1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
|
<pre>Independent Submission S. Iino
Request for Comments: 5414 S. Govindan
Obsoleted by: 5415 M. Sugiura
Category: Historic H. Cheng
ISSN: 2070-1721 Panasonic
February 2010
<span class="h1">Wireless LAN Control Protocol (WiCoP)</span>
Abstract
The popularity of wireless local area networks (WLANs) has led to
widespread deployments across different establishments. It has also
translated into an increasing scale of the WLANs. Large-scale
deployments made of large numbers of wireless termination points
(WTPs) and covering substantial areas are increasingly common.
The Wireless LAN Control Protocol (WiCoP) described in this document
allows for the control and provisioning of large-scale WLANs. It
enables central management of these networks and realizes the
objectives set forth for the Control And Provisioning of Wireless
Access Points (CAPWAP).
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for the historical record.
This document defines a Historic Document for the Internet community.
This is a contribution to the RFC Series, independently of any other
RFC stream. The RFC Editor has chosen to publish this document at
its discretion and makes no statement about its value for
implementation or deployment. Documents approved for publication by
the RFC Editor are not a candidate for any level of Internet
Standard; see <a href="./rfc5741#section-2">Section 2 of RFC 5741</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc5414">http://www.rfc-editor.org/info/rfc5414</a>.
<span class="grey">Iino, et al. Historic [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
IESG Note
This RFC documents the WiCoP protocol as it was when submitted to the
IETF as a basis for further work in the CAPWAP Working Group, and
therefore it may resemble the CAPWAP protocol specification in <a href="./rfc5415">RFC</a>
<a href="./rfc5415">5415</a>, as well as other IETF work. This RFC is being published solely
for the historical record. The protocol described in this RFC has
not been thoroughly reviewed and may contain errors and omissions.
<a href="./rfc5415">RFC 5415</a> documents the standards track solution for the CAPWAP
Working Group and obsoletes any and all mechanisms defined in this
RFC. This RFC itself is not a candidate for any level of Internet
Standard and should not be used as a basis for any sort of Internet
deployment.
Copyright Notice
Copyright (c) 2010 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http:trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document.
<span class="grey">Iino, et al. Historic [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
Table of Contents
<a href="#section-1">1</a>. Introduction ....................................................<a href="#page-4">4</a>
<a href="#section-2">2</a>. Terminology .....................................................<a href="#page-6">6</a>
<a href="#section-3">3</a>. Protocol Overview ...............................................<a href="#page-6">6</a>
<a href="#section-4">4</a>. WiCoP Format ....................................................<a href="#page-7">7</a>
<a href="#section-4.1">4.1</a>. WiCoP Header ...............................................<a href="#page-8">8</a>
<a href="#section-4.2">4.2</a>. WiCoP Control Packet ......................................<a href="#page-11">11</a>
<a href="#section-4.2.1">4.2.1</a>. WiCoP Control Messages .............................<a href="#page-12">12</a>
<a href="#section-4.2.2">4.2.2</a>. WiCoP Control Message Elements .....................<a href="#page-12">12</a>
<a href="#section-4.2.3">4.2.3</a>. WiCoP Control Message Description ..................<a href="#page-27">27</a>
<a href="#section-4.3">4.3</a>. WiCoP Data Packet .........................................<a href="#page-36">36</a>
<a href="#section-4.4">4.4</a>. WiCoP Timers ..............................................<a href="#page-37">37</a>
<a href="#section-4.4.1">4.4.1</a>. Active Presence Timer ..............................<a href="#page-37">37</a>
<a href="#section-4.4.2">4.4.2</a>. Feedback Interval ..................................<a href="#page-37">37</a>
<a href="#section-4.4.3">4.4.3</a>. Response Timer .....................................<a href="#page-37">37</a>
<a href="#section-4.4.4">4.4.4</a>. Wireless Connectivity Timer ........................<a href="#page-38">38</a>
<a href="#section-5">5</a>. WiCoP Processes ................................................<a href="#page-38">38</a>
<a href="#section-5.1">5.1</a>. Initialization ............................................<a href="#page-38">38</a>
<a href="#section-5.2">5.2</a>. Capabilities Exchange .....................................<a href="#page-38">38</a>
<a href="#section-5.3">5.3</a>. Connection ................................................<a href="#page-39">39</a>
<a href="#section-5.4">5.4</a>. Configuration .............................................<a href="#page-40">40</a>
<a href="#section-5.4.1">5.4.1</a>. Logical Groups .....................................<a href="#page-41">41</a>
<a href="#section-5.4.2">5.4.2</a>. Resource Control ...................................<a href="#page-41">41</a>
<a href="#section-5.5">5.5</a>. Operation .................................................<a href="#page-41">41</a>
<a href="#section-5.5.1">5.5.1</a>. Updates ............................................<a href="#page-42">42</a>
<a href="#section-5.5.2">5.5.2</a>. Feedback and Statistics ............................<a href="#page-42">42</a>
<a href="#section-5.5.3">5.5.3</a>. Non-Periodic Events ................................<a href="#page-43">43</a>
<a href="#section-5.5.4">5.5.4</a>. Firmware Trigger ...................................<a href="#page-43">43</a>
<a href="#section-5.5.5">5.5.5</a>. Wireless Terminal Management .......................<a href="#page-43">43</a>
<a href="#section-5.5.6">5.5.6</a>. Key Configuration ..................................<a href="#page-46">46</a>
<a href="#section-6">6</a>. WiCoP Performance ..............................................<a href="#page-51">51</a>
<a href="#section-6.1">6.1</a>. Operational Efficiency ....................................<a href="#page-51">51</a>
<a href="#section-6.2">6.2</a>. Semantic Efficiency .......................................<a href="#page-51">51</a>
<a href="#section-7">7</a>. Summary and Conclusion .........................................<a href="#page-51">51</a>
<a href="#section-8">8</a>. Security Considerations ........................................<a href="#page-52">52</a>
<a href="#section-9">9</a>. Informative References .........................................<a href="#page-53">53</a>
<span class="grey">Iino, et al. Historic [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
The popularity of wireless local area networks (WLANs) has led to
numerous but incompatible designs and solutions. The CAPWAP
Architecture Taxonomy [<a href="./rfc4118" title=""Architecture Taxonomy for Control and Provisioning of Wireless Access Points (CAPWAP)"">RFC4118</a>] describes major variations of these
designs. Among them, the Local MAC (Media Access Control) and Split
MAC architecture designs are notable categories.
Wireless LAN Control Protocol (WiCoP) recognizes the major
architecture designs and presents a common platform on which WLAN
entities of different designs can be accommodated. This enables
interoperability among wireless termination points (WTPs) and WLAN
access controllers (ACs) of distinct architecture designs. WiCoP
therefore allows for cost-effective WLAN expansions. It can also
accommodate future developments in WLAN technologies. Figure 1
illustrates the WiCoP operational structure in which distinct control
elements are utilized for Local MAC and Split MAC WTPs.
WiCoP also addresses the increasing trend of shared infrastructure
WLANs. Here, WLAN management needs to distinguish and isolate
control for the different logical groups sharing a single physical
WLAN. WiCoP manages WLANs through a series of tunnels that separate
traffic based on logical groups.
The WiCoP operational structure in Figure 1 shows that each WTP uses
a number of tunnels to distinguish and separate traffic for control
and for each logical group. The protocol allows for managing WLANs
in a manner consistent with the logical groups that share the
physical infrastructure.
<span class="grey">Iino, et al. Historic [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
Local MAC WTP
+-------+ +-------+
| | | | Logical Groups
| (=====Control Tunnel======) |
| | | | ~~~~~~~
| | | | / /
| <=====Logical Group A=====> | / A /~~~~
| | | | / / /
| <=====Logical Group B=====> | ~~~~~~~ /~~~~
| | | | / B / /
| <=====Logical Group C=====> | ~~~~~~~ /
| | | | / C /
| | +-------+ ~~~~~~~
| |
| |
| AC |
| |
| | Split MAC WTP
| |
| | +-------+ Logical Groups
| | | |
| [=====Control Tunnel======] | ~~~~~~~
| | | | / /
| | | | / 1 /~~~~
| <=====Logical Group 1=====> | / / /
| | | | ~~~~~~~ /
| <=====Logical Group 2=====> | / 2 /
| | | | ~~~~~~~
+-------+ +-------+
Figure 1
In Figure 1, WiCoP establishes and operates control tunnels and
logical group tunnels between the AC and two types of WTPs. The
control tunnels are used to transport WiCoP messages dealing with the
configuration, monitoring, and management of WTPs as a physical
whole. The logical group tunnels serve to separate traffic among
each of the logical groups constituting a physical WTP.
<span class="grey">Iino, et al. Historic [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Terminology</span>
This document follows the terminologies of [<a href="./rfc4118" title=""Architecture Taxonomy for Control and Provisioning of Wireless Access Points (CAPWAP)"">RFC4118</a>] and [<a href="./rfc4564" title=""Objectives for Control and Provisioning of Wireless Access Points (CAPWAP)"">RFC4564</a>].
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Protocol Overview</span>
The Wireless LAN Control Protocol (WiCoP) focuses on enabling
interoperability in shared infrastructure WLANs. It is designed for
use with different wireless technologies. This document provides
both the general operations of WiCoP and also specific use-cases with
respect to IEEE 802.11-based systems.
The state machine for WiCoP is illustrated in Figure 2.
+--------------------------------+
| |
| +------------------+ |
V V | |
+-------------+ +-------------+ +-------------+ |
| | | | | | |
| Initial- |-------->| Capabilities|-------->| Connection | |
| ization | | Exchange | | | |
| | | | | | |
+-------------+ +-------------+ +-------------+ |
A A | |
| | | |
| | | |
| | | |
| | V |
| | +-------------+ |
| | | | |
| +----------------| Configur- | |
| | ation | |
| | | |
| +-------------+ |
| | |
| | |
| | |
| | |
| V |
| +--------------+ |
| | | |
+----------------------------------------| |-+
| Operation |
| |
+--------------+
Figure 2
<span class="grey">Iino, et al. Historic [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
The Initialization state represents the initial states of WTPs and
AC. A WTP or AC in this state powers on, clears internal registers,
runs hardware self-tests, and resets network interfaces.
The Capabilities Exchange state represents initial protocol exchange
between a WTP and AC. A WTP in this state determines possible ACs
from which it can receive management services. An AC in this state
determines the capabilities of the WTP and the WTP's compatibility
with the management services it offers.
The Connection state represents the creation of a security
infrastructure between a WTP and AC. This involves mutual
authentication and the establishment of a secure connection between
the WiCoP entities.
The Configuration state represents the exchange of long-term
operational parameters and settings between a WTP and AC. A WTP in
this state receives configuration information to allow it to operate
consistently within the WLAN managed by the AC. An AC in this state
provides configuration information to the WTP based on the WTP's
capabilities and network policies.
The Operation state represents the active exchange of WiCoP
monitoring and management messages. WTPs send regular status updates
to and receive corresponding management instructions from the AC.
This state also involves firmware and configuration updates arising
from changes in network conditions and administrative policies.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. WiCoP Format</span>
WiCoP uses separate packets for control and data message transfer
between the AC and WTPs. A common header is used for both types of
packets in which a single-bit flag distinguishes between them. This
section presents the packet formats for WiCoP packets.
<span class="grey">Iino, et al. Historic [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. WiCoP Header</span>
Figure 3 illustrates the WiCoP common header for control and data
packets.
0 31
| 7 15 23 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| |
+---------------+-+-+-+-+-+-+-+-+-------------------------------+
| Version |M|D|C|R|E|F|L| | Reserve |
+---------------+-+-+-+-+-+-+-+-+-------------------------------+
| Fragment ID | Fragment No. | Length |
+---------------+---------------+-------------------------------+
Figure 3
Version Field
This field indicates the protocol version.
'M' Field
The MAC-type field, 'M', distinguishes between Local MAC WTPs and
Split MAC WTPs. It is used to efficiently realize interoperability
between WTPs of the two different designs. A '0' value indicates
WiCoP exchanges with a Split MAC WTP while a '1' value indicates
WiCoP exchanges with a Local MAC WTP.
The presence of this classification bit in the WiCoP common header
serves to expedite processing of WiCoP and WLAN traffic at the AC.
With a single parsing of the WiCoP common header once, the AC will be
able to determine the appropriate processing required for the
particular WiCoP packet.
'D' Field
The differentiator field, 'D', is used to distinguish between WTP
variants within a type of WTP design. The CAPWAP Architecture
Taxonomy [<a href="./rfc4118" title=""Architecture Taxonomy for Control and Provisioning of Wireless Access Points (CAPWAP)"">RFC4118</a>] illustrates that the Split MAC design allows
encryption/decryption to be performed at either the WTP or the AC.
The Architecture Taxonomy also indicates that the Local MAC design
allows authentication to take place at either the WTP or the AC.
<span class="grey">Iino, et al. Historic [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
WiCoP acknowledges these major variants and accommodates them using
the 'D' field in conjunction with the 'M' field. For a Split MAC
WTP, the 'D' field is used to indicate location of
encryption/decryption while for a Local MAC WTP, the 'D' field is
used to indicate location of authentication. The following table
highlights their usage.
'M' 'D' Description
0 0 Split MAC WTP - Encryption/decryption
is performed at WTP
0 1 Split MAC WTP - Encryption/decryption
is performed at AC
1 0 Local MAC WTP - Authentication is
performed by WTP
1 1 Local MAC WTP - Authentication is
performed by AC
Similar to the 'M' field, the presence of this classification in the
WiCoP common header helps expedite processing at the AC with a single
parsing. By incorporating the classification bits in the WiCoP
common header, where it is available for all packets of a session,
the AC processing can be expedited. Alternatively, the AC would have
to check each arriving packet against an internal register and
consequently delay processing.
'C' Field
This field distinguishes between a WiCoP control and WiCoP data
packet. Each type of information is tunneled separately across the
WiCoP tunnel interfaces between WTPs and the AC. A '0' value for the
'C' field indicates a data packet, while a '1' value indicates a
control packet.
The 'C' field is also used to assign WiCoP packets to distinct data
and control tunnels between the AC and WTP. WiCoP also maintains
logical groups in WLANs with the 'C' field.
'R' Field
The retransmission field, 'R', is used to differentiate between the
first and subsequent transmissions of WiCoP packets. The 'R' field
is used for critical WiCoP packets such as those relating to security
key exchanges. A '0' value for the 'R' field indicates the first
transmission of a WiCoP packet, while a '1' value indicates a
retransmission.
<span class="grey">Iino, et al. Historic [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
'E' Field
The encryption field, 'E', is used to indicate if the WiCoP packet is
encrypted between the AC and WTPs. The 'E' field is used for those
WiCoP packets that are exchanged during initialization. A '0' value
indicates the WiCoP packet is unencrypted, while a '1' value
indicates the packet is encrypted.
'F' Field
The fragmentation field indicates if the packet is a fragment of a
larger packet. A '0' value indicates a non-fragmented packet while a
'1' value indicates a fragmented packet. The 'F', 'L', 'Fragment
ID', and 'Fragment No.' fields are used together.
'L' Field
This field is used to indicate the last fragment of a larger packet.
It is only valid when the 'F' field has a '1' value. A '0' value for
the 'L' field indicates the last fragment of a larger packet while a
'1' value indicates an intermediate fragment of a larger packet. The
'F', 'L', 'Fragment ID', and 'Fragment No.' fields are used together.
Fragment ID Field
The Fragment ID identifies the larger packet that has been
fragmented. It is used to distinguish between fragments of different
large packets. This field is valid only when the 'F' field has a '1'
value. The 'F', 'L', 'Fragment ID', and 'Fragment No.' fields are
used together.
Fragment No. Field
The fragment number field identifies the sequence of fragments of a
larger packet. The value of the Fragment No. field is incremented
for each fragment of a larger packet so as to show the order of
fragments. This field is valid only when the 'F' field has a '1'
value. The 'F', 'L', 'Fragment ID', and 'Fragment No.' fields are
used together.
Length Field
This field specifies the length of the WiCoP payload following the
header.
<span class="grey">Iino, et al. Historic [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. WiCoP Control Packet</span>
The WiCoP control header follows the WiCoP common header. It is
highlighted in Figure 5.
0 31
| 7 15 23 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| |
+---------------+---------------+-------------------------------+
| Msg Type | Reserve | Seq Num |
+---------------+---------------+-------------------------------+
| Msg Element Length |
+-------------------------------+
Figure 5
The control packet adds four additional fields to the common header.
These are described below:
Msg Type Field
The message type field specifies the type of control message
transported in the packet. The list of control messages is presented
in <a href="#section-5.2.1">Section 5.2.1</a>.
Seq Num Field
The sequence number field is used to map WiCoP request and response
sequences. The initiator of a WiCoP request message increments the
Seq Num field for each new request message. The responder then uses
these values of the Seq Num fields in its corresponding response
messages.
Msg Element Length Field
This field specifies the length in bytes of the subsequent WiCoP
control message element.
<span class="grey">Iino, et al. Historic [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
<span class="h4"><a class="selflink" id="section-4.2.1" href="#section-4.2.1">4.2.1</a>. WiCoP Control Messages</span>
The list of WiCoP control messages is shown below:
Message Msg Type
------------------------------------------------------------
Capabilities 1
Capabilities Response 2
Connection 3
Connection Response 4
Configuration Request 5
Configuration Response 6
Configuration Data 7
Configuration Data Response 8
Configuration Trigger 9
Configuration Trigger Response 10
Feedback 11
Feedback Response 12
Reset 13
Reset Response 14
Firmware Download 15
Firmware Download Response 16
Terminal Addition 17
Terminal Addition Response 18
Terminal Deletion 19
Terminal Deletion Response 20
Key Configuration 21
Key Configuration Response 22
Notification 23
Notification Response 24
<span class="h4"><a class="selflink" id="section-4.2.2" href="#section-4.2.2">4.2.2</a>. WiCoP Control Message Elements</span>
WiCoP control messages each include a control message header followed
by one or more message elements. The message elements are shown in
the following table:
<span class="grey">Iino, et al. Historic [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
+-----------------+-----------+-------------------------------------+
| Message Element | Type | Description |
+-----------------+-----------+-------------------------------------+
| WTP-Info | 1 | Information regarding WTPs, such as |
| | | manufacturer ID, MAC address, etc. |
| | | |
| Cap-from-WTP | 2 | Quality-of-Service (QoS) abilities |
| | | (WME-Wireless Multimedia Extension) |
| | | and security abilities |
| | | (IEEE 802.11i) are included |
| | | |
| Conf-If-Data | 3 | Physical Layer (PHY) information for|
| | | each wireless interface |
| | | |
| Conf-WTP-Data | 4 | Information regarding logical |
| | | groups on a per-logical group basis |
| | | (e.g., per-virtual AP) |
| | | |
| Cap-to-WTP | 5 | Setup data sent to WTPs by an AC on |
| | | a per-logical group basis |
| | | |
| QoS-Value | 6 | QoS setup (access categories) |
| | | |
|Timer-Init-Value | 7 | Initial values of timers such as |
| | | aging, echo interval, etc. |
| | | |
| Terminal-Data | 8 | Information relevant to wireless |
| | | terminals - Basic Service Set |
| | | Identifier (BSSID), association ID, |
| | | etc. |
| | | |
| BSSID | 9 | BSSID, and terminal MAC address |
| | | |
| Encryption-Data | 10 | Details of the security framework - |
| | | cipher suit, operation mode, etc. |
| | | |
| EAP-Frame | 11 | Extensible Authentication Protocol |
| | | (EAP) frame |
| | | |
| Statistics | 12 | Various statistics information - |
| | | transmission attempts, Frame Check |
| | | Sequence (FCS) errors, etc. |
| | | |
| Interface-Error | 13 | Type of wireless interface failure |
| | | |
| FROM-Error | 14 | Flash ROM Error information |
| | | |
| QoS-Capability | 15 | Network congestion information |
<span class="grey">Iino, et al. Historic [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
| | | |
| TFTP-Data | 16 | Firmware-related details |
| | | |
| Result | 17 | Result of protocol operations - |
| | | success or failure |
| | | |
| OID | 18 | Simple Network Management Protocol |
| | | (SNMP) Object Identifiers (OIDs) |
| | | |
| GTK-Flag | 19 | Determines type of Group Temporal |
| | | Key (GTK) - new or existing |
+-----------------+-----------+-------------------------------------+
Each message element comprises a number of information items that are
detailed below. The length of each information item is specified in
bytes.
WTP-Info:
Information included in the WTP-Info message element is provided on a
per-WTP basis, i.e., each WTP exchanges one WTP-Info message element.
+--------------+----------+----------------+------------------------+
| Item | Length | Syntax | Description |
+--------------+----------+----------------+------------------------+
| Manufacturer | 8 | DisplayString | Manufacturer ID |
| ID | | | |
| | | | |
| MAC Address | 6 | PhyAddress | WTP MAC Address |
| | | | |
| Firmware | 8 | DisplayString | Firmware version of |
| Version | | | WTP |
| | | | |
| Start Time | 4 | TimeTicks | Starting time of WTP |
| | | | (UNIX Time) |
+--------------+----------+----------------+------------------------+
Cap-from-WTP:
Information included in the Cap-from-WTP message element is provided
on a per-WTP basis, i.e., each WTP exchanges one Cap-from-WTP message
element.
<span class="grey">Iino, et al. Historic [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
+--------------+----------+----------------+------------------------+
| Item | Length | Syntax | Description |
+--------------+----------+----------------+------------------------+
| 802.11e Cap | 2 | Integer | Length of 802.11e |
| Length | | | capabilities |
| | | | |
| 802.11e | Variable | OCTETString | 802.11e capabilities |
| Capabilities | | | of WTP. If WTP does |
| | | | not have such |
| | | | capabilities, this |
| | | | field is filled with |
| | | | '0' |
| | | | |
| 802.11i Cap | 2 | Integer | Length of 802.11i |
| Length | | | capabilities |
| | | | |
| 802.11i | Variable | OCTETString | 802.11i capabilities |
| Capabilities | | | of WTP. If WTP does |
| | | | not have such |
| | | | capabilities,this |
| | | | field is filled with |
| | | | '0' |
| | | | |
| AuthType | 2 | OCTETString | Type of authentication |
| | | | mechanism used between |
| | | | WTPs and the AC |
+--------------+----------+----------------+------------------------+
Conf-If-Data
The Conf-If-Data message element relates to the wireless interface.
A WTP with many interfaces will include corresponding numbers of
Conf-If-Data message elements within its control messages to the AC.
Conf-If-Data message elements are indexed by the If ID information
item.
<span class="grey">Iino, et al. Historic [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
+--------------+----------+----------------+------------------------+
| Item | Length | Syntax | Description |
+--------------+----------+----------------+------------------------+
| If ID | 1 | Integer | Denotes identification |
| | | | of a wireless |
| | | | interface |
| | | | |
| Current | 1 | Integer | Current Power Level |
| Power | | | ('1' = Max; '2' = 1/2; |
| | | | '3' = 1/4; '4' = 1/8 |
| | | | |
| Radio | 1 | Integer | Radio channel of |
| Channel | | | operation |
| | | | |
| 2Dot4Mode | 1 | Integer | Interface mode in |
| | | | 2.4GHz. ('1' = IEEE |
| | | | 802.11b; '2' = IEEE |
| | | | 802.11g; '3' = Both) |
+--------------+----------+----------------+------------------------+
Conf-WTP-Data
Configuration information is provided on the basis of logical groups
such as virtual APs. There are multiple Conf-WTP-Data message
elements to address the many logical groups within a WLAN managed by
WiCoP. Conf-WTP-Data message elements are indexed by the BSSID
information item.
+--------------+----------+----------------+------------------------+
| Item | Length | Syntax | Description |
+--------------+----------+----------------+------------------------+
| BSSID | 6 | OCTETString | BSSID |
| | | | |
| ESSID | 32 | OCTETString | Extended Service Set |
| | | | Identifier (ESSID) |
| | | | |
| BSSID - | 32 | OCTETString | Mapping for logical |
| TunnelID | | | groups across BSSID |
| | | | and WiCoP tunnels |
| | | | |
| Beacon | 1 | Integer | Time interval between |
| Period | | | Beacon transmissions |
| | | | |
| DTIM Period | 1 | Integer | Delivery Traffic |
| | | | Indication Message |
| | | | (DTIM) period of |
| | | | Beacon transmissions |
| | | | |
<span class="grey">Iino, et al. Historic [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
| AnyRejectFla | 1 | Integer | Flag indicating WTP |
| g | | | rejection of any Probe |
| | | | Request within any |
| | | | SSID - ('1' = |
| | | | Rejected; '2' = Not |
| | | | Rejected) |
| | | | |
| SSID Stealth | 1 | Integer | Flag indicating |
| Flag | | | inclusion of ESSID |
| | | | within Beacon Frames |
| | | | ('1' = ESSID included; |
| | | | '2' = ESSID not |
| | | | included) |
| | | | |
| Operation | 2 | Integer | Data rates supported |
| Rate Set | | | by WTP for terminal |
| | | | being added using a |
| | | | 12-bit format for 1.1, |
| | | | 2.2, 3.55, 4.6, 5.9, |
| | | | 6.11, 7.12, 8.18, |
| | | | 9.24, 10.36, 11.48, |
| | | | and 12.54 Mbps |
| | | | |
| Encryption | 1 | Integer | Encryption Type - |
| Type | | | &#65288;'1' = OFF; '2' |
| | | | = WEP40; '3' = WEP104; |
| | | | '4' = WEP128) |
| | | | |
| Encryption | 16 | OCTETString | Static Encryption Key |
| Key | | | |
+--------------+----------+----------------+------------------------+
Cap-to-WTP:
Capabilities information is provided on the basis of logical groups
such as virtual APs. So, there are multiple Cap-to-WTP message
elements to address the many logical groups within a WLAN managed by
WiCoP. Conf-to-WTP message elements are indexed by the BSSID
information item. If logical groups are created by other means,
their corresponding identifier is used as the index.
<span class="grey">Iino, et al. Historic [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
+--------------+----------+----------------+------------------------+
| Item | Length | Syntax | Description |
+--------------+----------+----------------+------------------------+
| BSSID | 6 | OCTETString | BSSID |
| | | | |
| 802.11e Cap | 2 | Integer | Length of 802.11e |
| Length | | | capabilities |
| | | | |
| 802.11e | Variable | OCTETString | 802.11e capabilities |
| Capabilities | | | of WTP. If WTP does |
| | | | not have such |
| | | | capabilities, this |
| | | | field is filled with |
| | | | '0' |
| | | | |
| 802.11i Cap | 2 | Integer | Length of 802.11i |
| Length | | | capabilities |
| | | | |
| 802.11i | Variable | OCTETString | 802.11i capabilities |
| Capabilities | | | of WTP. If WTP does |
| | | | not have such |
| | | | capabilities, this |
| | | | field is filled with |
| | | | '0' |
+--------------+----------+----------------+------------------------+
QoS-Value:
QoS parameters are assigned for each logical group to address their
respective individual conditions and requirements. QoS-Value message
elements are provided on a per-logical group basis. They are indexed
by the BSSID information item. If logical groups are created by
other means, their corresponding identifier is used as the index.
<span class="grey">Iino, et al. Historic [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
+--------------+----------+----------------+------------------------+
| Item | Length | Syntax | Description |
+--------------+----------+----------------+------------------------+
| BSSID | 6 | OCTETString | BSSID |
| | | | |
| WTP AC_BE | 2 | Integer | AC Parameters Record |
| | | | AC_BE in WTP |
| | | | |
| WTP AC_BK | 2 | Integer | AC Parameters Record |
| | | | AC_BK in WTP |
| | | | |
| WTP AC_VI | 2 | Integer | AC Parameters Record |
| | | | AC_VI in WTP |
| | | | |
| WTP AC_VO | 2 | Integer | AC Parameters Record |
| | | | AC_VO in WTP |
| | | | |
| TE AC_BE | 2 | Integer | AC Parameters Record |
| | | | AC_BE in terminals |
| | | | |
| TE AC_BK | 2 | Integer | AC Parameters Record |
| | | | AC_BK in terminals |
| | | | |
| TE AC_VI | 2 | Integer | AC Parameters Record |
| | | | AC_VI in terminals |
| | | | |
| TE AC_VO | 2 | Integer | AC Parameters Record |
| | | | AC_VO in terminals |
+--------------+----------+----------------+------------------------+
Timer-Init-Value:
WiCoP timers are used for the WTP as a whole. So, the Timer-Init-
Value message element is provided on a per-WTP basis.
<span class="grey">Iino, et al. Historic [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
+--------------+----------+----------------+------------------------+
| Item | Length | Syntax | Description |
+--------------+----------+----------------+------------------------+
| BSSID | 6 | OCTETString | BSSID |
| | | | |
| Response | 4 | Integer | Initial value of |
| Timer | | | Response Timer |
| | | | |
| Active | 4 | Integer | Initial value of |
| Presence | | | Active Presence Timer |
| Timer | | | |
| | | | |
| Feedback | 4 | Integer | Initial value of |
| Interval | | | Feedback Interval |
| Timer | | | Timer |
+--------------+----------+----------------+------------------------+
Terminal-Data:
The Terminal-Data message element is applicable for both Local MAC
and Split MAC WTP designs. In the case of Local MAC, Terminal-Data
is sent from WTPs to the AC. In the case of Split MAC, Terminal-Data
is sent from the AC to WTPs. So, the direction of usage depends on
the type of WTP at which wireless terminal operations are performed.
Some information items may be optional for use with specific WTP
designs.
<span class="grey">Iino, et al. Historic [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
+--------------+----------+----------------+------------------------+
| Item | Length | Syntax | Description |
+--------------+----------+----------------+------------------------+
| BSSID | 6 | PhyAddress | BSSID in which |
| | | | terminal is being |
| | | | added |
| | | | |
| MAC Address | 6 | PhyAddress | MAC address of |
| | | | terminal being added |
| | | | |
| Association | 2 | Integer | Association ID of |
| ID | | | terminal being added |
| | | | |
| Operation | 2 | Integer | Data rates supported |
| Rate Set | | | by WTP for terminal |
| | | | being added using a |
| | | | 12-bit format for 1.1, |
| | | | 2.2, 3.55, 4.6, 5.9, |
| | | | 6.11, 7.12, 8.18, |
| | | | 9.24, 10.36, 11.48, |
| | | | and 12.54 Mbps |
| | | | |
| Listen | 2 | Integer | Listen period |
| Period | | | |
+--------------+----------+----------------+------------------------+
BSSID:
The BSSID message element is used to identify logical groups within a
WLAN. WiCoP may be extended for other types of logical groups by
simply including additional message elements.
+--------------+----------+----------------+------------------------+
| Item | Length | Syntax | Description |
+--------------+----------+----------------+------------------------+
| BSSID | 6 | PhyAddress | BSSID in which |
| | | | terminal is being |
| | | | added |
| | | | |
| MAC Address | 6 | PhyAddress | MAC address of |
| | | | terminal being added |
+--------------+----------+----------------+------------------------+
<span class="grey">Iino, et al. Historic [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
Encryption-Data:
The Encryption-Data message element contains information relevant for
configuring security keys at WTPs. It is used in architectures in
which the authentication and encryption points are located in
distinct WLAN entities.
+--------------+----------+----------------+------------------------+
| Item | Length | Syntax | Description |
+--------------+----------+----------------+------------------------+
| MAC Address | 6 | PhyAddress | MAC address of |
| | | | terminal |
| | | | |
| Operation | 1 | Integer | Operational Mode ('1' |
| | | | = Set Key; '2' = |
| | | | Delete Key) |
| | | | |
| Key Index | 1 | Integer | Key Index - valid when |
| | | | Operational Mode = Set |
| | | | Key |
| | | | |
| Key Flag | 1 | Integer | Key Flag ('1' = |
| | | | Unicast Key or PTK; |
| | | | '2' = Broadcast Key or |
| | | | GTK) - valid only when |
| | | | Operational Mode = Set |
| | | | Key |
| | | | |
| Cipher Suit | 1 | Integer | Encryption Type ('1' = |
| | | | WEP40; '2' = WEP104; |
| | | | '3' = WEP128; '4' = |
| | | | TKIP; '5' = AES) - |
| | | | valid only when |
| | | | Operational Mode = Set |
| | | | Key |
| | | | |
| Key | 32 | OCTETString | Key body - valid only |
| | | | when Operational Mode |
| | | | = Set Key |
+--------------+----------+----------------+------------------------+
EAP-Frame:
The EAP-Frame message element is used to carry EAP frames used in the
configuration and management of the WLAN.
<span class="grey">Iino, et al. Historic [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
+--------------+----------+----------------+------------------------+
| Item | Length | Syntax | Description |
+--------------+----------+----------------+------------------------+
| MAC Address | 6 | PhyAddress | MAC address of |
| | | | terminal |
| | | | |
| EAP | Variable | OCTETString | EAP Frames |
+--------------+----------+----------------+------------------------+
Statistics:
Statistics information covers all aspects of WTPs. As such, this
message element is provided on a per-WTP basis. WiCoP messages
containing the Statistics message element simultaneously serve as
keepalive signals between WTPs and the AC.
+--------------+----------+----------------+------------------------+
| Item | Length | Syntax | Description |
+--------------+----------+----------------+------------------------+
| OutOctet | 4 | Counter 32 | Octet number of frame |
| | | | WTP transmits |
| | | | |
| Transmit | 4 | Counter 32 | Total number of frames |
| Count | | | transmitted by WTP |
| | | | |
| Successful | 4 | Counter 32 | Total number of ACKs |
| Transmit | | | received |
| Count | | | |
| | | | |
| ACK Failure | 4 | Counter 32 | Total number of failed |
| Count | | | ACKs |
| | | | |
| InOctets | 4 | Counter 32 | Octet number of frame |
| | | | WTP receives |
| | | | |
| Receive | 4 | Counter 32 | Total number of frames |
| Count | | | received by WTP |
| | | | |
| Receive | 4 | Counter 32 | Total number of |
| Discard | | | received frames that |
| | | | are discarded |
| | | | |
| Retransmissi | 4 | Counter 32 | Number of WTP |
| on Count | | | retransmission |
| | | | attempts" |
| | | | |
<span class="grey">Iino, et al. Historic [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
| Duplicate | 4 | Counter 32 | Number of duplicate |
| Receive | | | frames received by WTP |
| Count | | | |
| | | | |
| FCS Error | 4 | Counter32 | Number of frames |
| Receive | | | received with FCS |
| Count | | | errors |
| | | | |
| Unknown | 4 | Counter 32 | Number of unknown |
| Frame | | | protocol frames |
| Receive | | | received |
| Count | | | |
| | | | |
| Beacon | 4 | Counter 32 | Number of transmitted |
| Transmit | | | Beacon frames |
| Count | | | |
| | | | |
| Probe | 4 | Counter 32 | Number of transmitted |
| Transmit | | | Probe Response frames |
| Count | | | |
| | | | |
| Probe | 4 | Counter 32 | Number of received |
| Receive | | | Probe Response frames |
| Count | | | |
| | | | |
| Decrypt CRC | 4 | Counter 32 | Number of received |
| Error Count | | | frames that cannot |
| | | | decrypt |
+--------------+----------+----------------+------------------------+
Interface-Error:
This message element is used to exchange information on error
conditions related to the wireless interface.
+--------------+----------+----------------+------------------------+
| Item | Length | Syntax | Description |
+--------------+----------+----------------+------------------------+
| Interface | 1 | Integer | Interface ID |
| Index | | | |
| | | | |
| Error Type | 1 | Integer | Type of error ('1' = |
| | | | Unrecoverable; '2' = |
| | | | Recoverable) |
+--------------+----------+----------------+------------------------+
<span class="grey">Iino, et al. Historic [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
FROM-Error:
The FROM-Error message element is used to exchange information on
error conditions related to flash ROMs in WTPs or the AC.
+--------------+----------+----------------+------------------------+
| Item | Length | Syntax | Description |
+--------------+----------+----------------+------------------------+
| FROM Index | 1 | Integer | FROM ID |
| | | | |
| Error Type | 1 | Integer | Type of error ('1' = |
| | | | Unrecoverable; '2' = |
| | | | Recoverable) |
+--------------+----------+----------------+------------------------+
QoS Capability:
The QoS-Capability message element is used to exchange information
concerning the Enhanced Distributed Channel Access (EDCA) and HCF
Controlled Channel Access (HCCA) capabilities of WTPs.
+--------------+----------+----------------+------------------------+
| Item | Length | Syntax | Description |
+--------------+----------+----------------+------------------------+
| EDCA | 1 | Integer | EDCA Capability ('1' = |
| | | | Capable; '2' = Not |
| | | | capable) |
| | | | |
| HCCA | 1 | Integer | HCCA Capability ('1' = |
| | | | Capable; '2' = Not |
| | | | capable) |
+--------------+----------+----------------+------------------------+
TFTP-Data:
This message element is for firmware data from an AC to WTPs.
+--------------+----------+----------------+------------------------+
| Item | Length | Syntax | Description |
+--------------+----------+----------------+------------------------+
| TFTP Data | Variable | OCTETString | Details of Trivial File|
| | | | Transfer Protocol |
| | | | (TFTP) |
+--------------+----------+----------------+------------------------+
<span class="grey">Iino, et al. Historic [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
Result:
The Result message element is used in all WiCoP response messages to
indicate the status of WiCoP request messages.
+--------------+----------+----------------+------------------------+
| Item | Length | Syntax | Description |
+--------------+----------+----------------+------------------------+
| Result Code | 1 | Integer | '1' = OK; '2' = NG |
+--------------+----------+----------------+------------------------+
OID:
The OID message element is used for general configuration information
specified by OIDs.
+--------------+----------+----------------+------------------------+
| Item | Length | Syntax | Description |
+--------------+----------+----------------+------------------------+
| Length | 1 | Integer | Length of OID String |
| | | | and OID Value |
| | | | |
| OID String | Variable | OCTETString | Object Identifier that |
| | | | is assigned according |
| | | | to Basic Encoding |
| | | | Rules (BER) |
| | | | |
| Value | Variable | OCTETString | Value |
+--------------+----------+----------------+------------------------+
GTK-Flag:
The GTK-Flag message element is used to inform the WTP on the type of
GTK used and correspondingly how the KeyMIC is to be computed.
+--------------+----------+----------------+------------------------+
| Item | Length | Syntax | Description |
+--------------+----------+----------------+------------------------+
| GTK Flag | 1 | Integer | Determines the type of |
| | | | GTK ('1' = New; '2' = |
| | | | Existing) |
+--------------+----------+----------------+------------------------+
<span class="grey">Iino, et al. Historic [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
<span class="h4"><a class="selflink" id="section-4.2.3" href="#section-4.2.3">4.2.3</a>. WiCoP Control Message Description</span>
Message: Capabilities
Direction: WTP -> AC
Type: Request
Description: WTPs send a Capabilities message upon transitioning from
the Initialization state to the Capabilities Exchange state. The
message serves to discover and identify the controlling AC of the
WLAN and to provide it with identification and capabilities
information. In the IEEE 802.11 use-case, the Capabilities message
also specifies the WTP's IEEE 802.11e and IEEE 802.11i features.
TLV: The Capabilities message includes message elements of types 1
and 2.
+----------------+
| Capabilities |
+----------------+
| WTP-Info |
| |
| Cap-from-WTP |
+----------------+
Message: Capabilities Response
Direction: AC -> WTP
Type: Response
Description: This message is sent by an AC after examining the
compatibility of the WTP and its capabilities. The compatibility is
with respect to the MAC architecture that can be supported by the AC.
If the WTP is determined to be compatible, the Capabilities Response
message also contains information on the capabilities of the AC.
TLV: The Capabilities Response message includes message elements of
types 5 and 17. The Cap-to-WTP message elements are distinguished
based on BSSIDs to represent different logical groups.
<span class="grey">Iino, et al. Historic [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
+-----------------------+
| Capabilities Response |
+-----------------------+
| Cap-to-WTP 1 |
| |
| Cap-to-WTP ... |
| |
| Cap-to-WTP n |
| |
| Result |
+-----------------------+
Message: Connection
Direction: WTP -> AC
Type: Request
Description: The Connection message initiates the mutual security
association between an AC and WTPs. This message carries the first
message of the chosen security protocol. The specific security
mechanism for the authentication is out of scope of the WiCoP
specifications.
TLV: The Connection message includes message elements of type 2.
+---------------+
| Connection |
+---------------+
| Cap-from-WTP |
+---------------+
Message: Connection Response
Direction: AC -> WTP
Type: Response
Description: After completion of the security protocol exchange, this
message indicates the result of the WTP-AC security association. If
successful, it also represents the admission of the WTP into the
WLAN.
TLV: Type 17 message element is included.
+---------------------+
| Connection Response |
+---------------------+
| Result |
+---------------------+
<span class="grey">Iino, et al. Historic [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
Message: Configuration Request
Direction: WTP -> AC
Type: Request
Description: This message starts the Configuration state for the WTP.
It is a request for configuration information from the WTPs to the
AC.
Message: Configuration Response
Direction: AC -> WTP
Type: Response
Description: This is an acknowledgement for the Configuration Request
message.
TLV: Type 17 message element is included.
+------------------------+
| Configuration Response |
+------------------------+
| Result |
+------------------------+
Message: Configuration Data
Direction: AC -> WTP
Type: Request
Description: Configuration information including operational
parameters, QoS settings, and timer values is sent using the
Configuration Data message. This message is also used for
configuration updates in the Operation state of WiCoP.
TLV: This message includes message elements of types 3, 4, 5, 6, and
7. The Conf-WTP-Data and QoS-Value message elements are identified
by BSSIDs to denote logical groups, while the Conf-If-Data message
elements are identified by If-IDs to denote multiple wireless radios.
<span class="grey">Iino, et al. Historic [Page 29]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-30" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
+---------------------+
| Configuration Data |
+---------------------+
| Conf-If-Data 1 |
| |
| Conf-If-Data ... |
| |
| Conf-If-Data n |
| |
| Conf-WTP-Data 1 |
| |
| Conf-WTP-Data ... |
| |
| Conf-WTP-Data n |
| |
| Cap-to-WTP 1 |
| |
| Cap-to-WTP ... |
| |
| Cap-to-WTP n |
| |
| QoS-Value 1 |
| |
| QoS-Value ... |
| |
| QoS-Value n |
| |
| Timer-Init-Value |
+---------------------+
Message: Configuration Data Response
Direction: WTP -> AC
Type: Response
Description: This is an acknowledgement for the Configuration Data
message.
TLV: Type 17 message element is included.
+-----------------------------+
| Configuration Data Response |
+-----------------------------+
| Result |
+-----------------------------+
Message: Configuration Trigger
Direction: AC -> WTP
Type: Request
<span class="grey">Iino, et al. Historic [Page 30]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-31" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
Description: This message is used to trigger the activation of the
configuration information sent in earlier Configuration messages.
Message: Configuration Trigger Response
Direction: WTP -> AC
Type: Response
Description: This is an acknowledgement of the Configuration Trigger.
This response message is sent before activation of the configuration
information.
TLV: Message elements of type 17 are included.
+--------------------------------+
| Configuration Trigger Response |
+--------------------------------+
| Result |
+--------------------------------+
Message: Reset
Direction: AC -> WTP
Type: Request
Description: This message from the AC instructs the WTP to clear
registers and revert to initial conditions.
Message: Reset Response
Direction: WTP -> AC
Type: Response
Description: This is an acknowledgement for the Reset message to the
AC.
TLV: Message elements of type 17 are included.
+----------------+
| Reset Response |
+----------------+
| Result |
+----------------+
Message: Feedback
Direction: WTP <-> AC
Type: Request
<span class="grey">Iino, et al. Historic [Page 31]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-32" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
Description:
WTP: The Feedback message is used to send regular statistics
information to the AC. It also serves as a keepalive
indicator used to update the Active Presence Timer
maintained by the AC.
AC: The Feedback message is used to determine the active state
of WTPs.
TLV: This message includes message elements of type 12.
+-------------+
| Feedback |
+-------------+
| Statistics |
+-------------+
Message: Feedback Response
Direction: WTP <-> AC
Type: Response
Description: This is an acknowledgement for Feedback messages.
TLV: Message elements of type 17 are included.
+-------------------+
| Feedback Response |
+-------------------+
| Result |
+-------------------+
Message: Firmware Download
Direction: AC -> WTP
Type: Request
Description: This message is used to instruct WTPs to update their
firmware. The message element contains information regarding the new
firmware.
TLV: Message elements of type 16 are included.
+-------------------+
| Firmware Download |
+-------------------+
| TFTP-Data |
+-------------------+
<span class="grey">Iino, et al. Historic [Page 32]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-33" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
Message: Firmware Download Response
Direction: WTP -> AC
Type: Request Response
Description: This is an acknowledgement for the Firmware Download
message.
TLV: Message elements of type 17 are included.
+----------------------------+
| Firmware Download Response |
+----------------------------+
| Result |
+----------------------------+
Message: Notification
Direction: WTP <-> AC
Type: Request
Description: This message is used to indicate non-periodic events.
It may be sent by either WTPs or the AC. Notification messages
indicate failures, non-periodic changes, etc.
TLV: Message elements of types 13 and 14 are included.
+------------------+
| Notification |
+------------------+
| Interface-Error |
| |
| FROM-Error |
+------------------+
Message: Notification Response
Direction: WTP <-> AC
Type: Response
Description: This is an acknowledgement for the Notification message.
It may be followed by Configuration messages to rectify errors.
TLV: Message elements of type 17 are included.
+-----------------------+
| Notification Response |
+-----------------------+
| Result |
+-----------------------+
<span class="grey">Iino, et al. Historic [Page 33]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-34" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
Message: Terminal Addition
Direction: WTP <-> AC
Type: Request
Description: This message may be sent from WTPs or the AC, depending
on the WTP type in consideration. In both cases, it is sent in
response to an IEEE 802.11 association frame.
For Split MAC WTPs, Terminal Addition is sent from the AC to the WTPs
and includes information on the wireless terminal relevant to the
WTP.
For Local MAC WTPs, Terminal Addition is sent from a WTP to the AC
and contains information on the wireless terminal relevant to the AC.
TLV: Message elements of type 8 are included.
+-------------------+
| Terminal Addition |
+-------------------+
| Terminal-Data |
+-------------------+
Message: Terminal Addition Response
Direction: WTP <-> AC
Type: Response
Description: This is an acknowledgement sent from either WTPs or the
AC, depending on the WTP type in consideration.
TLV: Message elements of type 17 are included.
+----------------------------+
| Terminal Addition Response |
+----------------------------+
| Result |
+----------------------------+
Message: Terminal Deletion
Direction: WTP <-> AC
Type: Request
Description: This message is sent in response to a disconnection of a
wireless terminal. It can be sent from WTPs or the AC. In both
cases, Terminal Deletion instructs the recipient to remove any state
information relating to the specific wireless terminal. The message
<span class="grey">Iino, et al. Historic [Page 34]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-35" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
is sent in response to an IEEE 802.11 disassociation frame, IEEE
802.11 deauthentication frame, or due to the expiration of the Active
Presence Timer.
For Split MAC WTPs, Terminal Deletion is sent from the AC to the
WTPs.
For Local MAC WTPs, Terminal Deletion is sent from the WTPs to the
AC.
TLV: Message elements of type 9 are included.
+-------------------+
| Terminal Deletion |
+-------------------+
| BSSID |
+-------------------+
Message: Terminal Deletion Response
Direction: WTP <-> AC
Type: Response
Description: This is an acknowledgement sent from either WTPs or the
AC, depending on the WiCoP interface.
TLV: Message elements of type 17 are included.
+----------------------------+
| Terminal Addition Response |
+----------------------------+
| Result |
+----------------------------+
Message: Key Configuration
Direction: AC -> WTP
Type: Request
Description: This message is used when authentication and encryption
points are located in distinct WLAN entities. WiCoP uses it in cases
where 'M' = 0 and 'D' = 0 or where 'M' = 1 and 'D' = 1. It is used
to configure security key information from the AC to the WTPs.
TLV: The following message elements are included for Key
Configuration.
<span class="grey">Iino, et al. Historic [Page 35]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-36" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
+-------------------+
| Key Configuration |
+-------------------+
| GTK-Flag |
| |
| Encryption-Data |
| |
| EAP-Frame |
+-------------------+
Message: Key Configuration Response
Direction: WTP -> AC
Type: Response
Description: This is an acknowledgement for the Key Configuration
message.
TLV: Message elements of type 17 are included.
+----------------------------+
| Key Configuration Response |
+----------------------------+
| Result |
+----------------------------+
<span class="h3"><a class="selflink" id="section-4.3" href="#section-4.3">4.3</a>. WiCoP Data Packet</span>
WiCoP data packets include the WiCoP common header followed by a
payload. Data packets are used to distinguish traffic from control
when both control and data paths are identical. Such a scenario
would involve data traffic of the WTPs traversing the AC. However,
given the diversity of large-scale WLAN deployments, there are
scenarios in which data and control paths are distinct. WiCoP can be
used in both cases.
The WiCoP data packet format is illustrated below in Figure 7,
together with the WiCoP common header.
<span class="grey">Iino, et al. Historic [Page 36]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-37" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
0 31
| 7 15 23 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| |
+---------------+-+-+-+-+-+-+-+-+-------------------------------+
| Version |M|D|C|R|E|F|L| | Reserve |
+---------------+-+-+-+-+-+-+-+-+-------------------------------+
| Fragment ID | Fragment No. | Length |
+---------------+---------------+-------------------------------+
| Payload |
+---------------------------------------------------------------+
Figure 7
<span class="h3"><a class="selflink" id="section-4.4" href="#section-4.4">4.4</a>. WiCoP Timers</span>
WiCoP uses a number of timers to determine WLAN status and maintain
system performance. Timers are maintained by all WiCoP entities.
<span class="h4"><a class="selflink" id="section-4.4.1" href="#section-4.4.1">4.4.1</a>. Active Presence Timer</span>
The Active Presence Timer is used by each WiCoP entity -- AC and WTPs
-- to verify the presence of each other. The absence of a reply to
the Feedback message within the expiration of the Active Presence
Timer indicates the corresponding entity is inactive. Contingency
operations such as reset are used in this case. The value of the
Active Presence Timer ranges from 10 to 300 seconds with a default
value of 30 seconds.
<span class="h4"><a class="selflink" id="section-4.4.2" href="#section-4.4.2">4.4.2</a>. Feedback Interval</span>
Feedback messages are periodic with the frequency defined by the
Feedback Interval. The interval is set during WTP configuration. It
has a value ranging from 1 to 100 seconds and a default value of 10
seconds.
The Feedback Interval timer sets the periodicity of WLAN system
audits. So with this timer, the WLAN controller receives regular
information on the state of the WLAN and all its WTPs.
<span class="h4"><a class="selflink" id="section-4.4.3" href="#section-4.4.3">4.4.3</a>. Response Timer</span>
This is a general-purpose timer used to limit the elapsed time
between transmission of a request message and receipt of a
corresponding response message. The value of this timer ranges from
1 to 3 seconds with a default value of 1 second.
<span class="grey">Iino, et al. Historic [Page 37]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-38" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
<span class="h4"><a class="selflink" id="section-4.4.4" href="#section-4.4.4">4.4.4</a>. Wireless Connectivity Timer</span>
This timer triggers any changes in wireless connectivity. WiCoP uses
this timer to send Notification and other messages relating to
wireless conditions. It is also used to trigger the disconnection of
mobile terminals without disassociation. The value of the Wireless
Connectivity Timer ranges from 1 minute to 86,400 minutes with a
default value of 10 minutes.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. WiCoP Processes</span>
The processes of the Wireless LAN Control Protocol are described in
this section with respect to the operational state in which they
occur.
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. Initialization</span>
The Initialization state represents the initial conditions of WiCoP
entities. WTPs and ACs in this state are powered on, run hardware
self-check tests, and reset network interfaces.
State transition: Initialization -> Capabilities Exchange
WTP: Automatically upon detecting an active network interface
AC: Upon receiving a Capabilities message from a WTP
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. Capabilities Exchange</span>
The Capabilities Exchange state allows WTPs to first find an AC and
then to exchange capabilities information with it.
WiCoP is designed to control WLANs with both Local MAC and Split MAC
WTPs. The differences in their respective functional characteristics
are determined in this state.
The WTP first broadcasts a Capabilities message as soon as it
transitions from its Initialization state. The Capabilities message
serves to discover ACs and contains information on its identity and
capabilities.
The AC receiving the Capabilities message transitions from its
Initialization state. It examines compatibility with respect to the
WTP type, its capabilities, and responds with an appropriate
Capabilities Response message.
The WTP continues to send Capabilities messages at an interval
specified by the Response Timer until it receives a Capabilities
Response message from an AC.
<span class="grey">Iino, et al. Historic [Page 38]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-39" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
The AC maintains a count of Capabilities messages received from a
given WTP, which it uses to ignore WTPs after a limit. This is to
ensure that rogue WTPs that are not compatible with the AC do not
repeatedly attempt connections. The limit of connection attempts is
3 within 60 seconds.
State transition: Capabilities Exchange -> Connection
WTP: Upon receiving a positive Capabilities Response message
from an AC
AC: Upon receiving a Connection Request message from a WTP
<span class="h3"><a class="selflink" id="section-5.3" href="#section-5.3">5.3</a>. Connection</span>
The Connection state involves establishing a security infrastructure
between WTPs and an AC.
The WTP sends a Connection message to trigger the authentication and
security mechanism, i.e., this message initiates an IPsec security
association.
The AC sends a positive Connection Response message after
establishment of the security association or a negative Connection
Response message if an error occurs. The AC also monitors the
receipt of WiCoP control messages to prevent replay attacks.
The security association between an AC and WTPs covers mutual
authentication and also protection for integrity, confidentiality,
and modification protection for subsequent traffic exchanges.
In order to avoid forceful disconnections of legitimate WTPs after a
successful Connection, the AC ignores Capabilities messages received
with a previously registered WTP identification.
State transition: Connection -> Configuration
WTP: Upon successful establishment of security infrastructure
marked by sending of a Configuration Request message
AC: Upon receiving Configuration Request message from a WTP
after successful establishment of security infrastructure
State transition: Connection -> Capabilities Exchange
WTP: Upon expiry of the WTP Response Timer before receipt of a
positive Connection Response message from an AC or upon
receipt of a negative Connection Response message
AC: Upon expiry of AC Response Timer before receipt of
Configuration Request message from WTP
<span class="grey">Iino, et al. Historic [Page 39]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-40" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
<span class="h3"><a class="selflink" id="section-5.4" href="#section-5.4">5.4</a>. Configuration</span>
The Configuration state is one in which relatively long-term
operational parameters, such as those for identification and logical
groups, are exchanged. These parameters are based on previously
exchanged capabilities information and network policies.
The WTP sends a Configuration Request message to the AC.
The AC first acknowledges the WTP's Configuration Request, after
which it sends appropriate configuration information in subsequent
Configuration Data messages. WiCoP includes MIB objectives as
message elements in some Configuration Data messages so as to
simplify WTP configuration.
The WTP acknowledges Configuration Data messages individually or en
bloc with Configuration Data Response messages. The Response Timer
is maintained at both WTP and AC to track the exchanges.
The AC also establishes relevant processing schedules according to
the WTP's architecture design. For example, for Split MAC WTPs, the
AC arranges its processing schedule to parse IEEE 802.11 control and
management messages while for Local MAC WTPs, the AC arranges
schedules processing so as to bypass parsing of IEEE 802.11
management messages.
The AC sends a Configure Trigger message after sending all relevant
configuration information to the WTP.
The WTP acknowledges a Configure Trigger message with a Configure
Trigger Response message before activating the previously exchanged
configuration parameters.
In order to avoid forceful disconnections of legitimate WTPs after
successful Configuration, the AC ignores Capabilities messages
received with a previously registered WTP identification.
State transition: Configuration -> Operation
WTP: After receiving final Configuration Data message from the
AC marked by receipt of a Configure Trigger message from
the AC
AC: Upon receiving acknowledgement for Configure Trigger
message marked by receipt of a Configure Trigger Response
message from WTP
State transition: Configuration -> Capabilities Exchange
WTP: Upon expiry of the WTP Response Timer before receipt of a
Configure Trigger message from the AC
<span class="grey">Iino, et al. Historic [Page 40]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-41" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
AC: Upon expiry of the AC Response Timer before receipt of
Configure Data Response message or Configure Trigger
Response message
The following describes major configuration aspects of WiCoP.
<span class="h4"><a class="selflink" id="section-5.4.1" href="#section-5.4.1">5.4.1</a>. Logical Groups</span>
Configuration Data messages are used to establish logical groups in
the WLAN and also to separate traffic among them. The logical groups
are established based on network administrative policies and other
external considerations. In the IEEE 802.11 use-case, logical groups
are established with BSSID-based virtual APs and are separated over
the WiCoP interface using tunnels.
The AC assigns particular BSSIDs of the WTP to specific VLAN tunnels.
This assignment is specified to the WTP using the BSSID-TunnelID
parameter in the Configuration Data message. The logical group
mapping therefore works across the wireless and WiCoP interfaces.
The WTP then identifies the specified BSSID and VLAN tunnel as
corresponding to one logical group. It creates internal state such
that traffic belonging to the logical group is kept distinct from
that of other logical groups.
The AC and WTP also use distinct VLAN tunnels for data and control
traffic. The 'C' field in the WiCoP header is used to distinguish
and assign WiCoP packets to particular data and control VLAN tunnels.
<span class="h4"><a class="selflink" id="section-5.4.2" href="#section-5.4.2">5.4.2</a>. Resource Control</span>
The AC sends QoS information using QoS-Value message elements in
Configuration Data messages. The QoS-Value message element contains
values for EDCA and HCCA parameters. This information is specified
for each of the logical groups. In the IEEE 802.11 use-case, QoS-
Value message elements are specified for each BSSID.
The WTP configures QoS parameters locally and also forwards relevant
settings to wireless terminals in appropriate encapsulations. In the
IEEE 802.11 use-case, QoS parameters are sent to wireless terminals
in corresponding Beacon or Probe Response frames.
<span class="h3"><a class="selflink" id="section-5.5" href="#section-5.5">5.5</a>. Operation</span>
This is the active operation state of the WLAN in which short-term
dynamics are examined.
<span class="grey">Iino, et al. Historic [Page 41]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-42" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
The WTP begins operations according to the operational parameters
exchanged in the previous Configuration state.
The AC monitors WTPs according to network administrative policies and
configurations.
In order to avoid forceful disconnections of legitimate WTPs after
successful Operation setup, the AC ignores Capabilities messages
received with a previously registered WTP identification.
State transition: Operation -> Capabilities Exchange
WTP: Upon expiry of the WTP Active Presence Timer before receipt
of a Feedback Response message from the AC
AC: Upon expiry of the AC Active Presence Timer before receipt
of a Feedback message from the WTP
State transition: Operation -> Initialization
WTP: Upon receipt of a Reset message from an AC
AC: Upon receipt of a Reset Response message from a WTP
The following describes major operation aspects of WiCoP.
<span class="h4"><a class="selflink" id="section-5.5.1" href="#section-5.5.1">5.5.1</a>. Updates</span>
The dynamic nature of WLAN systems requires regular updates to
network operations.
The AC sends additional configuration information in the
Configuration Data messages. This is applicable to establishment of
new logical groups, changes to existing logical groups, changes in
QoS settings, etc. Configuration information is followed by a
Configure Trigger message.
The WTP sends a Configure Trigger Response before activating the
additional configuration information.
Configuration updates can be used to clear statistics information by
reflecting initial values.
An extreme case of a configuration update involves use of the Reset
message from the AC, which instructs the WTP to revert to initial
conditions. The WTP replies with a Reset Response message before
reverting to its initial state.
<span class="h4"><a class="selflink" id="section-5.5.2" href="#section-5.5.2">5.5.2</a>. Feedback and Statistics</span>
The Operation state also sees regular feedback being sent by WTPs to
the AC.
<span class="grey">Iino, et al. Historic [Page 42]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-43" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
The WTP sends Feedback messages to indicate various statistics and
congestion condition information. Feedback also includes information
on the state of the WTP and wireless medium such as queue levels and
channel interference. Feedback messages are sent with a frequency
defined by the Feedback Interval. In addition to statistics, the
Feedback message also serves as a WTP keepalive indicator to the AC.
Feedback messages combine statistics information together with WTP
status information.
The AC monitors Feedback messages for their statistics value and
implicit indication of WTP activity. The AC also tracks the state of
congestion at wireless terminals and WTPs. This information enables
the AC to adapt its downstream transmissions, such as scheduling
transmission away from congested WTPs, so as to relieve congestion.
The AC additionally uses the Feedback message to randomly determine
the active state of WTPs. An active WTP replies with a corresponding
Feedback Response message.
<span class="h4"><a class="selflink" id="section-5.5.3" href="#section-5.5.3">5.5.3</a>. Non-Periodic Events</span>
The WTP and AC use the Notification message for non-periodic events.
They send Notification messages to indicate error conditions or
drastic changes in congestion state.
The recipient of the Notification message acknowledges with a
Notification Response message. The response may contain information
on rectifying the error or may simply be an acknowledgement of the
Notification.
<span class="h4"><a class="selflink" id="section-5.5.4" href="#section-5.5.4">5.5.4</a>. Firmware Trigger</span>
The AC sends a Firmware Download message to update firmware at WTPs.
The Firmware Download message contains TFTP information, which the
WTP uses to refresh its firmware. This is used when a new version of
firmware is available for the WTPs.
The WTP acknowledges new firmware with a Firmware Download Response
message after which it is activated.
<span class="h4"><a class="selflink" id="section-5.5.5" href="#section-5.5.5">5.5.5</a>. Wireless Terminal Management</span>
The Operation state of WiCoP also involves configuration of WTPs and
the AC with wireless terminal-specific information.
<span class="grey">Iino, et al. Historic [Page 43]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-44" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
Here the Terminal Addition message is used in response to a new
wireless terminal entering the WLAN. This message may be sent by
either the WTPs or the AC, depending on the WiCoP interface being
used. The recipient of this message replies with the Terminal
Addition Response message.
The Terminal Deletion message is used when a wireless terminal leaves
the WLAN. This is used to delete state information that was
maintained by either the WTPs or the AC. It is acknowledged with the
Terminal Deletion Response message.
Figure 8 below illustrates the exchange of Terminal Addition and
Terminal Deletion messages for both Local-MAC- and Split-MAC-based
WiCoP interfaces.
Here the WiCoP Terminal Addition message is triggered as a response
to an IEEE 802.11 Association message. In the case of Local MAC
architecture, the WTP sends the message to the AC. However, in the
Split MAC architecture, Terminal Addition is sent from an AC to the
WTP.
<span class="grey">Iino, et al. Historic [Page 44]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-45" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
+----------+ +---------------+ +------+
| Terminal | | Local MAC WTP | | AC |
+----------+ +---------------+ +------+
| | |
| | |
| IEEE 802.11 Association | WiCoP |
|------------------------->| Terminal Addition |
| |===========================>|
| | |
| | WiCoP Terminal |
| |<===========================|
| IEEE 802.11 Association | Addition Response |
|<-------------------------| |
| Response | |
| | |
| | |
| |
| |
| |
| +---------------+ |
| | Split MAC WTP | |
| +---------------+ |
| | |
| | |
| IEEE 802.11 Association | |
|------------------------->| |
| | IEEE 802.11 Association |
| |===========================>|
| | (Over WiCoP) |
| | |
| | |
| | WiCoP |
| | Terminal Addition |
| |<===========================|
| | |
| | |
| | WiCoP Terminal |
| |===========================>|
| | Addition Response |
| | |
| | |
| | IEEE 802.11 Association |
| |<===========================|
| | Response (Over WiCoP) |
| IEEE 802.11 Association | |
|<-------------------------| |
| Response | |
Figure 8
<span class="grey">Iino, et al. Historic [Page 45]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-46" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
<span class="h4"><a class="selflink" id="section-5.5.6" href="#section-5.5.6">5.5.6</a>. Key Configuration</span>
One of the differences between Split MAC and Local MAC WTPs is the
location of the over-the-air encryption. Some Split MAC and Local
MAC WTPs perform encryption locally while others leave it to the AC.
WiCoP accommodates these differences by enabling security key
configuration in those cases where encryption is performed at the
WTP. The encryption setup process is therefore contingent on the
WiCoP protocol interface.
When dynamic WEP is used, the WiCoP Key Configuration message is used
to notify WTPs of encryption keys for each associated wireless
terminal. Here, the EAP over LAN (EAPoL) Key frame is encapsulated
in the Key Configuration message and sent to a WTP. Upon receiving
the Key Configuration message, the WTP sets the encryption key in its
local security table, decapsulates the EAPOL Key frame and forwards
it to the wireless terminal. This is illustrated in Figure 9.
<span class="grey">Iino, et al. Historic [Page 46]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-47" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
+----------+ +-----+ +------+
| Terminal | | WTP | | AC |
+----------+ +-----+ +------+
| | |
| 802.1x Authentication |
|<=====================================================>|
| | |
| | |
PMK | PMK
| | |
| | |
|<-------------------------|<===========================|
| EAPoL Packet | WiCoP Control Packet |
| | (Key Configuration) |
| | | +-----------------------+
| | \|- Encryption-Data |
| | | Unicast-Key |
Set Receive |- EAP-Frame |
Unicast-Key Unicast-Key | Key Signature |
| | +-----------------------+
| | |
| |===========================>|
| | WiCoP Control Packet |
| | (Key Configuration |
| | Response ) |
| | |
| | |
| | |
| | |
|<-------------------------|<===========================|
| EAPoL Packet | WiCoP Control Packet |
| | (Key Configuration) |
| | | +-----------------------+
| | \|- Encryption-Data |
| | | Broadcast-Key |
Set Receive |- EAP-Frame |
Broadcast-Key Broadcast-Key | Key Signature |
| | | Broadcast Key |
| | +-----------------------+
| | |
| |===========================>|
| | WiCoP Control Packet |
| | (Key Configuration |
| | Response ) |
Figure 9
<span class="grey">Iino, et al. Historic [Page 47]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-48" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
When WPA or IEEE 802.11i is used in WLAN architectures in which the
authenticator is located at the AC and encryption points at WTPs, the
exchanges of the 4-way handshake are managed distinctly. This is
because the AC is no longer in a position to calculate the KeyMIC as
it is not aware of the KeyRSC sequence counter. So here, a WiCoP Key
Configuration message is used to transport the 3rd message of the
4-way handshake -- containing the EAPoL-Key -- with unassigned KeyRSC
and KeyMIC fields. When the WTP receives the WiCoP Key Configuration
message, it first assigns the sequence number value to the KeyRSC
field. Then, the WTP calculates the KeyMIC value using the PTK and
KeyRSC. So, the WiCoP Key Configuration message allows the KeyMIC to
be calculated at the WTPs instead of the AC. The GTK-Flag message
element is used to determine how the KeyMIC is calculated -- in case
of a new GTK, KeyMIC is computed with a KeyRSC value of 0 and in case
of an existing GTK, KeyMIC is computed with a KeyRSC value
corresponding to the actual counter.
Figure 10 illustrates this case where the WiCoP common header is
either 'M' = 0 and 'D' = 0 or 'M' = 1 and 'D' = 1.
<span class="grey">Iino, et al. Historic [Page 48]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-49" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
+----------+ +-----+ +------+
| Terminal | | WTP | | AC |
+----------+ +-----+ +------+
| | |
| 802.1x Authentication |
|<=====================================================>|
| | |
PMK | PMK
| | |
Generate | Generate
SNonce | ANonce
| | |
| | |
| Message 1 |
|<-------------------------|<---------------------------|
| EAPoL Packet | WiCoP Data Packet |
Receive | |
ANonce | |
Generate | |
PTK | |
| | |
| Message 2 |
|------------------------->|--------------------------->|
| EAPoL Packet | WiCoP Data Pakcet |
| | Receive
| | SNonce
| | |
| | Generate
| | PTK
| | GTK
| Message 3 |
|<-------------------------|<===========================|
| EAPoL Packet | WiCoP Control Packet |
| | (Key Configuration) |
| | | +-----------------------+
| | \|- GTK-Flag |
Receive Receive |- Encryption-Data(PTK) |
GTK PTK |- Encryption-Data(GTK) |
| GTK |- EAP-Frame |
| | +-----------------------+
| | |
| | |
| | |
| Message 4 |
|------------------------->|--------------------------->|
| EAPoL Packet | WiCoP Data Pakcet |
| | |
Figure 10
<span class="grey">Iino, et al. Historic [Page 49]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-50" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
The 1st, 2nd, and 4th messages of the 4-way handshake are transported
in WiCoP data packets that are assigned priorities similar to that of
WiCoP control packets.
Similarly, for the group key handshake in WPA and IEEE 802.11i, the
1st message of the handshake is transported using the WiCoP Key
Configuration message with unassigned KeyRSC. The WTP again assigns
the sequence number value to the KeyRSC and then calculates the
KeyMIC. The 2nd message of the handshake however is transported in
WiCoP data packets with priorities similar to that of WiCoP control
packets. This is illustrated in Figure 11.
+----------+ +-----+ +------+
| Terminal | | WTP | | AC |
+----------+ +-----+ +------+
| | |
| Message 1 |
|<-------------------------|<===========================|
| EAPoL Packet | WiCoP Control Packet |
| | (Key Configuration) |
| | | +-----------------------+
| | \|- GTK-Flag |
Receive Receive |- Encryption-Data(GTK) |
GTK GTK |- EAP-Frame |
| | +-----------------------+
| | |
| | |
| | |
| | |
| Message 2 |
|------------------------->|--------------------------->|
| EAPoL Packet | WiCoP Data Pakcet |
| | |
Figure 11
The Key Configuration Response message is used by the WTP to notify
the AC of the encryption setup process.
<span class="grey">Iino, et al. Historic [Page 50]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-51" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. WiCoP Performance</span>
WiCoP is an efficient protocol. This section illustrates various
examples of its efficiency.
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. Operational Efficiency</span>
The fact that WiCoP requires a single operation to distinguish and
manage WTPs of different designs makes it operationally efficient.
Because WiCoP assigns dedicated classification bits in the common
header, an AC needs to parse incoming packets only once to determine
the particular manner in which it is to be processed. Without the
dedicated classifications in the common header, an AC would have to
perform a lookup after parsing every incoming packet, which would
result in delaying processing. The scale and sensitivity of large-
scale deployments require that WLAN control protocols be efficient in
operation.
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>. Semantic Efficiency</span>
In certain cases, WiCoP combines utilities in a single operation.
One particular case is that of statistics and activity feedback.
Here, WTPs regularly send a single Feedback message containing
statistics and other state information, which also acts as an
implicit keepalive mechanism. This helps to reduce the number of
message exchanges and also simplifies protocol implementation.
Similarly, the Capabilities messages serve the purpose of finding ACs
as well as informing them of WTP capabilities and design.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Summary and Conclusion</span>
The Wireless LAN Control Protocol presents a solution for managing
large-scale WLANs with diverse elements. It addresses the challenges
presented in the CAPWAP Problem Statement [<a href="./rfc3990" title=""Configuration and Provisioning for Wireless Access Points (CAPWAP) Problem Statement"">RFC3990</a>] and realizes the
requirements of the CAPWAP Objectives [<a href="./rfc4564" title=""Objectives for Control and Provisioning of Wireless Access Points (CAPWAP)"">RFC4564</a>].
WiCoP enables integral control of Split MAC and Local MAC WTPs by
defining appropriate differentiators within the protocol message
exchanges and processes. It addresses architecture designs in which
the authenticator and encryption points are located on distinct
entities. In doing so, WiCoP realizes the interoperability objective
and its benefits.
WiCoP also addresses shared WLAN deployments by configuring and
managing WTPs on a logical group basis. It is further provisioned to
separate control and data traffic within WLANs. So, the protocol
addresses the objectives of logical groups and traffic separation.
<span class="grey">Iino, et al. Historic [Page 51]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-52" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
Overall, the specifications presented in this document allow for an
effective WLAN control and provisioning protocol.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Security Considerations</span>
Illegitimate WTPs and ACs pose a significant threat to WLAN security.
This can be mitigated by requiring all WiCoP entities to be mutually
authenticated before initiating critical protocol exchanges. WiCoP
includes a trigger for a suitable authentication mechanism. This is
to accommodate a different security mechanism that may be used
between WTPs and the AC, depending on the nature of the deployment.
In extension to mutual authentication, the subsequent exchange of
protocol information between WTPs and the AC need to be protected.
The exchanges have to be protected against alterations of any sort
and Denial-of-Service (DoS) attacks. Also, the information should
not be accessible to any third party. Encryption of protocol
exchanges is therefore necessary. WiCoP includes appropriate
procedures to select and establish a security association between
WTPs and the AC in the Connection state.
Architecture designs in which authentication is performed at the AC
and encryption at the WTPs can be exposed to the threat of replay
attacks. Since the AC will not be aware of the exact value of the
sequence counter, it will not make the corresponding assignment
within the 4-way handshake. This leaves the wireless terminal to
accept all incoming frames, including illegitimate frames, as it
cannot verify the sequence counter value. Such a threat needs to
protected against by allowing the WTP to assign the correct value of
the sequence counter. WiCoP accomplishes this by sending the 3rd
message of the 4-way handshake within a control message to the WTP,
which then updates the sequence counter field before forwarding it to
the wireless terminals.
Another issue to consider is that of rogue WTPs using identifiers
similar to that of legitimate WTPs. In such instances, a rogue WTP
can send a Capabilities message to the AC, thereby causing
disconnection of the existing legitimate WTP of the same identifier.
It is important for the AC to ignore Capabilities messages received
with existing identifiers.
<span class="grey">Iino, et al. Historic [Page 52]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-53" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. Informative References</span>
[<a id="ref-RFC4118">RFC4118</a>] Yang, L., Zerfos, P., and E. Sadot, "Architecture Taxonomy
for Control and Provisioning of Wireless Access Points
(CAPWAP)", <a href="./rfc4118">RFC 4118</a>, June 2005.
[<a id="ref-RFC4564">RFC4564</a>] Govindan, S., Ed., Cheng, H., Yao, ZH., Zhou, WH., and L.
Yang, "Objectives for Control and Provisioning of Wireless
Access Points (CAPWAP)", <a href="./rfc4564">RFC 4564</a>, July 2006.
[<a id="ref-RFC3990">RFC3990</a>] O'Hara, B., Calhoun, P., and J. Kempf, "Configuration and
Provisioning for Wireless Access Points (CAPWAP) Problem
Statement", <a href="./rfc3990">RFC 3990</a>, February 2005.
<span class="grey">Iino, et al. Historic [Page 53]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-54" ></span>
<span class="grey"><a href="./rfc5414">RFC 5414</a> WiCoP February 2010</span>
Authors' Addresses
Satoshi Iino
Panasonic Mobile Communications
600, Saedo-cho
Tsuzuki-ku
Yokohama 224 8539
Japan
Phone: +81 45 938 3789
EMail: iino.satoshi@jp.panasonic.com
Saravanan Govindan
Panasonic Singapore Laboratories
Block 1022, Tai Seng Industrial Estate
#06-3530, Tai Seng Avenue
Singapore 534 415
Singapore
Phone: +65 6550 5441
EMail: saravanan.govindan@sg.panasonic.com
Mikihito Sugiura
Panasonic Mobile Communications
600, Saedo-cho
Tsuzuki-ku
Yokohama 224 8539
Japan
Phone: +81 45 938 3789
EMail: sugiura.mikihito@jp.panasonic.com
Hong Cheng
Panasonic Singapore Laboratories
Block 1022, Tai Seng Industrial Estate
#06-3530, Tai Seng Avenue
Singapore 534 415
Singapore
Phone: +65 6550 5447
EMail: hong.cheng@sg.panasonic.com
Iino, et al. Historic [Page 54]
</pre>
|