC 5353</a>
0x07 ENRP_INIT_TAKEOVER <a href="./rfc5353">RFC 5353</a>
0x08 ENRP_INIT_TAKEOVER_ACK <a href="./rfc5353">RFC 5353</a>
0x09 ENRP_TAKEOVER_SERVER <a href="./rfc5353">RFC 5353</a>
0x0a ENRP_ERROR <a href="./rfc5353">RFC 5353</a>
0x0b-0xff (Available for assignment) <a href="./rfc5353">RFC 5353</a>
Requests to register an ENRP Message Type in this table should be
sent to IANA. The number must be unique. The "Specification
Required" policy of [<a href="./rfc5226" title="">RFC5226</a>] MUST be applied.
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. A New Table for Update Action Types</span>
Update Types are maintained by IANA. Two initial values have been
assigned by IANA. IANA created a new table, "Update Action Types":
Type Update Action Reference
------------- -------------------- ---------
0x0000 ADD_PE <a href="./rfc5353">RFC 5353</a>
0x0001 DEL_PE <a href="./rfc5353">RFC 5353</a>
0x0002-0xffff (Available for assignment) <a href="./rfc5353">RFC 5353</a>
Requests to register an Update Action Type in this table should be
sent to IANA. The number must be unique. The "Specification
Required" policy of [<a href="./rfc5226" title="">RFC5226</a>] MUST be applied.
<span class="grey">Xie, et al. Experimental [Page 29]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-30" ></span>
<span class="grey"><a href="./rfc5353">RFC 5353</a> Endpoint Handlespace Redundancy September 2008</span>
<span class="h3"><a class="selflink" id="section-5.3" href="#section-5.3">5.3</a>. Port Numbers</span>
The references for the already assigned port numbers
enrp-udp 9901/udp
enrp-sctp 9901/sctp
enrp-sctp-tls 9902/sctp
have been updated to <a href="./rfc5353">RFC 5353</a>.
<span class="h3"><a class="selflink" id="section-5.4" href="#section-5.4">5.4</a>. SCTP Payload Protocol Identifier</span>
The reference for the already assigned ENRP payload protocol
identifier 12 have been updated to <a href="./rfc5353">RFC 5353</a>.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Security Considerations</span>
We present a summary of the threats to the RSerPool architecture and
describe security requirements in response to mitigate the threats.
Next, we present the security mechanisms, based on TLS, that are
implementation requirements in response to the threats. Finally, we
present a chain-of-trust argument that examines critical data paths
in RSerPool and shows how these paths are protected by the TLS
implementation.
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. Summary of RSerPool Security Threats</span>
"Threats Introduced by Reliable Server Pooling (RSerPool) and
Requirements for Security in Response to Threats" [<a href="./rfc5355" title=""Threats Introduced by Reliable Server Pooling (RSerPool) and Requirements for Security in Response to Threats"">RFC5355</a>] describes
the threats to the RSerPool architecture in detail and lists the
security requirements in response to each threat. From the threats
described in this document, the security services required for the
RSerPool protocol are enumerated below.
Threat 1) PE registration/de-registration flooding or spoofing
-----------
Security mechanism in response: ENRP server authenticates the PE.
Threat 2) PE registers with a malicious ENRP server
-----------
Security mechanism in response: PE authenticates the ENRP server.
Threats 1 and 2, taken together, result in mutual authentication of
the ENRP server and the PE.
<span class="grey">Xie, et al. Experimental [Page 30]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-31" ></span>
<span class="grey"><a href="./rfc5353">RFC 5353</a> Endpoint Handlespace Redundancy September 2008</span>
Threat 3) Malicious ENRP server joins the ENRP server pool
-----------
Security mechanism in response: ENRP servers mutually authenticate.
Threat 4) A PU communicates with a malicious ENRP server for handle
resolution
-----------
Security mechanism in response: The PU authenticates the ENRP server.
Threat 5) Replay attack
-----------
Security mechanism in response: Security protocol that has protection
from replay attacks.
Threat 6) Corrupted data that causes a PU to have misinformation
concerning a pool handle resolution
-----------
Security mechanism in response: Security protocol that supports
integrity protection
Threat 7) Eavesdropper snooping on handlespace information
-----------
Security mechanism in response: Security protocol that supports data
confidentiality.
Threat 8) Flood of ASAP_ENDPOINT_UNREACHABLE messages from the PU to
ENRP server
-----------
Security mechanism in response: ASAP must control the number of ASAP
endpoint unreachable messages transmitted from the PU to the ENRP
server.
Threat 9) Flood of ASAP_ENDPOINT_KEEP_ALIVE messages to the PE from
the ENRP server
-----------
Security mechanism in response: ENRP server must control the number
of ASAP_ENDPOINT_KEEP_ALIVE messages to the PE.
To summarize, threats 1-7 require security mechanisms that support
authentication, integrity, data confidentiality, and protection from
replay attacks.
For RSerPool, we need to authenticate the following:
PU <---- ENRP server (PU authenticates the ENRP server)
PE <----> ENRP server (mutual authentication)
ENRP server <-----> ENRP server (mutual authentication)
<span class="grey">Xie, et al. Experimental [Page 31]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-32" ></span>
<span class="grey"><a href="./rfc5353">RFC 5353</a> Endpoint Handlespace Redundancy September 2008</span>
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>. Implementing Security Mechanisms</span>
We do not define any new security mechanisms specifically for
responding to threats 1-7. Rather, we use an existing IETF security
protocol, specifically [<a href="./rfc3237" title=""Requirements for Reliable Server Pooling"">RFC3237</a>], to provide the security services
required. TLS supports all these requirements and MUST be
implemented. The TLS_RSA_WITH_AES_128_CBC_SHA ciphersuite MUST be
supported, at a minimum, by implementers of TLS for RSerPool. For
purposes of backwards compatibility, ENRP SHOULD support
TLS_RSA_WITH_3DES_EDE_CBC_SHA. Implementers MAY also support any
other IETF-approved ciphersuites.
ENRP servers, PEs, and PUs MUST implement TLS. ENRP servers and PEs
MUST support mutual authentication using PSK. ENRP servers MUST
support mutual authentication among themselves using PSK. PUs MUST
authenticate ENRP servers using certificates.
TLS with PSK is mandatory to implement as the authentication
mechanism for ENRP to ENRP authentication and PE to ENRP
authentication. For PSK, having a pre-shared-key constitutes
authorization. The network administrators of a pool need to decide
which nodes are authorized to participate in the pool. The
justification for PSK is that we assume that one administrative
domain will control and manage the server pool. This allows for PSK
to be implemented and managed by a central security administrator.
TLS with certificates is mandatory to implement as the authentication
mechanism for PUs to the ENRP server. PUs MUST authenticate ENRP
servers using certificates. ENRP servers MUST possess a site
certificate whose subject corresponds to their canonical hostname.
PUs MAY have certificates of their own for mutual authentication with
TLS, but no provisions are set forth in this document for their use.
All RSerPool elements that support TLS MUST have a mechanism for
validating certificates received during TLS negotiation; this entails
possession of one or more root certificates issued by certificate
authorities (preferably, well-known distributors of site certificates
comparable to those that issue root certificates for web browsers).
In order to prevent man-in-the-middle attacks, the client MUST verify
the server's identity (as presented in the server's Certificate
message). The client's understanding of the server's identity
(typically the identity used to establish the transport connection)
is called the "reference identity". The client determines the type
(e.g., DNS name or IP address) of the reference identity and performs
a comparison between the reference identity and each subjectAltName
value of the corresponding type until a match is produced. Once a
match is produced, the server's identity has been verified, and the
server identity check is complete. Different subjectAltName types
<span class="grey">Xie, et al. Experimental [Page 32]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-33" ></span>
<span class="grey"><a href="./rfc5353">RFC 5353</a> Endpoint Handlespace Redundancy September 2008</span>
are matched in different ways. The client may map the reference
identity to a different type prior to performing a comparison.
Mappings may be performed for all available subjectAltName types to
which the reference identity can be mapped; however, the reference
identity should only be mapped to types for which the mapping is
either inherently secure (e.g., extracting the DNS name from a URI to
compare with a subjectAltName of type dNSName) or for which the
mapping is performed in a secure manner (e.g., using DNS Security
(DNSSEC), or using user- or admin-configured host-to-address/
address-to-host lookup tables).
If the server identity check fails, user-oriented clients SHOULD
either notify the user or close the transport connection and indicate
that the server's identity is suspect. Automated clients SHOULD
close the transport connection and then return or log an error
indicating that the server's identity is suspect, or both. Beyond
the server identity check described in this section, clients should
be prepared to do further checking to ensure that the server is
authorized to provide the service it is requested to provide. The
client may need to make use of local policy information in making
this determination.
If the reference identity is an internationalized domain name,
conforming implementations MUST convert it to the ASCII Compatible
Encoding (ACE) format, as specified in <a href="./rfc3490#section-4">Section 4 of [RFC3490]</a>, before
comparison with subjectAltName values of type dNSName. Specifically,
conforming implementations MUST perform the conversion operation
specified in <a href="./rfc3490#section-4">Section 4 of [RFC3490]</a> as follows: * in step 1, the
domain name SHALL be considered a "stored string"; * in step 3, set
the flag called "UseSTD3ASCIIRules"; * in step 4, process each label
with the "ToASCII" operation; and * in step 5, change all label
separators to U+002E (full stop).
After performing the "to-ASCII" conversion, the DNS labels and names
MUST be compared for equality according to the rules specified in
<a href="./rfc3490#section-3">Section 3 of RFC 3490</a>. The '*' (ASCII 42) wildcard character is
allowed in subjectAltName values of type dNSName, and then, only as
the left-most (least significant) DNS label in that value. This
wildcard matches any left-most DNS label in the server name. That
is, the subject *.example.com matches the server names a.example.com
and b.example.com, but does not match example.com or a.b.example.com.
When the reference identity is an IP address, the identity MUST be
converted to the "network byte order" octet string representation <a href="./rfc791">RFC</a>
<a href="./rfc791">791</a> [<a href="./rfc0791" title=""Internet Protocol"">RFC0791</a>] and <a href="./rfc2460">RFC 2460</a> [<a href="./rfc2460" title=""Internet Protocol, Version 6 (IPv6) Specification"">RFC2460</a>]. For IP version 4, as specified
in <a href="./rfc791">RFC 791</a>, the octet string will contain exactly four octets. For
IP version 6, as specified in <a href="./rfc2460">RFC 2460</a>, the octet string will contain
exactly sixteen octets. This octet string is then compared against
<span class="grey">Xie, et al. Experimental [Page 33]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-34" ></span>
<span class="grey"><a href="./rfc5353">RFC 5353</a> Endpoint Handlespace Redundancy September 2008</span>
subjectAltName values of type iPAddress. A match occurs if the
reference identity octet string and value octet strings are
identical.
After a TLS layer is established in a session, both parties are to
independently decide whether or not to continue based on local policy
and the security level achieved. If either party decides that the
security level is inadequate for it to continue, it SHOULD remove the
TLS layer immediately after the TLS (re)negotiation has completed
(see <a href="./rfc4511">RFC 4511</a>)[<a href="./rfc4511" title=""Lightweight Directory Access Protocol (LDAP): The Protocol"">RFC4511</a>]. Implementations may re-evaluate the
security level at any time and, upon finding it inadequate, should
remove the TLS layer.
Implementations MUST support TLS with SCTP, as described in [<a href="./rfc3436" title=""Transport Layer Security over Stream Control Transmission Protocol"">RFC3436</a>]
or TLS over TCP, as described in [<a href="./rfc5246" title=""The Transport Layer Security (TLS) Protocol Version 1.2"">RFC5246</a>]. When using TLS/SCTP we
must ensure that RSerPool does not use any features of SCTP that are
not available to a TLS/SCTP user. This is not a difficult technical
problem, but simply a requirement. When describing an API of the
RSerPool lower layer, we also have to take into account the
differences between TLS and SCTP.
Threat 8 requires the ASAP protocol to limit the number of
ASAP_ENDPOINT_UNREACHABLE messages (see <a href="./rfc5352#section-3.5">Section 3.5 of RFC 5352</a>) to
the ENRP server.
Threat 9 requires the ENRP protocol to limit the number of
ASAP_ENDPOINT_KEEP_ALIVE messages from the ENRP server to the PE.
There is no security mechanism defined for the multicast
announcements. Therefore, a receiver of such an announcement cannot
consider the source address of such a message to be a trustworthy
address of an ENRP server. A receiver must also be prepared to
receive a large number of multicast announcements from attackers.
<span class="h3"><a class="selflink" id="section-6.3" href="#section-6.3">6.3</a>. Chain of Trust</span>
Security is mandatory to implement in RSerPool and is based on TLS
implementation in all three architecture components that comprise
RSerPool -- namely PU, PE, and the ENRP server. We define an ENRP
server that uses TLS for all communication and authenticates ENRP
peers and PE registrants to be a secured ENRP server.
Here is a description of all possible data paths and a description of
the security.
<span class="grey">Xie, et al. Experimental [Page 34]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-35" ></span>
<span class="grey"><a href="./rfc5353">RFC 5353</a> Endpoint Handlespace Redundancy September 2008</span>
PU <---> secured ENRP server (authentication of ENRP server;
queries over TLS)
PE <---> secured ENRP server (mutual authentication;
registration/de-registration over TLS)
secured ENRP server <---> secured ENRP server (mutual authentication;
database updates using TLS)
If all components of the system authenticate and communicate using
TLS, the chain of trust is sound. The root of the trust chain is the
ENRP server. If that is secured using TLS, then security will be
enforced for all ENRP and PE components that try to connect to it.
Summary of interaction between secured and unsecured components: If
the PE does not use TLS and tries to register with a secure ENRP
server, it will receive an error message response indicated as an
error due to security considerations and the registration will be
rejected. If an ENRP server that does not use TLS tries to update
the database of a secure ENRP server, then the update will be
rejected. If a PU does not use TLS and communicates with a secure
ENRP server, it will get a response with the understanding that the
response is not secure, as the response can be tampered with in
transit even if the ENRP database is secured.
The final case is the PU sending a secure request to ENRP. It might
be that ENRP and PEs are not secured and this is an allowable
configuration. The intent is to secure the communication over the
Internet between the PU and the ENRP server.
Summary:
RSerPool architecture components can communicate with each other to
establish a chain of trust. Secured PE and ENRP servers reject any
communications with unsecured ENRP or PE servers.
If the above is enforced, then a chain of trust is established for
the RSerPool user.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Acknowledgments</span>
The authors wish to thank John Loughney, Lyndon Ong, Walter Johnson,
Thomas Dreibholz, Frank Volkmer, and many others for their invaluable
comments and feedback.
<span class="grey">Xie, et al. Experimental [Page 35]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-36" ></span>
<span class="grey"><a href="./rfc5353">RFC 5353</a> Endpoint Handlespace Redundancy September 2008</span>
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. References</span>
<span class="h3"><a class="selflink" id="section-8.1" href="#section-8.1">8.1</a>. Normative References</span>
[<a id="ref-RFC0791">RFC0791</a>] Postel, J., "Internet Protocol", STD 5, <a href="./rfc791">RFC 791</a>,
September 1981.
[<a id="ref-RFC1071">RFC1071</a>] Braden, R., Borman, D., Partridge, C., and W. Plummer,
"Computing the Internet checksum", <a href="./rfc1071">RFC 1071</a>,
September 1988.
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
[<a id="ref-RFC2460">RFC2460</a>] Deering, S. and R. Hinden, "Internet Protocol, Version
6 (IPv6) Specification", <a href="./rfc2460">RFC 2460</a>, December 1998.
[<a id="ref-RFC3237">RFC3237</a>] Tuexen, M., Xie, Q., Stewart, R., Shore, M., Ong, L.,
Loughney, J., and M. Stillman, "Requirements for
Reliable Server Pooling", <a href="./rfc3237">RFC 3237</a>, January 2002.
[<a id="ref-RFC3436">RFC3436</a>] Jungmaier, A., Rescorla, E., and M. Tuexen, "Transport
Layer Security over Stream Control Transmission
Protocol", <a href="./rfc3436">RFC 3436</a>, December 2002.
[<a id="ref-RFC3490">RFC3490</a>] Faltstrom, P., Hoffman, P., and A. Costello,
"Internationalizing Domain Names in Applications
(IDNA)", <a href="./rfc3490">RFC 3490</a>, March 2003.
[<a id="ref-RFC4511">RFC4511</a>] Sermersheim, J., "Lightweight Directory Access Protocol
(LDAP): The Protocol", <a href="./rfc4511">RFC 4511</a>, June 2006.
[<a id="ref-RFC5226">RFC5226</a>] Narten, T. and H. Alvestrand, "Guidelines for Writing
an IANA Considerations Section in RFCs", <a href="https://www.rfc-editor.org/bcp/bcp26">BCP 26</a>,
<a href="./rfc5226">RFC 5226</a>, May 2008.
[<a id="ref-RFC5246">RFC5246</a>] Dierks, T. and E. Rescorla, "The Transport Layer
Security (TLS) Protocol Version 1.2", <a href="./rfc5246">RFC 5246</a>,
August 2008.
[<a id="ref-RFC5354">RFC5354</a>] Stewart, R., Xie, Q., Stillman, M., and M. Tuexen,
"Aggregate Server Access Protocol (ASAP) and Endpoint
Handlespace Redundancy Protocol (ENRP) Parameters",
<a href="./rfc5354">RFC 5354</a>, September 2008.
[<a id="ref-RFC5352">RFC5352</a>] Stewart, R., Xie, Q., Stillman, M., and M. Tuexen,
"Aggregate Server Access Protocol (ASAP)", <a href="./rfc5352">RFC 5352</a>,
September 2008.
<span class="grey">Xie, et al. Experimental [Page 36]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-37" ></span>
<span class="grey"><a href="./rfc5353">RFC 5353</a> Endpoint Handlespace Redundancy September 2008</span>
[<a id="ref-RFC5355">RFC5355</a>] Stillman, M., Ed., Gopal, R., Guttman, E., Holdrege,
M., and S. Sengodan, "Threats Introduced by Reliable
Server Pooling (RSerPool) and Requirements for Security
in Response to Threats", <a href="./rfc5355">RFC 5355</a>, September 2008.
<span class="h3"><a class="selflink" id="section-8.2" href="#section-8.2">8.2</a>. Informative References</span>
[<a id="ref-RFC4086">RFC4086</a>] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
Requirements for Security", <a href="https://www.rfc-editor.org/bcp/bcp106">BCP 106</a>, <a href="./rfc4086">RFC 4086</a>,
June 2005.
[<a id="ref-SCTPSOCKET">SCTPSOCKET</a>] Stewart, R., Poon, K., Tuexen, M., Yasevich, V., and P.
Lei, "Sockets API Extensions for Stream Control
Transmission Protocol (SCTP)", Work in Progress,
July 2008.
Authors' Addresses
Qiaobing Xie
The Resource Group
1700 Pennsylvania Ave NW
Suite 560
Washington, D.C., 20006
USA
Phone: +1 224-465-5954
EMail: Qiaobing.Xie@gmail.com
Randall R. Stewart
The Resource Group
1700 Pennsylvania Ave NW
Suite 560
Washington, D.C., 20006
USA
Phone:
EMail: randall@lakerest.net
Maureen Stillman
Nokia
1167 Peachtree Ct.
Naperville, IL 60540
US
Phone:
EMail: maureen.stillman@nokia.com
<span class="grey">Xie, et al. Experimental [Page 37]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-38" ></span>
<span class="grey"><a href="./rfc5353">RFC 5353</a> Endpoint Handlespace Redundancy September 2008</span>
Michael Tuexen
Muenster Univ. of Applied Sciences
Stegerwaldstr. 39
48565 Steinfurt
Germany
EMail: tuexen@fh-muenster.de
Aron J. Silverton
Sun Microsystems, Inc.
10 S. Wacker Drive
Suite 2000
Chicago, IL 60606
USA
Phone:
EMail: ajs.ietf@gmail.com
<span class="grey">Xie, et al. Experimental [Page 38]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-39" ></span>
<span class="grey"><a href="./rfc5353">RFC 5353</a> Endpoint Handlespace Redundancy September 2008</span>
Full Copyright Statement
Copyright (C) The IETF Trust (2008).
This document is subject to the rights, licenses and restrictions
contained in <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a>, and except as set forth therein, the authors
retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and <a href="https://www.rfc-editor.org/bcp/bcp79">BCP 79</a>.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
<a href="http://www.ietf.org/ipr">http://www.ietf.org/ipr</a>.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.
Xie, et al. Experimental [Page 39]
</pre>
|