1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677
|
<pre>Network Working Group P. Calhoun, Ed.
Request for Comments: 5415 Cisco Systems, Inc.
Category: Standards Track M. Montemurro, Ed.
Research In Motion
D. Stanley, Ed.
Aruba Networks
March 2009
<span class="h1">Control And Provisioning of Wireless Access Points (CAPWAP)</span>
<span class="h1">Protocol Specification</span>
Status of This Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (c) 2009 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents in effect on the date of
publication of this document (<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>).
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document.
This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.
<span class="grey">Calhoun, et al. Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
Abstract
This specification defines the Control And Provisioning of Wireless
Access Points (CAPWAP) Protocol, meeting the objectives defined by
the CAPWAP Working Group in <a href="./rfc4564">RFC 4564</a>. The CAPWAP protocol is
designed to be flexible, allowing it to be used for a variety of
wireless technologies. This document describes the base CAPWAP
protocol, while separate binding extensions will enable its use with
additional wireless technologies.
Table of Contents
<a href="#section-1">1</a>. Introduction ....................................................<a href="#page-7">7</a>
<a href="#section-1.1">1.1</a>. Goals ......................................................<a href="#page-8">8</a>
<a href="#section-1.2">1.2</a>. Conventions Used in This Document ..........................<a href="#page-9">9</a>
<a href="#section-1.3">1.3</a>. Contributing Authors .......................................<a href="#page-9">9</a>
<a href="#section-1.4">1.4</a>. Terminology ...............................................<a href="#page-10">10</a>
<a href="#section-2">2</a>. Protocol Overview ..............................................<a href="#page-11">11</a>
<a href="#section-2.1">2.1</a>. Wireless Binding Definition ...............................<a href="#page-12">12</a>
<a href="#section-2.2">2.2</a>. CAPWAP Session Establishment Overview .....................<a href="#page-13">13</a>
<a href="#section-2.3">2.3</a>. CAPWAP State Machine Definition ...........................<a href="#page-15">15</a>
<a href="#section-2.3.1">2.3.1</a>. CAPWAP Protocol State Transitions ..................<a href="#page-17">17</a>
<a href="#section-2.3.2">2.3.2</a>. CAPWAP/DTLS Interface ..............................<a href="#page-31">31</a>
<a href="#section-2.4">2.4</a>. Use of DTLS in the CAPWAP Protocol ........................<a href="#page-33">33</a>
<a href="#section-2.4.1">2.4.1</a>. DTLS Handshake Processing ..........................<a href="#page-33">33</a>
<a href="#section-2.4.2">2.4.2</a>. DTLS Session Establishment .........................<a href="#page-35">35</a>
<a href="#section-2.4.3">2.4.3</a>. DTLS Error Handling ................................<a href="#page-35">35</a>
<a href="#section-2.4.4">2.4.4</a>. DTLS Endpoint Authentication and Authorization .....<a href="#page-36">36</a>
<a href="#section-3">3</a>. CAPWAP Transport ...............................................<a href="#page-40">40</a>
<a href="#section-3.1">3.1</a>. UDP Transport .............................................<a href="#page-40">40</a>
<a href="#section-3.2">3.2</a>. UDP-Lite Transport ........................................<a href="#page-41">41</a>
<a href="#section-3.3">3.3</a>. AC Discovery ..............................................<a href="#page-41">41</a>
<a href="#section-3.4">3.4</a>. Fragmentation/Reassembly ..................................<a href="#page-42">42</a>
<a href="#section-3.5">3.5</a>. MTU Discovery .............................................<a href="#page-43">43</a>
<a href="#section-4">4</a>. CAPWAP Packet Formats ..........................................<a href="#page-43">43</a>
<a href="#section-4.1">4.1</a>. CAPWAP Preamble ...........................................<a href="#page-46">46</a>
<a href="#section-4.2">4.2</a>. CAPWAP DTLS Header ........................................<a href="#page-46">46</a>
<a href="#section-4.3">4.3</a>. CAPWAP Header .............................................<a href="#page-47">47</a>
<a href="#section-4.4">4.4</a>. CAPWAP Data Messages ......................................<a href="#page-50">50</a>
<a href="#section-4.4.1">4.4.1</a>. CAPWAP Data Channel Keep-Alive .....................<a href="#page-51">51</a>
<a href="#section-4.4.2">4.4.2</a>. Data Payload .......................................<a href="#page-52">52</a>
<a href="#section-4.4.3">4.4.3</a>. Establishment of a DTLS Data Channel ...............<a href="#page-52">52</a>
<a href="#section-4.5">4.5</a>. CAPWAP Control Messages ...................................<a href="#page-52">52</a>
<a href="#section-4.5.1">4.5.1</a>. Control Message Format .............................<a href="#page-53">53</a>
<a href="#section-4.5.2">4.5.2</a>. Quality of Service .................................<a href="#page-56">56</a>
<a href="#section-4.5.3">4.5.3</a>. Retransmissions ....................................<a href="#page-57">57</a>
<a href="#section-4.6">4.6</a>. CAPWAP Protocol Message Elements ..........................<a href="#page-58">58</a>
<a href="#section-4.6.1">4.6.1</a>. AC Descriptor ......................................<a href="#page-61">61</a>
<span class="grey">Calhoun, et al. Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
<a href="#section-4.6.2">4.6.2</a>. AC IPv4 List .......................................<a href="#page-64">64</a>
<a href="#section-4.6.3">4.6.3</a>. AC IPv6 List .......................................<a href="#page-64">64</a>
<a href="#section-4.6.4">4.6.4</a>. AC Name ............................................<a href="#page-65">65</a>
<a href="#section-4.6.5">4.6.5</a>. AC Name with Priority ..............................<a href="#page-65">65</a>
<a href="#section-4.6.6">4.6.6</a>. AC Timestamp .......................................<a href="#page-66">66</a>
<a href="#section-4.6.7">4.6.7</a>. Add MAC ACL Entry ..................................<a href="#page-66">66</a>
<a href="#section-4.6.8">4.6.8</a>. Add Station ........................................<a href="#page-67">67</a>
<a href="#section-4.6.9">4.6.9</a>. CAPWAP Control IPv4 Address ........................<a href="#page-68">68</a>
<a href="#section-4.6.10">4.6.10</a>. CAPWAP Control IPv6 Address .......................<a href="#page-68">68</a>
<a href="#section-4.6.11">4.6.11</a>. CAPWAP Local IPv4 Address .........................<a href="#page-69">69</a>
<a href="#section-4.6.12">4.6.12</a>. CAPWAP Local IPv6 Address .........................<a href="#page-69">69</a>
<a href="#section-4.6.13">4.6.13</a>. CAPWAP Timers .....................................<a href="#page-70">70</a>
<a href="#section-4.6.14">4.6.14</a>. CAPWAP Transport Protocol .........................<a href="#page-71">71</a>
<a href="#section-4.6.15">4.6.15</a>. Data Transfer Data ................................<a href="#page-72">72</a>
<a href="#section-4.6.16">4.6.16</a>. Data Transfer Mode ................................<a href="#page-73">73</a>
<a href="#section-4.6.17">4.6.17</a>. Decryption Error Report ...........................<a href="#page-73">73</a>
<a href="#section-4.6.18">4.6.18</a>. Decryption Error Report Period ....................<a href="#page-74">74</a>
<a href="#section-4.6.19">4.6.19</a>. Delete MAC ACL Entry ..............................<a href="#page-74">74</a>
<a href="#section-4.6.20">4.6.20</a>. Delete Station ....................................<a href="#page-75">75</a>
<a href="#section-4.6.21">4.6.21</a>. Discovery Type ....................................<a href="#page-75">75</a>
<a href="#section-4.6.22">4.6.22</a>. Duplicate IPv4 Address ............................<a href="#page-76">76</a>
<a href="#section-4.6.23">4.6.23</a>. Duplicate IPv6 Address ............................<a href="#page-77">77</a>
<a href="#section-4.6.24">4.6.24</a>. Idle Timeout ......................................<a href="#page-78">78</a>
<a href="#section-4.6.25">4.6.25</a>. ECN Support .......................................<a href="#page-78">78</a>
<a href="#section-4.6.26">4.6.26</a>. Image Data ........................................<a href="#page-79">79</a>
<a href="#section-4.6.27">4.6.27</a>. Image Identifier ..................................<a href="#page-79">79</a>
<a href="#section-4.6.28">4.6.28</a>. Image Information .................................<a href="#page-80">80</a>
<a href="#section-4.6.29">4.6.29</a>. Initiate Download .................................<a href="#page-81">81</a>
<a href="#section-4.6.30">4.6.30</a>. Location Data .....................................<a href="#page-81">81</a>
<a href="#section-4.6.31">4.6.31</a>. Maximum Message Length ............................<a href="#page-81">81</a>
<a href="#section-4.6.32">4.6.32</a>. MTU Discovery Padding .............................<a href="#page-82">82</a>
<a href="#section-4.6.33">4.6.33</a>. Radio Administrative State ........................<a href="#page-82">82</a>
<a href="#section-4.6.34">4.6.34</a>. Radio Operational State ...........................<a href="#page-83">83</a>
<a href="#section-4.6.35">4.6.35</a>. Result Code .......................................<a href="#page-84">84</a>
<a href="#section-4.6.36">4.6.36</a>. Returned Message Element ..........................<a href="#page-85">85</a>
<a href="#section-4.6.37">4.6.37</a>. Session ID ........................................<a href="#page-86">86</a>
<a href="#section-4.6.38">4.6.38</a>. Statistics Timer ..................................<a href="#page-87">87</a>
<a href="#section-4.6.39">4.6.39</a>. Vendor Specific Payload ...........................<a href="#page-87">87</a>
<a href="#section-4.6.40">4.6.40</a>. WTP Board Data ....................................<a href="#page-88">88</a>
<a href="#section-4.6.41">4.6.41</a>. WTP Descriptor ....................................<a href="#page-89">89</a>
<a href="#section-4.6.42">4.6.42</a>. WTP Fallback ......................................<a href="#page-92">92</a>
<a href="#section-4.6.43">4.6.43</a>. WTP Frame Tunnel Mode .............................<a href="#page-92">92</a>
<a href="#section-4.6.44">4.6.44</a>. WTP MAC Type ......................................<a href="#page-93">93</a>
<a href="#section-4.6.45">4.6.45</a>. WTP Name ..........................................<a href="#page-94">94</a>
<a href="#section-4.6.46">4.6.46</a>. WTP Radio Statistics ..............................<a href="#page-94">94</a>
<a href="#section-4.6.47">4.6.47</a>. WTP Reboot Statistics .............................<a href="#page-96">96</a>
<a href="#section-4.6.48">4.6.48</a>. WTP Static IP Address Information .................<a href="#page-97">97</a>
<a href="#section-4.7">4.7</a>. CAPWAP Protocol Timers ....................................<a href="#page-98">98</a>
<span class="grey">Calhoun, et al. Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
<a href="#section-4.7.1">4.7.1</a>. ChangeStatePendingTimer ............................<a href="#page-98">98</a>
<a href="#section-4.7.2">4.7.2</a>. DataChannelKeepAlive ...............................<a href="#page-98">98</a>
<a href="#section-4.7.3">4.7.3</a>. DataChannelDeadInterval ............................<a href="#page-99">99</a>
<a href="#section-4.7.4">4.7.4</a>. DataCheckTimer .....................................<a href="#page-99">99</a>
<a href="#section-4.7.5">4.7.5</a>. DiscoveryInterval ..................................<a href="#page-99">99</a>
<a href="#section-4.7.6">4.7.6</a>. DTLSSessionDelete ..................................<a href="#page-99">99</a>
<a href="#section-4.7.7">4.7.7</a>. EchoInterval .......................................<a href="#page-99">99</a>
<a href="#section-4.7.8">4.7.8</a>. IdleTimeout ........................................<a href="#page-99">99</a>
<a href="#section-4.7.9">4.7.9</a>. ImageDataStartTimer ...............................<a href="#page-100">100</a>
<a href="#section-4.7.10">4.7.10</a>. MaxDiscoveryInterval .............................<a href="#page-100">100</a>
<a href="#section-4.7.11">4.7.11</a>. ReportInterval ...................................<a href="#page-100">100</a>
<a href="#section-4.7.12">4.7.12</a>. RetransmitInterval ...............................<a href="#page-100">100</a>
<a href="#section-4.7.13">4.7.13</a>. SilentInterval ...................................<a href="#page-100">100</a>
<a href="#section-4.7.14">4.7.14</a>. StatisticsTimer ..................................<a href="#page-100">100</a>
<a href="#section-4.7.15">4.7.15</a>. WaitDTLS .........................................<a href="#page-101">101</a>
<a href="#section-4.7.16">4.7.16</a>. WaitJoin .........................................<a href="#page-101">101</a>
<a href="#section-4.8">4.8</a>. CAPWAP Protocol Variables ................................<a href="#page-101">101</a>
<a href="#section-4.8.1">4.8.1</a>. AdminState ........................................<a href="#page-101">101</a>
<a href="#section-4.8.2">4.8.2</a>. DiscoveryCount ....................................<a href="#page-101">101</a>
<a href="#section-4.8.3">4.8.3</a>. FailedDTLSAuthFailCount ...........................<a href="#page-101">101</a>
<a href="#section-4.8.4">4.8.4</a>. FailedDTLSSessionCount ............................<a href="#page-101">101</a>
<a href="#section-4.8.5">4.8.5</a>. MaxDiscoveries ....................................<a href="#page-102">102</a>
<a href="#section-4.8.6">4.8.6</a>. MaxFailedDTLSSessionRetry .........................<a href="#page-102">102</a>
<a href="#section-4.8.7">4.8.7</a>. MaxRetransmit .....................................<a href="#page-102">102</a>
<a href="#section-4.8.8">4.8.8</a>. RetransmitCount ...................................<a href="#page-102">102</a>
<a href="#section-4.8.9">4.8.9</a>. WTPFallBack .......................................<a href="#page-102">102</a>
<a href="#section-4.9">4.9</a>. WTP Saved Variables ......................................<a href="#page-102">102</a>
<a href="#section-4.9.1">4.9.1</a>. AdminRebootCount ..................................<a href="#page-102">102</a>
<a href="#section-4.9.2">4.9.2</a>. FrameEncapType ....................................<a href="#page-102">102</a>
<a href="#section-4.9.3">4.9.3</a>. LastRebootReason ..................................<a href="#page-103">103</a>
<a href="#section-4.9.4">4.9.4</a>. MacType ...........................................<a href="#page-103">103</a>
<a href="#section-4.9.5">4.9.5</a>. PreferredACs ......................................<a href="#page-103">103</a>
<a href="#section-4.9.6">4.9.6</a>. RebootCount .......................................<a href="#page-103">103</a>
<a href="#section-4.9.7">4.9.7</a>. Static IP Address .................................<a href="#page-103">103</a>
<a href="#section-4.9.8">4.9.8</a>. WTPLinkFailureCount ...............................<a href="#page-103">103</a>
<a href="#section-4.9.9">4.9.9</a>. WTPLocation .......................................<a href="#page-103">103</a>
<a href="#section-4.9.10">4.9.10</a>. WTPName ..........................................<a href="#page-103">103</a>
<a href="#section-5">5</a>. CAPWAP Discovery Operations ...................................<a href="#page-103">103</a>
<a href="#section-5.1">5.1</a>. Discovery Request Message ................................<a href="#page-103">103</a>
<a href="#section-5.2">5.2</a>. Discovery Response Message ...............................<a href="#page-105">105</a>
<a href="#section-5.3">5.3</a>. Primary Discovery Request Message ........................<a href="#page-106">106</a>
<a href="#section-5.4">5.4</a>. Primary Discovery Response ...............................<a href="#page-107">107</a>
<a href="#section-6">6</a>. CAPWAP Join Operations ........................................<a href="#page-108">108</a>
<a href="#section-6.1">6.1</a>. Join Request .............................................<a href="#page-108">108</a>
<a href="#section-6.2">6.2</a>. Join Response ............................................<a href="#page-110">110</a>
<a href="#section-7">7</a>. Control Channel Management ....................................<a href="#page-111">111</a>
<a href="#section-7.1">7.1</a>. Echo Request .............................................<a href="#page-111">111</a>
<a href="#section-7.2">7.2</a>. Echo Response ............................................<a href="#page-112">112</a>
<span class="grey">Calhoun, et al. Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
<a href="#section-8">8</a>. WTP Configuration Management ..................................<a href="#page-112">112</a>
<a href="#section-8.1">8.1</a>. Configuration Consistency ................................<a href="#page-112">112</a>
<a href="#section-8.1.1">8.1.1</a>. Configuration Flexibility .........................<a href="#page-113">113</a>
<a href="#section-8.2">8.2</a>. Configuration Status Request .............................<a href="#page-114">114</a>
<a href="#section-8.3">8.3</a>. Configuration Status Response ............................<a href="#page-115">115</a>
<a href="#section-8.4">8.4</a>. Configuration Update Request .............................<a href="#page-116">116</a>
<a href="#section-8.5">8.5</a>. Configuration Update Response ............................<a href="#page-117">117</a>
<a href="#section-8.6">8.6</a>. Change State Event Request ...............................<a href="#page-117">117</a>
<a href="#section-8.7">8.7</a>. Change State Event Response ..............................<a href="#page-118">118</a>
<a href="#section-8.8">8.8</a>. Clear Configuration Request ..............................<a href="#page-119">119</a>
<a href="#section-8.9">8.9</a>. Clear Configuration Response .............................<a href="#page-119">119</a>
<a href="#section-9">9</a>. Device Management Operations ..................................<a href="#page-120">120</a>
<a href="#section-9.1">9.1</a>. Firmware Management ......................................<a href="#page-120">120</a>
<a href="#section-9.1.1">9.1.1</a>. Image Data Request ................................<a href="#page-124">124</a>
<a href="#section-9.1.2">9.1.2</a>. Image Data Response ...............................<a href="#page-125">125</a>
<a href="#section-9.2">9.2</a>. Reset Request ............................................<a href="#page-126">126</a>
<a href="#section-9.3">9.3</a>. Reset Response ...........................................<a href="#page-127">127</a>
<a href="#section-9.4">9.4</a>. WTP Event Request ........................................<a href="#page-127">127</a>
<a href="#section-9.5">9.5</a>. WTP Event Response .......................................<a href="#page-128">128</a>
<a href="#section-9.6">9.6</a>. Data Transfer ............................................<a href="#page-128">128</a>
<a href="#section-9.6.1">9.6.1</a>. Data Transfer Request .............................<a href="#page-130">130</a>
<a href="#section-9.6.2">9.6.2</a>. Data Transfer Response ............................<a href="#page-131">131</a>
<a href="#section-10">10</a>. Station Session Management ...................................<a href="#page-131">131</a>
<a href="#section-10.1">10.1</a>. Station Configuration Request ...........................<a href="#page-131">131</a>
<a href="#section-10.2">10.2</a>. Station Configuration Response ..........................<a href="#page-132">132</a>
<a href="#section-11">11</a>. NAT Considerations ...........................................<a href="#page-132">132</a>
<a href="#section-12">12</a>. Security Considerations ......................................<a href="#page-134">134</a>
<a href="#section-12.1">12.1</a>. CAPWAP Security .........................................<a href="#page-134">134</a>
<a href="#section-12.1.1">12.1.1</a>. Converting Protected Data into Unprotected Data ..135
12.1.2. Converting Unprotected Data into
Protected Data (Insertion) .......................<a href="#page-135">135</a>
<a href="#section-12.1.3">12.1.3</a>. Deletion of Protected Records ....................<a href="#page-135">135</a>
<a href="#section-12.1.4">12.1.4</a>. Insertion of Unprotected Records .................<a href="#page-135">135</a>
<a href="#section-12.1.5">12.1.5</a>. Use of MD5 .......................................<a href="#page-136">136</a>
<a href="#section-12.1.6">12.1.6</a>. CAPWAP Fragmentation .............................<a href="#page-136">136</a>
<a href="#section-12.2">12.2</a>. Session ID Security .....................................<a href="#page-136">136</a>
<a href="#section-12.3">12.3</a>. Discovery or DTLS Setup Attacks .........................<a href="#page-137">137</a>
<a href="#section-12.4">12.4</a>. Interference with a DTLS Session ........................<a href="#page-137">137</a>
<a href="#section-12.5">12.5</a>. CAPWAP Pre-Provisioning .................................<a href="#page-138">138</a>
<a href="#section-12.6">12.6</a>. Use of Pre-Shared Keys in CAPWAP ........................<a href="#page-139">139</a>
<a href="#section-12.7">12.7</a>. Use of Certificates in CAPWAP ...........................<a href="#page-140">140</a>
<a href="#section-12.8">12.8</a>. Use of MAC Address in CN Field ..........................<a href="#page-140">140</a>
<a href="#section-12.9">12.9</a>. AAA Security ............................................<a href="#page-141">141</a>
<a href="#section-12.10">12.10</a>. WTP Firmware ...........................................<a href="#page-141">141</a>
<a href="#section-13">13</a>. Operational Considerations ...................................<a href="#page-141">141</a>
<a href="#section-14">14</a>. Transport Considerations .....................................<a href="#page-142">142</a>
<a href="#section-15">15</a>. IANA Considerations ..........................................<a href="#page-143">143</a>
<a href="#section-15.1">15.1</a>. IPv4 Multicast Address ..................................<a href="#page-143">143</a>
<span class="grey">Calhoun, et al. Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
<a href="#section-15.2">15.2</a>. IPv6 Multicast Address ..................................<a href="#page-144">144</a>
<a href="#section-15.3">15.3</a>. UDP Port ................................................<a href="#page-144">144</a>
<a href="#section-15.4">15.4</a>. CAPWAP Message Types ....................................<a href="#page-144">144</a>
<a href="#section-15.5">15.5</a>. CAPWAP Header Flags .....................................<a href="#page-144">144</a>
<a href="#section-15.6">15.6</a>. CAPWAP Control Message Flags ............................<a href="#page-145">145</a>
<a href="#section-15.7">15.7</a>. CAPWAP Message Element Type .............................<a href="#page-145">145</a>
<a href="#section-15.8">15.8</a>. CAPWAP Wireless Binding Identifiers .....................<a href="#page-145">145</a>
<a href="#section-15.9">15.9</a>. AC Security Types .......................................<a href="#page-146">146</a>
<a href="#section-15.10">15.10</a>. AC DTLS Policy .........................................<a href="#page-146">146</a>
<a href="#section-15.11">15.11</a>. AC Information Type ....................................<a href="#page-146">146</a>
<a href="#section-15.12">15.12</a>. CAPWAP Transport Protocol Types ........................<a href="#page-146">146</a>
<a href="#section-15.13">15.13</a>. Data Transfer Type .....................................<a href="#page-147">147</a>
<a href="#section-15.14">15.14</a>. Data Transfer Mode .....................................<a href="#page-147">147</a>
<a href="#section-15.15">15.15</a>. Discovery Types ........................................<a href="#page-147">147</a>
<a href="#section-15.16">15.16</a>. ECN Support ............................................<a href="#page-148">148</a>
<a href="#section-15.17">15.17</a>. Radio Admin State ......................................<a href="#page-148">148</a>
<a href="#section-15.18">15.18</a>. Radio Operational State ................................<a href="#page-148">148</a>
<a href="#section-15.19">15.19</a>. Radio Failure Causes ...................................<a href="#page-148">148</a>
<a href="#section-15.20">15.20</a>. Result Code ............................................<a href="#page-149">149</a>
<a href="#section-15.21">15.21</a>. Returned Message Element Reason ........................<a href="#page-149">149</a>
<a href="#section-15.22">15.22</a>. WTP Board Data Type ....................................<a href="#page-149">149</a>
<a href="#section-15.23">15.23</a>. WTP Descriptor Type ....................................<a href="#page-149">149</a>
<a href="#section-15.24">15.24</a>. WTP Fallback Mode ......................................<a href="#page-150">150</a>
<a href="#section-15.25">15.25</a>. WTP Frame Tunnel Mode ..................................<a href="#page-150">150</a>
<a href="#section-15.26">15.26</a>. WTP MAC Type ...........................................<a href="#page-150">150</a>
<a href="#section-15.27">15.27</a>. WTP Radio Stats Failure Type ...........................<a href="#page-151">151</a>
<a href="#section-15.28">15.28</a>. WTP Reboot Stats Failure Type ..........................<a href="#page-151">151</a>
<a href="#section-16">16</a>. Acknowledgments ..............................................<a href="#page-151">151</a>
<a href="#section-17">17</a>. References ...................................................<a href="#page-151">151</a>
<a href="#section-17.1">17.1</a>. Normative References ....................................<a href="#page-151">151</a>
<a href="#section-17.2">17.2</a>. Informative References ..................................<a href="#page-153">153</a>
<span class="grey">Calhoun, et al. Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
This document describes the CAPWAP protocol, a standard,
interoperable protocol that enables an Access Controller (AC) to
manage a collection of Wireless Termination Points (WTPs). The
CAPWAP protocol is defined to be independent of Layer 2 (L2)
technology, and meets the objectives in "Objectives for Control and
Provisioning of Wireless Access Points (CAPWAP)" [<a href="./rfc4564" title=""Objectives for Control and Provisioning of Wireless Access Points (CAPWAP)"">RFC4564</a>].
The emergence of centralized IEEE 802.11 Wireless Local Area Network
(WLAN) architectures, in which simple IEEE 802.11 WTPs are managed by
an Access Controller (AC), suggested that a standards-based,
interoperable protocol could radically simplify the deployment and
management of wireless networks. WTPs require a set of dynamic
management and control functions related to their primary task of
connecting the wireless and wired mediums. Traditional protocols for
managing WTPs are either manual static configuration via HTTP,
proprietary Layer 2-specific or non-existent (if the WTPs are self-
contained). An IEEE 802.11 binding is defined in [<a href="./rfc5416" title=""Control And Provisioning of Wireless Access Points (CAPWAP) Protocol Binding for IEEE 802.11"">RFC5416</a>] to
support use of the CAPWAP protocol with IEEE 802.11 WLAN networks.
CAPWAP assumes a network configuration consisting of multiple WTPs
communicating via the Internet Protocol (IP) to an AC. WTPs are
viewed as remote radio frequency (RF) interfaces controlled by the
AC. The CAPWAP protocol supports two modes of operation: Split and
Local MAC (medium access control). In Split MAC mode, all L2
wireless data and management frames are encapsulated via the CAPWAP
protocol and exchanged between the AC and the WTP. As shown in
Figure 1, the wireless frames received from a mobile device, which is
referred to in this specification as a Station (STA), are directly
encapsulated by the WTP and forwarded to the AC.
+-+ wireless frames +-+
| |--------------------------------| |
| | +-+ | |
| |--------------| |---------------| |
| |wireless PHY/ | | CAPWAP | |
| | MAC sublayer | | | |
+-+ +-+ +-+
STA WTP AC
Figure 1: Representative CAPWAP Architecture for Split MAC
The Local MAC mode of operation allows for the data frames to be
either locally bridged or tunneled as 802.3 frames. The latter
implies that the WTP performs the 802.11 Integration function. In
either case, the L2 wireless management frames are processed locally
<span class="grey">Calhoun, et al. Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
by the WTP and then forwarded to the AC. Figure 2 shows the Local
MAC mode, in which a station transmits a wireless frame that is
encapsulated in an 802.3 frame and forwarded to the AC.
+-+wireless frames +-+ 802.3 frames +-+
| |----------------| |--------------| |
| | | | | |
| |----------------| |--------------| |
| |wireless PHY/ | | CAPWAP | |
| | MAC sublayer | | | |
+-+ +-+ +-+
STA WTP AC
Figure 2: Representative CAPWAP Architecture for Local MAC
Provisioning WTPs with security credentials and managing which WTPs
are authorized to provide service are traditionally handled by
proprietary solutions. Allowing these functions to be performed from
a centralized AC in an interoperable fashion increases manageability
and allows network operators to more tightly control their wireless
network infrastructure.
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. Goals</span>
The goals for the CAPWAP protocol are listed below:
1. To centralize the authentication and policy enforcement functions
for a wireless network. The AC may also provide centralized
bridging, forwarding, and encryption of user traffic.
Centralization of these functions will enable reduced cost and
higher efficiency by applying the capabilities of network
processing silicon to the wireless network, as in wired LANs.
2. To enable shifting of the higher-level protocol processing from
the WTP. This leaves the time-critical applications of wireless
control and access in the WTP, making efficient use of the
computing power available in WTPs, which are subject to severe
cost pressure.
3. To provide an extensible protocol that is not bound to a specific
wireless technology. Extensibility is provided via a generic
encapsulation and transport mechanism, enabling the CAPWAP
protocol to be applied to many access point types in the future,
via a specific wireless binding.
The CAPWAP protocol concerns itself solely with the interface between
the WTP and the AC. Inter-AC and station-to-AC communication are
strictly outside the scope of this document.
<span class="grey">Calhoun, et al. Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
<span class="h3"><a class="selflink" id="section-1.2" href="#section-1.2">1.2</a>. Conventions Used in This Document</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in <a href="./rfc2119">RFC 2119</a> [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
<span class="h3"><a class="selflink" id="section-1.3" href="#section-1.3">1.3</a>. Contributing Authors</span>
This section lists and acknowledges the authors of significant text
and concepts included in this specification.
The CAPWAP Working Group selected the Lightweight Access Point
Protocol (LWAPP) [<a href="#ref-LWAPP" title=""Lightweight Access Point Protocol"">LWAPP</a>] to be used as the basis of the CAPWAP
protocol specification. The following people are authors of the
LWAPP document:
Bob O'Hara
Email: bob.ohara@computer.org
Pat Calhoun, Cisco Systems, Inc.
170 West Tasman Drive, San Jose, CA 95134
Phone: +1 408-902-3240, Email: pcalhoun@cisco.com
Rohit Suri, Cisco Systems, Inc.
170 West Tasman Drive, San Jose, CA 95134
Phone: +1 408-853-5548, Email: rsuri@cisco.com
Nancy Cam Winget, Cisco Systems, Inc.
170 West Tasman Drive, San Jose, CA 95134
Phone: +1 408-853-0532, Email: ncamwing@cisco.com
Scott Kelly, Aruba Networks
1322 Crossman Ave, Sunnyvale, CA 94089
Phone: +1 408-754-8408, Email: skelly@arubanetworks.com
Michael Glenn Williams, Nokia, Inc.
313 Fairchild Drive, Mountain View, CA 94043
Phone: +1 650-714-7758, Email: Michael.G.Williams@Nokia.com
Sue Hares, Green Hills Software
825 Victors Way, Suite 100, Ann Arbor, MI 48108
Phone: +1 734 222 1610, Email: shares@ndzh.com
Datagram Transport Layer Security (DTLS) [<a href="./rfc4347" title=""Datagram Transport Layer Security"">RFC4347</a>] is used as the
security solution for the CAPWAP protocol. The following people are
authors of significant DTLS-related text included in this document:
<span class="grey">Calhoun, et al. Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
Scott Kelly, Aruba Networks
1322 Crossman Ave, Sunnyvale, CA 94089
Phone: +1 408-754-8408
Email: skelly@arubanetworks.com
Eric Rescorla, Network Resonance
2483 El Camino Real, #212,Palo Alto CA, 94303
Email: ekr@networkresonance.com
The concept of using DTLS to secure the CAPWAP protocol was part of
the Secure Light Access Point Protocol (SLAPP) proposal [<a href="#ref-SLAPP" title=""SLAPP: Secure Light Access Point Protocol"">SLAPP</a>]. The
following people are authors of the SLAPP proposal:
Partha Narasimhan, Aruba Networks
1322 Crossman Ave, Sunnyvale, CA 94089
Phone: +1 408-480-4716
Email: partha@arubanetworks.com
Dan Harkins
Trapeze Networks
5753 W. Las Positas Blvd, Pleasanton, CA 94588
Phone: +1-925-474-2212
EMail: dharkins@trpz.com
Subbu Ponnuswamy, Aruba Networks
1322 Crossman Ave, Sunnyvale, CA 94089
Phone: +1 408-754-1213
Email: subbu@arubanetworks.com
The following individuals contributed significant security-related
text to the document [<a href="./rfc5418" title=""Control And Provisioning for Wireless Access Points (CAPWAP) Threat Analysis for IEEE 802.11 Deployments"">RFC5418</a>]:
T. Charles Clancy, Laboratory for Telecommunications Sciences,
8080 Greenmead Drive, College Park, MD 20740
Phone: +1 240-373-5069, Email: clancy@ltsnet.net
Scott Kelly, Aruba Networks
1322 Crossman Ave, Sunnyvale, CA 94089
Phone: +1 408-754-8408, Email: scott@hyperthought.com
<span class="h3"><a class="selflink" id="section-1.4" href="#section-1.4">1.4</a>. Terminology</span>
Access Controller (AC): The network entity that provides WTP access
to the network infrastructure in the data plane, control plane,
management plane, or a combination therein.
<span class="grey">Calhoun, et al. Standards Track [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
CAPWAP Control Channel: A bi-directional flow defined by the AC IP
Address, WTP IP Address, AC control port, WTP control port, and the
transport-layer protocol (UDP or UDP-Lite) over which CAPWAP Control
packets are sent and received.
CAPWAP Data Channel: A bi-directional flow defined by the AC IP
Address, WTP IP Address, AC data port, WTP data port, and the
transport-layer protocol (UDP or UDP-Lite) over which CAPWAP Data
packets are sent and received.
Station (STA): A device that contains an interface to a wireless
medium (WM).
Wireless Termination Point (WTP): The physical or network entity that
contains an RF antenna and wireless Physical Layer (PHY) to transmit
and receive station traffic for wireless access networks.
This document uses additional terminology defined in [<a href="./rfc3753" title=""Mobility Related Terminology"">RFC3753</a>].
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Protocol Overview</span>
The CAPWAP protocol is a generic protocol defining AC and WTP control
and data plane communication via a CAPWAP protocol transport
mechanism. CAPWAP Control messages, and optionally CAPWAP Data
messages, are secured using Datagram Transport Layer Security (DTLS)
[<a href="./rfc4347" title=""Datagram Transport Layer Security"">RFC4347</a>]. DTLS is a standards-track IETF protocol based upon TLS.
The underlying security-related protocol mechanisms of TLS have been
successfully deployed for many years.
The CAPWAP protocol transport layer carries two types of payload,
CAPWAP Data messages and CAPWAP Control messages. CAPWAP Data
messages encapsulate forwarded wireless frames. CAPWAP protocol
Control messages are management messages exchanged between a WTP and
an AC. The CAPWAP Data and Control packets are sent over separate
UDP ports. Since both data and control packets can exceed the
Maximum Transmission Unit (MTU) length, the payload of a CAPWAP Data
or Control message can be fragmented. The fragmentation behavior is
defined in <a href="#section-3">Section 3</a>.
The CAPWAP Protocol begins with a Discovery phase. The WTPs send a
Discovery Request message, causing any Access Controller (AC)
receiving the message to respond with a Discovery Response message.
From the Discovery Response messages received, a WTP selects an AC
with which to establish a secure DTLS session. In order to establish
the secure DTLS connection, the WTP will need some amount of pre-
provisioning, which is specified in <a href="#section-12.5">Section 12.5</a>. CAPWAP protocol
messages will be fragmented to the maximum length discovered to be
supported by the network.
<span class="grey">Calhoun, et al. Standards Track [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
Once the WTP and the AC have completed DTLS session establishment, a
configuration exchange occurs in which both devices agree on version
information. During this exchange, the WTP may receive provisioning
settings. The WTP is then enabled for operation.
When the WTP and AC have completed the version and provision exchange
and the WTP is enabled, the CAPWAP protocol is used to encapsulate
the wireless data frames sent between the WTP and AC. The CAPWAP
protocol will fragment the L2 frames if the size of the encapsulated
wireless user data (Data) or protocol control (Management) frames
causes the resulting CAPWAP protocol packet to exceed the MTU
supported between the WTP and AC. Fragmented CAPWAP packets are
reassembled to reconstitute the original encapsulated payload. MTU
Discovery and Fragmentation are described in <a href="#section-3">Section 3</a>.
The CAPWAP protocol provides for the delivery of commands from the AC
to the WTP for the management of stations that are communicating with
the WTP. This may include the creation of local data structures in
the WTP for the stations and the collection of statistical
information about the communication between the WTP and the stations.
The CAPWAP protocol provides a mechanism for the AC to obtain
statistical information collected by the WTP.
The CAPWAP protocol provides for a keep-alive feature that preserves
the communication channel between the WTP and AC. If the AC fails to
appear alive, the WTP will try to discover a new AC.
<span class="h3"><a class="selflink" id="section-2.1" href="#section-2.1">2.1</a>. Wireless Binding Definition</span>
The CAPWAP protocol is independent of a specific WTP radio
technology, as well its associated wireless link layer protocol.
Elements of the CAPWAP protocol are designed to accommodate the
specific needs of each wireless technology in a standard way.
Implementation of the CAPWAP protocol for a particular wireless
technology MUST follow the binding requirements defined for that
technology.
When defining a binding for wireless technologies, the authors MUST
include any necessary definitions for technology-specific messages
and all technology-specific message elements for those messages. At
a minimum, a binding MUST provide:
1. The definition for a binding-specific Statistics message element,
carried in the WTP Event Request message.
2. A message element carried in the Station Configuration Request
message to configure station information on the WTP.
<span class="grey">Calhoun, et al. Standards Track [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
3. A WTP Radio Information message element carried in the Discovery,
Primary Discovery, and Join Request and Response messages,
indicating the binding-specific radio types supported at the WTP
and AC.
If technology-specific message elements are required for any of the
existing CAPWAP messages defined in this specification, they MUST
also be defined in the technology binding document.
The naming of binding-specific message elements MUST begin with the
name of the technology type, e.g., the binding for IEEE 802.11,
provided in [<a href="./rfc5416" title=""Control And Provisioning of Wireless Access Points (CAPWAP) Protocol Binding for IEEE 802.11"">RFC5416</a>], begins with "IEEE 802.11".
The CAPWAP binding concept MUST also be used in any future
specifications that add functionality to either the base CAPWAP
protocol specification, or any published CAPWAP binding
specification. A separate WTP Radio Information message element MUST
be created to properly advertise support for the specification. This
mechanism allows for future protocol extensibility, while providing
the necessary capabilities advertisement, through the WTP Radio
Information message element, to ensure WTP/AC interoperability.
<span class="h3"><a class="selflink" id="section-2.2" href="#section-2.2">2.2</a>. CAPWAP Session Establishment Overview</span>
This section describes the session establishment process message
exchanges between a CAPWAP WTP and AC. The annotated ladder diagram
shows the AC on the right, the WTP on the left, and assumes the use
of certificates for DTLS authentication. The CAPWAP protocol state
machine is described in detail in <a href="#section-2.3">Section 2.3</a>. Note that DTLS allows
certain messages to be aggregated into a single frame, which is
denoted via an asterisk in Figure 3.
============ ============
WTP AC
============ ============
[----------- begin optional discovery ------------]
Discover Request
------------------------------------>
Discover Response
<------------------------------------
[----------- end optional discovery ------------]
(-- begin DTLS handshake --)
ClientHello
------------------------------------>
<span class="grey">Calhoun, et al. Standards Track [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
HelloVerifyRequest (with cookie)
<------------------------------------
ClientHello (with cookie)
------------------------------------>
ServerHello,
Certificate,
ServerHelloDone*
<------------------------------------
(-- WTP callout for AC authorization --)
Certificate (optional),
ClientKeyExchange,
CertificateVerify (optional),
ChangeCipherSpec,
Finished*
------------------------------------>
(-- AC callout for WTP authorization --)
ChangeCipherSpec,
Finished*
<------------------------------------
(-- DTLS session is established now --)
Join Request
------------------------------------>
Join Response
<------------------------------------
[-- Join State Complete --]
(-- assume image is up to date --)
Configuration Status Request
------------------------------------>
Configuration Status Response
<------------------------------------
[-- Configure State Complete --]
Change State Event Request
------------------------------------>
Change State Event Response
<------------------------------------
[-- Data Check State Complete --]
<span class="grey">Calhoun, et al. Standards Track [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
(-- enter RUN state --)
:
:
Echo Request
------------------------------------>
Echo Response
<------------------------------------
:
:
Event Request
------------------------------------>
Event Response
<------------------------------------
:
:
Figure 3: CAPWAP Control Protocol Exchange
At the end of the illustrated CAPWAP message exchange, the AC and WTP
are securely exchanging CAPWAP Control messages. This illustration
is provided to clarify protocol operation, and does not include any
possible error conditions. <a href="#section-2.3">Section 2.3</a> provides a detailed
description of the corresponding state machine.
<span class="h3"><a class="selflink" id="section-2.3" href="#section-2.3">2.3</a>. CAPWAP State Machine Definition</span>
The following state diagram represents the lifecycle of a WTP-AC
session. Use of DTLS by the CAPWAP protocol results in the
juxtaposition of two nominally separate yet tightly bound state
machines. The DTLS and CAPWAP state machines are coupled through an
API consisting of commands (see <a href="#section-2.3.2.1">Section 2.3.2.1</a>) and notifications
(see <a href="#section-2.3.2.2">Section 2.3.2.2</a>). Certain transitions in the DTLS state machine
are triggered by commands from the CAPWAP state machine, while
certain transitions in the CAPWAP state machine are triggered by
notifications from the DTLS state machine.
<span class="grey">Calhoun, et al. Standards Track [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
/-------------------------------------\
| /-------------------------\|
| p| ||
| q+----------+ r +------------+ ||
| | Run |-->| Reset |-\||
| +----------+ +------------+ |||
n| o ^ ^ ^ s|||
+------------+--------/ | | |||
| Data Check | /-------/ | |||
+------------+<-------\ | | |||
| | | |||
/------------------+--------\ | |||
f| m| h| j v k| |||
+--------+ +-----------+ +--------------+|||
| Join |---->| Configure | | Image Data ||||
+--------+ n +-----------+ +--------------+|||
^ |g i| l| |||
| | \-------------------\ | |||
| \--------------------------------------\| | |||
\------------------------\ || | |||
/--------------<----------------+---------------\ || | |||
| /------------<----------------+-------------\ | || | |||
| | 4 |d t| | vv v vvv
| | +----------------+ +--------------+ +-----------+
| | | DTLS Setup | | DTLS Connect |-->| DTLS TD |
/-|-|---+----------------+ +--------------+ e +-----------+
| | | |$ ^ ^ |5 ^6 ^ ^ |w
v v v | | | | \-------\ | | |
| | | | | | \---------\ | | /-----------/ |
| | | | | \--\ | | | | |
| | | | | | | | | | |
| | | v 3| 1 |% # v | |a |b v
| | \->+------+-->+------+ +-----------+ +--------+
| | | Idle | | Disc | | Authorize | | Dead |
| | +------+<--+------+ +-----------+ +--------+
| | ^ 0^ 2 |!
| | | | | +-------+
*| |u | \---------+---| Start |
| | |@ | +-------+
| \->+---------+<------/
\--->| Sulking |
+---------+&
Figure 4: CAPWAP Integrated State Machine
The CAPWAP protocol state machine, depicted above, is used by both
the AC and the WTP. In cases where states are not shared (i.e., not
implemented in one or the other of the AC or WTP), this is explicitly
<span class="grey">Calhoun, et al. Standards Track [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
called out in the transition descriptions below. For every state
defined, only certain messages are permitted to be sent and received.
The CAPWAP Control message definitions specify the state(s) in which
each message is valid.
Since the WTP only communicates with a single AC, it only has a
single instance of the CAPWAP state machine. The state machine works
differently on the AC since it communicates with many WTPs. The AC
uses the concept of three threads. Note that the term thread used
here does not necessarily imply that implementers must use threads,
but it is one possible way of implementing the AC's state machine.
Listener Thread: The AC's Listener thread handles inbound DTLS
session establishment requests, through the DTLSListen command.
Upon creation, the Listener thread starts in the DTLS Setup state.
Once a DTLS session has been validated, which occurs when the
state machine enters the "Authorize" state, the Listener thread
creates a WTP session-specific Service thread and state context.
The state machine transitions in Figure 4 are represented by
numerals. It is necessary for the AC to protect itself against
various attacks that exist with non-authenticated frames. See
<a href="#section-12">Section 12</a> for more information.
Discovery Thread: The AC's Discovery thread is responsible for
receiving, and responding to, Discovery Request messages. The
state machine transitions in Figure 4 are represented by numerals.
Note that the Discovery thread does not maintain any per-WTP-
specific context information, and a single state context exists.
It is necessary for the AC to protect itself against various
attacks that exist with non-authenticated frames. See <a href="#section-12">Section 12</a>
for more information.
Service Thread: The AC's Service thread handles the per-WTP states,
and one such thread exists per-WTP connection. This thread is
created by the Listener thread when the Authorize state is
reached. When created, the Service thread inherits a copy of the
state machine context from the Listener thread. When
communication with the WTP is complete, the Service thread is
terminated and all associated resources are released. The state
machine transitions in Figure 4 are represented by alphabetic and
punctuation characters.
<span class="h4"><a class="selflink" id="section-2.3.1" href="#section-2.3.1">2.3.1</a>. CAPWAP Protocol State Transitions</span>
This section describes the various state transitions, and the events
that cause them. This section does not discuss interactions between
DTLS- and CAPWAP-specific states. Those interactions, and DTLS-
specific states and transitions, are discussed in <a href="#section-2.3.2">Section 2.3.2</a>.
<span class="grey">Calhoun, et al. Standards Track [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
Start to Idle (0): This transition occurs once device initialization
is complete.
WTP: This state transition is used to start the WTP's CAPWAP
state machine.
AC: The AC creates the Discovery and Listener threads and starts
the CAPWAP state machine.
Idle to Discovery (1): This transition occurs to support the CAPWAP
discovery process.
WTP: The WTP enters the Discovery state prior to transmitting the
first Discovery Request message (see <a href="#section-5.1">Section 5.1</a>). Upon
entering this state, the WTP sets the DiscoveryInterval
timer (see <a href="#section-4.7">Section 4.7</a>). The WTP resets the DiscoveryCount
counter to zero (0) (see <a href="#section-4.8">Section 4.8</a>). The WTP also clears
all information from ACs it may have received during a
previous Discovery phase.
AC: This state transition is executed by the AC's Discovery
thread, and occurs when a Discovery Request message is
received. The AC SHOULD respond with a Discovery Response
message (see <a href="#section-5.2">Section 5.2</a>).
Discovery to Discovery (#): In the Discovery state, the WTP
determines to which AC to connect.
WTP: This transition occurs when the DiscoveryInterval timer
expires. If the WTP is configured with a list of ACs, it
transmits a Discovery Request message to every AC from which
it has not received a Discovery Response message. For every
transition to this event, the WTP increments the
DiscoveryCount counter. See <a href="#section-5.1">Section 5.1</a> for more
information on how the WTP knows the ACs to which it should
transmit the Discovery Request messages. The WTP restarts
the DiscoveryInterval timer whenever it transmits Discovery
Request messages.
AC: This is an invalid state transition for the AC.
Discovery to Idle (2): This transition occurs on the AC's Discovery
thread when the Discovery processing is complete.
WTP: This is an invalid state transition for the WTP.
<span class="grey">Calhoun, et al. Standards Track [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
AC: This state transition is executed by the AC's Discovery
thread when it has transmitted the Discovery Response, in
response to a Discovery Request.
Discovery to Sulking (!): This transition occurs on a WTP when AC
Discovery fails.
WTP: The WTP enters this state when the DiscoveryInterval timer
expires and the DiscoveryCount variable is equal to the
MaxDiscoveries variable (see <a href="#section-4.8">Section 4.8</a>). Upon entering
this state, the WTP MUST start the SilentInterval timer.
While in the Sulking state, all received CAPWAP protocol
messages MUST be ignored.
AC: This is an invalid state transition for the AC.
Sulking to Idle (@): This transition occurs on a WTP when it must
restart the Discovery phase.
WTP: The WTP enters this state when the SilentInterval timer (see
<a href="#section-4.7">Section 4.7</a>) expires. The FailedDTLSSessionCount,
DiscoveryCount, and FailedDTLSAuthFailCount counters are
reset to zero.
AC: This is an invalid state transition for the AC.
Sulking to Sulking (&): The Sulking state provides the silent
period, minimizing the possibility for Denial-of-Service (DoS)
attacks.
WTP: All packets received from the AC while in the sulking state
are ignored.
AC: This is an invalid state transition for the AC.
Idle to DTLS Setup (3): This transition occurs to establish a secure
DTLS session with the peer.
WTP: The WTP initiates this transition by invoking the DTLSStart
command (see <a href="#section-2.3.2.1">Section 2.3.2.1</a>), which starts the DTLS session
establishment with the chosen AC and the WaitDTLS timer is
started (see <a href="#section-4.7">Section 4.7</a>). When the Discovery phase is
bypassed, it is assumed the WTP has locally configured ACs.
<span class="grey">Calhoun, et al. Standards Track [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
AC: Upon entering the Idle state from the Start state, the newly
created Listener thread automatically transitions to the
DTLS Setup and invokes the DTLSListen command (see
<a href="#section-2.3.2.1">Section 2.3.2.1</a>), and the WaitDTLS timer is started (see
<a href="#section-4.7">Section 4.7</a>).
Discovery to DTLS Setup (%): This transition occurs to establish a
secure DTLS session with the peer.
WTP: The WTP initiates this transition by invoking the DTLSStart
command (see <a href="#section-2.3.2.1">Section 2.3.2.1</a>), which starts the DTLS session
establishment with the chosen AC. The decision of to which
AC to connect is the result of the Discovery phase, which is
described in <a href="#section-3.3">Section 3.3</a>.
AC: This is an invalid state transition for the AC.
DTLS Setup to Idle ($): This transition occurs when the DTLS
connection setup fails.
WTP: The WTP initiates this state transition when it receives a
DTLSEstablishFail notification from DTLS (see
<a href="#section-2.3.2.2">Section 2.3.2.2</a>), and the FailedDTLSSessionCount or the
FailedDTLSAuthFailCount counter have not reached the value
of the MaxFailedDTLSSessionRetry variable (see <a href="#section-4.8">Section 4.8</a>).
This error notification aborts the secure DTLS session
establishment. When this notification is received, the
FailedDTLSSessionCount counter is incremented. This state
transition also occurs if the WaitDTLS timer has expired.
AC: This is an invalid state transition for the AC.
DTLS Setup to Sulking (*): This transition occurs when repeated
attempts to set up the DTLS connection have failed.
WTP: The WTP enters this state when the FailedDTLSSessionCount or
the FailedDTLSAuthFailCount counter reaches the value of the
MaxFailedDTLSSessionRetry variable (see <a href="#section-4.8">Section 4.8</a>). Upon
entering this state, the WTP MUST start the SilentInterval
timer. While in the Sulking state, all received CAPWAP and
DTLS protocol messages received MUST be ignored.
AC: This is an invalid state transition for the AC.
DTLS Setup to DTLS Setup (4): This transition occurs when the DTLS
Session failed to be established.
WTP: This is an invalid state transition for the WTP.
<span class="grey">Calhoun, et al. Standards Track [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
AC: The AC's Listener initiates this state transition when it
receives a DTLSEstablishFail notification from DTLS (see
<a href="#section-2.3.2.2">Section 2.3.2.2</a>). This error notification aborts the secure
DTLS session establishment. When this notification is
received, the FailedDTLSSessionCount counter is incremented.
The Listener thread then invokes the DTLSListen command (see
<a href="#section-2.3.2.1">Section 2.3.2.1</a>).
DTLS Setup to Authorize (5): This transition occurs when an incoming
DTLS session is being established, and the DTLS stack needs
authorization to proceed with the session establishment.
WTP: This state transition occurs when the WTP receives the
DTLSPeerAuthorize notification (see <a href="#section-2.3.2.2">Section 2.3.2.2</a>). Upon
entering this state, the WTP performs an authorization check
against the AC credentials. See <a href="#section-2.4.4">Section 2.4.4</a> for more
information on AC authorization.
AC: This state transition is handled by the AC's Listener thread
when the DTLS module initiates the DTLSPeerAuthorize
notification (see <a href="#section-2.3.2.2">Section 2.3.2.2</a>). The Listener thread
forks an instance of the Service thread, along with a copy
of the state context. Once created, the Service thread
performs an authorization check against the WTP credentials.
See <a href="#section-2.4.4">Section 2.4.4</a> for more information on WTP authorization.
Authorize to DTLS Setup (6): This transition is executed by the
Listener thread to enable it to listen for new incoming sessions.
WTP: This is an invalid state transition for the WTP.
AC: This state transition occurs when the AC's Listener thread
has created the WTP context and the Service thread. The
Listener thread then invokes the DTLSListen command (see
<a href="#section-2.3.2.1">Section 2.3.2.1</a>).
Authorize to DTLS Connect (a): This transition occurs to notify the
DTLS stack that the session should be established.
WTP: This state transition occurs when the WTP has successfully
authorized the AC's credentials (see <a href="#section-2.4.4">Section 2.4.4</a>). This
is done by invoking the DTLSAccept DTLS command (see
<a href="#section-2.3.2.1">Section 2.3.2.1</a>).
AC: This state transition occurs when the AC has successfully
authorized the WTP's credentials (see <a href="#section-2.4.4">Section 2.4.4</a>). This
is done by invoking the DTLSAccept DTLS command (see
<a href="#section-2.3.2.1">Section 2.3.2.1</a>).
<span class="grey">Calhoun, et al. Standards Track [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
Authorize to DTLS Teardown (b): This transition occurs to notify the
DTLS stack that the session should be aborted.
WTP: This state transition occurs when the WTP has been unable to
authorize the AC, using the AC credentials. The WTP then
aborts the DTLS session by invoking the DTLSAbortSession
command (see <a href="#section-2.3.2.1">Section 2.3.2.1</a>). This state transition also
occurs if the WaitDTLS timer has expired. The WTP starts
the DTLSSessionDelete timer (see <a href="#section-4.7.6">Section 4.7.6</a>).
AC: This state transition occurs when the AC has been unable to
authorize the WTP, using the WTP credentials. The AC then
aborts the DTLS session by invoking the DTLSAbortSession
command (see <a href="#section-2.3.2.1">Section 2.3.2.1</a>). This state transition also
occurs if the WaitDTLS timer has expired. The AC starts the
DTLSSessionDelete timer (see <a href="#section-4.7.6">Section 4.7.6</a>).
DTLS Connect to DTLS Teardown (c): This transition occurs when the
DTLS Session failed to be established.
WTP: This state transition occurs when the WTP receives either a
DTLSAborted or DTLSAuthenticateFail notification (see
<a href="#section-2.3.2.2">Section 2.3.2.2</a>), indicating that the DTLS session was not
successfully established. When this transition occurs due
to the DTLSAuthenticateFail notification, the
FailedDTLSAuthFailCount is incremented; otherwise, the
FailedDTLSSessionCount counter is incremented. This state
transition also occurs if the WaitDTLS timer has expired.
The WTP starts the DTLSSessionDelete timer (see
<a href="#section-4.7.6">Section 4.7.6</a>).
AC: This state transition occurs when the AC receives either a
DTLSAborted or DTLSAuthenticateFail notification (see
<a href="#section-2.3.2.2">Section 2.3.2.2</a>), indicating that the DTLS session was not
successfully established, and both of the
FailedDTLSAuthFailCount and FailedDTLSSessionCount counters
have not reached the value of the MaxFailedDTLSSessionRetry
variable (see <a href="#section-4.8">Section 4.8</a>). This state transition also
occurs if the WaitDTLS timer has expired. The AC starts the
DTLSSessionDelete timer (see <a href="#section-4.7.6">Section 4.7.6</a>).
DTLS Connect to Join (d): This transition occurs when the DTLS
Session is successfully established.
WTP: This state transition occurs when the WTP receives the
DTLSEstablished notification (see <a href="#section-2.3.2.2">Section 2.3.2.2</a>),
indicating that the DTLS session was successfully
established. When this notification is received, the
<span class="grey">Calhoun, et al. Standards Track [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
FailedDTLSSessionCount counter is set to zero. The WTP
enters the Join state by transmitting the Join Request to
the AC. The WTP stops the WaitDTLS timer.
AC: This state transition occurs when the AC receives the
DTLSEstablished notification (see <a href="#section-2.3.2.2">Section 2.3.2.2</a>),
indicating that the DTLS session was successfully
established. When this notification is received, the
FailedDTLSSessionCount counter is set to zero. The AC stops
the WaitDTLS timer, and starts the WaitJoin timer.
Join to DTLS Teardown (e): This transition occurs when the join
process has failed.
WTP: This state transition occurs when the WTP receives a Join
Response message with a Result Code message element
containing an error, or if the Image Identifier provided by
the AC in the Join Response message differs from the WTP's
currently running firmware version and the WTP has the
requested image in its non-volatile memory. This causes the
WTP to initiate the DTLSShutdown command (see
<a href="#section-2.3.2.1">Section 2.3.2.1</a>). This transition also occurs if the WTP
receives one of the following DTLS notifications:
DTLSAborted, DTLSReassemblyFailure, or DTLSPeerDisconnect.
The WTP starts the DTLSSessionDelete timer (see
<a href="#section-4.7.6">Section 4.7.6</a>).
AC: This state transition occurs either if the WaitJoin timer
expires or if the AC transmits a Join Response message with
a Result Code message element containing an error. This
causes the AC to initiate the DTLSShutdown command (see
<a href="#section-2.3.2.1">Section 2.3.2.1</a>). This transition also occurs if the AC
receives one of the following DTLS notifications:
DTLSAborted, DTLSReassemblyFailure, or DTLSPeerDisconnect.
The AC starts the DTLSSessionDelete timer (see
<a href="#section-4.7.6">Section 4.7.6</a>).
Join to Image Data (f): This state transition is used by the WTP and
the AC to download executable firmware.
WTP: The WTP enters the Image Data state when it receives a
successful Join Response message and determines that the
software version in the Image Identifier message element is
not the same as its currently running image. The WTP also
detects that the requested image version is not currently
available in the WTP's non-volatile storage (see <a href="#section-9.1">Section 9.1</a>
for a full description of the firmware download process).
The WTP initializes the EchoInterval timer (see
<span class="grey">Calhoun, et al. Standards Track [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
<a href="#section-4.7">Section 4.7</a>), and transmits the Image Data Request message
(see <a href="#section-9.1.1">Section 9.1.1</a>) requesting the start of the firmware
download.
AC: This state transition occurs when the AC receives the Image
Data Request message from the WTP, after having sent its
Join Response to the WTP. The AC stops the WaitJoin timer.
The AC MUST transmit an Image Data Response message (see
<a href="#section-9.1.2">Section 9.1.2</a>) to the WTP, which includes a portion of the
firmware.
Join to Configure (g): This state transition is used by the WTP and
the AC to exchange configuration information.
WTP: The WTP enters the Configure state when it receives a
successful Join Response message, and determines that the
included Image Identifier message element is the same as its
currently running image. The WTP transmits the
Configuration Status Request message (see <a href="#section-8.2">Section 8.2</a>) to
the AC with message elements describing its current
configuration.
AC: This state transition occurs when it receives the
Configuration Status Request message from the WTP (see
<a href="#section-8.2">Section 8.2</a>), which MAY include specific message elements to
override the WTP's configuration. The AC stops the WaitJoin
timer. The AC transmits the Configuration Status Response
message (see <a href="#section-8.3">Section 8.3</a>) and starts the
ChangeStatePendingTimer timer (see <a href="#section-4.7">Section 4.7</a>).
Configure to Reset (h): This state transition is used to reset the
connection either due to an error during the configuration phase,
or when the WTP determines it needs to reset in order for the new
configuration to take effect. The CAPWAP Reset command is used to
indicate to the peer that it will initiate a DTLS teardown.
WTP: The WTP enters the Reset state when it receives a
Configuration Status Response message indicating an error or
when it determines that a reset of the WTP is required, due
to the characteristics of a new configuration.
AC: The AC transitions to the Reset state when it receives a
Change State Event message from the WTP that contains an
error for which AC policy does not permit the WTP to provide
service. This state transition also occurs when the AC
ChangeStatePendingTimer timer expires.
<span class="grey">Calhoun, et al. Standards Track [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
Configure to DTLS Teardown (i): This transition occurs when the
configuration process aborts due to a DTLS error.
WTP: The WTP enters this state when it receives one of the
following DTLS notifications: DTLSAborted,
DTLSReassemblyFailure, or DTLSPeerDisconnect (see
<a href="#section-2.3.2.2">Section 2.3.2.2</a>). The WTP MAY tear down the DTLS session if
it receives frequent DTLSDecapFailure notifications. The
WTP starts the DTLSSessionDelete timer (see <a href="#section-4.7.6">Section 4.7.6</a>).
AC: The AC enters this state when it receives one of the
following DTLS notifications: DTLSAborted,
DTLSReassemblyFailure, or DTLSPeerDisconnect (see
<a href="#section-2.3.2.2">Section 2.3.2.2</a>). The AC MAY tear down the DTLS session if
it receives frequent DTLSDecapFailure notifications. The AC
starts the DTLSSessionDelete timer (see <a href="#section-4.7.6">Section 4.7.6</a>).
Image Data to Image Data (j): The Image Data state is used by the
WTP and the AC during the firmware download phase.
WTP: The WTP enters the Image Data state when it receives an
Image Data Response message indicating that the AC has more
data to send. This state transition also occurs when the
WTP receives the subsequent Image Data Requests, at which
time it resets the ImageDataStartTimer time to ensure it
receives the next expected Image Data Request from the AC.
This state transition can also occur when the WTP's
EchoInterval timer (see <a href="#section-4.7.7">Section 4.7.7</a>) expires, in which
case the WTP transmits an Echo Request message (see
<a href="#section-7.1">Section 7.1</a>), and resets its EchoInterval timer. The state
transition also occurs when the WTP receives an Echo
Response from the AC (see <a href="#section-7.2">Section 7.2</a>).
AC: This state transition occurs when the AC receives the Image
Data Response message from the WTP while already in the
Image Data state. This state transition also occurs when
the AC receives an Echo Request (see <a href="#section-7.1">Section 7.1</a>) from the
WTP, in which case it responds with an Echo Response (see
<a href="#section-7.2">Section 7.2</a>), and resets its EchoInterval timer (see
<a href="#section-4.7.7">Section 4.7.7</a>).
<span class="grey">Calhoun, et al. Standards Track [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
Image Data to Reset (k): This state transition is used to reset the
DTLS connection prior to restarting the WTP after an image
download.
WTP: When an image download completes, or if the
ImageDataStartTimer timer expires, the WTP enters the Reset
state. The WTP MAY also transition to this state upon
receiving an Image Data Response message from the AC (see
<a href="#section-9.1.2">Section 9.1.2</a>) indicating a failure.
AC: The AC enters the Reset state either when the image transfer
has successfully completed or an error occurs during the
image download process.
Image Data to DTLS Teardown (l): This transition occurs when the
firmware download process aborts due to a DTLS error.
WTP: The WTP enters this state when it receives one of the
following DTLS notifications: DTLSAborted,
DTLSReassemblyFailure, or DTLSPeerDisconnect (see
<a href="#section-2.3.2.2">Section 2.3.2.2</a>). The WTP MAY tear down the DTLS session if
it receives frequent DTLSDecapFailure notifications. The
WTP starts the DTLSSessionDelete timer (see <a href="#section-4.7.6">Section 4.7.6</a>).
AC: The AC enters this state when it receives one of the
following DTLS notifications: DTLSAborted,
DTLSReassemblyFailure, or DTLSPeerDisconnect (see
<a href="#section-2.3.2.2">Section 2.3.2.2</a>). The AC MAY tear down the DTLS session if
it receives frequent DTLSDecapFailure notifications. The AC
starts the DTLSSessionDelete timer (see <a href="#section-4.7.6">Section 4.7.6</a>).
Configure to Data Check (m): This state transition occurs when the
WTP and AC confirm the configuration.
WTP: The WTP enters this state when it receives a successful
Configuration Status Response message from the AC. The WTP
transmits the Change State Event Request message (see
<a href="#section-8.6">Section 8.6</a>).
AC: This state transition occurs when the AC receives the Change
State Event Request message (see <a href="#section-8.6">Section 8.6</a>) from the WTP.
The AC responds with a Change State Event Response message
(see <a href="#section-8.7">Section 8.7</a>). The AC MUST start the DataCheckTimer
timer and stops the ChangeStatePendingTimer timer (see
<a href="#section-4.7">Section 4.7</a>).
Data Check to DTLS Teardown (n): This transition occurs when the WTP
does not complete the Data Check exchange.
<span class="grey">Calhoun, et al. Standards Track [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
WTP: This state transition occurs if the WTP does not receive the
Change State Event Response message before a CAPWAP
retransmission timeout occurs. The WTP also transitions to
this state if the underlying reliable transport's
RetransmitCount counter has reached the MaxRetransmit
variable (see <a href="#section-4.7">Section 4.7</a>). The WTP starts the
DTLSSessionDelete timer (see <a href="#section-4.7.6">Section 4.7.6</a>).
AC: The AC enters this state when the DataCheckTimer timer
expires (see <a href="#section-4.7">Section 4.7</a>). The AC starts the
DTLSSessionDelete timer (see <a href="#section-4.7.6">Section 4.7.6</a>).
Data Check to Run (o): This state transition occurs when the linkage
between the control and data channels is established, causing the
WTP and AC to enter their normal state of operation.
WTP: The WTP enters this state when it receives a successful
Change State Event Response message from the AC. The WTP
initiates the data channel, which MAY require the
establishment of a DTLS session, starts the
DataChannelKeepAlive timer (see <a href="#section-4.7.2">Section 4.7.2</a>) and transmits
a Data Channel Keep-Alive packet (see <a href="#section-4.4.1">Section 4.4.1</a>). The
WTP then starts the EchoInterval timer and
DataChannelDeadInterval timer (see <a href="#section-4.7">Section 4.7</a>).
AC: This state transition occurs when the AC receives the Data
Channel Keep-Alive packet (see <a href="#section-4.4.1">Section 4.4.1</a>), with a
Session ID message element matching that included by the WTP
in the Join Request message. The AC disables the
DataCheckTimer timer. Note that if AC policy is to require
the data channel to be encrypted, this process would also
require the establishment of a data channel DTLS session.
Upon receiving the Data Channel Keep-Alive packet, the AC
transmits its own Data Channel Keep Alive packet.
Run to DTLS Teardown (p): This state transition occurs when an error
has occurred in the DTLS stack, causing the DTLS session to be
torn down.
WTP: The WTP enters this state when it receives one of the
following DTLS notifications: DTLSAborted,
DTLSReassemblyFailure, or DTLSPeerDisconnect (see
<a href="#section-2.3.2.2">Section 2.3.2.2</a>). The WTP MAY tear down the DTLS session if
it receives frequent DTLSDecapFailure notifications. The
WTP also transitions to this state if the underlying
reliable transport's RetransmitCount counter has reached the
MaxRetransmit variable (see <a href="#section-4.7">Section 4.7</a>). The WTP starts
the DTLSSessionDelete timer (see <a href="#section-4.7.6">Section 4.7.6</a>).
<span class="grey">Calhoun, et al. Standards Track [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
AC: The AC enters this state when it receives one of the
following DTLS notifications: DTLSAborted,
DTLSReassemblyFailure, or DTLSPeerDisconnect (see
<a href="#section-2.3.2.2">Section 2.3.2.2</a>). The AC MAY tear down the DTLS session if
it receives frequent DTLSDecapFailure notifications. The AC
transitions to this state if the underlying reliable
transport's RetransmitCount counter has reached the
MaxRetransmit variable (see <a href="#section-4.7">Section 4.7</a>). This state
transition also occurs when the AC's EchoInterval timer (see
<a href="#section-4.7.7">Section 4.7.7</a>) expires. The AC starts the DTLSSessionDelete
timer (see <a href="#section-4.7.6">Section 4.7.6</a>).
Run to Run (q): This is the normal state of operation.
WTP: This is the WTP's normal state of operation. The WTP resets
its EchoInterval timer whenever it transmits a request to
the AC. There are many events that result in this state
transition:
Configuration Update: The WTP receives a Configuration
Update Request message (see <a href="#section-8.4">Section 8.4</a>). The WTP
MUST respond with a Configuration Update Response
message (see <a href="#section-8.5">Section 8.5</a>).
Change State Event: The WTP receives a Change State Event
Response message, or determines that it must initiate
a Change State Event Request message, as a result of a
failure or change in the state of a radio.
Echo Request: The WTP sends an Echo Request message
(<a href="#section-7.1">Section 7.1</a>) or receives the corresponding Echo
Response message, (see <a href="#section-7.2">Section 7.2</a>) from the AC. When
the WTP receives the Echo Response, it resets its
EchoInterval timer (see <a href="#section-4.7.7">Section 4.7.7</a>).
Clear Config Request: The WTP receives a Clear
Configuration Request message (see <a href="#section-8.8">Section 8.8</a>) and
MUST generate a corresponding Clear Configuration
Response message (see <a href="#section-8.9">Section 8.9</a>). The WTP MUST
reset its configuration back to manufacturer defaults.
WTP Event: The WTP sends a WTP Event Request message,
delivering information to the AC (see <a href="#section-9.4">Section 9.4</a>).
The WTP receives a WTP Event Response message from the
AC (see <a href="#section-9.5">Section 9.5</a>).
<span class="grey">Calhoun, et al. Standards Track [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
Data Transfer: The WTP sends a Data Transfer Request or
Data Transfer Response message to the AC (see
<a href="#section-9.6">Section 9.6</a>). The WTP receives a Data Transfer
Request or Data Transfer Response message from the AC
(see <a href="#section-9.6">Section 9.6</a>). Upon receipt of a Data Transfer
Request, the WTP transmits a Data Transfer Response to
the AC.
Station Configuration Request: The WTP receives a Station
Configuration Request message (see <a href="#section-10.1">Section 10.1</a>), to
which it MUST respond with a Station Configuration
Response message (see <a href="#section-10.2">Section 10.2</a>).
AC: This is the AC's normal state of operation. Note that the
receipt of any Request from the WTP causes the AC to reset
its EchoInterval timer (see <a href="#section-4.7.7">Section 4.7.7</a>).
Configuration Update: The AC sends a Configuration Update
Request message (see <a href="#section-8.4">Section 8.4</a>) to the WTP to update
its configuration. The AC receives a Configuration
Update Response message (see <a href="#section-8.5">Section 8.5</a>) from the
WTP.
Change State Event: The AC receives a Change State Event
Request message (see <a href="#section-8.6">Section 8.6</a>), to which it MUST
respond with the Change State Event Response message
(see <a href="#section-8.7">Section 8.7</a>).
Echo Request: The AC receives an Echo Request message (see
<a href="#section-7.1">Section 7.1</a>), to which it MUST respond with an Echo
Response message (see <a href="#section-7.2">Section 7.2</a>).
Clear Config Response: The AC sends a Clear Configuration
Request message (see <a href="#section-8.8">Section 8.8</a>) to the WTP to clear
its configuration. The AC receives a Clear
Configuration Response message from the WTP (see
<a href="#section-8.9">Section 8.9</a>).
WTP Event: The AC receives a WTP Event Request message from
the WTP (see <a href="#section-9.4">Section 9.4</a>) and MUST generate a
corresponding WTP Event Response message (see
<a href="#section-9.5">Section 9.5</a>).
Data Transfer: The AC sends a Data Transfer Request or Data
Transfer Response message to the WTP (see
<a href="#section-9.6">Section 9.6</a>). The AC receives a Data Transfer Request
<span class="grey">Calhoun, et al. Standards Track [Page 29]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-30" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
or Data Transfer Response message from the WTP (see
<a href="#section-9.6">Section 9.6</a>). Upon receipt of a Data Transfer
Request, the AC transmits a Data Transfer Response to
the WTP.
Station Configuration Request: The AC sends a Station
Configuration Request message (see <a href="#section-10.1">Section 10.1</a>) or
receives the corresponding Station Configuration
Response message (see <a href="#section-10.2">Section 10.2</a>) from the WTP.
Run to Reset (r): This state transition is used when either the AC
or WTP tears down the connection. This may occur as part of
normal operation, or due to error conditions.
WTP: The WTP enters the Reset state when it receives a Reset
Request message from the AC.
AC: The AC enters the Reset state when it transmits a Reset
Request message to the WTP.
Reset to DTLS Teardown (s): This transition occurs when the CAPWAP
reset is complete to terminate the DTLS session.
WTP: This state transition occurs when the WTP transmits a Reset
Response message. The WTP does not invoke the DTLSShutdown
command (see <a href="#section-2.3.2.1">Section 2.3.2.1</a>). The WTP starts the
DTLSSessionDelete timer (see <a href="#section-4.7.6">Section 4.7.6</a>).
AC: This state transition occurs when the AC receives a Reset
Response message. This causes the AC to initiate the
DTLSShutdown command (see <a href="#section-2.3.2.1">Section 2.3.2.1</a>). The AC starts
the DTLSSessionDelete timer (see <a href="#section-4.7.6">Section 4.7.6</a>).
DTLS Teardown to Idle (t): This transition occurs when the DTLS
session has been shut down.
WTP: This state transition occurs when the WTP has successfully
cleaned up all resources associated with the control plane
DTLS session, or if the DTLSSessionDelete timer (see
<a href="#section-4.7.6">Section 4.7.6</a>) expires. The data plane DTLS session is also
shut down, and all resources released, if a DTLS session was
established for the data plane. Any timers set for the
current instance of the state machine are also cleared.
AC: This is an invalid state transition for the AC.
<span class="grey">Calhoun, et al. Standards Track [Page 30]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-31" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
DTLS Teardown to Sulking (u): This transition occurs when repeated
attempts to setup the DTLS connection have failed.
WTP: The WTP enters this state when the FailedDTLSSessionCount or
the FailedDTLSAuthFailCount counter reaches the value of the
MaxFailedDTLSSessionRetry variable (see <a href="#section-4.8">Section 4.8</a>). Upon
entering this state, the WTP MUST start the SilentInterval
timer. While in the Sulking state, all received CAPWAP and
DTLS protocol messages received MUST be ignored.
AC: This is an invalid state transition for the AC.
DTLS Teardown to Dead (w): This transition occurs when the DTLS
session has been shut down.
WTP: This is an invalid state transition for the WTP.
AC: This state transition occurs when the AC has successfully
cleaned up all resources associated with the control plane
DTLS session , or if the DTLSSessionDelete timer (see
<a href="#section-4.7.6">Section 4.7.6</a>) expires. The data plane DTLS session is also
shut down, and all resources released, if a DTLS session was
established for the data plane. Any timers set for the
current instance of the state machine are also cleared. The
AC's Service thread is terminated.
<span class="h4"><a class="selflink" id="section-2.3.2" href="#section-2.3.2">2.3.2</a>. CAPWAP/DTLS Interface</span>
This section describes the DTLS Commands used by CAPWAP, and the
notifications received from DTLS to the CAPWAP protocol stack.
<span class="h5"><a class="selflink" id="section-2.3.2.1" href="#section-2.3.2.1">2.3.2.1</a>. CAPWAP to DTLS Commands</span>
Six commands are defined for the CAPWAP to DTLS API. These
"commands" are conceptual, and may be implemented as one or more
function calls. This API definition is provided to clarify
interactions between the DTLS and CAPWAP components of the integrated
CAPWAP state machine.
Below is a list of the minimal command APIs:
o DTLSStart is sent to the DTLS component to cause a DTLS session to
be established. Upon invoking the DTLSStart command, the WaitDTLS
timer is started. The WTP initiates this DTLS command, as the AC
does not initiate DTLS sessions.
o DTLSListen is sent to the DTLS component to allow the DTLS
component to listen for incoming DTLS session requests.
<span class="grey">Calhoun, et al. Standards Track [Page 31]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-32" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
o DTLSAccept is sent to the DTLS component to allow the DTLS session
establishment to continue successfully.
o DTLSAbortSession is sent to the DTLS component to cause the
session that is in the process of being established to be aborted.
This command is also sent when the WaitDTLS timer expires. When
this command is executed, the FailedDTLSSessionCount counter is
incremented.
o DTLSShutdown is sent to the DTLS component to cause session
teardown.
o DTLSMtuUpdate is sent by the CAPWAP component to modify the MTU
size used by the DTLS component. See <a href="#section-3.5">Section 3.5</a> for more
information on MTU Discovery. The default size is 1468 bytes.
<span class="h5"><a class="selflink" id="section-2.3.2.2" href="#section-2.3.2.2">2.3.2.2</a>. DTLS to CAPWAP Notifications</span>
DTLS notifications are defined for the DTLS to CAPWAP API. These
"notifications" are conceptual and may be implemented in numerous
ways (e.g., as function return values). This API definition is
provided to clarify interactions between the DTLS and CAPWAP
components of the integrated CAPWAP state machine. It is important
to note that the notifications listed below MAY cause the CAPWAP
state machine to jump from one state to another using a state
transition not listed in <a href="#section-2.3.1">Section 2.3.1</a>. When a notification listed
below occurs, the target CAPWAP state shown in Figure 4 becomes the
current state.
Below is a list of the API notifications:
o DTLSPeerAuthorize is sent to the CAPWAP component during DTLS
session establishment once the peer's identity has been received.
This notification MAY be used by the CAPWAP component to authorize
the session, based on the peer's identity. The authorization
process will lead to the CAPWAP component initiating either the
DTLSAccept or DTLSAbortSession commands.
o DTLSEstablished is sent to the CAPWAP component to indicate that a
secure channel now exists, using the parameters provided during
the DTLS initialization process. When this notification is
received, the FailedDTLSSessionCount counter is reset to zero.
When this notification is received, the WaitDTLS timer is stopped.
o DTLSEstablishFail is sent when the DTLS session establishment has
failed, either due to a local error or due to the peer rejecting
the session establishment. When this notification is received,
the FailedDTLSSessionCount counter is incremented.
<span class="grey">Calhoun, et al. Standards Track [Page 32]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-33" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
o DTLSAuthenticateFail is sent when DTLS session establishment has
failed due to an authentication error. When this notification is
received, the FailedDTLSAuthFailCount counter is incremented.
o DTLSAborted is sent to the CAPWAP component to indicate that
session abort (as requested by CAPWAP) is complete; this occurs to
confirm a DTLS session abort or when the WaitDTLS timer expires.
When this notification is received, the WaitDTLS timer is stopped.
o DTLSReassemblyFailure MAY be sent to the CAPWAP component to
indicate DTLS fragment reassembly failure.
o DTLSDecapFailure MAY be sent to the CAPWAP module to indicate a
decapsulation failure. DTLSDecapFailure MAY be sent to the CAPWAP
module to indicate an encryption/authentication failure. This
notification is intended for informative purposes only, and is not
intended to cause a change in the CAPWAP state machine (see
<a href="#section-12.4">Section 12.4</a>).
o DTLSPeerDisconnect is sent to the CAPWAP component to indicate the
DTLS session has been torn down. Note that this notification is
only received if the DTLS session has been established.
<span class="h3"><a class="selflink" id="section-2.4" href="#section-2.4">2.4</a>. Use of DTLS in the CAPWAP Protocol</span>
DTLS is used as a tightly integrated, secure wrapper for the CAPWAP
protocol. In this document, DTLS and CAPWAP are discussed as
nominally distinct entities; however, they are very closely coupled,
and may even be implemented inseparably. Since there are DTLS
library implementations currently available, and since security
protocols (e.g., IPsec, TLS) are often implemented in widely
available acceleration hardware, it is both convenient and forward-
looking to maintain a modular distinction in this document.
This section describes a detailed walk-through of the interactions
between the DTLS module and the CAPWAP module, via 'commands' (CAPWAP
to DTLS) and 'notifications' (DTLS to CAPWAP) as they would be
encountered during the normal course of operation.
<span class="h4"><a class="selflink" id="section-2.4.1" href="#section-2.4.1">2.4.1</a>. DTLS Handshake Processing</span>
Details of the DTLS handshake process are specified in [<a href="./rfc4347" title=""Datagram Transport Layer Security"">RFC4347</a>].
This section describes the interactions between the DTLS session
establishment process and the CAPWAP protocol. Note that the
conceptual DTLS state is shown below to help understand the point at
which the DTLS states transition. In the normal case, the DTLS
handshake will proceed as shown in Figure 5. (NOTE: this example
uses certificates, but pre-shared keys are also supported.)
<span class="grey">Calhoun, et al. Standards Track [Page 33]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-34" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
============ ============
WTP AC
============ ============
ClientHello ------>
<------ HelloVerifyRequest
(with cookie)
ClientHello ------>
(with cookie)
<------ ServerHello
<------ Certificate
<------ ServerHelloDone
(WTP callout for AC authorization
occurs in CAPWAP Auth state)
Certificate*
ClientKeyExchange
CertificateVerify*
ChangeCipherSpec
Finished ------>
(AC callout for WTP authorization
occurs in CAPWAP Auth state)
ChangeCipherSpec
<------ Finished
Figure 5: DTLS Handshake
DTLS, as specified, provides its own retransmit timers with an
exponential back-off. [<a href="./rfc4347" title=""Datagram Transport Layer Security"">RFC4347</a>] does not specify how long
retransmissions should continue. Consequently, timing out incomplete
DTLS handshakes is entirely the responsibility of the CAPWAP module.
The DTLS implementation used by CAPWAP MUST support TLS Session
Resumption. Session resumption is typically used to establish the
DTLS session used for the data channel. Since the data channel uses
different port numbers than the control channel, the DTLS
implementation on the WTP MUST provide an interface that allows the
CAPWAP module to request session resumption despite the use of the
different port numbers (TLS implementations usually attempt session
resumption only when connecting to the same IP address and port
number). Note that session resumption is not guaranteed to occur,
and a full DTLS handshake may occur instead.
<span class="grey">Calhoun, et al. Standards Track [Page 34]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-35" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
The DTLS implementation used by CAPWAP MUST use replay detection, per
<a href="./rfc4347#section-3.3">Section 3.3 of [RFC4347]</a>. Since the CAPWAP protocol handles
retransmissions by re-encrypting lost frames, any duplicate DTLS
frames are either unintentional or malicious and should be silently
discarded.
<span class="h4"><a class="selflink" id="section-2.4.2" href="#section-2.4.2">2.4.2</a>. DTLS Session Establishment</span>
The WTP, either through the Discovery process or through pre-
configuration, determines to which AC to connect. The WTP uses the
DTLSStart command to request that a secure connection be established
to the selected AC. Prior to initiation of the DTLS handshake, the
WTP sets the WaitDTLS timer. Upon invoking the DTLSStart or
DTLSListen commands, the WTP and AC, respectively, set the WaitDTLS
timer. If the DTLSEstablished notification is not received prior to
timer expiration, the DTLS session is aborted by issuing the
DTLSAbortSession DTLS command. This notification causes the CAPWAP
module to transition to the Idle state. Upon receiving a
DTLSEstablished notification, the WaitDTLS timer is deactivated.
<span class="h4"><a class="selflink" id="section-2.4.3" href="#section-2.4.3">2.4.3</a>. DTLS Error Handling</span>
If the AC or WTP does not respond to any DTLS handshake messages sent
by its peer, the DTLS specification calls for the message to be
retransmitted. Note that during the handshake, when both the AC and
the WTP are expecting additional handshake messages, they both
retransmit if an expected message has not been received (note that
retransmissions for CAPWAP Control messages work differently: all
CAPWAP Control messages are either requests or responses, and the
peer who sent the request is responsible for retransmissions).
If the WTP or the AC does not receive an expected DTLS handshake
message despite of retransmissions, the WaitDTLS timer will
eventually expire, and the session will be terminated. This can
happen if communication between the peers has completely failed, or
if one of the peers sent a DTLS Alert message that was lost in
transit (DTLS does not retransmit Alert messages).
If a cookie fails to validate, this could represent a WTP error, or
it could represent a DoS attack. Hence, AC resource utilization
SHOULD be minimized. The AC MAY log a message indicating the
failure, and SHOULD treat the message as though no cookie were
present.
Since DTLS Handshake messages are potentially larger than the maximum
record size, DTLS supports fragmenting of Handshake messages across
multiple records. There are several potential causes of re-assembly
<span class="grey">Calhoun, et al. Standards Track [Page 35]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-36" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
errors, including overlapping and/or lost fragments. The DTLS
component MUST send a DTLSReassemblyFailure notification to the
CAPWAP component. Whether precise information is given along with
notification is an implementation issue, and hence is beyond the
scope of this document. Upon receipt of such an error, the CAPWAP
component SHOULD log an appropriate error message. Whether
processing continues or the DTLS session is terminated is
implementation dependent.
DTLS decapsulation errors consist of three types: decryption errors,
authentication errors, and malformed DTLS record headers. Since DTLS
authenticates the data prior to encapsulation, if decryption fails,
it is difficult to detect this without first attempting to
authenticate the packet. If authentication fails, a decryption error
is also likely, but not guaranteed. Rather than attempt to derive
(and require the implementation of) algorithms for detecting
decryption failures, decryption failures are reported as
authentication failures. The DTLS component MUST provide a
DTLSDecapFailure notification to the CAPWAP component when such
errors occur. If a malformed DTLS record header is detected, the
packets SHOULD be silently discarded, and the receiver MAY log an
error message.
There is currently only one encapsulation error defined: MTU
exceeded. As part of DTLS session establishment, the CAPWAP
component informs the DTLS component of the MTU size. This may be
dynamically modified at any time when the CAPWAP component sends the
DTLSMtuUpdate command to the DTLS component (see <a href="#section-2.3.2.1">Section 2.3.2.1</a>).
The value provided to the DTLS stack is the result of the MTU
Discovery process, which is described in <a href="#section-3.5">Section 3.5</a>. The DTLS
component returns this notification to the CAPWAP component whenever
a transmission request will result in a packet that exceeds the MTU.
<span class="h4"><a class="selflink" id="section-2.4.4" href="#section-2.4.4">2.4.4</a>. DTLS Endpoint Authentication and Authorization</span>
DTLS supports endpoint authentication with certificates or pre-shared
keys. The TLS algorithm suites for each endpoint authentication
method are described below.
<span class="h5"><a class="selflink" id="section-2.4.4.1" href="#section-2.4.4.1">2.4.4.1</a>. Authenticating with Certificates</span>
CAPWAP implementations only use cipher suites that are recommended
for use with DTLS, see [<a href="#ref-DTLS-DESIGN" title=""The Design and Implementation of Datagram TLS"">DTLS-DESIGN</a>]. At present, the following
algorithms MUST be supported when using certificates for CAPWAP
authentication:
o TLS_RSA_WITH_AES_128_CBC_SHA [<a href="./rfc5246" title=""The Transport Layer Security (TLS) Protocol Version 1.2"">RFC5246</a>]
<span class="grey">Calhoun, et al. Standards Track [Page 36]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-37" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
The following algorithms SHOULD be supported when using certificates:
o TLS_DHE_RSA_WITH_AES_128_CBC_SHA [<a href="./rfc5246" title=""The Transport Layer Security (TLS) Protocol Version 1.2"">RFC5246</a>]
The following algorithms MAY be supported when using certificates:
o TLS_RSA_WITH_AES_256_CBC_SHA [<a href="./rfc5246" title=""The Transport Layer Security (TLS) Protocol Version 1.2"">RFC5246</a>]
o TLS_DHE_RSA_WITH_AES_256_CBC_SHA [<a href="./rfc5246" title=""The Transport Layer Security (TLS) Protocol Version 1.2"">RFC5246</a>]
Additional ciphers MAY be defined in subsequent CAPWAP
specifications.
<span class="h5"><a class="selflink" id="section-2.4.4.2" href="#section-2.4.4.2">2.4.4.2</a>. Authenticating with Pre-Shared Keys</span>
Pre-shared keys present significant challenges from a security
perspective, and for that reason, their use is strongly discouraged.
Several methods for authenticating with pre-shared keys are defined
[<a href="./rfc4279" title=""Pre-Shared Key Ciphersuites for Transport Layer Security (TLS)"">RFC4279</a>], and we focus on the following two:
o Pre-Shared Key (PSK) key exchange algorithm - simplest method,
ciphersuites use only symmetric key algorithms.
o DHE_PSK key exchange algorithm - use a PSK to authenticate a
Diffie-Hellman exchange. These ciphersuites give some additional
protection against dictionary attacks and also provide Perfect
Forward Secrecy (PFS).
The first approach (plain PSK) is susceptible to passive dictionary
attacks; hence, while this algorithm MUST be supported, special care
should be taken when choosing that method. In particular, user-
readable passphrases SHOULD NOT be used, and use of short PSKs SHOULD
be strongly discouraged.
The following cryptographic algorithms MUST be supported when using
pre-shared keys:
o TLS_PSK_WITH_AES_128_CBC_SHA [<a href="./rfc5246" title=""The Transport Layer Security (TLS) Protocol Version 1.2"">RFC5246</a>]
o TLS_DHE_PSK_WITH_AES_128_CBC_SHA [<a href="./rfc5246" title=""The Transport Layer Security (TLS) Protocol Version 1.2"">RFC5246</a>]
The following algorithms MAY be supported when using pre-shared keys:
o TLS_PSK_WITH_AES_256_CBC_SHA [<a href="./rfc5246" title=""The Transport Layer Security (TLS) Protocol Version 1.2"">RFC5246</a>]
o TLS_DHE_PSK_WITH_AES_256_CBC_SHA [<a href="./rfc5246" title=""The Transport Layer Security (TLS) Protocol Version 1.2"">RFC5246</a>]
Additional ciphers MAY be defined in following CAPWAP specifications.
<span class="grey">Calhoun, et al. Standards Track [Page 37]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-38" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
<span class="h5"><a class="selflink" id="section-2.4.4.3" href="#section-2.4.4.3">2.4.4.3</a>. Certificate Usage</span>
Certificate authorization by the AC and WTP is required so that only
an AC may perform the functions of an AC and that only a WTP may
perform the functions of a WTP. This restriction of functions to the
AC or WTP requires that the certificates used by the AC MUST be
distinguishable from the certificate used by the WTP. To accomplish
this differentiation, the x.509 certificates MUST include the
Extended Key Usage (EKU) certificate extension [<a href="./rfc5280" title=""Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile"">RFC5280</a>].
The EKU field indicates one or more purposes for which a certificate
may be used. It is an essential part in authorization. Its syntax
is described in [<a href="./rfc5280" title=""Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile"">RFC5280</a>] and [<a href="#ref-ISO.9834-1.1993" title=""Procedures for the operation of OSI registration authorities - part 1: general procedures"">ISO.9834-1.1993</a>] and is as follows:
ExtKeyUsageSyntax ::= SEQUENCE SIZE (1..MAX) OF KeyPurposeId
KeyPurposeId ::= OBJECT IDENTIFIER
Here we define two KeyPurposeId values, one for the WTP and one for
the AC. Inclusion of one of these two values indicates a certificate
is authorized for use by a WTP or AC, respectively. These values are
formatted as id-kp fields.
id-kp OBJECT IDENTIFIER ::=
{ iso(1) identified-organization(3) dod(6) internet(1)
security(5) mechanisms(5) pkix(7) 3 }
id-kp-capwapAC OBJECT IDENTIFIER ::= { id-kp 18 }
id-kp-capwapWTP OBJECT IDENTIFIER ::= { id-kp 19 }
All capwap devices MUST support the ExtendedKeyUsage certificate
extension if it is present in a certificate. If the extension is
present, then the certificate MUST have either the id-kp-capwapAC or
the id-kp-anyExtendedKeyUsage keyPurposeID to act as an AC.
Similarly, if the extension is present, a device MUST have the id-kp-
capwapWTP or id-kp-anyExtendedKeyUsage keyPurposeID to act as a WTP.
Part of the CAPWAP certificate validation process includes ensuring
that the proper EKU is included and allowing the CAPWAP session to be
established only if the extension properly represents the device.
For instance, an AC SHOULD NOT accept a connection request from
another AC, and therefore MUST verify that the id-kp-capwapWTP EKU is
present in the certificate.
CAPWAP implementations MUST support certificates where the common
name (CN) for both the WTP and AC is the MAC address of that device.
<span class="grey">Calhoun, et al. Standards Track [Page 38]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-39" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
The MAC address MUST be encoded in the PrintableString format, using
the well-recognized MAC address format of 01:23:45:67:89:ab. The CN
field MAY contain either of the EUI-48 [<a href="#ref-EUI-48" title=""Guidelines for use of a 48-bit Extended Unique Identifier"">EUI-48</a>] or EUI-64 [<a href="#ref-EUI-64" title=""GUIDELINES FOR 64-BIT GLOBAL IDENTIFIER (EUI-64) REGISTRATION AUTHORITY"">EUI-64</a>]
MAC Address formats. This seemingly unconventional use of the CN
field is consistent with other standards that rely on device
certificates that are provisioned during the manufacturing process,
such as Packet Cable [<a href="#ref-PacketCable" title=""PacketCable Security Specification PKT-SP-SEC- I12-050812"">PacketCable</a>], Cable Labs [<a href="#ref-CableLabs" title=""OpenCable System Security Specification OC-SP- SEC-I07-061031"">CableLabs</a>], and WiMAX
[<a href="#ref-WiMAX" title=""WiMAX Forum X.509 Device Certificate Profile Approved Specification V1.0.1"">WiMAX</a>]. See <a href="#section-12.8">Section 12.8</a> for more information on the use of the MAC
address in the CN field.
ACs and WTPs MUST authorize (e.g., through access control lists)
certificates of devices to which they are connecting, e.g., based on
the issuer, MAC address, or organizational information specified in
the certificate. The identities specified in the certificates bind a
particular DTLS session to a specific pair of mutually authenticated
and authorized MAC addresses. The particulars of authorization
filter construction are implementation details which are, for the
most part, not within the scope of this specification. However, at
minimum, all devices MUST verify that the appropriate EKU bit is set
according to the role of the peer device (AC versus WTP), and that
the issuer of the certificate is appropriate for the domain in
question.
<span class="h5"><a class="selflink" id="section-2.4.4.4" href="#section-2.4.4.4">2.4.4.4</a>. PSK Usage</span>
When DTLS uses PSK Ciphersuites, the ServerKeyExchange message MUST
contain the "PSK identity hint" field and the ClientKeyExchange
message MUST contain the "PSK identity" field. These fields are used
to help the WTP select the appropriate PSK for use with the AC, and
then indicate to the AC which key is being used. When PSKs are
provisioned to WTPs and ACs, both the PSK Hint and PSK Identity for
the key MUST be specified.
The PSK Hint SHOULD uniquely identify the AC and the PSK Identity
SHOULD uniquely identify the WTP. It is RECOMMENDED that these hints
and identities be the ASCII HEX-formatted MAC addresses of the
respective devices, since each pairwise combination of WTP and AC
SHOULD have a unique PSK. The PSK Hint and Identity SHOULD be
sufficient to perform authorization, as simply having knowledge of a
PSK does not necessarily imply authorization.
If a single PSK is being used for multiple devices on a CAPWAP
network, which is NOT RECOMMENDED, the PSK Hint and Identity can no
longer be a MAC address, so appropriate hints and identities SHOULD
be selected to identify the group of devices to which the PSK is
provisioned.
<span class="grey">Calhoun, et al. Standards Track [Page 39]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-40" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. CAPWAP Transport</span>
Communication between a WTP and an AC is established using the
standard UDP client/server model. The CAPWAP protocol supports both
UDP and UDP-Lite [<a href="./rfc3828" title=""The Lightweight User Datagram Protocol (UDP-Lite)"">RFC3828</a>] transport protocols. When run over IPv4,
UDP is used for the CAPWAP Control and Data channels.
When run over IPv6, the CAPWAP Control channel always uses UDP, while
the CAPWAP Data channel may use either UDP or UDP-Lite. UDP-Lite is
the default transport protocol for the CAPWAP Data channel. However,
if a middlebox or IPv4 to IPv6 gateway has been discovered, UDP is
used for the CAPWAP Data channel.
This section describes how the CAPWAP protocol is carried over IP and
UDP/UDP-Lite transport protocols. The CAPWAP Transport Protocol
message element, <a href="#section-4.6.14">Section 4.6.14</a>, describes the rules to use in
determining which transport protocol is to be used.
In order for CAPWAP to be compatible with potential middleboxes in
the network, CAPWAP implementations MUST send return traffic from the
same port on which they received traffic from a given peer. Further,
any unsolicited requests generated by a CAPWAP node MUST be sent on
the same port.
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. UDP Transport</span>
One of the CAPWAP protocol requirements is to allow a WTP to reside
behind a middlebox, firewall, and/or Network Address Translation
(NAT) device. Since a CAPWAP session is initiated by the WTP
(client) to the well-known UDP port of the AC (server), the use of
UDP is a logical choice. When CAPWAP is run over IPv4, the UDP
checksum field in CAPWAP packets MUST be set to zero.
CAPWAP protocol control packets sent from the WTP to the AC use the
CAPWAP Control channel, as defined in <a href="#section-1.4">Section 1.4</a>. The CAPWAP
control port at the AC is the well-known UDP port 5246. The CAPWAP
control port at the WTP can be any port selected by the WTP.
CAPWAP protocol data packets sent from the WTP to the AC use the
CAPWAP Data channel, as defined in <a href="#section-1.4">Section 1.4</a>. The CAPWAP data port
at the AC is the well-known UDP port 5247. If an AC permits the
administrator to change the CAPWAP control port, the CAPWAP data port
MUST be the next consecutive port number. The CAPWAP data port at
the WTP can be any port selected by the WTP.
<span class="grey">Calhoun, et al. Standards Track [Page 40]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-41" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. UDP-Lite Transport</span>
When CAPWAP is run over IPv6, UDP-Lite is the default transport
protocol, which reduces the checksum processing required for each
packet (compared to the use of UDP over IPv6 [<a href="./rfc2460" title=""Internet Protocol, Version 6 (IPv6) Specification"">RFC2460</a>]). When UDP-
Lite is used, the checksum field MUST have a coverage of 8 [<a href="./rfc3828" title=""The Lightweight User Datagram Protocol (UDP-Lite)"">RFC3828</a>].
UDP-Lite uses the same port assignments as UDP.
<span class="h3"><a class="selflink" id="section-3.3" href="#section-3.3">3.3</a>. AC Discovery</span>
The AC Discovery phase allows the WTP to determine which ACs are
available and choose the best AC with which to establish a CAPWAP
session. The Discovery phase occurs when the WTP enters the optional
Discovery state. A WTP does not need to complete the AC Discovery
phase if it uses a pre-configured AC. This section details the
mechanism used by a WTP to dynamically discover candidate ACs.
A WTP and an AC will frequently not reside in the same IP subnet
(broadcast domain). When this occurs, the WTP must be capable of
discovering the AC, without requiring that multicast services are
enabled in the network.
When the WTP attempts to establish communication with an AC, it sends
the Discovery Request message and receives the Discovery Response
message from the AC(s). The WTP MUST send the Discovery Request
message to either the limited broadcast IP address (255.255.255.255),
the well-known CAPWAP multicast address (224.0.1.140), or to the
unicast IP address of the AC. For IPv6 networks, since broadcast
does not exist, the use of "All ACs multicast address" (FF0X:0:0:0:0:
0:0:18C) is used instead. Upon receipt of the Discovery Request
message, the AC sends a Discovery Response message to the unicast IP
address of the WTP, regardless of whether the Discovery Request
message was sent as a broadcast, multicast, or unicast message.
WTP use of a limited IP broadcast, multicast, or unicast IP address
is implementation dependent. ACs, on the other hand, MUST support
broadcast, multicast, and unicast discovery.
When a WTP transmits a Discovery Request message to a unicast
address, the WTP must first obtain the IP address of the AC. Any
static configuration of an AC's IP address on the WTP non-volatile
storage is implementation dependent. However, additional dynamic
schemes are possible, for example:
<span class="grey">Calhoun, et al. Standards Track [Page 41]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-42" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
DHCP: See [<a href="./rfc5417" title=""Control And Provisioning of Wireless Access Points (CAPWAP) Access Controller DHCP Option"">RFC5417</a>] for more information on the use of DHCP to
discover AC IP addresses.
DNS: The WTP MAY support use of DNS Service Records (SRVs) [<a href="./rfc2782" title=""A DNS RR for specifying the location of services (DNS SRV)"">RFC2782</a>]
to discover the AC address(es). In this case, the WTP first
obtains (e.g., from local configuration) the correct domain name
suffix (e.g., "example.com") and performs an SRV lookup with
Service name "capwap-control" and Proto "udp". Thus, the name
resolved in DNS would be, e.g., "_capwap-
control._udp.example.com". Note that the SRV record MAY specify a
non-default port number for the control channel; the port number
for the data channel is the next port number (control channel port
+ 1).
An AC MAY also communicate alternative ACs to the WTP within the
Discovery Response message through the AC IPv4 List (see
<a href="#section-4.6.2">Section 4.6.2</a>) and AC IPv6 List (see <a href="#section-4.6.2">Section 4.6.2</a>). The addresses
provided in these two message elements are intended to help the WTP
discover additional ACs through means other than those listed above.
The AC Name with Priority message element (see <a href="#section-4.6.5">Section 4.6.5</a>) is used
to communicate a list of preferred ACs to the WTP. The WTP SHOULD
attempt to utilize the ACs listed in the order provided by the AC.
The Name-to-IP Address mapping is handled via the Discovery message
exchange, in which the ACs provide their identity in the AC Name (see
<a href="#section-4.6.4">Section 4.6.4</a>) message element in the Discovery Response message.
Once the WTP has received Discovery Response messages from the
candidate ACs, it MAY use other factors to determine the preferred
AC. For instance, each binding defines a WTP Radio Information
message element (see <a href="#section-2.1">Section 2.1</a>), which the AC includes in Discovery
Response messages. The presence of one or more of these message
elements is used to identify the CAPWAP bindings supported by the AC.
A WTP MAY connect to an AC based on the supported bindings
advertised.
<span class="h3"><a class="selflink" id="section-3.4" href="#section-3.4">3.4</a>. Fragmentation/Reassembly</span>
While fragmentation and reassembly services are provided by IP, the
CAPWAP protocol also provides such services. Environments where the
CAPWAP protocol is used involve firewall, NAT, and "middlebox"
devices, which tend to drop IP fragments to minimize possible DoS
attacks. By providing fragmentation and reassembly at the
application layer, any fragmentation required due to the tunneling
component of the CAPWAP protocol becomes transparent to these
intermediate devices. Consequently, the CAPWAP protocol can be used
in any network topology including firewall, NAT, and middlebox
devices.
<span class="grey">Calhoun, et al. Standards Track [Page 42]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-43" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
It is important to note that the fragmentation mechanism employed by
CAPWAP has known limitations and deficiencies, which are similar to
those described in [<a href="./rfc4963" title=""IPv4 Reassembly Errors at High Data Rates"">RFC4963</a>]. The limited size of the Fragment ID
field (see <a href="#section-4.3">Section 4.3</a>) can cause wrapping of the field, and hence
cause fragments from different datagrams to be incorrectly spliced
together (known as "mis-associated"). For example, a 100Mpbs link
with an MTU of 1500 (causing fragmentation at 1450 bytes) would cause
the Fragment ID field wrap in 8 seconds. Consequently, CAPWAP
implementers are warned to properly size their buffers for reassembly
purposes based on the expected wireless technology throughput.
CAPWAP implementations SHOULD perform MTU Discovery (see
<a href="#section-3.5">Section 3.5</a>), which can avoid the need for fragmentation. At the
time of writing of this specification, most enterprise switching and
routing infrastructure were capable of supporting "mini-jumbo" frames
(1800 bytes), which eliminates the need for fragmentation (assuming
the station's MTU is 1500 bytes). The need for fragmentation
typically continues to exist when the WTP communicates with the AC
over a Wide Area Network (WAN). Therefore, future versions of the
CAPWAP protocol SHOULD consider either increasing the size of the
Fragment ID field or providing alternative extensions.
<span class="h3"><a class="selflink" id="section-3.5" href="#section-3.5">3.5</a>. MTU Discovery</span>
Once a WTP has discovered the AC with which it wishes to establish a
CAPWAP session, it SHOULD perform a Path MTU (PMTU) discovery. One
recommendation for performing PMTU discovery is to have the WTP
transmit Discovery Request (see <a href="#section-5.1">Section 5.1</a>) messages, and include
the MTU Discovery Padding message element (see <a href="#section-4.6.32">Section 4.6.32</a>). The
actual procedures used for PMTU discovery are described in [<a href="./rfc1191" title=""Path MTU discovery"">RFC1191</a>]
for IPv4; for IPv6, [<a href="./rfc1981" title=""Path MTU Discovery for IP version 6"">RFC1981</a>] SHOULD be used. Alternatively,
implementers MAY use the procedures defined in [<a href="./rfc4821" title=""Packetization Layer Path MTU Discovery"">RFC4821</a>]. The WTP
SHOULD also periodically re-evaluate the PMTU using the guidelines
provided in these two RFCs, using the Primary Discovery Request (see
<a href="#section-5.3">Section 5.3</a>) along with the MTU Discovery Padding message element
(see <a href="#section-4.6.32">Section 4.6.32</a>). When the MTU is initially known, or updated in
the case where an existing session already exists, the discovered
PMTU is used to configure the DTLS component (see <a href="#section-2.3.2.1">Section 2.3.2.1</a>),
while non-DTLS frames need to be fragmented to fit the MTU, defined
in <a href="#section-3.4">Section 3.4</a>.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. CAPWAP Packet Formats</span>
This section contains the CAPWAP protocol packet formats. A CAPWAP
protocol packet consists of one or more CAPWAP Transport Layer packet
headers followed by a CAPWAP message. The CAPWAP message can be
either of type Control or Data, where Control packets carry
<span class="grey">Calhoun, et al. Standards Track [Page 43]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-44" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
signaling, and Data packets carry user payloads. The CAPWAP frame
formats for CAPWAP Data packets, and for DTLS encapsulated CAPWAP
Data and Control packets are defined below.
The CAPWAP Control protocol includes two messages that are never
protected by DTLS: the Discovery Request message and the Discovery
Response message. These messages need to be in the clear to allow
the CAPWAP protocol to properly identify and process them. The
format of these packets are as follows:
CAPWAP Control Packet (Discovery Request/Response):
+-------------------------------------------+
| IP | UDP | CAPWAP | Control | Message |
| Hdr | Hdr | Header | Header | Element(s) |
+-------------------------------------------+
All other CAPWAP Control protocol messages MUST be protected via the
DTLS protocol, which ensures that the packets are both authenticated
and encrypted. These packets include the CAPWAP DTLS Header, which
is described in <a href="#section-4.2">Section 4.2</a>. The format of these packets is as
follows:
CAPWAP Control Packet (DTLS Security Required):
+------------------------------------------------------------------+
| IP | UDP | CAPWAP | DTLS | CAPWAP | Control| Message | DTLS |
| Hdr | Hdr | DTLS Hdr | Hdr | Header | Header | Element(s)| Trlr |
+------------------------------------------------------------------+
\---------- authenticated -----------/
\------------- encrypted ------------/
The CAPWAP protocol allows optional protection of data packets, using
DTLS. Use of data packet protection is determined by AC policy.
When DTLS is utilized, the optional CAPWAP DTLS Header is present,
which is described in <a href="#section-4.2">Section 4.2</a>. The format of CAPWAP Data packets
is shown below:
<span class="grey">Calhoun, et al. Standards Track [Page 44]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-45" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
CAPWAP Plain Text Data Packet :
+-------------------------------+
| IP | UDP | CAPWAP | Wireless |
| Hdr | Hdr | Header | Payload |
+-------------------------------+
DTLS Secured CAPWAP Data Packet:
+--------------------------------------------------------+
| IP | UDP | CAPWAP | DTLS | CAPWAP | Wireless | DTLS |
| Hdr | Hdr | DTLS Hdr | Hdr | Hdr | Payload | Trlr |
+--------------------------------------------------------+
\------ authenticated -----/
\------- encrypted --------/
UDP Header: All CAPWAP packets are encapsulated within either UDP,
or UDP-Lite when used over IPv6. <a href="#section-3">Section 3</a> defines the specific
UDP or UDP-Lite usage.
CAPWAP DTLS Header: All DTLS encrypted CAPWAP protocol packets are
prefixed with the CAPWAP DTLS Header (see <a href="#section-4.2">Section 4.2</a>).
DTLS Header: The DTLS Header provides authentication and encryption
services to the CAPWAP payload it encapsulates. This protocol is
defined in [<a href="./rfc4347" title=""Datagram Transport Layer Security"">RFC4347</a>].
CAPWAP Header: All CAPWAP protocol packets use a common header that
immediately follows the CAPWAP preamble or DTLS Header. The
CAPWAP Header is defined in <a href="#section-4.3">Section 4.3</a>.
Wireless Payload: A CAPWAP protocol packet that contains a wireless
payload is a CAPWAP Data packet. The CAPWAP protocol does not
specify the format of the wireless payload, which is defined by
the appropriate wireless standard. Additional information is in
<a href="#section-4.4">Section 4.4</a>.
Control Header: The CAPWAP protocol includes a signaling component,
known as the CAPWAP Control protocol. All CAPWAP Control packets
include a Control Header, which is defined in <a href="#section-4.5.1">Section 4.5.1</a>.
CAPWAP Data packets do not contain a Control Header field.
Message Elements: A CAPWAP Control packet includes one or more
message elements, which are found immediately following the
Control Header. These message elements are in a Type/Length/Value
style header, defined in <a href="#section-4.6">Section 4.6</a>.
A CAPWAP implementation MUST be capable of receiving a reassembled
CAPWAP message of length 4096 bytes. A CAPWAP implementation MAY
indicate that it supports a higher maximum message length, by
<span class="grey">Calhoun, et al. Standards Track [Page 45]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-46" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
including the Maximum Message Length message element, see
<a href="#section-4.6.31">Section 4.6.31</a>, in the Join Request message or the Join Response
message.
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. CAPWAP Preamble</span>
The CAPWAP preamble is common to all CAPWAP transport headers and is
used to identify the header type that immediately follows. The
reason for this preamble is to avoid needing to perform byte
comparisons in order to guess whether or not the frame is DTLS
encrypted. It also provides an extensibility framework that can be
used to support additional transport types. The format of the
preamble is as follows:
0
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
|Version| Type |
+-+-+-+-+-+-+-+-+
Version: A 4-bit field that contains the version of CAPWAP used in
this packet. The value for this specification is zero (0).
Type: A 4-bit field that specifies the payload type that follows the
UDP header. The following values are supported:
0 - CAPWAP Header. The CAPWAP Header (see <a href="#section-4.3">Section 4.3</a>)
immediately follows the UDP header. If the packet is
received on the CAPWAP Data channel, the CAPWAP stack MUST
treat the packet as a clear text CAPWAP Data packet. If
received on the CAPWAP Control channel, the CAPWAP stack
MUST treat the packet as a clear text CAPWAP Control packet.
If the control packet is not a Discovery Request or
Discovery Response packet, the packet MUST be dropped.
1 - CAPWAP DTLS Header. The CAPWAP DTLS Header (and DTLS
packet) immediately follows the UDP header (see
<a href="#section-4.2">Section 4.2</a>).
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. CAPWAP DTLS Header</span>
The CAPWAP DTLS Header is used to identify the packet as a DTLS
encrypted packet. The first eight bits include the common CAPWAP
Preamble. The remaining 24 bits are padding to ensure 4-byte
alignment, and MAY be used in a future version of the protocol. The
DTLS packet [<a href="./rfc4347" title=""Datagram Transport Layer Security"">RFC4347</a>] always immediately follows this header. The
format of the CAPWAP DTLS Header is as follows:
<span class="grey">Calhoun, et al. Standards Track [Page 46]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-47" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|CAPWAP Preamble| Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
CAPWAP Preamble: The CAPWAP Preamble is defined in <a href="#section-4.1">Section 4.1</a>. The
CAPWAP Preamble's Payload Type field MUST be set to one (1).
Reserved: The 24-bit field is reserved for future use. All
implementations complying with this protocol MUST set to zero any
bits that are reserved in the version of the protocol supported by
that implementation. Receivers MUST ignore all bits not defined
for the version of the protocol they support.
<span class="h3"><a class="selflink" id="section-4.3" href="#section-4.3">4.3</a>. CAPWAP Header</span>
All CAPWAP protocol messages are encapsulated using a common header
format, regardless of the CAPWAP Control or CAPWAP Data transport
used to carry the messages. However, certain flags are not
applicable for a given transport. Refer to the specific transport
section in order to determine which flags are valid.
Note that the optional fields defined in this section MUST be present
in the precise order shown below.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|CAPWAP Preamble| HLEN | RID | WBID |T|F|L|W|M|K|Flags|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Fragment ID | Frag Offset |Rsvd |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| (optional) Radio MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| (optional) Wireless Specific Information |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Payload .... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
CAPWAP Preamble: The CAPWAP Preamble is defined in <a href="#section-4.1">Section 4.1</a>. The
CAPWAP Preamble's Payload Type field MUST be set to zero (0). If
the CAPWAP DTLS Header is present, the version number in both
CAPWAP Preambles MUST match. The reason for this duplicate field
is to avoid any possible tampering of the version field in the
preamble that is not encrypted or authenticated.
<span class="grey">Calhoun, et al. Standards Track [Page 47]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-48" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
HLEN: A 5-bit field containing the length of the CAPWAP transport
header in 4-byte words (similar to IP header length). This length
includes the optional headers.
RID: A 5-bit field that contains the Radio ID number for this
packet, whose value is between one (1) and 31. Given that MAC
Addresses are not necessarily unique across physical radios in a
WTP, the Radio Identifier (RID) field is used to indicate with
which physical radio the message is associated.
WBID: A 5-bit field that is the wireless binding identifier. The
identifier will indicate the type of wireless packet associated
with the radio. The following values are defined:
0 - Reserved
1 - IEEE 802.11
2 - Reserved
3 - EPCGlobal [<a href="#ref-EPCGlobal" title=""See http://www.epcglobalinc.org/home"">EPCGlobal</a>]
T: The Type 'T' bit indicates the format of the frame being
transported in the payload. When this bit is set to one (1), the
payload has the native frame format indicated by the WBID field.
When this bit is zero (0), the payload is an IEEE 802.3 frame.
F: The Fragment 'F' bit indicates whether this packet is a fragment.
When this bit is one (1), the packet is a fragment and MUST be
combined with the other corresponding fragments to reassemble the
complete information exchanged between the WTP and AC.
L: The Last 'L' bit is valid only if the 'F' bit is set and indicates
whether the packet contains the last fragment of a fragmented
exchange between WTP and AC. When this bit is one (1), the packet
is the last fragment. When this bit is (zero) 0, the packet is
not the last fragment.
W: The Wireless 'W' bit is used to specify whether the optional
Wireless Specific Information field is present in the header. A
value of one (1) is used to represent the fact that the optional
header is present.
M: The Radio MAC 'M' bit is used to indicate that the Radio MAC
Address optional header is present. This is used to communicate
the MAC address of the receiving radio.
<span class="grey">Calhoun, et al. Standards Track [Page 48]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-49" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
K: The Keep-Alive 'K' bit indicates the packet is a Data Channel
Keep-Alive packet. This packet is used to map the data channel to
the control channel for the specified Session ID and to maintain
freshness of the data channel. The 'K' bit MUST NOT be set for
data packets containing user data.
Flags: A set of reserved bits for future flags in the CAPWAP Header.
All implementations complying with this protocol MUST set to zero
any bits that are reserved in the version of the protocol
supported by that implementation. Receivers MUST ignore all bits
not defined for the version of the protocol they support.
Fragment ID: A 16-bit field whose value is assigned to each group of
fragments making up a complete set. The Fragment ID space is
managed individually for each direction for every WTP/AC pair.
The value of Fragment ID is incremented with each new set of
fragments. The Fragment ID wraps to zero after the maximum value
has been used to identify a set of fragments.
Fragment Offset: A 13-bit field that indicates where in the payload
this fragment belongs during re-assembly. This field is valid
when the 'F' bit is set to 1. The fragment offset is measured in
units of 8 octets (64 bits). The first fragment has offset zero.
Note that the CAPWAP protocol does not allow for overlapping
fragments.
Reserved: The 3-bit field is reserved for future use. All
implementations complying with this protocol MUST set to zero any
bits that are reserved in the version of the protocol supported by
that implementation. Receivers MUST ignore all bits not defined
for the version of the protocol they support.
Radio MAC Address: This optional field contains the MAC address of
the radio receiving the packet. Because the native wireless frame
format to IEEE 802.3 format causes the MAC address of the WTP's
radio to be lost, this field allows the address to be communicated
to the AC. This field is only present if the 'M' bit is set. The
HLEN field assumes 4-byte alignment, and this field MUST be padded
with zeroes (0x00) if it is not 4-byte aligned.
<span class="grey">Calhoun, et al. Standards Track [Page 49]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-50" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
The field contains the basic format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Length | MAC Address
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Length: The length of the MAC address field. The formats and
lengths specified in [<a href="#ref-EUI-48" title=""Guidelines for use of a 48-bit Extended Unique Identifier"">EUI-48</a>] and [<a href="#ref-EUI-64" title=""GUIDELINES FOR 64-BIT GLOBAL IDENTIFIER (EUI-64) REGISTRATION AUTHORITY"">EUI-64</a>] are supported.
MAC Address: The MAC address of the receiving radio.
Wireless Specific Information: This optional field contains
technology-specific information that may be used to carry per-
packet wireless information. This field is only present if the
'W' bit is set. The WBID field in the CAPWAP Header is used to
identify the format of the Wireless-Specific Information optional
field. The HLEN field assumes 4-byte alignment, and this field
MUST be padded with zeroes (0x00) if it is not 4-byte aligned.
The Wireless-Specific Information field uses the following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Length | Data...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Length: The 8-bit field contains the length of the data field,
with a maximum size of 255.
Data: Wireless-specific information, defined by the wireless-
specific binding specified in the CAPWAP Header's WBID field.
Payload: This field contains the header for a CAPWAP Data Message or
CAPWAP Control Message, followed by the data contained in the
message.
<span class="h3"><a class="selflink" id="section-4.4" href="#section-4.4">4.4</a>. CAPWAP Data Messages</span>
There are two different types of CAPWAP Data packets: CAPWAP Data
Channel Keep-Alive packets and Data Payload packets. The first is
used by the WTP to synchronize the control and data channels and to
maintain freshness of the data channel. The second is used to
transmit user payloads between the AC and WTP. This section
describes both types of CAPWAP Data packet formats.
<span class="grey">Calhoun, et al. Standards Track [Page 50]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-51" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
Both CAPWAP Data messages are transmitted on the CAPWAP Data channel.
<span class="h4"><a class="selflink" id="section-4.4.1" href="#section-4.4.1">4.4.1</a>. CAPWAP Data Channel Keep-Alive</span>
The CAPWAP Data Channel Keep-Alive packet is used to bind the CAPWAP
control channel with the data channel, and to maintain freshness of
the data channel, ensuring that the channel is still functioning.
The CAPWAP Data Channel Keep-Alive packet is transmitted by the WTP
when the DataChannelKeepAlive timer expires (see <a href="#section-4.7.2">Section 4.7.2</a>).
When the CAPWAP Data Channel Keep-Alive packet is transmitted, the
WTP sets the DataChannelDeadInterval timer.
In the CAPWAP Data Channel Keep-Alive packet, all of the fields in
the CAPWAP Header, except the HLEN field and the 'K' bit, are set to
zero upon transmission. Upon receiving a CAPWAP Data Channel Keep-
Alive packet, the AC transmits a CAPWAP Data Channel Keep-Alive
packet back to the WTP. The contents of the transmitted packet are
identical to the contents of the received packet.
Upon receiving a CAPWAP Data Channel Keep-Alive packet, the WTP
cancels the DataChannelDeadInterval timer and resets the
DataChannelKeepAlive timer. The CAPWAP Data Channel Keep-Alive
packet is retransmitted by the WTP in the same manner as the CAPWAP
Control messages. If the DataChannelDeadInterval timer expires, the
WTP tears down the control DTLS session, and the data DTLS session if
one existed.
The CAPWAP Data Channel Keep-Alive packet contains the following
payload immediately following the CAPWAP Header (see <a href="#section-4.3">Section 4.3</a>).
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Message Element Length | Message Element [0..N] ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Message Element Length: The 16-bit Length field indicates the
number of bytes following the CAPWAP Header, with a maximum size
of 65535.
Message Element[0..N]: The message element(s) carry the information
pertinent to each of the CAPWAP Data Channel Keep-Alive message.
The following message elements MUST be present in this CAPWAP
message:
Session ID, see <a href="#section-4.6.37">Section 4.6.37</a>.
<span class="grey">Calhoun, et al. Standards Track [Page 51]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-52" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
<span class="h4"><a class="selflink" id="section-4.4.2" href="#section-4.4.2">4.4.2</a>. Data Payload</span>
A CAPWAP protocol Data Payload packet encapsulates a forwarded
wireless frame. The CAPWAP protocol defines two different modes of
encapsulation: IEEE 802.3 and native wireless. IEEE 802.3
encapsulation requires that for 802.11 frames, the 802.11
*Integration* function be performed in the WTP. An IEEE 802.3-
encapsulated user payload frame has the following format:
+------------------------------------------------------+
| IP Header | UDP Header | CAPWAP Header | 802.3 Frame |
+------------------------------------------------------+
The CAPWAP protocol also defines the native wireless encapsulation
mode. The format of the encapsulated CAPWAP Data frame is subject to
the rules defined by the specific wireless technology binding. Each
wireless technology binding MUST contain a section entitled "Payload
Encapsulation", which defines the format of the wireless payload that
is encapsulated within CAPWAP Data packets.
For 802.3 payload frames, the 802.3 frame is encapsulated (excluding
the IEEE 802.3 Preamble, Start Frame Delimiter (SFD), and Frame Check
Sequence (FCS) fields). If the encapsulated frame would exceed the
transport layer's MTU, the sender is responsible for the
fragmentation of the frame, as specified in <a href="#section-3.4">Section 3.4</a>. The CAPWAP
protocol can support IEEE 802.3 frames whose length is defined in the
IEEE 802.3as specification [<a href="#ref-FRAME-EXT" title=""IEEE Standard 802.3as-2006"">FRAME-EXT</a>].
<span class="h4"><a class="selflink" id="section-4.4.3" href="#section-4.4.3">4.4.3</a>. Establishment of a DTLS Data Channel</span>
If the AC and WTP are configured to tunnel the data channel over
DTLS, the proper DTLS session must be initiated. To avoid having to
reauthenticate and reauthorize an AC and WTP, the DTLS data channel
SHOULD be initiated using the TLS session resumption feature
[<a href="./rfc5246" title=""The Transport Layer Security (TLS) Protocol Version 1.2"">RFC5246</a>].
The AC DTLS implementation MUST NOT initiate a data channel session
for a DTLS session for which there is no active control channel
session.
<span class="h3"><a class="selflink" id="section-4.5" href="#section-4.5">4.5</a>. CAPWAP Control Messages</span>
The CAPWAP Control protocol provides a control channel between the
WTP and the AC. Control messages are divided into the following
message types:
Discovery: CAPWAP Discovery messages are used to identify potential
ACs, their load and capabilities.
<span class="grey">Calhoun, et al. Standards Track [Page 52]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-53" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
Join: CAPWAP Join messages are used by a WTP to request service from
an AC, and for the AC to respond to the WTP.
Control Channel Management: CAPWAP Control channel management
messages are used to maintain the control channel.
WTP Configuration Management: The WTP Configuration messages are
used by the AC to deliver a specific configuration to the WTP.
Messages that retrieve statistics from a WTP are also included in
WTP Configuration Management.
Station Session Management: Station Session Management messages are
used by the AC to deliver specific station policies to the WTP.
Device Management Operations: Device management operations are used
to request and deliver a firmware image to the WTP.
Binding-Specific CAPWAP Management Messages: Messages in this
category are used by the AC and the WTP to exchange protocol-
specific CAPWAP management messages. These messages may or may
not be used to change the link state of a station.
Discovery, Join, Control Channel Management, WTP Configuration
Management, and Station Session Management CAPWAP Control messages
MUST be implemented. Device Management Operations messages MAY be
implemented.
CAPWAP Control messages sent from the WTP to the AC indicate that the
WTP is operational, providing an implicit keep-alive mechanism for
the WTP. The Control Channel Management Echo Request and Echo
Response messages provide an explicit keep-alive mechanism when other
CAPWAP Control messages are not exchanged.
<span class="h4"><a class="selflink" id="section-4.5.1" href="#section-4.5.1">4.5.1</a>. Control Message Format</span>
All CAPWAP Control messages are sent encapsulated within the CAPWAP
Header (see <a href="#section-4.3">Section 4.3</a>). Immediately following the CAPWAP Header is
the control header, which has the following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Message Type |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Seq Num | Msg Element Length | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Msg Element [0..N] ...
+-+-+-+-+-+-+-+-+-+-+-+-+
<span class="grey">Calhoun, et al. Standards Track [Page 53]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-54" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
<span class="h5"><a class="selflink" id="section-4.5.1.1" href="#section-4.5.1.1">4.5.1.1</a>. Message Type</span>
The Message Type field identifies the function of the CAPWAP Control
message. To provide extensibility, the Message Type field is
comprised of an IANA Enterprise Number [<a href="./rfc3232" title=""Assigned Numbers: RFC 1700 is Replaced by an On-line Database"">RFC3232</a>] and an enterprise-
specific message type number. The first three octets contain the
IANA Enterprise Number in network byte order, with zero used for
CAPWAP base protocol (this specification) defined message types. The
last octet is the enterprise-specific message type number, which has
a range from 0 to 255.
The Message Type field is defined as:
Message Type =
IANA Enterprise Number * 256 +
Enterprise Specific Message Type Number
The CAPWAP protocol reliability mechanism requires that messages be
defined in pairs, consisting of both a Request and a Response
message. The Response message MUST acknowledge the Request message.
The assignment of CAPWAP Control Message Type Values always occurs in
pairs. All Request messages have odd numbered Message Type Values,
and all Response messages have even numbered Message Type Values.
The Request value MUST be assigned first. As an example, assigning a
Message Type Value of 3 for a Request message and 4 for a Response
message is valid, while assigning a Message Type Value of 4 for a
Response message and 5 for the corresponding Request message is
invalid.
When a WTP or AC receives a message with a Message Type Value field
that is not recognized and is an odd number, the number in the
Message Type Value Field is incremented by one, and a Response
message with a Message Type Value field containing the incremented
value and containing the Result Code message element with the value
(Unrecognized Request) is returned to the sender of the received
message. If the unknown message type is even, the message is
ignored.
<span class="grey">Calhoun, et al. Standards Track [Page 54]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-55" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
The valid values for CAPWAP Control Message Types are specified in
the table below:
CAPWAP Control Message Message Type
Value
Discovery Request 1
Discovery Response 2
Join Request 3
Join Response 4
Configuration Status Request 5
Configuration Status Response 6
Configuration Update Request 7
Configuration Update Response 8
WTP Event Request 9
WTP Event Response 10
Change State Event Request 11
Change State Event Response 12
Echo Request 13
Echo Response 14
Image Data Request 15
Image Data Response 16
Reset Request 17
Reset Response 18
Primary Discovery Request 19
Primary Discovery Response 20
Data Transfer Request 21
Data Transfer Response 22
Clear Configuration Request 23
Clear Configuration Response 24
Station Configuration Request 25
Station Configuration Response 26
<span class="h5"><a class="selflink" id="section-4.5.1.2" href="#section-4.5.1.2">4.5.1.2</a>. Sequence Number</span>
The Sequence Number field is an identifier value used to match
Request and Response packets. When a CAPWAP packet with a Request
Message Type Value is received, the value of the Sequence Number
field is copied into the corresponding Response message.
When a CAPWAP Control message is sent, the sender's internal sequence
number counter is monotonically incremented, ensuring that no two
pending Request messages have the same sequence number. The Sequence
Number field wraps back to zero.
<span class="h5"><a class="selflink" id="section-4.5.1.3" href="#section-4.5.1.3">4.5.1.3</a>. Message Element Length</span>
The Length field indicates the number of bytes following the Sequence
Number field.
<span class="grey">Calhoun, et al. Standards Track [Page 55]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-56" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
<span class="h5"><a class="selflink" id="section-4.5.1.4" href="#section-4.5.1.4">4.5.1.4</a>. Flags</span>
The Flags field MUST be set to zero.
<span class="h5"><a class="selflink" id="section-4.5.1.5" href="#section-4.5.1.5">4.5.1.5</a>. Message Element [0..N]</span>
The message element(s) carry the information pertinent to each of the
control message types. Every control message in this specification
specifies which message elements are permitted.
When a WTP or AC receives a CAPWAP message without a message element
that is specified as mandatory for the CAPWAP message, then the
CAPWAP message is discarded. If the received message was a Request
message for which the corresponding Response message carries message
elements, then a corresponding Response message with a Result Code
message element indicating "Failure - Missing Mandatory Message
Element" is returned to the sender.
When a WTP or AC receives a CAPWAP message with a message element
that the WTP or AC does not recognize, the CAPWAP message is
discarded. If the received message was a Request message for which
the corresponding Response message carries message elements, then a
corresponding Response message with a Result Code message element
indicating "Failure - Unrecognized Message Element" and one or more
Returned Message Element message elements is included, containing the
unrecognized message element(s).
<span class="h4"><a class="selflink" id="section-4.5.2" href="#section-4.5.2">4.5.2</a>. Quality of Service</span>
The CAPWAP base protocol does not provide any Quality of Service
(QoS) recommendations for use with the CAPWAP Data messages. Any
wireless-specific CAPWAP binding specification that has QoS
requirements MUST define the application of QoS to the CAPWAP Data
messages.
The IP header also includes the Explicit Congestion Notification
(ECN) bits [<a href="./rfc3168" title=""The Addition of Explicit Congestion Notification (ECN) to IP"">RFC3168</a>]. <a href="./rfc3168#section-9.1.1">Section 9.1.1 of [RFC3168]</a> describes two
levels of ECN functionality: full functionality and limited
functionality. CAPWAP ACs and WTPs SHALL implement the limited
functionality and are RECOMMENDED to implement the full functionality
described in [<a href="./rfc3168" title=""The Addition of Explicit Congestion Notification (ECN) to IP"">RFC3168</a>].
<span class="grey">Calhoun, et al. Standards Track [Page 56]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-57" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
<span class="h5"><a class="selflink" id="section-4.5.2.1" href="#section-4.5.2.1">4.5.2.1</a>. Applying QoS to CAPWAP Control Message</span>
It is recommended that CAPWAP Control messages be sent by both the AC
and the WTP with an appropriate Quality-of-Service precedence value,
ensuring that congestion in the network minimizes occurrences of
CAPWAP Control channel disconnects. Therefore, a QoS-enabled CAPWAP
device SHOULD use the following values:
802.1Q: The priority tag of 7 SHOULD be used.
DSCP: The CS6 per-hop behavior Service Class SHOULD be used, which
is described in [<a href="./rfc2474" title=""Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers"">RFC2474</a>]).
<span class="h4"><a class="selflink" id="section-4.5.3" href="#section-4.5.3">4.5.3</a>. Retransmissions</span>
The CAPWAP Control protocol operates as a reliable transport. For
each Request message, a Response message is defined, which is used to
acknowledge receipt of the Request message. In addition, the control
header Sequence Number field is used to pair the Request and Response
messages (see <a href="#section-4.5.1">Section 4.5.1</a>).
Response messages are not explicitly acknowledged; therefore, if a
Response message is not received, the original Request message is
retransmitted.
Implementations MUST keep track of the sequence number of the last
received Request message, and MUST cache the corresponding Response
message. If a retransmission with the same sequence number is
received, the cached Response message MUST be retransmitted without
re-processing the Request. If an older Request message is received,
meaning one where the sequence number is smaller, it MUST be ignored.
A newer Request message, meaning one whose sequence number is larger,
is processed as usual.
Note: A sequence number is considered "smaller" when s1 is smaller
than s2 modulo 256 if and only if (s1<s2 and (s2-s1)<128) or
(s1>s2 and (s1-s2)>128).
Both the WTP and the AC can only have a single request outstanding at
any given time. Retransmitted Request messages MUST NOT be altered
by the sender.
After transmitting a Request message, the RetransmitInterval (see
<a href="#section-4.7">Section 4.7</a>) timer and MaxRetransmit (see <a href="#section-4.8">Section 4.8</a>) variable are
used to determine if the original Request message needs to be
retransmitted. The RetransmitInterval timer is used the first time
the Request is retransmitted. The timer is then doubled every
<span class="grey">Calhoun, et al. Standards Track [Page 57]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-58" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
subsequent time the same Request message is retransmitted, up to
MaxRetransmit but no more than half the EchoInterval timer (see
<a href="#section-4.7.7">Section 4.7.7</a>). Response messages are not subject to these timers.
If the sender stops retransmitting a Request message before reaching
MaxRetransmit retransmissions (which leads to transition to DTLS
Teardown, as described in <a href="#section-2.3.1">Section 2.3.1</a>), it cannot know whether the
recipient received and processed the Request or not. In most
situations, the sender SHOULD NOT do this, and instead continue
retransmitting until a Response message is received, or transition to
DTLS Teardown occurs. However, if the sender does decide to continue
the connection with a new or modified Request message, the new
message MUST have a new sequence number, and be treated as a new
Request message by the receiver. Note that there is a high chance
that both the WTP and the AC's sequence numbers will become out of
sync.
When a Request message is retransmitted, it MUST be re-encrypted via
the DTLS stack. If the peer had received the Request message, and
the corresponding Response message was lost, it is necessary to
ensure that retransmitted Request messages are not identified as
replays by the DTLS stack. Similarly, any cached Response messages
that are retransmitted as a result of receiving a retransmitted
Request message MUST be re-encrypted via DTLS.
Duplicate Response messages, identified by the Sequence Number field
in the CAPWAP Control message header, SHOULD be discarded upon
receipt.
<span class="h3"><a class="selflink" id="section-4.6" href="#section-4.6">4.6</a>. CAPWAP Protocol Message Elements</span>
This section defines the CAPWAP Protocol message elements that are
included in CAPWAP protocol control messages.
Message elements are used to carry information needed in control
messages. Every message element is identified by the Type Value
field, defined below. The total length of the message elements is
indicated in the message element's length field.
All of the message element definitions in this document use a diagram
similar to the one below in order to depict its format. Note that to
simplify this specification, these diagrams do not include the header
fields (Type and Length). The header field values are defined in the
message element descriptions.
<span class="grey">Calhoun, et al. Standards Track [Page 58]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-59" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
Unless otherwise specified, a control message that lists a set of
supported (or expected) message elements MUST NOT expect the message
elements to be in any specific order. The sender MAY include the
message elements in any order. Unless otherwise noted, one message
element of each type is present in a given control message.
Unless otherwise specified, any configuration information sent by the
AC to the WTP MAY be saved to non-volatile storage (see <a href="#section-8.1">Section 8.1</a>)
for more information).
Additional message elements may be defined in separate IETF
documents.
The format of a message element uses the TLV format shown here:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Value ... |
+-+-+-+-+-+-+-+-+
The 16-bit Type field identifies the information carried in the Value
field and Length (16 bits) indicates the number of bytes in the Value
field. The value of zero (0) is reserved and MUST NOT be used. The
rest of the Type field values are allocated as follows:
Usage Type Values
CAPWAP Protocol Message Elements 1 - 1023
IEEE 802.11 Message Elements 1024 - 2047
Reserved for Future Use 2048 - 3071
EPCGlobal Message Elements 3072 - 4095
Reserved for Future Use 4096 - 65535
The table below lists the CAPWAP protocol Message Elements and their
Type values.
<span class="grey">Calhoun, et al. Standards Track [Page 59]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-60" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
CAPWAP Message Element Type Value
AC Descriptor 1
AC IPv4 List 2
AC IPv6 List 3
AC Name 4
AC Name with Priority 5
AC Timestamp 6
Add MAC ACL Entry 7
Add Station 8
Reserved 9
CAPWAP Control IPV4 Address 10
CAPWAP Control IPV6 Address 11
CAPWAP Local IPV4 Address 30
CAPWAP Local IPV6 Address 50
CAPWAP Timers 12
CAPWAP Transport Protocol 51
Data Transfer Data 13
Data Transfer Mode 14
Decryption Error Report 15
Decryption Error Report Period 16
Delete MAC ACL Entry 17
Delete Station 18
Reserved 19
Discovery Type 20
Duplicate IPv4 Address 21
Duplicate IPv6 Address 22
ECN Support 53
Idle Timeout 23
Image Data 24
Image Identifier 25
Image Information 26
Initiate Download 27
Location Data 28
Maximum Message Length 29
MTU Discovery Padding 52
Radio Administrative State 31
Radio Operational State 32
Result Code 33
Returned Message Element 34
Session ID 35
Statistics Timer 36
Vendor Specific Payload 37
WTP Board Data 38
WTP Descriptor 39
WTP Fallback 40
WTP Frame Tunnel Mode 41
Reserved 42
<span class="grey">Calhoun, et al. Standards Track [Page 60]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-61" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
Reserved 43
WTP MAC Type 44
WTP Name 45
Unused/Reserved 46
WTP Radio Statistics 47
WTP Reboot Statistics 48
WTP Static IP Address Information 49
<span class="h4"><a class="selflink" id="section-4.6.1" href="#section-4.6.1">4.6.1</a>. AC Descriptor</span>
The AC Descriptor message element is used by the AC to communicate
its current state. The value contains the following fields.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stations | Limit |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Active WTPs | Max WTPs |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Security | R-MAC Field | Reserved1 | DTLS Policy |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AC Information Sub-Element...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 1 for AC Descriptor
Length: >= 12
Stations: The number of stations currently served by the AC
Limit: The maximum number of stations supported by the AC
Active WTPs: The number of WTPs currently attached to the AC
Max WTPs: The maximum number of WTPs supported by the AC
Security: An 8-bit mask specifying the authentication credential
type supported by the AC (see <a href="#section-2.4.4">Section 2.4.4</a>). The field has the
following format:
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
|Reserved |S|X|R|
+-+-+-+-+-+-+-+-+
<span class="grey">Calhoun, et al. Standards Track [Page 61]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-62" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
Reserved: A set of reserved bits for future use. All
implementations complying with this protocol MUST set to zero
any bits that are reserved in the version of the protocol
supported by that implementation. Receivers MUST ignore all
bits not defined for the version of the protocol they support.
S: The AC supports the pre-shared secret authentication, as
described in <a href="#section-12.6">Section 12.6</a>.
X: The AC supports X.509 Certificate authentication, as
described in <a href="#section-12.7">Section 12.7</a>.
R: A reserved bit for future use. All implementations
complying with this protocol MUST set to zero any bits that
are reserved in the version of the protocol supported by
that implementation. Receivers MUST ignore all bits not
defined for the version of the protocol they support.
R-MAC Field: The AC supports the optional Radio MAC Address field
in the CAPWAP transport header (see <a href="#section-4.3">Section 4.3</a>). The following
enumerated values are supported:
0 - Reserved
1 - Supported
2 - Not Supported
Reserved: A set of reserved bits for future use. All
implementations complying with this protocol MUST set to zero any
bits that are reserved in the version of the protocol supported by
that implementation. Receivers MUST ignore all bits not defined
for the version of the protocol they support.
DTLS Policy: The AC communicates its policy on the use of DTLS for
the CAPWAP data channel. The AC MAY communicate more than one
supported option, represented by the bit field below. The WTP
MUST abide by one of the options communicated by AC. The field
has the following format:
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
|Reserved |D|C|R|
+-+-+-+-+-+-+-+-+
<span class="grey">Calhoun, et al. Standards Track [Page 62]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-63" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
Reserved: A set of reserved bits for future use. All
implementations complying with this protocol MUST set to zero
any bits that are reserved in the version of the protocol
supported by that implementation. Receivers MUST ignore all
bits not defined for the version of the protocol they support.
D: DTLS-Enabled Data Channel Supported
C: Clear Text Data Channel Supported
R: A reserved bit for future use. All implementations
complying with this protocol MUST set to zero any bits that
are reserved in the version of the protocol supported by
that implementation. Receivers MUST ignore all bits not
defined for the version of the protocol they support.
AC Information Sub-Element: The AC Descriptor message element
contains multiple AC Information sub-elements, and defines two
sub-types, each of which MUST be present. The AC Information sub-
element has the following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AC Information Vendor Identifier |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AC Information Type | AC Information Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AC Information Data...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
AC Information Vendor Identifier: A 32-bit value containing the
IANA-assigned "Structure of Management Information (SMI)
Network Management Private Enterprise Codes".
AC Information Type: Vendor-specific encoding of AC information
in the UTF-8 format [<a href="./rfc3629" title=""UTF-8, a transformation format of ISO 10646"">RFC3629</a>]. The following enumerated values
are supported. Both the Hardware and Software Version sub-
elements MUST be included in the AC Descriptor message element.
The values listed below are used in conjunction with the AC
Information Vendor Identifier field, whose value MUST be set to
zero (0). This field, combined with the AC Information Vendor
Identifier set to a non-zero (0) value, allows vendors to use a
private namespace.
<span class="grey">Calhoun, et al. Standards Track [Page 63]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-64" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
4 - Hardware Version: The AC's hardware version number.
5 - Software Version: The AC's Software (firmware) version
number.
AC Information Length: Length of vendor-specific encoding of AC
information, with a maximum size of 1024.
AC Information Data: Vendor-specific encoding of AC information.
<span class="h4"><a class="selflink" id="section-4.6.2" href="#section-4.6.2">4.6.2</a>. AC IPv4 List</span>
The AC IPv4 List message element is used to configure a WTP with the
latest list of ACs available for the WTP to join.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AC IP Address[] |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 2 for AC IPv4 List
Length: >= 4
AC IP Address: An array of 32-bit integers containing AC IPv4
Addresses, containing no more than 1024 addresses.
<span class="h4"><a class="selflink" id="section-4.6.3" href="#section-4.6.3">4.6.3</a>. AC IPv6 List</span>
The AC IPv6 List message element is used to configure a WTP with the
latest list of ACs available for the WTP to join.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AC IP Address[] |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AC IP Address[] |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AC IP Address[] |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AC IP Address[] |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
<span class="grey">Calhoun, et al. Standards Track [Page 64]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-65" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
Type: 3 for AC IPV6 List
Length: >= 16
AC IP Address: An array of 128-bit integers containing AC IPv6
Addresses, containing no more than 1024 addresses.
<span class="h4"><a class="selflink" id="section-4.6.4" href="#section-4.6.4">4.6.4</a>. AC Name</span>
The AC Name message element contains an UTF-8 [<a href="./rfc3629" title=""UTF-8, a transformation format of ISO 10646"">RFC3629</a>]
representation of the AC identity. The value is a variable-length
byte string. The string is NOT zero terminated.
0
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
| Name ...
+-+-+-+-+-+-+-+-+
Type: 4 for AC Name
Length: >= 1
Name: A variable-length UTF-8 encoded string [<a href="./rfc3629" title=""UTF-8, a transformation format of ISO 10646"">RFC3629</a>] containing
the AC's name, whose maximum size MUST NOT exceed 512 bytes.
<span class="h4"><a class="selflink" id="section-4.6.5" href="#section-4.6.5">4.6.5</a>. AC Name with Priority</span>
The AC Name with Priority message element is sent by the AC to the
WTP to configure preferred ACs. The number of instances of this
message element is equal to the number of ACs configured on the WTP.
The WTP also uses this message element to send its configuration to
the AC.
0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Priority | AC Name...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 5 for AC Name with Priority
Length: >= 2
Priority: A value between 1 and 255 specifying the priority order
of the preferred AC. For instance, the value of one (1) is used
to set the primary AC, the value of two (2) is used to set the
secondary, etc.
<span class="grey">Calhoun, et al. Standards Track [Page 65]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-66" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
AC Name: A variable-length UTF-8 encoded string [<a href="./rfc3629" title=""UTF-8, a transformation format of ISO 10646"">RFC3629</a>]
containing the AC name, whose maximum size MUST NOT exceed 512
bytes.
<span class="h4"><a class="selflink" id="section-4.6.6" href="#section-4.6.6">4.6.6</a>. AC Timestamp</span>
The AC Timestamp message element is sent by the AC to synchronize the
WTP clock.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Timestamp |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 6 for AC Timestamp
Length: 4
Timestamp: The AC's current time, allowing all of the WTPs to be
time synchronized in the format defined by Network Time Protocol
(NTP) in <a href="./rfc1305">RFC 1305</a> [<a href="./rfc1305" title=""Network Time Protocol (Version 3) Specification, Implementation"">RFC1305</a>]. Only the most significant 32 bits of
the NTP time are included in this field.
<span class="h4"><a class="selflink" id="section-4.6.7" href="#section-4.6.7">4.6.7</a>. Add MAC ACL Entry</span>
The Add MAC Access Control List (ACL) Entry message element is used
by an AC to add a MAC ACL list entry on a WTP, ensuring that the WTP
no longer provides service to the MAC addresses provided in the
message. The MAC addresses provided in this message element are not
expected to be saved in non-volatile memory on the WTP. The MAC ACL
table on the WTP is cleared every time the WTP establishes a new
session with an AC.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Num of Entries| Length | MAC Address ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 7 for Add MAC ACL Entry
Length: >= 8
Num of Entries: The number of instances of the Length/MAC Address
fields in the array. This value MUST NOT exceed 255.
<span class="grey">Calhoun, et al. Standards Track [Page 66]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-67" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
Length: The length of the MAC Address field. The formats and
lengths specified in [<a href="#ref-EUI-48" title=""Guidelines for use of a 48-bit Extended Unique Identifier"">EUI-48</a>] and [<a href="#ref-EUI-64" title=""GUIDELINES FOR 64-BIT GLOBAL IDENTIFIER (EUI-64) REGISTRATION AUTHORITY"">EUI-64</a>] are supported.
MAC Address: MAC addresses to add to the ACL.
<span class="h4"><a class="selflink" id="section-4.6.8" href="#section-4.6.8">4.6.8</a>. Add Station</span>
The Add Station message element is used by the AC to inform a WTP
that it should forward traffic for a station. The Add Station
message element is accompanied by technology-specific binding
information element(s), which may include security parameters.
Consequently, the security parameters MUST be applied by the WTP for
the station.
After station policy has been delivered to the WTP through the Add
Station message element, an AC MAY change any policies by sending a
modified Add Station message element. When a WTP receives an Add
Station message element for an existing station, it MUST override any
existing state for the station.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | Length | MAC Address ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| VLAN Name...
+-+-+-+-+-+-+-+-+
Type: 8 for Add Station
Length: >= 8
Radio ID: An 8-bit value representing the radio, whose value is
between one (1) and 31.
Length: The length of the MAC Address field. The formats and
lengths specified in [<a href="#ref-EUI-48" title=""Guidelines for use of a 48-bit Extended Unique Identifier"">EUI-48</a>] and [<a href="#ref-EUI-64" title=""GUIDELINES FOR 64-BIT GLOBAL IDENTIFIER (EUI-64) REGISTRATION AUTHORITY"">EUI-64</a>] are supported.
MAC Address: The station's MAC address.
VLAN Name: An optional variable-length UTF-8 encoded string
[<a href="./rfc3629" title=""UTF-8, a transformation format of ISO 10646"">RFC3629</a>], with a maximum length of 512 octets, containing the
VLAN Name on which the WTP is to locally bridge user data. Note
this field is only valid with WTPs configured in Local MAC mode.
<span class="grey">Calhoun, et al. Standards Track [Page 67]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-68" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
<span class="h4"><a class="selflink" id="section-4.6.9" href="#section-4.6.9">4.6.9</a>. CAPWAP Control IPv4 Address</span>
The CAPWAP Control IPv4 Address message element is sent by the AC to
the WTP during the Discovery process and is used by the AC to provide
the interfaces available on the AC, and the current number of WTPs
connected. When multiple CAPWAP Control IPV4 Address message
elements are returned, the WTP SHOULD perform load balancing across
the multiple interfaces (see <a href="#section-6.1">Section 6.1</a>).
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IP Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| WTP Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 10 for CAPWAP Control IPv4 Address
Length: 6
IP Address: The IP address of an interface.
WTP Count: The number of WTPs currently connected to the interface,
with a maximum value of 65535.
<span class="h4"><a class="selflink" id="section-4.6.10" href="#section-4.6.10">4.6.10</a>. CAPWAP Control IPv6 Address</span>
The CAPWAP Control IPv6 Address message element is sent by the AC to
the WTP during the Discovery process and is used by the AC to provide
the interfaces available on the AC, and the current number of WTPs
connected. This message element is useful for the WTP to perform
load balancing across multiple interfaces (see <a href="#section-6.1">Section 6.1</a>).
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IP Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IP Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IP Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IP Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| WTP Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
<span class="grey">Calhoun, et al. Standards Track [Page 68]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-69" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
Type: 11 for CAPWAP Control IPv6 Address
Length: 18
IP Address: The IP address of an interface.
WTP Count: The number of WTPs currently connected to the interface,
with a maximum value of 65535.
<span class="h4"><a class="selflink" id="section-4.6.11" href="#section-4.6.11">4.6.11</a>. CAPWAP Local IPv4 Address</span>
The CAPWAP Local IPv4 Address message element is sent by either the
WTP, in the Join Request, or by the AC, in the Join Response. The
CAPWAP Local IPv4 Address message element is used to communicate the
IP Address of the transmitter. The receiver uses this to determine
whether a middlebox exists between the two peers, by comparing the
source IP address of the packet against the value of the message
element.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IP Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 30 for CAPWAP Local IPv4 Address
Length: 4
IP Address: The IP address of the sender.
<span class="h4"><a class="selflink" id="section-4.6.12" href="#section-4.6.12">4.6.12</a>. CAPWAP Local IPv6 Address</span>
The CAPWAP Local IPv6 Address message element is sent by either the
WTP, in the Join Request, or by the AC, in the Join Response. The
CAPWAP Local IPv6 Address message element is used to communicate the
IP Address of the transmitter. The receiver uses this to determine
whether a middlebox exists between the two peers, by comparing the
source IP address of the packet against the value of the message
element.
<span class="grey">Calhoun, et al. Standards Track [Page 69]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-70" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IP Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IP Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IP Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IP Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 50 for CAPWAP Local IPv6 Address
Length: 16
IP Address: The IP address of the sender.
<span class="h4"><a class="selflink" id="section-4.6.13" href="#section-4.6.13">4.6.13</a>. CAPWAP Timers</span>
The CAPWAP Timers message element is used by an AC to configure
CAPWAP timers on a WTP.
0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Discovery | Echo Request |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 12 for CAPWAP Timers
Length: 2
Discovery: The number of seconds between CAPWAP Discovery messages,
when the WTP is in the Discovery phase. This value is used to
configure the MaxDiscoveryInterval timer (see <a href="#section-4.7.10">Section 4.7.10</a>).
Echo Request: The number of seconds between WTP Echo Request CAPWAP
messages. This value is used to configure the EchoInterval timer
(see <a href="#section-4.7.7">Section 4.7.7</a>). The AC sets its EchoInterval timer to this
value, plus the maximum retransmission time as described in
<a href="#section-4.5.3">Section 4.5.3</a>.
<span class="grey">Calhoun, et al. Standards Track [Page 70]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-71" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
<span class="h4"><a class="selflink" id="section-4.6.14" href="#section-4.6.14">4.6.14</a>. CAPWAP Transport Protocol</span>
When CAPWAP is run over IPv6, the UDP-Lite or UDP transports MAY be
used (see <a href="#section-3">Section 3</a>). The CAPWAP IPv6 Transport Protocol message
element is used by either the WTP or the AC to signal which transport
protocol is to be used for the CAPWAP data channel.
Upon receiving the Join Request, the AC MAY set the CAPWAP Transport
Protocol to UDP-Lite in the Join Response message if the CAPWAP
message was received over IPv6, and the CAPWAP Local IPv6 Address
message element (see <a href="#section-4.6.12">Section 4.6.12</a>) is present and no middlebox was
detected (see <a href="#section-11">Section 11</a>).
Upon receiving the Join Response, the WTP MAY set the CAPWAP
Transport Protocol to UDP-Lite in the Configuration Status Request or
Image Data Request message if the AC advertised support for UDP-Lite,
the message was received over IPv6, the CAPWAP Local IPv6 Address
message element (see <a href="#section-4.6.12">Section 4.6.12</a>) and no middlebox was detected
(see <a href="#section-11">Section 11</a>). Upon receiving either the Configuration Status
Request or the Image Data Request, the AC MUST observe the preference
indicated by the WTP in the CAPWAP Transport Protocol, as long as it
is consistent with what the AC advertised in the Join Response.
For any other condition, the CAPWAP Transport Protocol MUST be set to
UDP.
0
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
| Transport |
+-+-+-+-+-+-+-+-+
Type: 51 for CAPWAP Transport Protocol
Length: 1
Transport: The transport to use for the CAPWAP Data channel. The
following enumerated values are supported:
1 - UDP-Lite: The UDP-Lite transport protocol is to be used for
the CAPWAP Data channel. Note that this option MUST NOT be
used if the CAPWAP Control channel is being used over IPv4.
2 - UDP: The UDP transport protocol is to be used for the CAPWAP
Data channel.
<span class="grey">Calhoun, et al. Standards Track [Page 71]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-72" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
<span class="h4"><a class="selflink" id="section-4.6.15" href="#section-4.6.15">4.6.15</a>. Data Transfer Data</span>
The Data Transfer Data message element is used by the WTP to provide
information to the AC for debugging purposes.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Data Type | Data Mode | Data Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Data ....
+-+-+-+-+-+-+-+-+
Type: 13 for Data Transfer Data
Length: >= 5
Data Type: An 8-bit value representing the transfer Data Type. The
following enumerated values are supported:
1 - Transfer data is included.
2 - Last Transfer Data Block is included (End of File (EOF)).
5 - An error occurred. Transfer is aborted.
Data Mode: An 8-bit value describing the type of information being
transmitted. The following enumerated values are supported:
0 - Reserved
1 - WTP Crash Data
2 - WTP Memory Dump
Data Length: Length of data field, with a maximum size of 65535.
Data: Data being transferred from the WTP to the AC, whose type is
identified via the Data Mode field.
<span class="grey">Calhoun, et al. Standards Track [Page 72]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-73" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
<span class="h4"><a class="selflink" id="section-4.6.16" href="#section-4.6.16">4.6.16</a>. Data Transfer Mode</span>
The Data Transfer Mode message element is used by the WTP to indicate
the type of data transfer information it is sending to the AC for
debugging purposes.
0
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
| Data Mode |
+-+-+-+-+-+-+-+-+
Type: 14 for Data Transfer Mode
Length: 1
Data Mode: An 8-bit value describing the type of information being
requested. The following enumerated values are supported:
0 - Reserved
1 - WTP Crash Data
2 - WTP Memory Dump
<span class="h4"><a class="selflink" id="section-4.6.17" href="#section-4.6.17">4.6.17</a>. Decryption Error Report</span>
The Decryption Error Report message element value is used by the WTP
to inform the AC of decryption errors that have occurred since the
last report. Note that this error reporting mechanism is not used if
encryption and decryption services are provided in the AC.
0 1 2
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID |Num Of Entries | Length | MAC Address...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 15 for Decryption Error Report
Length: >= 9
Radio ID: The Radio Identifier refers to an interface index on the
WTP, whose value is between one (1) and 31.
Num of Entries: The number of instances of the Length/MAC Address
fields in the array. This field MUST NOT exceed the value of 255.
<span class="grey">Calhoun, et al. Standards Track [Page 73]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-74" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
Length: The length of the MAC Address field. The formats and
lengths specified in [<a href="#ref-EUI-48" title=""Guidelines for use of a 48-bit Extended Unique Identifier"">EUI-48</a>] and [<a href="#ref-EUI-64" title=""GUIDELINES FOR 64-BIT GLOBAL IDENTIFIER (EUI-64) REGISTRATION AUTHORITY"">EUI-64</a>] are supported.
MAC Address: MAC address of the station that has caused decryption
errors.
<span class="h4"><a class="selflink" id="section-4.6.18" href="#section-4.6.18">4.6.18</a>. Decryption Error Report Period</span>
The Decryption Error Report Period message element value is used by
the AC to inform the WTP how frequently it should send decryption
error report messages. Note that this error reporting mechanism is
not used if encryption and decryption services are provided in the
AC.
0 1 2
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | Report Interval |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 16 for Decryption Error Report Period
Length: 3
Radio ID: The Radio Identifier refers to an interface index on the
WTP, whose value is between one (1) and 31.
Report Interval: A 16-bit unsigned integer indicating the time, in
seconds. The default value for this message element can be found
in <a href="#section-4.7.11">Section 4.7.11</a>.
<span class="h4"><a class="selflink" id="section-4.6.19" href="#section-4.6.19">4.6.19</a>. Delete MAC ACL Entry</span>
The Delete MAC ACL Entry message element is used by an AC to delete a
MAC ACL entry on a WTP, ensuring that the WTP provides service to the
MAC addresses provided in the message.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Num of Entries| Length | MAC Address ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 17 for Delete MAC ACL Entry
Length: >= 8
<span class="grey">Calhoun, et al. Standards Track [Page 74]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-75" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
Num of Entries: The number of instances of the Length/MAC Address
fields in the array. This field MUST NOT exceed the value of 255.
Length: The length of the MAC Address field. The formats and
lengths specified in [<a href="#ref-EUI-48" title=""Guidelines for use of a 48-bit Extended Unique Identifier"">EUI-48</a>] and [<a href="#ref-EUI-64" title=""GUIDELINES FOR 64-BIT GLOBAL IDENTIFIER (EUI-64) REGISTRATION AUTHORITY"">EUI-64</a>] are supported.
MAC Address: An array of MAC addresses to delete from the ACL.
<span class="h4"><a class="selflink" id="section-4.6.20" href="#section-4.6.20">4.6.20</a>. Delete Station</span>
The Delete Station message element is used by the AC to inform a WTP
that it should no longer provide service to a particular station.
The WTP MUST terminate service to the station immediately upon
receiving this message element.
The transmission of a Delete Station message element could occur for
various reasons, including for administrative reasons, or if the
station has roamed to another WTP.
The Delete Station message element MAY be sent by the WTP, in the WTP
Event Request message, to inform the AC that a particular station is
no longer being provided service. This could occur as a result of an
Idle Timeout (see <a href="#section-4.4.43">section 4.4.43</a>), due to internal resource shortages
or for some other reason.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | Length | MAC Address...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 18 for Delete Station
Length: >= 8
Radio ID: An 8-bit value representing the radio, whose value is
between one (1) and 31.
Length: The length of the MAC Address field. The formats and
lengths specified in [<a href="#ref-EUI-48" title=""Guidelines for use of a 48-bit Extended Unique Identifier"">EUI-48</a>] and [<a href="#ref-EUI-64" title=""GUIDELINES FOR 64-BIT GLOBAL IDENTIFIER (EUI-64) REGISTRATION AUTHORITY"">EUI-64</a>] are supported.
MAC Address: The station's MAC address.
<span class="h4"><a class="selflink" id="section-4.6.21" href="#section-4.6.21">4.6.21</a>. Discovery Type</span>
The Discovery Type message element is used by the WTP to indicate how
it has come to know about the existence of the AC to which it is
sending the Discovery Request message.
<span class="grey">Calhoun, et al. Standards Track [Page 75]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-76" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
0
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
| Discovery Type|
+-+-+-+-+-+-+-+-+
Type: 20 for Discovery Type
Length: 1
Discovery Type: An 8-bit value indicating how the WTP discovered
the AC. The following enumerated values are supported:
0 - Unknown
1 - Static Configuration
2 - DHCP
3 - DNS
4 - AC Referral (used when the AC was configured either through
the AC IPv4 List or AC IPv6 List message element)
<span class="h4"><a class="selflink" id="section-4.6.22" href="#section-4.6.22">4.6.22</a>. Duplicate IPv4 Address</span>
The Duplicate IPv4 Address message element is used by a WTP to inform
an AC that it has detected another IP device using the same IP
address that the WTP is currently using.
The WTP MUST transmit this message element with the status set to 1
after it has detected a duplicate IP address. When the WTP detects
that the duplicate IP address has been cleared, it MUST send this
message element with the status set to 0.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IP Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Status | Length | MAC Address ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 21 for Duplicate IPv4 Address
Length: >= 12
IP Address: The IP address currently used by the WTP.
<span class="grey">Calhoun, et al. Standards Track [Page 76]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-77" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
Status: The status of the duplicate IP address. The value MUST be
set to 1 when a duplicate address is detected, and 0 when the
duplicate address has been cleared.
Length: The length of the MAC Address field. The formats and
lengths specified in [<a href="#ref-EUI-48" title=""Guidelines for use of a 48-bit Extended Unique Identifier"">EUI-48</a>] and [<a href="#ref-EUI-64" title=""GUIDELINES FOR 64-BIT GLOBAL IDENTIFIER (EUI-64) REGISTRATION AUTHORITY"">EUI-64</a>] are supported.
MAC Address: The MAC address of the offending device.
<span class="h4"><a class="selflink" id="section-4.6.23" href="#section-4.6.23">4.6.23</a>. Duplicate IPv6 Address</span>
The Duplicate IPv6 Address message element is used by a WTP to inform
an AC that it has detected another host using the same IP address
that the WTP is currently using.
The WTP MUST transmit this message element with the status set to 1
after it has detected a duplicate IP address. When the WTP detects
that the duplicate IP address has been cleared, it MUST send this
message element with the status set to 0.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IP Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IP Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IP Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IP Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Status | Length | MAC Address ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 22 for Duplicate IPv6 Address
Length: >= 24
IP Address: The IP address currently used by the WTP.
Status: The status of the duplicate IP address. The value MUST be
set to 1 when a duplicate address is detected, and 0 when the
duplicate address has been cleared.
Length: The length of the MAC Address field. The formats and
lengths specified in [<a href="#ref-EUI-48" title=""Guidelines for use of a 48-bit Extended Unique Identifier"">EUI-48</a>] and [<a href="#ref-EUI-64" title=""GUIDELINES FOR 64-BIT GLOBAL IDENTIFIER (EUI-64) REGISTRATION AUTHORITY"">EUI-64</a>] are supported.
MAC Address: The MAC address of the offending device.
<span class="grey">Calhoun, et al. Standards Track [Page 77]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-78" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
<span class="h4"><a class="selflink" id="section-4.6.24" href="#section-4.6.24">4.6.24</a>. Idle Timeout</span>
The Idle Timeout message element is sent by the AC to the WTP to
provide the Idle Timeout value that the WTP SHOULD enforce for its
active stations. The value applies to all radios on the WTP.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Timeout |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 23 for Idle Timeout
Length: 4
Timeout: The current Idle Timeout, in seconds, to be enforced by
the WTP. The default value for this message element is specified
in <a href="#section-4.7.8">Section 4.7.8</a>.
<span class="h4"><a class="selflink" id="section-4.6.25" href="#section-4.6.25">4.6.25</a>. ECN Support</span>
The ECN Support message element is sent by both the WTP and the AC to
indicate their support for the Explicit Congestion Notification (ECN)
bits, as defined in [<a href="./rfc3168" title=""The Addition of Explicit Congestion Notification (ECN) to IP"">RFC3168</a>].
0
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
| ECN Support |
+-+-+-+-+-+-+-+-+
Type: 53 for ECN Support
Length: 1
ECN Support: An 8-bit value representing the sender's support for
ECN, as defined in [<a href="./rfc3168" title=""The Addition of Explicit Congestion Notification (ECN) to IP"">RFC3168</a>]. All CAPWAP Implementations MUST
support the Limited ECN Support mode. Full ECN Support is used if
both the WTP and AC advertise the capability for "Full and Limited
ECN" Support; otherwise, Limited ECN Support is used.
0 - Limited ECN Support
1 - Full and Limited ECN Support
<span class="grey">Calhoun, et al. Standards Track [Page 78]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-79" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
<span class="h4"><a class="selflink" id="section-4.6.26" href="#section-4.6.26">4.6.26</a>. Image Data</span>
The Image Data message element is present in the Image Data Request
message sent by the AC and contains the following fields.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Data Type | Data ....
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 24 for Image Data
Length: >= 1
Data Type: An 8-bit value representing the image Data Type. The
following enumerated values are supported:
1 - Image data is included.
2 - Last Image Data Block is included (EOF).
5 - An error occurred. Transfer is aborted.
Data: The Image Data field contains up to 1024 characters, and its
length is inferred from this message element's length field. If
the block being sent is the last one, the Data Type field is set
to 2. The AC MAY opt to abort the data transfer by setting the
Data Type field to 5. When the Data Type field is 5, the Value
field has a zero length.
<span class="h4"><a class="selflink" id="section-4.6.27" href="#section-4.6.27">4.6.27</a>. Image Identifier</span>
The Image Identifier message element is sent by the AC to the WTP to
indicate the expected active software version that is to be run on
the WTP. The WTP sends the Image Identifier message element in order
to request a specific software version from the AC. The actual
download process is defined in <a href="#section-9.1">Section 9.1</a>. The value is a variable-
length UTF-8 encoded string [<a href="./rfc3629" title=""UTF-8, a transformation format of ISO 10646"">RFC3629</a>], which is NOT zero terminated.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Vendor Identifier |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Data...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
<span class="grey">Calhoun, et al. Standards Track [Page 79]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-80" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
Type: 25 for Image Identifier
Length: >= 5
Vendor Identifier: A 32-bit value containing the IANA-assigned "SMI
Network Management Private Enterprise Codes".
Data: A variable-length UTF-8 encoded string [<a href="./rfc3629" title=""UTF-8, a transformation format of ISO 10646"">RFC3629</a>] containing
the firmware identifier to be run on the WTP, whose length MUST
NOT exceed 1024 octets. The length of this field is inferred from
this message element's length field.
<span class="h4"><a class="selflink" id="section-4.6.28" href="#section-4.6.28">4.6.28</a>. Image Information</span>
The Image Information message element is present in the Image Data
Response message sent by the AC to the WTP and contains the following
fields.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| File Size |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Hash |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Hash |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Hash |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Hash |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 26 for Image Information
Length: 20
File Size: A 32-bit value containing the size of the file, in
bytes, that will be transferred by the AC to the WTP.
Hash: A 16-octet MD5 hash of the image using the procedures defined
in [<a href="./rfc1321" title=""The MD5 Message-Digest Algorithm"">RFC1321</a>].
<span class="grey">Calhoun, et al. Standards Track [Page 80]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-81" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
<span class="h4"><a class="selflink" id="section-4.6.29" href="#section-4.6.29">4.6.29</a>. Initiate Download</span>
The Initiate Download message element is used by the WTP to inform
the AC that the AC SHOULD initiate a firmware upgrade. The AC
subsequently transmits an Image Data Request message, which includes
the Image Data message element. This message element does not
contain any data.
Type: 27 for Initiate Download
Length: 0
<span class="h4"><a class="selflink" id="section-4.6.30" href="#section-4.6.30">4.6.30</a>. Location Data</span>
The Location Data message element is a variable-length byte UTF-8
encoded string [<a href="./rfc3629" title=""UTF-8, a transformation format of ISO 10646"">RFC3629</a>] containing user-defined location information
(e.g., "Next to Fridge"). This information is configurable by the
network administrator, and allows the WTP location to be determined.
The string is not zero terminated.
0
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+-
| Location ...
+-+-+-+-+-+-+-+-+-
Type: 28 for Location Data
Length: >= 1
Location: A non-zero-terminated UTF-8 encoded string [<a href="./rfc3629" title=""UTF-8, a transformation format of ISO 10646"">RFC3629</a>]
containing the WTP location, whose maximum size MUST NOT exceed
1024.
<span class="h4"><a class="selflink" id="section-4.6.31" href="#section-4.6.31">4.6.31</a>. Maximum Message Length</span>
The Maximum Message Length message element is included in the Join
Request message by the WTP to indicate the maximum CAPWAP message
length that it supports to the AC. The Maximum Message Length
message element is optionally included in Join Response message by
the AC to indicate the maximum CAPWAP message length that it supports
to the WTP.
0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Maximum Message Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
<span class="grey">Calhoun, et al. Standards Track [Page 81]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-82" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
Type: 29 for Maximum Message Length
Length: 2
Maximum Message Length A 16-bit unsigned integer indicating the
maximum message length.
<span class="h4"><a class="selflink" id="section-4.6.32" href="#section-4.6.32">4.6.32</a>. MTU Discovery Padding</span>
The MTU Discovery Padding message element is used as padding to
perform MTU discovery, and MUST contain octets of value 0xFF, of any
length.
0
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
| Padding...
+-+-+-+-+-+-+-+-
Type: 52 for MTU Discovery Padding
Length: Variable
Pad: A variable-length pad, filled with the value 0xFF.
<span class="h4"><a class="selflink" id="section-4.6.33" href="#section-4.6.33">4.6.33</a>. Radio Administrative State</span>
The Radio Administrative State message element is used to communicate
the state of a particular radio. The Radio Administrative State
message element is sent by the AC to change the state of the WTP.
The WTP saves the value, to ensure that it remains across WTP resets.
The WTP communicates this message element during the configuration
phase, in the Configuration Status Request message, to ensure that
the AC has the WTP radio current administrative state settings. The
message element contains the following fields:
0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | Admin State |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 31 for Radio Administrative State
Length: 2
<span class="grey">Calhoun, et al. Standards Track [Page 82]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-83" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
Radio ID: An 8-bit value representing the radio to configure, whose
value is between one (1) and 31. The Radio ID field MAY also
include the value of 0xff, which is used to identify the WTP. If
an AC wishes to change the administrative state of a WTP, it
includes 0xff in the Radio ID field.
Admin State: An 8-bit value representing the administrative state
of the radio. The default value for the Admin State field is
listed in <a href="#section-4.8.1">Section 4.8.1</a>. The following enumerated values are
supported:
0 - Reserved
1 - Enabled
2 - Disabled
<span class="h4"><a class="selflink" id="section-4.6.34" href="#section-4.6.34">4.6.34</a>. Radio Operational State</span>
The Radio Operational State message element is sent by the WTP to the
AC to communicate a radio's operational state. This message element
is included in the Configuration Update Response message by the WTP
if it was requested to change the state of its radio, via the Radio
Administrative State message element, but was unable to comply to the
request. This message element is included in the Change State Event
message when a WTP radio state was changed unexpectedly. This could
occur due to a hardware failure. Note that the operational state
setting is not saved on the WTP, and therefore does not remain across
WTP resets. The value contains three fields, as shown below.
0 1 2
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | State | Cause |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 32 for Radio Operational State
Length: 3
Radio ID: The Radio Identifier refers to an interface index on the
WTP, whose value is between one (1) and 31. A value of 0xFF is
invalid, as it is not possible to change the WTP's operational
state.
State: An 8-bit Boolean value representing the state of the radio.
The following enumerated values are supported:
<span class="grey">Calhoun, et al. Standards Track [Page 83]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-84" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
0 - Reserved
1 - Enabled
2 - Disabled
Cause: When a radio is inoperable, the cause field contains the
reason the radio is out of service. The following enumerated
values are supported:
0 - Normal
1 - Radio Failure
2 - Software Failure
3 - Administratively Set
<span class="h4"><a class="selflink" id="section-4.6.35" href="#section-4.6.35">4.6.35</a>. Result Code</span>
The Result Code message element value is a 32-bit integer value,
indicating the result of the Request message corresponding to the
sequence number included in the Response message.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Result Code |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 33 for Result Code
Length: 4
Result Code: The following enumerated values are defined:
0 Success
1 Failure (AC List Message Element MUST Be Present)
2 Success (NAT Detected)
3 Join Failure (Unspecified)
4 Join Failure (Resource Depletion)
5 Join Failure (Unknown Source)
<span class="grey">Calhoun, et al. Standards Track [Page 84]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-85" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
6 Join Failure (Incorrect Data)
7 Join Failure (Session ID Already in Use)
8 Join Failure (WTP Hardware Not Supported)
9 Join Failure (Binding Not Supported)
10 Reset Failure (Unable to Reset)
11 Reset Failure (Firmware Write Error)
12 Configuration Failure (Unable to Apply Requested Configuration
- Service Provided Anyhow)
13 Configuration Failure (Unable to Apply Requested Configuration
- Service Not Provided)
14 Image Data Error (Invalid Checksum)
15 Image Data Error (Invalid Data Length)
16 Image Data Error (Other Error)
17 Image Data Error (Image Already Present)
18 Message Unexpected (Invalid in Current State)
19 Message Unexpected (Unrecognized Request)
20 Failure - Missing Mandatory Message Element
21 Failure - Unrecognized Message Element
22 Data Transfer Error (No Information to Transfer)
<span class="h4"><a class="selflink" id="section-4.6.36" href="#section-4.6.36">4.6.36</a>. Returned Message Element</span>
The Returned Message Element is sent by the WTP in the Change State
Event Request message to communicate to the AC which message elements
in the Configuration Status Response it was unable to apply locally.
The Returned Message Element message element contains a result code
indicating the reason that the configuration could not be applied,
and encapsulates the failed message element.
<span class="grey">Calhoun, et al. Standards Track [Page 85]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-86" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reason | Length | Message Element...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 34 for Returned Message Element
Length: >= 6
Reason: The reason the configuration in the offending message
element could not be applied by the WTP. The following enumerated
values are supported:
0 - Reserved
1 - Unknown Message Element
2 - Unsupported Message Element
3 - Unknown Message Element Value
4 - Unsupported Message Element Value
Length: The length of the Message Element field, which MUST NOT
exceed 255 octets.
Message Element: The Message Element field encapsulates the message
element sent by the AC in the Configuration Status Response
message that caused the error.
<span class="h4"><a class="selflink" id="section-4.6.37" href="#section-4.6.37">4.6.37</a>. Session ID</span>
The Session ID message element value contains a randomly generated
unsigned 128-bit integer.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Session ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Session ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Session ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Session ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
<span class="grey">Calhoun, et al. Standards Track [Page 86]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-87" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
Type: 35 for Session ID
Length: 16
Session ID: A 128-bit unsigned integer used as a random session
identifier
<span class="h4"><a class="selflink" id="section-4.6.38" href="#section-4.6.38">4.6.38</a>. Statistics Timer</span>
The Statistics Timer message element value is used by the AC to
inform the WTP of the frequency with which it expects to receive
updated statistics.
0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Statistics Timer |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 36 for Statistics Timer
Length: 2
Statistics Timer: A 16-bit unsigned integer indicating the time, in
seconds. The default value for this timer is specified in
<a href="#section-4.7.14">Section 4.7.14</a>.
<span class="h4"><a class="selflink" id="section-4.6.39" href="#section-4.6.39">4.6.39</a>. Vendor Specific Payload</span>
The Vendor Specific Payload message element is used to communicate
vendor-specific information between the WTP and the AC. The Vendor
Specific Payload message element MAY be present in any CAPWAP
message. The exchange of vendor-specific data between the MUST NOT
modify the behavior of the base CAPWAP protocol and state machine.
The message element uses the following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Vendor Identifier |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Element ID | Data...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 37 for Vendor Specific Payload
Length: >= 7
<span class="grey">Calhoun, et al. Standards Track [Page 87]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-88" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
Vendor Identifier: A 32-bit value containing the IANA-assigned "SMI
Network Management Private Enterprise Codes" [<a href="./rfc3232" title=""Assigned Numbers: RFC 1700 is Replaced by an On-line Database"">RFC3232</a>].
Element ID: A 16-bit Element Identifier that is managed by the
vendor.
Data: Variable-length vendor-specific information, whose contents
and format are proprietary and understood based on the Element ID
field. This field MUST NOT exceed 2048 octets.
<span class="h4"><a class="selflink" id="section-4.6.40" href="#section-4.6.40">4.6.40</a>. WTP Board Data</span>
The WTP Board Data message element is sent by the WTP to the AC and
contains information about the hardware present.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Vendor Identifier |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Board Data Sub-Element...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 38 for WTP Board Data
Length: >=14
Vendor Identifier: A 32-bit value containing the IANA-assigned "SMI
Network Management Private Enterprise Codes", identifying the WTP
hardware manufacturer. The Vendor Identifier field MUST NOT be
set to zero.
Board Data Sub-Element: The WTP Board Data message element contains
multiple Board Data sub-elements, some of which are mandatory and
some are optional, as described below. The Board Data Type values
are not extensible by vendors, and are therefore not coupled along
with the Vendor Identifier field. The Board Data sub-element has
the following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Board Data Type | Board Data Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Board Data Value...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
<span class="grey">Calhoun, et al. Standards Track [Page 88]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-89" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
Board Data Type: The Board Data Type field identifies the data
being encoded. The CAPWAP protocol defines the following
values, and each of these types identify whether their presence
is mandatory or optional:
0 - WTP Model Number: The WTP Model Number MUST be included in
the WTP Board Data message element.
1 - WTP Serial Number: The WTP Serial Number MUST be included in
the WTP Board Data message element.
2 - Board ID: A hardware identifier, which MAY be included in
the WTP Board Data message element.
3 - Board Revision: A revision number of the board, which MAY be
included in the WTP Board Data message element.
4 - Base MAC Address: The WTP's Base MAC address, which MAY be
assigned to the primary Ethernet interface.
Board Data Length: The length of the data in the Board Data Value
field, whose length MUST NOT exceed 1024 octets.
Board Data Value: The data associated with the Board Data Type
field for this Board Data sub-element.
<span class="h4"><a class="selflink" id="section-4.6.41" href="#section-4.6.41">4.6.41</a>. WTP Descriptor</span>
The WTP Descriptor message element is used by a WTP to communicate
its current hardware and software (firmware) configuration. The
value contains the following fields:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Max Radios | Radios in use | Num Encrypt |Encryp Sub-Elmt|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Encryption Sub-Element | Descriptor Sub-Element...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 39 for WTP Descriptor
Length: >= 33
<span class="grey">Calhoun, et al. Standards Track [Page 89]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-90" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
Max Radios: An 8-bit value representing the number of radios (where
each radio is identified via the Radio ID field) supported by the
WTP.
Radios in use: An 8-bit value representing the number of radios in
use in the WTP.
Num Encrypt: The number of 3-byte Encryption sub-elements that
follow this field. The value of the Num Encrypt field MUST be
between one (1) and 255.
Encryption Sub-Element: The WTP Descriptor message element MUST
contain at least one Encryption sub-element. One sub-element is
present for each binding supported by the WTP. The Encryption
sub-element has the following format:
0 1 2
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Resvd| WBID | Encryption Capabilities |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Resvd: The 3-bit field is reserved for future use. All
implementations complying with this protocol MUST set to zero
any bits that are reserved in the version of the protocol
supported by that implementation. Receivers MUST ignore all
bits not defined for the version of the protocol they support.
WBID: A 5-bit field that is the wireless binding identifier.
The identifier will indicate the type of wireless packet
associated with the radio. The WBIDs defined in this
specification can be found in <a href="#section-4.3">Section 4.3</a>.
Encryption Capabilities: This 16-bit field is used by the WTP to
communicate its capabilities to the AC. A WTP that does not
have any encryption capabilities sets this field to zero (0).
Refer to the specific wireless binding for further
specification of the Encryption Capabilities field.
Descriptor Sub-Element: The WTP Descriptor message element contains
multiple Descriptor sub-elements, some of which are mandatory and
some are optional, as described below. The Descriptor sub-element
has the following format:
<span class="grey">Calhoun, et al. Standards Track [Page 90]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-91" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Descriptor Vendor Identifier |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Descriptor Type | Descriptor Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Descriptor Data...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Descriptor Vendor Identifier: A 32-bit value containing the
IANA-assigned "SMI Network Management Private Enterprise
Codes".
Descriptor Type: The Descriptor Type field identifies the data
being encoded. The format of the data is vendor-specific
encoded in the UTF-8 format [<a href="./rfc3629" title=""UTF-8, a transformation format of ISO 10646"">RFC3629</a>]. The CAPWAP protocol
defines the following values, and each of these types identify
whether their presence is mandatory or optional. The values
listed below are used in conjunction with the Descriptor Vendor
Identifier field, whose value MUST be set to zero (0). This
field, combined with the Descriptor Vendor Identifier set to a
non-zero (0) value, allows vendors to use a private namespace.
0 - Hardware Version: The WTP hardware version number MUST be
present.
1 - Active Software Version: The WTP running software version
number MUST be present.
2 - Boot Version: The WTP boot loader version number MUST be
present.
3 - Other Software Version: The WTP non-running software
(firmware) version number MAY be present. This type is
used to communicate alternate software versions that are
available on the WTP's non-volatile storage.
Descriptor Length: Length of the vendor-specific encoding of the
Descriptor Data field, whose length MUST NOT exceed 1024
octets.
Descriptor Data: Vendor-specific data of WTP information encoded
in the UTF-8 format [<a href="./rfc3629" title=""UTF-8, a transformation format of ISO 10646"">RFC3629</a>].
<span class="grey">Calhoun, et al. Standards Track [Page 91]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-92" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
<span class="h4"><a class="selflink" id="section-4.6.42" href="#section-4.6.42">4.6.42</a>. WTP Fallback</span>
The WTP Fallback message element is sent by the AC to the WTP to
enable or disable automatic CAPWAP fallback in the event that a WTP
detects its preferred AC to which it is not currently connected.
0
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
| Mode |
+-+-+-+-+-+-+-+-+
Type: 40 for WTP Fallback
Length: 1
Mode: The 8-bit value indicates the status of automatic CAPWAP
fallback on the WTP. When enabled, if the WTP detects that its
primary AC is available, and that the WTP is not connected to the
primary AC, the WTP SHOULD automatically disconnect from its
current AC and reconnect to its primary AC. If disabled, the WTP
will only reconnect to its primary AC through manual intervention
(e.g., through the Reset Request message). The default value for
this field is specified in <a href="#section-4.8.9">Section 4.8.9</a>. The following
enumerated values are supported:
0 - Reserved
1 - Enabled
2 - Disabled
<span class="h4"><a class="selflink" id="section-4.6.43" href="#section-4.6.43">4.6.43</a>. WTP Frame Tunnel Mode</span>
The WTP Frame Tunnel Mode message element allows the WTP to
communicate the tunneling modes of operation that it supports to the
AC. A WTP that advertises support for all types allows the AC to
select which type will be used, based on its local policy.
0
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
|Reservd|N|E|L|U|
+-+-+-+-+-+-+-+-+
<span class="grey">Calhoun, et al. Standards Track [Page 92]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-93" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
Type: 41 for WTP Frame Tunnel Mode
Length: 1
Reservd: A set of reserved bits for future use. All
implementations complying with this protocol MUST set to zero any
bits that are reserved in the version of the protocol supported by
that implementation. Receivers MUST ignore all bits not defined
for the version of the protocol they support.
N: Native Frame Tunnel mode requires the WTP and AC to encapsulate
all user payloads as native wireless frames, as defined by the
wireless binding (see for example <a href="#section-4.4">Section 4.4</a>)
E: The 802.3 Frame Tunnel Mode requires the WTP and AC to
encapsulate all user payload as native IEEE 802.3 frames (see
<a href="#section-4.4">Section 4.4</a>). All user traffic is tunneled to the AC. This
value MUST NOT be used when the WTP MAC Type is set to Split
MAC.
L: When Local Bridging is used, the WTP does not tunnel user
traffic to the AC; all user traffic is locally bridged. This
value MUST NOT be used when the WTP MAC Type is set to Split
MAC.
R: A reserved bit for future use. All implementations complying
with this protocol MUST set to zero any bits that are reserved
in the version of the protocol supported by that
implementation. Receivers MUST ignore all bits not defined for
the version of the protocol they support.
<span class="h4"><a class="selflink" id="section-4.6.44" href="#section-4.6.44">4.6.44</a>. WTP MAC Type</span>
The WTP MAC-Type message element allows the WTP to communicate its
mode of operation to the AC. A WTP that advertises support for both
modes allows the AC to select the mode to use, based on local policy.
0
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
| MAC Type |
+-+-+-+-+-+-+-+-+
Type: 44 for WTP MAC Type
<span class="grey">Calhoun, et al. Standards Track [Page 93]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-94" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
Length: 1
MAC Type: The MAC mode of operation supported by the WTP. The
following enumerated values are supported:
0 - Local MAC: Local MAC is the default mode that MUST be
supported by all WTPs. When tunneling is enabled (see
<a href="#section-4.6.43">Section 4.6.43</a>), the encapsulated frames MUST be in the
802.3 format (see <a href="#section-4.4.2">Section 4.4.2</a>), unless a wireless
management or control frame which MAY be in its native
format. Any CAPWAP binding needs to specify the format of
management and control wireless frames.
1 - Split MAC: Split MAC support is optional, and allows the AC
to receive and process native wireless frames.
2 - Both: WTP is capable of supporting both Local MAC and Split
MAC.
<span class="h4"><a class="selflink" id="section-4.6.45" href="#section-4.6.45">4.6.45</a>. WTP Name</span>
The WTP Name message element is a variable-length byte UTF-8 encoded
string [<a href="./rfc3629" title=""UTF-8, a transformation format of ISO 10646"">RFC3629</a>]. The string is not zero terminated.
0
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+-
| WTP Name ...
+-+-+-+-+-+-+-+-+-
Type: 45 for WTP Name
Length: >= 1
WTP Name: A non-zero-terminated UTF-8 encoded string [<a href="./rfc3629" title=""UTF-8, a transformation format of ISO 10646"">RFC3629</a>]
containing the WTP name, whose maximum size MUST NOT exceed 512
bytes.
<span class="h4"><a class="selflink" id="section-4.6.46" href="#section-4.6.46">4.6.46</a>. WTP Radio Statistics</span>
The WTP Radio Statistics message element is sent by the WTP to the AC
to communicate statistics on radio behavior and reasons why the WTP
radio has been reset. These counters are never reset on the WTP, and
will therefore roll over to zero when the maximum size has been
reached.
<span class="grey">Calhoun, et al. Standards Track [Page 94]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-95" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | Last Fail Type| Reset Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| SW Failure Count | HW Failure Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Other Failure Count | Unknown Failure Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Config Update Count | Channel Change Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Band Change Count | Current Noise Floor |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 47 for WTP Radio Statistics
Length: 20
Radio ID: The radio ID of the radio to which the statistics apply,
whose value is between one (1) and 31.
Last Failure Type: The last WTP failure. The following enumerated
values are supported:
0 - Statistic Not Supported
1 - Software Failure
2 - Hardware Failure
3 - Other Failure
255 - Unknown (e.g., WTP doesn't keep track of info)
Reset Count: The number of times that the radio has been reset.
SW Failure Count: The number of times that the radio has failed due
to software-related reasons.
HW Failure Count: The number of times that the radio has failed due
to hardware-related reasons.
Other Failure Count: The number of times that the radio has failed
due to known reasons, other than software or hardware failure.
<span class="grey">Calhoun, et al. Standards Track [Page 95]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-96" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
Unknown Failure Count: The number of times that the radio has
failed for unknown reasons.
Config Update Count: The number of times that the radio
configuration has been updated.
Channel Change Count: The number of times that the radio channel
has been changed.
Band Change Count: The number of times that the radio has changed
frequency bands.
Current Noise Floor: A signed integer that indicates the noise
floor of the radio receiver in units of dBm.
<span class="h4"><a class="selflink" id="section-4.6.47" href="#section-4.6.47">4.6.47</a>. WTP Reboot Statistics</span>
The WTP Reboot Statistics message element is sent by the WTP to the
AC to communicate reasons why WTP reboots have occurred. These
counters are never reset on the WTP, and will therefore roll over to
zero when the maximum size has been reached.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reboot Count | AC Initiated Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Failure Count | SW Failure Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| HW Failure Count | Other Failure Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unknown Failure Count |Last Failure Type|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 48 for WTP Reboot Statistics
Length: 15
Reboot Count: The number of reboots that have occurred due to a WTP
crash. A value of 65535 implies that this information is not
available on the WTP.
AC Initiated Count: The number of reboots that have occurred at the
request of a CAPWAP protocol message, such as a change in
configuration that required a reboot or an explicit CAPWAP
protocol reset request. A value of 65535 implies that this
information is not available on the WTP.
<span class="grey">Calhoun, et al. Standards Track [Page 96]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-97" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
Link Failure Count: The number of times that a CAPWAP protocol
connection with an AC has failed due to link failure.
SW Failure Count: The number of times that a CAPWAP protocol
connection with an AC has failed due to software-related reasons.
HW Failure Count: The number of times that a CAPWAP protocol
connection with an AC has failed due to hardware-related reasons.
Other Failure Count: The number of times that a CAPWAP protocol
connection with an AC has failed due to known reasons, other than
AC initiated, link, SW or HW failure.
Unknown Failure Count: The number of times that a CAPWAP protocol
connection with an AC has failed for unknown reasons.
Last Failure Type: The failure type of the most recent WTP failure.
The following enumerated values are supported:
0 - Not Supported
1 - AC Initiated (see <a href="#section-9.2">Section 9.2</a>)
2 - Link Failure
3 - Software Failure
4 - Hardware Failure
5 - Other Failure
255 - Unknown (e.g., WTP doesn't keep track of info)
<span class="h4"><a class="selflink" id="section-4.6.48" href="#section-4.6.48">4.6.48</a>. WTP Static IP Address Information</span>
The WTP Static IP Address Information message element is used by an
AC to configure or clear a previously configured static IP address on
a WTP. IPv6 WTPs are expected to use dynamic addresses.
<span class="grey">Calhoun, et al. Standards Track [Page 97]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-98" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IP Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Netmask |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Gateway |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Static |
+-+-+-+-+-+-+-+-+
Type: 49 for WTP Static IP Address Information
Length: 13
IP Address: The IP address to assign to the WTP. This field is
only valid if the static field is set to one.
Netmask: The IP Netmask. This field is only valid if the static
field is set to one.
Gateway: The IP address of the gateway. This field is only valid
if the static field is set to one.
Static: An 8-bit Boolean stating whether or not the WTP should use
a static IP address. A value of zero disables the static IP
address, while a value of one enables it.
<span class="h3"><a class="selflink" id="section-4.7" href="#section-4.7">4.7</a>. CAPWAP Protocol Timers</span>
This section contains the definition of the CAPWAP timers.
<span class="h4"><a class="selflink" id="section-4.7.1" href="#section-4.7.1">4.7.1</a>. ChangeStatePendingTimer</span>
The maximum time, in seconds, the AC will wait for the Change State
Event Request from the WTP after having transmitted a successful
Configuration Status Response message.
Default: 25 seconds
<span class="h4"><a class="selflink" id="section-4.7.2" href="#section-4.7.2">4.7.2</a>. DataChannelKeepAlive</span>
The DataChannelKeepAlive timer is used by the WTP to determine the
next opportunity when it must transmit the Data Channel Keep-Alive,
in seconds.
Default: 30 seconds
<span class="grey">Calhoun, et al. Standards Track [Page 98]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-99" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
<span class="h4"><a class="selflink" id="section-4.7.3" href="#section-4.7.3">4.7.3</a>. DataChannelDeadInterval</span>
The minimum time, in seconds, a WTP MUST wait without having received
a Data Channel Keep-Alive packet before the destination for the Data
Channel Keep-Alive packets may be considered dead. The value of this
timer MUST be no less than 2*DataChannelKeepAlive seconds and no
greater that 240 seconds.
Default: 60
<span class="h4"><a class="selflink" id="section-4.7.4" href="#section-4.7.4">4.7.4</a>. DataCheckTimer</span>
The number of seconds the AC will wait for the Data Channel Keep
Alive, which is required by the CAPWAP state machine's Data Check
state. The AC resets the state machine if this timer expires prior
to transitioning to the next state.
Default: 30
<span class="h4"><a class="selflink" id="section-4.7.5" href="#section-4.7.5">4.7.5</a>. DiscoveryInterval</span>
The minimum time, in seconds, that a WTP MUST wait after receiving a
Discovery Response message, before initiating a DTLS handshake.
Default: 5
<span class="h4"><a class="selflink" id="section-4.7.6" href="#section-4.7.6">4.7.6</a>. DTLSSessionDelete</span>
The minimum time, in seconds, a WTP MUST wait for DTLS session
deletion.
Default: 5
<span class="h4"><a class="selflink" id="section-4.7.7" href="#section-4.7.7">4.7.7</a>. EchoInterval</span>
The minimum time, in seconds, between sending Echo Request messages
to the AC with which the WTP has joined.
Default: 30
<span class="h4"><a class="selflink" id="section-4.7.8" href="#section-4.7.8">4.7.8</a>. IdleTimeout</span>
The default Idle Timeout is 300 seconds.
<span class="grey">Calhoun, et al. Standards Track [Page 99]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-100" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
<span class="h4"><a class="selflink" id="section-4.7.9" href="#section-4.7.9">4.7.9</a>. ImageDataStartTimer</span>
The number of seconds the WTP will wait for its peer to transmit the
Image Data Request.
Default: 30
<span class="h4"><a class="selflink" id="section-4.7.10" href="#section-4.7.10">4.7.10</a>. MaxDiscoveryInterval</span>
The maximum time allowed between sending Discovery Request messages,
in seconds. This value MUST be no less than 2 seconds and no greater
than 180 seconds.
Default: 20 seconds.
<span class="h4"><a class="selflink" id="section-4.7.11" href="#section-4.7.11">4.7.11</a>. ReportInterval</span>
The ReportInterval is used by the WTP to determine the interval the
WTP uses between sending the Decryption Error message elements to
inform the AC of decryption errors, in seconds.
The default Report Interval is 120 seconds.
<span class="h4"><a class="selflink" id="section-4.7.12" href="#section-4.7.12">4.7.12</a>. RetransmitInterval</span>
The minimum time, in seconds, in which a non-acknowledged CAPWAP
packet will be retransmitted.
Default: 3
<span class="h4"><a class="selflink" id="section-4.7.13" href="#section-4.7.13">4.7.13</a>. SilentInterval</span>
For a WTP, this is the minimum time, in seconds, a WTP MUST wait
before it MAY again send Discovery Request messages or attempt to
establish a DTLS session. For an AC, this is the minimum time, in
seconds, during which the AC SHOULD ignore all CAPWAP and DTLS
packets received from the WTP that is in the Sulking state.
Default: 30 seconds
<span class="h4"><a class="selflink" id="section-4.7.14" href="#section-4.7.14">4.7.14</a>. StatisticsTimer</span>
The StatisticsTimer is used by the WTP to determine the interval the
WTP uses between the WTP Events Requests it transmits to the AC to
communicate its statistics, in seconds.
Default: 120 seconds
<span class="grey">Calhoun, et al. Standards Track [Page 100]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-101" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
<span class="h4"><a class="selflink" id="section-4.7.15" href="#section-4.7.15">4.7.15</a>. WaitDTLS</span>
The maximum time, in seconds, a WTP MUST wait without having received
a DTLS Handshake message from an AC. This timer MUST be greater than
30 seconds.
Default: 60
<span class="h4"><a class="selflink" id="section-4.7.16" href="#section-4.7.16">4.7.16</a>. WaitJoin</span>
The maximum time, in seconds, an AC will wait after the DTLS session
has been established until it receives the Join Request from the WTP.
This timer MUST be greater than 20 seconds.
Default: 60
<span class="h3"><a class="selflink" id="section-4.8" href="#section-4.8">4.8</a>. CAPWAP Protocol Variables</span>
This section defines the CAPWAP protocol variables, which are used
for various protocol functions. Some of these variables are
configurable, while others are counters or have a fixed value. For
non-counter-related variables, default values are specified.
However, when a WTP's variable configuration is explicitly overridden
by an AC, the WTP MUST save the new value.
<span class="h4"><a class="selflink" id="section-4.8.1" href="#section-4.8.1">4.8.1</a>. AdminState</span>
The default Administrative State value is enabled (1).
<span class="h4"><a class="selflink" id="section-4.8.2" href="#section-4.8.2">4.8.2</a>. DiscoveryCount</span>
The number of Discovery Request messages transmitted by a WTP to a
single AC. This is a monotonically increasing counter.
<span class="h4"><a class="selflink" id="section-4.8.3" href="#section-4.8.3">4.8.3</a>. FailedDTLSAuthFailCount</span>
The number of failed DTLS session establishment attempts due to
authentication failures.
<span class="h4"><a class="selflink" id="section-4.8.4" href="#section-4.8.4">4.8.4</a>. FailedDTLSSessionCount</span>
The number of failed DTLS session establishment attempts.
<span class="grey">Calhoun, et al. Standards Track [Page 101]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-102" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
<span class="h4"><a class="selflink" id="section-4.8.5" href="#section-4.8.5">4.8.5</a>. MaxDiscoveries</span>
The maximum number of Discovery Request messages that will be sent
after a WTP boots.
Default: 10
<span class="h4"><a class="selflink" id="section-4.8.6" href="#section-4.8.6">4.8.6</a>. MaxFailedDTLSSessionRetry</span>
The maximum number of failed DTLS session establishment attempts
before the CAPWAP device enters a silent period.
Default: 3
<span class="h4"><a class="selflink" id="section-4.8.7" href="#section-4.8.7">4.8.7</a>. MaxRetransmit</span>
The maximum number of retransmissions for a given CAPWAP packet
before the link layer considers the peer dead.
Default: 5
<span class="h4"><a class="selflink" id="section-4.8.8" href="#section-4.8.8">4.8.8</a>. RetransmitCount</span>
The number of retransmissions for a given CAPWAP packet. This is a
monotonically increasing counter.
<span class="h4"><a class="selflink" id="section-4.8.9" href="#section-4.8.9">4.8.9</a>. WTPFallBack</span>
The default WTP Fallback value is enabled (1).
<span class="h3"><a class="selflink" id="section-4.9" href="#section-4.9">4.9</a>. WTP Saved Variables</span>
In addition to the values defined in <a href="#section-4.8">Section 4.8</a>, the following
values SHOULD be saved on the WTP in non-volatile memory. CAPWAP
wireless bindings MAY define additional values that SHOULD be stored
on the WTP.
<span class="h4"><a class="selflink" id="section-4.9.1" href="#section-4.9.1">4.9.1</a>. AdminRebootCount</span>
The number of times the WTP has rebooted administratively, defined in
<a href="#section-4.6.47">Section 4.6.47</a>.
<span class="h4"><a class="selflink" id="section-4.9.2" href="#section-4.9.2">4.9.2</a>. FrameEncapType</span>
For WTPs that support multiple Frame Encapsulation Types, it is
useful to save the value configured by the AC. The Frame
Encapsulation Type is defined in <a href="#section-4.6.43">Section 4.6.43</a>.
<span class="grey">Calhoun, et al. Standards Track [Page 102]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-103" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
<span class="h4"><a class="selflink" id="section-4.9.3" href="#section-4.9.3">4.9.3</a>. LastRebootReason</span>
The reason why the WTP last rebooted, defined in <a href="#section-4.6.47">Section 4.6.47</a>.
<span class="h4"><a class="selflink" id="section-4.9.4" href="#section-4.9.4">4.9.4</a>. MacType</span>
For WTPs that support multiple MAC-Types, it is useful to save the
value configured by the AC. The MAC-Type is defined in
<a href="#section-4.6.44">Section 4.6.44</a>.
<span class="h4"><a class="selflink" id="section-4.9.5" href="#section-4.9.5">4.9.5</a>. PreferredACs</span>
The preferred ACs, with the index, defined in <a href="#section-4.6.5">Section 4.6.5</a>.
<span class="h4"><a class="selflink" id="section-4.9.6" href="#section-4.9.6">4.9.6</a>. RebootCount</span>
The number of times the WTP has rebooted, defined in <a href="#section-4.6.47">Section 4.6.47</a>.
<span class="h4"><a class="selflink" id="section-4.9.7" href="#section-4.9.7">4.9.7</a>. Static IP Address</span>
The static IP address assigned to the WTP, as configured by the WTP
Static IP address Information message element (see <a href="#section-4.6.48">Section 4.6.48</a>).
<span class="h4"><a class="selflink" id="section-4.9.8" href="#section-4.9.8">4.9.8</a>. WTPLinkFailureCount</span>
The number of times the link to the AC has failed, see
<a href="#section-4.6.47">Section 4.6.47</a>.
<span class="h4"><a class="selflink" id="section-4.9.9" href="#section-4.9.9">4.9.9</a>. WTPLocation</span>
The WTP Location, defined in <a href="#section-4.6.30">Section 4.6.30</a>.
<span class="h4"><a class="selflink" id="section-4.9.10" href="#section-4.9.10">4.9.10</a>. WTPName</span>
The WTP Name, defined in <a href="#section-4.6.45">Section 4.6.45</a>.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. CAPWAP Discovery Operations</span>
The Discovery messages are used by a WTP to determine which ACs are
available to provide service, and the capabilities and load of the
ACs.
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. Discovery Request Message</span>
The Discovery Request message is used by the WTP to automatically
discover potential ACs available in the network. The Discovery
Request message provides ACs with the primary capabilities of the
<span class="grey">Calhoun, et al. Standards Track [Page 103]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-104" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
WTP. A WTP must exchange this information to ensure subsequent
exchanges with the ACs are consistent with the WTP's functional
characteristics.
Discovery Request messages MUST be sent by a WTP in the Discover
state after waiting for a random delay less than
MaxDiscoveryInterval, after a WTP first comes up or is
(re)initialized. A WTP MUST send no more than the maximum of
MaxDiscoveries Discovery Request messages, waiting for a random delay
less than MaxDiscoveryInterval between each successive message.
This is to prevent an explosion of WTP Discovery Request messages.
An example of this occurring is when many WTPs are powered on at the
same time.
If a Discovery Response message is not received after sending the
maximum number of Discovery Request messages, the WTP enters the
Sulking state and MUST wait for an interval equal to SilentInterval
before sending further Discovery Request messages.
Upon receiving a Discovery Request message, the AC will respond with
a Discovery Response message sent to the address in the source
address of the received Discovery Request message. Once a Discovery
Response has been received, if the WTP decides to establish a session
with the responding AC, it SHOULD perform an MTU discovery, using the
process described in <a href="#section-3.5">Section 3.5</a>.
It is possible for the AC to receive a clear text Discovery Request
message while a DTLS session is already active with the WTP. This is
most likely the case if the WTP has rebooted, perhaps due to a
software or power failure, but could also be caused by a DoS attack.
In such cases, any WTP state, including the state machine instance,
MUST NOT be cleared until another DTLS session has been successfully
established, communicated via the DTLSSessionEstablished DTLS
notification (see <a href="#section-2.3.2.2">Section 2.3.2.2</a>).
The binding specific WTP Radio Information message element (see
<a href="#section-2.1">Section 2.1</a>) is included in the Discovery Request message to
advertise WTP support for one or more CAPWAP bindings.
The Discovery Request message is sent by the WTP when in the
Discovery state. The AC does not transmit this message.
The following message elements MUST be included in the Discovery
Request message:
o Discovery Type, see <a href="#section-4.6.21">Section 4.6.21</a>
<span class="grey">Calhoun, et al. Standards Track [Page 104]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-105" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
o WTP Board Data, see <a href="#section-4.6.40">Section 4.6.40</a>
o WTP Descriptor, see <a href="#section-4.6.41">Section 4.6.41</a>
o WTP Frame Tunnel Mode, see <a href="#section-4.6.43">Section 4.6.43</a>
o WTP MAC Type, see <a href="#section-4.6.44">Section 4.6.44</a>
o WTP Radio Information message element(s) that the WTP supports;
These are defined by the individual link layer CAPWAP Binding
Protocols (see <a href="#section-2.1">Section 2.1</a>).
The following message elements MAY be included in the Discovery
Request message:
o MTU Discovery Padding, see <a href="#section-4.6.32">Section 4.6.32</a>
o Vendor Specific Payload, see <a href="#section-4.6.39">Section 4.6.39</a>
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. Discovery Response Message</span>
The Discovery Response message provides a mechanism for an AC to
advertise its services to requesting WTPs.
When a WTP receives a Discovery Response message, it MUST wait for an
interval not less than DiscoveryInterval for receipt of additional
Discovery Response messages. After the DiscoveryInterval elapses,
the WTP enters the DTLS-Init state and selects one of the ACs that
sent a Discovery Response message and send a DTLS Handshake to that
AC.
One or more binding-specific WTP Radio Information message elements
(see <a href="#section-2.1">Section 2.1</a>) are included in the Discovery Request message to
advertise AC support for the CAPWAP bindings. The AC MAY include
only the bindings it shares in common with the WTP, known through the
WTP Radio Information message elements received in the Discovery
Request message, or it MAY include all of the bindings supported.
The WTP MAY use the supported bindings in its AC decision process.
Note that if the WTP joins an AC that does not support a specific
CAPWAP binding, service for that binding MUST NOT be provided by the
WTP.
The Discovery Response message is sent by the AC when in the Idle
state. The WTP does not transmit this message.
The following message elements MUST be included in the Discovery
Response Message:
<span class="grey">Calhoun, et al. Standards Track [Page 105]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-106" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
o AC Descriptor, see <a href="#section-4.6.1">Section 4.6.1</a>
o AC Name, see <a href="#section-4.6.4">Section 4.6.4</a>
o WTP Radio Information message element(s) that the AC supports;
these are defined by the individual link layer CAPWAP Binding
Protocols (see <a href="#section-2.1">Section 2.1</a> for more information).
o One of the following message elements MUST be included in the
Discovery Response Message:
* CAPWAP Control IPv4 Address, see <a href="#section-4.6.9">Section 4.6.9</a>
* CAPWAP Control IPv6 Address, see <a href="#section-4.6.10">Section 4.6.10</a>
The following message elements MAY be included in the Discovery
Response message:
o Vendor Specific Payload, see <a href="#section-4.6.39">Section 4.6.39</a>
<span class="h3"><a class="selflink" id="section-5.3" href="#section-5.3">5.3</a>. Primary Discovery Request Message</span>
The Primary Discovery Request message is sent by the WTP to:
o determine whether its preferred (or primary) AC is available, or
o perform a Path MTU Discovery (see <a href="#section-3.5">Section 3.5</a>).
A Primary Discovery Request message is sent by a WTP when it has a
primary AC configured, and is connected to another AC. This
generally occurs as a result of a failover, and is used by the WTP as
a means to discover when its primary AC becomes available. Since the
WTP only has a single instance of the CAPWAP state machine, the
Primary Discovery Request is sent by the WTP when in the Run state.
The AC does not transmit this message.
The frequency of the Primary Discovery Request messages should be no
more often than the sending of the Echo Request message.
Upon receipt of a Primary Discovery Request message, the AC responds
with a Primary Discovery Response message sent to the address in the
source address of the received Primary Discovery Request message.
The following message elements MUST be included in the Primary
Discovery Request message.
o Discovery Type, see <a href="#section-4.6.21">Section 4.6.21</a>
<span class="grey">Calhoun, et al. Standards Track [Page 106]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-107" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
o WTP Board Data, see <a href="#section-4.6.40">Section 4.6.40</a>
o WTP Descriptor, see <a href="#section-4.6.41">Section 4.6.41</a>
o WTP Frame Tunnel Mode, see <a href="#section-4.6.43">Section 4.6.43</a>
o WTP MAC Type, see <a href="#section-4.6.44">Section 4.6.44</a>
o WTP Radio Information message element(s) that the WTP supports;
these are defined by the individual link layer CAPWAP Binding
Protocols (see <a href="#section-2.1">Section 2.1</a> for more information).
The following message elements MAY be included in the Primary
Discovery Request message:
o MTU Discovery Padding, see <a href="#section-4.6.32">Section 4.6.32</a>
o Vendor Specific Payload, see <a href="#section-4.6.39">Section 4.6.39</a>
<span class="h3"><a class="selflink" id="section-5.4" href="#section-5.4">5.4</a>. Primary Discovery Response</span>
The Primary Discovery Response message enables an AC to advertise its
availability and services to requesting WTPs that are configured to
have the AC as its primary AC.
The Primary Discovery Response message is sent by an AC after
receiving a Primary Discovery Request message.
When a WTP receives a Primary Discovery Response message, it may
establish a CAPWAP protocol connection to its primary AC, based on
the configuration of the WTP Fallback Status message element on the
WTP.
The Primary Discovery Response message is sent by the AC when in the
Idle state. The WTP does not transmit this message.
The following message elements MUST be included in the Primary
Discovery Response message.
o AC Descriptor, see <a href="#section-4.6.1">Section 4.6.1</a>
o AC Name, see <a href="#section-4.6.4">Section 4.6.4</a>
o WTP Radio Information message element(s) that the AC supports;
These are defined by the individual link layer CAPWAP Binding
Protocols (see <a href="#section-2.1">Section 2.1</a> for more information).
<span class="grey">Calhoun, et al. Standards Track [Page 107]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-108" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
One of the following message elements MUST be included in the
Discovery Response Message:
o CAPWAP Control IPv4 Address, see <a href="#section-4.6.9">Section 4.6.9</a>
o CAPWAP Control IPv6 Address, see <a href="#section-4.6.10">Section 4.6.10</a>
The following message elements MAY be included in the Primary
Discovery Response message:
o Vendor Specific Payload, see <a href="#section-4.6.39">Section 4.6.39</a>
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. CAPWAP Join Operations</span>
The Join Request message is used by a WTP to request service from an
AC after a DTLS connection is established to that AC. The Join
Response message is used by the AC to indicate that it will or will
not provide service.
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. Join Request</span>
The Join Request message is used by a WTP to request service through
the AC. If the WTP is performing the optional AC Discovery process
(see <a href="#section-3.3">Section 3.3</a>), the join process occurs after the WTP has received
one or more Discovery Response messages. During the Discovery
process, an AC MAY return more than one CAPWAP Control IPv4 Address
or CAPWAP Control IPv6 Address message elements. When more than one
such message element is returned, the WTP SHOULD perform "load
balancing" by choosing the interface that is servicing the least
number of WTPs (known through the WTP Count field of the message
element). Note, however, that other load balancing algorithms are
also permitted. Once the WTP has determined its preferred AC, and
its associated interface, to which to connect, it establishes the
DTLS session, and transmits the Join Request over the secured control
channel. When an AC receives a Join Request message it responds with
a Join Response message.
Upon completion of the DTLS handshake and receipt of the
DTLSEstablished notification, the WTP sends the Join Request message
to the AC. When the AC is notified of the DTLS session
establishment, it does not clear the WaitDTLS timer until it has
received the Join Request message, at which time it sends a Join
Response message to the WTP, indicating success or failure.
One or more WTP Radio Information message elements (see <a href="#section-2.1">Section 2.1</a>)
are included in the Join Request to request service for the CAPWAP
bindings by the AC. Including a binding that is unsupported by the
AC will result in a failed Join Response.
<span class="grey">Calhoun, et al. Standards Track [Page 108]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-109" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
If the AC rejects the Join Request, it sends a Join Response message
with a failure indication and initiates an abort of the DTLS session
via the DTLSAbort command.
If an invalid (i.e., malformed) Join Request message is received, the
message MUST be silently discarded by the AC. No response is sent to
the WTP. The AC SHOULD log this event.
The Join Request is sent by the WTP when in the Join State. The AC
does not transmit this message.
The following message elements MUST be included in the Join Request
message.
o Location Data, see <a href="#section-4.6.30">Section 4.6.30</a>
o WTP Board Data, see <a href="#section-4.6.40">Section 4.6.40</a>
o WTP Descriptor, see <a href="#section-4.6.41">Section 4.6.41</a>
o WTP Name, see <a href="#section-4.6.45">Section 4.6.45</a>
o Session ID, see <a href="#section-4.6.37">Section 4.6.37</a>
o WTP Frame Tunnel Mode, see <a href="#section-4.6.43">Section 4.6.43</a>
o WTP MAC Type, see <a href="#section-4.6.44">Section 4.6.44</a>
o WTP Radio Information message element(s) that the WTP supports;
these are defined by the individual link layer CAPWAP Binding
Protocols (see <a href="#section-2.1">Section 2.1</a> for more information).
o ECN Support, see <a href="#section-4.6.25">Section 4.6.25</a>
At least one of the following message element MUST be included in the
Join Request message.
o CAPWAP Local IPv4 Address, see <a href="#section-4.6.11">Section 4.6.11</a>
o CAPWAP Local IPv6 Address, see <a href="#section-4.6.12">Section 4.6.12</a>
The following message element MAY be included in the Join Request
message.
o CAPWAP Transport Protocol, see <a href="#section-4.6.14">Section 4.6.14</a>
o Maximum Message Length, see <a href="#section-4.6.31">Section 4.6.31</a>
<span class="grey">Calhoun, et al. Standards Track [Page 109]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-110" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
o WTP Reboot Statistics, see <a href="#section-4.6.47">Section 4.6.47</a>
o Vendor Specific Payload, see <a href="#section-4.6.39">Section 4.6.39</a>
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>. Join Response</span>
The Join Response message is sent by the AC to indicate to a WTP that
it is capable and willing to provide service to the WTP.
The WTP, receiving a Join Response message, checks for success or
failure. If the message indicates success, the WTP clears the
WaitDTLS timer for the session and proceeds to the Configure state.
If the WaitDTLS Timer expires prior to reception of the Join Response
message, the WTP MUST terminate the handshake, deallocate session
state and initiate the DTLSAbort command.
If an invalid (malformed) Join Response message is received, the WTP
SHOULD log an informative message detailing the error. This error
MUST be treated in the same manner as AC non-responsiveness. The
WaitDTLS timer will eventually expire, and the WTP MAY (if it is so
configured) attempt to join a new AC.
If one of the WTP Radio Information message elements (see
<a href="#section-2.1">Section 2.1</a>) in the Join Request message requested support for a
CAPWAP binding that the AC does not support, the AC sets the Result
Code message element to "Binding Not Supported".
The AC includes the Image Identifier message element to indicate the
software version it expects the WTP to run. This information is used
to determine whether the WTP MUST change its currently running
firmware image or download a new version (see <a href="#section-9.1.1">Section 9.1.1</a>).
The Join Response message is sent by the AC when in the Join State.
The WTP does not transmit this message.
The following message elements MUST be included in the Join Response
message.
o Result Code, see <a href="#section-4.6.35">Section 4.6.35</a>
o AC Descriptor, see <a href="#section-4.6.1">Section 4.6.1</a>
o AC Name, see <a href="#section-4.6.4">Section 4.6.4</a>
o WTP Radio Information message element(s) that the AC supports;
these are defined by the individual link layer CAPWAP Binding
Protocols (see <a href="#section-2.1">Section 2.1</a>).
<span class="grey">Calhoun, et al. Standards Track [Page 110]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-111" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
o ECN Support, see <a href="#section-4.6.25">Section 4.6.25</a>
One of the following message elements MUST be included in the Join
Response Message:
o CAPWAP Control IPv4 Address, see <a href="#section-4.6.9">Section 4.6.9</a>
o CAPWAP Control IPv6 Address, see <a href="#section-4.6.10">Section 4.6.10</a>
One of the following message elements MUST be included in the Join
Response Message:
o CAPWAP Local IPv4 Address, see <a href="#section-4.6.11">Section 4.6.11</a>
o CAPWAP Local IPv6 Address, see <a href="#section-4.6.12">Section 4.6.12</a>
The following message elements MAY be included in the Join Response
message.
o AC IPv4 List, see <a href="#section-4.6.2">Section 4.6.2</a>
o AC IPv6 List, see <a href="#section-4.6.3">Section 4.6.3</a>
o CAPWAP Transport Protocol, see <a href="#section-4.6.14">Section 4.6.14</a>
o Image Identifier, see <a href="#section-4.6.27">Section 4.6.27</a>
o Maximum Message Length, see <a href="#section-4.6.31">Section 4.6.31</a>
o Vendor Specific Payload, see <a href="#section-4.6.39">Section 4.6.39</a>
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Control Channel Management</span>
The Control Channel Management messages are used by the WTP and AC to
maintain a control communication channel. CAPWAP Control messages,
such as the WTP Event Request message sent from the WTP to the AC
indicate to the AC that the WTP is operational. When such control
messages are not being sent, the Echo Request and Echo Response
messages are used to maintain the control communication channel.
<span class="h3"><a class="selflink" id="section-7.1" href="#section-7.1">7.1</a>. Echo Request</span>
The Echo Request message is a keep-alive mechanism for CAPWAP control
messages.
<span class="grey">Calhoun, et al. Standards Track [Page 111]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-112" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
Echo Request messages are sent periodically by a WTP in the Image
Data or Run state (see <a href="#section-2.3">Section 2.3</a>) to determine the state of the
control connection between the WTP and the AC. The Echo Request
message is sent by the WTP when the EchoInterval timer expires.
The Echo Request message is sent by the WTP when in the Run state.
The AC does not transmit this message.
The following message elements MAY be included in the Echo Request
message:
o Vendor Specific Payload, see <a href="#section-4.6.39">Section 4.6.39</a>
When an AC receives an Echo Request message it responds with an Echo
Response message.
<span class="h3"><a class="selflink" id="section-7.2" href="#section-7.2">7.2</a>. Echo Response</span>
The Echo Response message acknowledges the Echo Request message.
An Echo Response message is sent by an AC after receiving an Echo
Request message. After transmitting the Echo Response message, the
AC SHOULD reset its EchoInterval timer (see <a href="#section-4.7.7">Section 4.7.7</a>). If
another Echo Request message or other control message is not received
by the AC when the timer expires, the AC SHOULD consider the WTP to
be no longer reachable.
The Echo Response message is sent by the AC when in the Run state.
The WTP does not transmit this message.
The following message elements MAY be included in the Echo Response
message:
o Vendor Specific Payload, see <a href="#section-4.6.39">Section 4.6.39</a>
When a WTP receives an Echo Response message it initializes the
EchoInterval to the configured value.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. WTP Configuration Management</span>
WTP Configuration messages are used to exchange configuration
information between the AC and the WTP.
<span class="h3"><a class="selflink" id="section-8.1" href="#section-8.1">8.1</a>. Configuration Consistency</span>
The CAPWAP protocol provides flexibility in how WTP configuration is
managed. A WTP can behave in one of two ways, which is
implementation specific:
<span class="grey">Calhoun, et al. Standards Track [Page 112]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-113" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
1. The WTP retains no configuration and accepts the configuration
provided by the AC.
2. The WTP saves the configuration of parameters provided by the AC
that are non-default values into local non-volatile memory, and
are enforced during the WTP's power up initialization phase.
If the WTP opts to save configuration locally, the CAPWAP protocol
state machine defines the Configure state, which allows for
configuration exchange. In the Configure state, the WTP sends its
current configuration overrides to the AC via the Configuration
Status Request message. A configuration override is a non-default
parameter. As an example, in the CAPWAP protocol, the default
antenna configuration is internal omni antenna. A WTP that either
has no internal antennas, or has been explicitly configured by the AC
to use external antennas, sends its antenna configuration during the
configure phase, allowing the AC to become aware of the WTP's current
configuration.
Once the WTP has provided its configuration to the AC, the AC sends
its configuration to the WTP. This allows the WTP to receive
configuration and policies from the AC.
The AC maintains a copy of each active WTP configuration. There is
no need for versioning or other means to identify configuration
changes. If a WTP becomes inactive, the AC MAY delete the inactive
WTP configuration. If a WTP fails, and connects to a new AC, the WTP
provides its overridden configuration parameters, allowing the new AC
to be aware of the WTP configuration.
This model allows for resiliency in case of an AC failure, ensuring
another AC can provide service to the WTP. A new AC would be
automatically updated with WTP configuration changes, eliminating the
need for inter-AC communication and the need for all ACs to be aware
of the configuration of all WTPs in the network.
Once the CAPWAP protocol enters the Run state, the WTPs begin to
provide service. It is common for administrators to require that
configuration changes be made while the network is operational.
Therefore, the Configuration Update Request is sent by the AC to the
WTP to make these changes at run-time.
<span class="h4"><a class="selflink" id="section-8.1.1" href="#section-8.1.1">8.1.1</a>. Configuration Flexibility</span>
The CAPWAP protocol provides the flexibility to configure and manage
WTPs of varying design and functional characteristics. When a WTP
first discovers an AC, it provides primary functional information
<span class="grey">Calhoun, et al. Standards Track [Page 113]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-114" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
relating to its type of MAC and to the nature of frames to be
exchanged. The AC configures the WTP appropriately. The AC also
establishes corresponding internal state for the WTP.
<span class="h3"><a class="selflink" id="section-8.2" href="#section-8.2">8.2</a>. Configuration Status Request</span>
The Configuration Status Request message is sent by a WTP to deliver
its current configuration to the AC.
The Configuration Status Request message carries binding-specific
message elements. Refer to the appropriate binding for the
definition of this structure.
When an AC receives a Configuration Status Request message, it acts
upon the content of the message and responds to the WTP with a
Configuration Status Response message.
The Configuration Status Request message includes multiple Radio
Administrative State message elements, one for the WTP, and one for
each radio in the WTP.
The Configuration Status Request message is sent by the WTP when in
the Configure State. The AC does not transmit this message.
The following message elements MUST be included in the Configuration
Status Request message.
o AC Name, see <a href="#section-4.6.4">Section 4.6.4</a>
o Radio Administrative State, see <a href="#section-4.6.33">Section 4.6.33</a>
o Statistics Timer, see <a href="#section-4.6.38">Section 4.6.38</a>
o WTP Reboot Statistics, see <a href="#section-4.6.47">Section 4.6.47</a>
The following message elements MAY be included in the Configuration
Status Request message.
o AC Name with Priority, see <a href="#section-4.6.5">Section 4.6.5</a>
o CAPWAP Transport Protocol, see <a href="#section-4.6.14">Section 4.6.14</a>
o WTP Static IP Address Information, see <a href="#section-4.6.48">Section 4.6.48</a>
o Vendor Specific Payload, see <a href="#section-4.6.39">Section 4.6.39</a>
<span class="grey">Calhoun, et al. Standards Track [Page 114]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-115" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
<span class="h3"><a class="selflink" id="section-8.3" href="#section-8.3">8.3</a>. Configuration Status Response</span>
The Configuration Status Response message is sent by an AC and
provides a mechanism for the AC to override a WTP's requested
configuration.
A Configuration Status Response message is sent by an AC after
receiving a Configuration Status Request message.
The Configuration Status Response message carries binding-specific
message elements. Refer to the appropriate binding for the
definition of this structure.
When a WTP receives a Configuration Status Response message, it acts
upon the content of the message, as appropriate. If the
Configuration Status Response message includes a Radio Operational
State message element that causes a change in the operational state
of one of the radios, the WTP transmits a Change State Event to the
AC, as an acknowledgement of the change in state.
The Configuration Status Response message is sent by the AC when in
the Configure state. The WTP does not transmit this message.
The following message elements MUST be included in the Configuration
Status Response message.
o CAPWAP Timers, see <a href="#section-4.6.13">Section 4.6.13</a>
o Decryption Error Report Period, see <a href="#section-4.6.18">Section 4.6.18</a>
o Idle Timeout, see <a href="#section-4.6.24">Section 4.6.24</a>
o WTP Fallback, see <a href="#section-4.6.42">Section 4.6.42</a>
One or both of the following message elements MUST be included in the
Configuration Status Response message:
o AC IPv4 List, see <a href="#section-4.6.2">Section 4.6.2</a>
o AC IPv6 List, see <a href="#section-4.6.3">Section 4.6.3</a>
The following message element MAY be included in the Configuration
Status Response message.
o WTP Static IP Address Information, see <a href="#section-4.6.48">Section 4.6.48</a>
o Vendor Specific Payload, see <a href="#section-4.6.39">Section 4.6.39</a>
<span class="grey">Calhoun, et al. Standards Track [Page 115]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-116" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
<span class="h3"><a class="selflink" id="section-8.4" href="#section-8.4">8.4</a>. Configuration Update Request</span>
Configuration Update Request messages are sent by the AC to provision
the WTP while in the Run state. This is used to modify the
configuration of the WTP while it is operational.
When a WTP receives a Configuration Update Request message, it
responds with a Configuration Update Response message, with a Result
Code message element indicating the result of the configuration
request.
The AC includes the Image Identifier message element (see
<a href="#section-4.6.27">Section 4.6.27</a>) to force the WTP to update its firmware while in the
Run state. The WTP MAY proceed to download the requested firmware if
it determines the version specified in the Image Identifier message
element is not in its non-volatile storage by transmitting an Image
Data Request (see <a href="#section-9.1.1">Section 9.1.1</a>) that includes the Initiate Download
message element (see <a href="#section-4.6.29">Section 4.6.29</a>).
The Configuration Update Request is sent by the AC when in the Run
state. The WTP does not transmit this message.
One or more of the following message elements MAY be included in the
Configuration Update message:
o AC Name with Priority, see <a href="#section-4.6.5">Section 4.6.5</a>
o AC Timestamp, see <a href="#section-4.6.6">Section 4.6.6</a>
o Add MAC ACL Entry, see <a href="#section-4.6.7">Section 4.6.7</a>
o CAPWAP Timers, see <a href="#section-4.6.13">Section 4.6.13</a>
o Decryption Error Report Period, see <a href="#section-4.6.18">Section 4.6.18</a>
o Delete MAC ACL Entry, see <a href="#section-4.6.19">Section 4.6.19</a>
o Idle Timeout, see <a href="#section-4.6.24">Section 4.6.24</a>
o Location Data, see <a href="#section-4.6.30">Section 4.6.30</a>
o Radio Administrative State, see <a href="#section-4.6.33">Section 4.6.33</a>
o Statistics Timer, see <a href="#section-4.6.38">Section 4.6.38</a>
o WTP Fallback, see <a href="#section-4.6.42">Section 4.6.42</a>
o WTP Name, see <a href="#section-4.6.45">Section 4.6.45</a>
<span class="grey">Calhoun, et al. Standards Track [Page 116]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-117" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
o WTP Static IP Address Information, see <a href="#section-4.6.48">Section 4.6.48</a>
o Image Identifier, see <a href="#section-4.6.27">Section 4.6.27</a>
o Vendor Specific Payload, see <a href="#section-4.6.39">Section 4.6.39</a>
<span class="h3"><a class="selflink" id="section-8.5" href="#section-8.5">8.5</a>. Configuration Update Response</span>
The Configuration Update Response message is the acknowledgement
message for the Configuration Update Request message.
The Configuration Update Response message is sent by a WTP after
receiving a Configuration Update Request message.
When an AC receives a Configuration Update Response message, the
result code indicates if the WTP successfully accepted the
configuration.
The Configuration Update Response message is sent by the WTP when in
the Run state. The AC does not transmit this message.
The following message element MUST be present in the Configuration
Update message.
Result Code, see <a href="#section-4.6.35">Section 4.6.35</a>
The following message elements MAY be present in the Configuration
Update Response message.
o Radio Operational State, see <a href="#section-4.6.34">Section 4.6.34</a>
o Vendor Specific Payload, see <a href="#section-4.6.39">Section 4.6.39</a>
<span class="h3"><a class="selflink" id="section-8.6" href="#section-8.6">8.6</a>. Change State Event Request</span>
The Change State Event Request message is used by the WTP for two
main purposes:
o When sent by the WTP following the reception of a Configuration
Status Response message from the AC, the WTP uses the Change State
Event Request message to provide an update on the WTP radio's
operational state and to confirm that the configuration provided
by the AC was successfully applied.
o When sent during the Run state, the WTP uses the Change State
Event Request message to notify the AC of an unexpected change in
the WTP's radio operational state.
<span class="grey">Calhoun, et al. Standards Track [Page 117]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-118" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
When an AC receives a Change State Event Request message it responds
with a Change State Event Response message and modifies its data
structures for the WTP as needed. The AC MAY decide not to provide
service to the WTP if it receives an error, based on local policy,
and to transition to the Reset state.
The Change State Event Request message is sent by a WTP to
acknowledge or report an error condition to the AC for a requested
configuration in the Configuration Status Response message. The
Change State Event Request message includes the Result Code message
element, which indicates whether the configuration was successfully
applied. If the WTP is unable to apply a specific configuration
request, it indicates the failure by including one or more Returned
Message Element message elements (see <a href="#section-4.6.36">Section 4.6.36</a>).
The Change State Event Request message is sent by the WTP in the
Configure or Run state. The AC does not transmit this message.
The WTP MAY save its configuration to persistent storage prior to
transmitting the response. However, this is implementation specific
and is not required.
The following message elements MUST be present in the Change State
Event Request message.
o Radio Operational State, see <a href="#section-4.6.34">Section 4.6.34</a>
o Result Code, see <a href="#section-4.6.35">Section 4.6.35</a>
One or more of the following message elements MAY be present in the
Change State Event Request message:
o Returned Message Element(s), see <a href="#section-4.6.36">Section 4.6.36</a>
o Vendor Specific Payload, see <a href="#section-4.6.39">Section 4.6.39</a>
<span class="h3"><a class="selflink" id="section-8.7" href="#section-8.7">8.7</a>. Change State Event Response</span>
The Change State Event Response message acknowledges the Change State
Event Request message.
A Change State Event Response message is sent by an AC in response to
a Change State Event Request message.
The Change State Event Response message is sent by the AC when in the
Configure or Run state. The WTP does not transmit this message.
<span class="grey">Calhoun, et al. Standards Track [Page 118]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-119" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
The following message element MAY be included in the Change State
Event Response message:
o Vendor Specific Payload, see <a href="#section-4.6.39">Section 4.6.39</a>
The WTP does not take any action upon receipt of the Change State
Event Response message.
<span class="h3"><a class="selflink" id="section-8.8" href="#section-8.8">8.8</a>. Clear Configuration Request</span>
The Clear Configuration Request message is used to reset the WTP
configuration.
The Clear Configuration Request message is sent by an AC to request
that a WTP reset its configuration to the manufacturing default
configuration. The Clear Config Request message is sent while in the
Run state.
The Clear Configuration Request is sent by the AC when in the Run
state. The WTP does not transmit this message.
The following message element MAY be included in the Clear
Configuration Request message:
o Vendor Specific Payload, see <a href="#section-4.6.39">Section 4.6.39</a>
When a WTP receives a Clear Configuration Request message, it resets
its configuration to the manufacturing default configuration.
<span class="h3"><a class="selflink" id="section-8.9" href="#section-8.9">8.9</a>. Clear Configuration Response</span>
The Clear Configuration Response message is sent by the WTP after
receiving a Clear Configuration Request message and resetting its
configuration parameters to the manufacturing default values.
The Clear Configuration Response is sent by the WTP when in the Run
state. The AC does not transmit this message.
The Clear Configuration Response message MUST include the following
message element:
o Result Code, see <a href="#section-4.6.35">Section 4.6.35</a>
The following message element MAY be included in the Clear
Configuration Request message:
o Vendor Specific Payload, see <a href="#section-4.6.39">Section 4.6.39</a>
<span class="grey">Calhoun, et al. Standards Track [Page 119]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-120" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. Device Management Operations</span>
This section defines CAPWAP operations responsible for debugging,
gathering statistics, logging, and firmware management. The
management operations defined in this section are used by the AC to
either push/pull information to/from the WTP, or request that the WTP
reboot. This section does not deal with the management of the AC per
se, and assumes that the AC is operational and configured.
<span class="h3"><a class="selflink" id="section-9.1" href="#section-9.1">9.1</a>. Firmware Management</span>
This section describes the firmware download procedures used by the
CAPWAP protocol. Firmware download can occur during the Image Data
or Run state. The former allows the download to occur at boot time,
while the latter is used to trigger the download while an active
CAPWAP session exists. It is important to note that the CAPWAP
protocol does not provide the ability for the AC to identify whether
the firmware information provided by the WTP is correct or whether
the WTP is properly storing the firmware (see <a href="#section-12.10">Section 12.10</a> for more
information).
Figure 6 provides an example of a WTP that performs a firmware
upgrade while in the Image Data state. In this example, the WTP does
not already have the requested firmware (Image Identifier = x), and
downloads the image from the AC.
<span class="grey">Calhoun, et al. Standards Track [Page 120]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-121" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
WTP AC
Join Request
-------------------------------------------------------->
Join Response (Image Identifier = x)
<------------------------------------------------------
Image Data Request (Image Identifier = x,
Initiate Download)
-------------------------------------------------------->
Image Data Response (Result Code = Success,
Image Information = {size,hash})
<------------------------------------------------------
Image Data Request (Image Data = Data)
<------------------------------------------------------
Image Data Response (Result Code = Success)
-------------------------------------------------------->
.....
Image Data Request (Image Data = EOF)
<------------------------------------------------------
Image Data Response (Result Code = Success)
-------------------------------------------------------->
(WTP enters the Reset State)
Figure 6: WTP Firmware Download Case 1
Figure 7 provides an example in which the WTP has the image specified
by the AC in its non-volatile storage, but is not its current running
image. In this case, the WTP opts to NOT download the firmware and
immediately reset to the requested image.
<span class="grey">Calhoun, et al. Standards Track [Page 121]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-122" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
WTP AC
Join Request
-------------------------------------------------------->
Join Response (Image Identifier = x)
<------------------------------------------------------
(WTP enters the Reset State)
Figure 7: WTP Firmware Download Case 2
Figure 8 provides an example of a WTP that performs a firmware
upgrade while in the Run state. This mode of firmware upgrade allows
the WTP to download its image while continuing to provide service.
The WTP will not automatically reset until it is notified by the AC,
with a Reset Request message.
<span class="grey">Calhoun, et al. Standards Track [Page 122]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-123" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
WTP AC
Configuration Update Request (Image Identifier = x)
<------------------------------------------------------
Configuration Update Response (Result Code = Success)
-------------------------------------------------------->
Image Data Request (Image Identifier = x,
Initiate Download)
-------------------------------------------------------->
Image Data Response (Result Code = Success,
Image Information = {size,hash})
<------------------------------------------------------
Image Data Request (Image Data = Data)
<------------------------------------------------------
Image Data Response (Result Code = Success)
-------------------------------------------------------->
.....
Image Data Request (Image Data = EOF)
<------------------------------------------------------
Image Data Response (Result Code = Success)
-------------------------------------------------------->
.....
(administratively requested reboot request)
Reset Request (Image Identifier = x)
<------------------------------------------------------
Reset Response (Result Code = Success)
-------------------------------------------------------->
Figure 8: WTP Firmware Download Case 3
Figure 9 provides another example of the firmware download while in
the Run state. In this example, the WTP already has the image
specified by the AC in its non-volatile storage. The WTP opts to NOT
download the firmware. The WTP resets upon receipt of a Reset
Request message from the AC.
<span class="grey">Calhoun, et al. Standards Track [Page 123]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-124" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
WTP AC
Configuration Update Request (Image Identifier = x)
<------------------------------------------------------
Configuration Update Response (Result Code = Already Have Image)
-------------------------------------------------------->
.....
(administratively requested reboot request)
Reset Request (Image Identifier = x)
<------------------------------------------------------
Reset Response (Result Code = Success)
-------------------------------------------------------->
Figure 9: WTP Firmware Download Case 4
<span class="h4"><a class="selflink" id="section-9.1.1" href="#section-9.1.1">9.1.1</a>. Image Data Request</span>
The Image Data Request message is used to update firmware on the WTP.
This message and its companion Response message are used by the AC to
ensure that the image being run on each WTP is appropriate.
Image Data Request messages are exchanged between the WTP and the AC
to download a new firmware image to the WTP. When a WTP or AC
receives an Image Data Request message, it responds with an Image
Data Response message. The message elements contained within the
Image Data Request message are required to determine the intent of
the request.
The decision that new firmware is to be downloaded to the WTP can
occur in one of two ways:
When the WTP joins the AC, the Join Response message includes the
Image Identifier message element, which informs the WTP of the
firmware it is expected to run. If the WTP does not currently
have the requested firmware version, it transmits an Image Data
Request message, with the appropriate Image Identifier message
element. If the WTP already has the requested firmware in its
non-volatile flash, but is not its currently running image, it
simply resets to run the proper firmware.
Once the WTP is in the Run state, it is possible for the AC to
cause the WTP to initiate a firmware download by sending a
Configuration Update Request message with the Image Identifier
message elements. This will cause the WTP to transmit an Image
<span class="grey">Calhoun, et al. Standards Track [Page 124]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-125" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
Data Request with the Image Identifier and the Initiate Download
message elements. Note that when the firmware is downloaded in
this way, the WTP does not automatically reset after the download
is complete. The WTP will only reset when it receives a Reset
Request message from the AC. If the WTP already had the requested
firmware version in its non-volatile storage, the WTP does not
transmit the Image Data Request message and responds with a
Configuration Update Response message with the Result Code set to
Image Already Present.
Regardless of how the download was initiated, once the AC receives an
Image Data Request message with the Image Identifier message element,
it begins the transfer process by transmitting an Image Data Request
message that includes the Image Data message element. This continues
until the firmware image has been transferred.
The Image Data Request message is sent by the WTP or the AC when in
the Image Data or Run state.
The following message elements MAY be included in the Image Data
Request message:
o CAPWAP Transport Protocol, see <a href="#section-4.6.14">Section 4.6.14</a>
o Image Data, see <a href="#section-4.6.26">Section 4.6.26</a>
o Vendor Specific Payload, see <a href="#section-4.6.39">Section 4.6.39</a>
The following message elements MAY be included in the Image Data
Request message when sent by the WTP:
o Image Identifier, see <a href="#section-4.6.27">Section 4.6.27</a>
o Initiate Download, see <a href="#section-4.6.29">Section 4.6.29</a>
<span class="h4"><a class="selflink" id="section-9.1.2" href="#section-9.1.2">9.1.2</a>. Image Data Response</span>
The Image Data Response message acknowledges the Image Data Request
message.
An Image Data Response message is sent in response to a received
Image Data Request message. Its purpose is to acknowledge the
receipt of the Image Data Request message. The Result Code is
included to indicate whether a previously sent Image Data Request
message was invalid.
The Image Data Response message is sent by the WTP or the AC when in
the Image Data or Run state.
<span class="grey">Calhoun, et al. Standards Track [Page 125]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-126" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
The following message element MUST be included in the Image Data
Response message:
o Result Code, see <a href="#section-4.6.35">Section 4.6.35</a>
The following message element MAY be included in the Image Data
Response message:
o Vendor Specific Payload, see <a href="#section-4.6.39">Section 4.6.39</a>
The following message element MAY be included in the Image Data
Response message when sent by the AC:
o Image Information, see <a href="#section-4.6.28">Section 4.6.28</a>
Upon receiving an Image Data Response message indicating an error,
the WTP MAY retransmit a previous Image Data Request message, or
abandon the firmware download to the WTP by transitioning to the
Reset state.
<span class="h3"><a class="selflink" id="section-9.2" href="#section-9.2">9.2</a>. Reset Request</span>
The Reset Request message is used to cause a WTP to reboot.
A Reset Request message is sent by an AC to cause a WTP to
reinitialize its operation. If the AC includes the Image Identifier
message element (see <a href="#section-4.6.27">Section 4.6.27</a>), it indicates to the WTP that it
SHOULD use that version of software upon reboot.
The Reset Request is sent by the AC when in the Run state. The WTP
does not transmit this message.
The following message element MUST be included in the Reset Request
message:
o Image Identifier, see <a href="#section-4.6.27">Section 4.6.27</a>
The following message element MAY be included in the Reset Request
message:
o Vendor Specific Payload, see <a href="#section-4.6.39">Section 4.6.39</a>
When a WTP receives a Reset Request message, it responds with a Reset
Response message indicating success and then reinitializes itself.
If the WTP is unable to write to its non-volatile storage, to ensure
that it runs the requested software version indicated in the Image
Identifier message element, it MAY send the appropriate Result Code
message element, but MUST reboot. If the WTP is unable to reset,
<span class="grey">Calhoun, et al. Standards Track [Page 126]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-127" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
including a hardware reset, it sends a Reset Response message to the
AC with a Result Code message element indicating failure. The AC no
longer provides service to the WTP.
<span class="h3"><a class="selflink" id="section-9.3" href="#section-9.3">9.3</a>. Reset Response</span>
The Reset Response message acknowledges the Reset Request message.
A Reset Response message is sent by the WTP after receiving a Reset
Request message.
The Reset Response is sent by the WTP when in the Run state. The AC
does not transmit this message.
The following message elements MAY be included in the Reset Response
message.
o Result Code, see <a href="#section-4.6.35">Section 4.6.35</a>
o Vendor Specific Payload, see <a href="#section-4.6.39">Section 4.6.39</a>
When an AC receives a successful Reset Response message, it is
notified that the WTP will reinitialize its operation. An AC that
receives a Reset Response message indicating failure may opt to no
longer provide service to the WTP.
<span class="h3"><a class="selflink" id="section-9.4" href="#section-9.4">9.4</a>. WTP Event Request</span>
The WTP Event Request message is used by a WTP to send information to
its AC. The WTP Event Request message MAY be sent periodically, or
sent in response to an asynchronous event on the WTP. For example, a
WTP MAY collect statistics and use the WTP Event Request message to
transmit the statistics to the AC.
When an AC receives a WTP Event Request message it will respond with
a WTP Event Response message.
The presence of the Delete Station message element is used by the WTP
to inform the AC that it is no longer providing service to the
station. This could be the result of an Idle Timeout (see
<a href="#section-4.6.24">Section 4.6.24</a>), due to resource shortages, or some other reason.
The WTP Event Request message is sent by the WTP when in the Run
state. The AC does not transmit this message.
<span class="grey">Calhoun, et al. Standards Track [Page 127]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-128" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
The WTP Event Request message MUST contain one of the message
elements listed below, or a message element that is defined for a
specific wireless technology. More than one of each message element
listed MAY be included in the WTP Event Request message.
o Decryption Error Report, see <a href="#section-4.6.17">Section 4.6.17</a>
o Duplicate IPv4 Address, see <a href="#section-4.6.22">Section 4.6.22</a>
o Duplicate IPv6 Address, see <a href="#section-4.6.23">Section 4.6.23</a>
o WTP Radio Statistics, see <a href="#section-4.6.46">Section 4.6.46</a>
o WTP Reboot Statistics, see <a href="#section-4.6.47">Section 4.6.47</a>
o Delete Station, see <a href="#section-4.6.20">Section 4.6.20</a>
o Vendor Specific Payload, see <a href="#section-4.6.39">Section 4.6.39</a>
<span class="h3"><a class="selflink" id="section-9.5" href="#section-9.5">9.5</a>. WTP Event Response</span>
The WTP Event Response message acknowledges receipt of the WTP Event
Request message.
A WTP Event Response message is sent by an AC after receiving a WTP
Event Request message.
The WTP Event Response message is sent by the AC when in the Run
state. The WTP does not transmit this message.
The following message element MAY be included in the WTP Event
Response message:
o Vendor Specific Payload, see <a href="#section-4.6.39">Section 4.6.39</a>
<span class="h3"><a class="selflink" id="section-9.6" href="#section-9.6">9.6</a>. Data Transfer</span>
This section describes the data transfer procedures used by the
CAPWAP protocol. The data transfer mechanism is used to upload
information available at the WTP to the AC, such as crash or debug
information. The data transfer messages can only be exchanged while
in the Run state.
Figure 10 provides an example of an AC that requests that the WTP
transfer its latest crash file. Once the WTP acknowledges that it
has information to send, via the Data Transfer Response, it transmits
its own Data Transfer Request. Upon receipt, the AC responds with a
<span class="grey">Calhoun, et al. Standards Track [Page 128]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-129" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
Data Transfer Response, and the exchange continues until the WTP
transmits a Data Transfer Data message element that indicates an End
of File (EOF).
WTP AC
Data Transfer Request (Data Transfer Mode = Crash Data)
<------------------------------------------------------
Data Transfer Response (Result Code = Success)
-------------------------------------------------------->
Data Transfer Request (Data Transfer Data = Data)
-------------------------------------------------------->
Data Transfer Response (Result Code = Success)
<------------------------------------------------------
.....
Data Transfer Request (Data Transfer Data = EOF)
-------------------------------------------------------->
Data Transfer Response (Result Code = Success)
<------------------------------------------------------
Figure 10: WTP Data Transfer Case 1
Figure 11 provides an example of an AC that requests that the WTP
transfer its latest crash file. However, in this example, the WTP
does not have any crash information to send, and therefore sends a
Data Transfer Response with a Result Code indicating the error.
WTP AC
Data Transfer Request (Data Transfer Mode = Crash Data)
<------------------------------------------------------
Data Transfer Response (Result Code = Data Transfer
Error (No Information to Transfer))
-------------------------------------------------------->
Figure 11: WTP Data Transfer Case 2
<span class="grey">Calhoun, et al. Standards Track [Page 129]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-130" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
<span class="h4"><a class="selflink" id="section-9.6.1" href="#section-9.6.1">9.6.1</a>. Data Transfer Request</span>
The Data Transfer Request message is used to deliver debug
information from the WTP to the AC.
The Data Transfer Request messages can be sent either by the AC or
the WTP. When sent by the AC, it is used to request that data be
transmitted from the WTP to the AC, and includes the Data Transfer
Mode message element, which specifies the information desired by the
AC. The Data Transfer Request is sent by the WTP in order to
transfer actual data to the AC, through the Data Transfer Data
message element.
Given that the CAPWAP protocol minimizes the need for WTPs to be
directly managed, the Data Transfer Request is an important
troubleshooting tool used by the AC to retrieve information that may
be available on the WTP. For instance, some WTP implementations may
store crash information to help manufacturers identify software
faults. The Data Transfer Request message can be used to send such
information from the WTP to the AC. Another possible use would be to
allow a remote debugger function in the WTP to use the Data Transfer
Request message to send console output to the AC for debugging
purposes.
When the WTP or AC receives a Data Transfer Request message, it
responds to the WTP with a Data Transfer Response message. The AC
MAY log the information received through the Data Transfer Data
message element.
The Data Transfer Request message is sent by the WTP or AC when in
the Run state.
When sent by the AC, the Data Transfer Request message MUST contain
the following message element:
o Data Transfer Mode, see <a href="#section-4.6.16">Section 4.6.16</a>
When sent by the WTP, the Data Transfer Request message MUST contain
the following message element:
o Data Transfer Data, see <a href="#section-4.6.15">Section 4.6.15</a>
Regardless of whether the Data Transfer Request is sent by the AC or
WTP, the following message element MAY be included in the Data
Transfer Request message:
o Vendor Specific Payload, see <a href="#section-4.6.39">Section 4.6.39</a>
<span class="grey">Calhoun, et al. Standards Track [Page 130]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-131" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
<span class="h4"><a class="selflink" id="section-9.6.2" href="#section-9.6.2">9.6.2</a>. Data Transfer Response</span>
The Data Transfer Response message acknowledges the Data Transfer
Request message.
A Data Transfer Response message is sent in response to a received
Data Transfer Request message. Its purpose is to acknowledge receipt
of the Data Transfer Request message. When sent by the WTP, the
Result Code message element is used to indicate whether the data
transfer requested by the AC can be completed. When sent by the AC,
the Result Code message element is used to indicate receipt of the
data transferred in the Data Transfer Request message.
The Data Transfer Response message is sent by the WTP or AC when in
the Run state.
The following message element MUST be included in the Data Transfer
Response message:
o Result Code, see <a href="#section-4.6.35">Section 4.6.35</a>
The following message element MAY be included in the Data Transfer
Response message:
o Vendor Specific Payload, see <a href="#section-4.6.39">Section 4.6.39</a>
Upon receipt of a Data Transfer Response message, the WTP transmits
more information, if more information is available.
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. Station Session Management</span>
Messages in this section are used by the AC to create, modify, or
delete station session state on the WTPs.
<span class="h3"><a class="selflink" id="section-10.1" href="#section-10.1">10.1</a>. Station Configuration Request</span>
The Station Configuration Request message is used to create, modify,
or delete station session state on a WTP. The message is sent by the
AC to the WTP, and MAY contain one or more message elements. The
message elements for this CAPWAP Control message include information
that is generally highly technology specific. Refer to the
appropriate binding document for definitions of the messages elements
that are included in this control message.
The Station Configuration Request message is sent by the AC when in
the Run state. The WTP does not transmit this message.
<span class="grey">Calhoun, et al. Standards Track [Page 131]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-132" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
The following CAPWAP Control message elements MAY be included in the
Station Configuration Request message. More than one of each message
element listed MAY be included in the Station Configuration Request
message:
o Add Station, see <a href="#section-4.6.8">Section 4.6.8</a>
o Delete Station, see <a href="#section-4.6.20">Section 4.6.20</a>
o Vendor Specific Payload, see <a href="#section-4.6.39">Section 4.6.39</a>
<span class="h3"><a class="selflink" id="section-10.2" href="#section-10.2">10.2</a>. Station Configuration Response</span>
The Station Configuration Response message is used to acknowledge a
previously received Station Configuration Request message.
The Station Configuration Response message is sent by the WTP when in
the Run state. The AC does not transmit this message.
The following message element MUST be present in the Station
Configuration Response message:
o Result Code, see <a href="#section-4.6.35">Section 4.6.35</a>
The following message element MAY be included in the Station
Configuration Response message:
o Vendor Specific Payload, see <a href="#section-4.6.39">Section 4.6.39</a>
The Result Code message element indicates that the requested
configuration was successfully applied, or that an error related to
processing of the Station Configuration Request message occurred on
the WTP.
<span class="h2"><a class="selflink" id="section-11" href="#section-11">11</a>. NAT Considerations</span>
There are three specific situations in which a NAT deployment may be
used in conjunction with a CAPWAP-enabled deployment. The first
consists of a configuration in which a single WTP is behind a NAT
system. Since all communication is initiated by the WTP, and all
communication is performed over IP using two UDP ports, the protocol
easily traverses NAT systems in this configuration.
In the second case, two or more WTPs are deployed behind the same NAT
system. Here, the AC would receive multiple connection requests from
the same IP address, and therefore cannot use the WTP's IP address
alone to bind the CAPWAP Control and Data channel. The CAPWAP Data
Check state, which establishes the data plane connection and
<span class="grey">Calhoun, et al. Standards Track [Page 132]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-133" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
communicates the CAPWAP Data Channel Keep-Alive, includes the Session
Identifier message element, which is used to bind the control and
data plane. Use of the Session Identifier message element enables
the AC to match the control and data plane flows from multiple WTPs
behind the same NAT system (multiple WTPs sharing the same IP
address). CAPWAP implementations MUST also use DTLS session
information on any encrypted CAPWAP channel to validate the source of
both the control and data plane, as described in <a href="#section-12.2">Section 12.2</a>.
In the third configuration, the AC is deployed behind a NAT. In this
case, the AC is not reachable by the WTP unless a specific rule has
been configured on the NAT to translate the address and redirect
CAPWAP messages to the AC. This deployment presents two issues.
First, an AC communicates its interfaces and corresponding WTP load
using the CAPWAP Control IPv4 Address and CAPWAP Control IPv6 Address
message elements. This message element is mandatory, but contains IP
addresses that are only valid in the private address space used by
the AC, which is not reachable by the WTP. The WTP MUST NOT utilize
the information in these message elements if it detects a NAT (as
described in the CAPWAP Transport Protocol message element in
<a href="#section-4.6.14">Section 4.6.14</a>). Second, since the addresses cannot be used by the
WTP, this effectively disables the load-balancing capabilities (see
<a href="#section-6.1">Section 6.1</a>) of the CAPWAP protocol. Alternatively, the AC could
have a configured NAT'ed address, which it would include in either of
the two control address message elements, and the NAT would need to
be configured accordingly.
In order for a CAPWAP WTP or AC to detect whether a middlebox is
present, both the Join Request (see <a href="#section-6.1">Section 6.1</a>) and the Join
Response (see <a href="#section-6.2">Section 6.2</a>) include either the CAPWAP Local IPv4
Address (see <a href="#section-4.6.11">Section 4.6.11</a>) or the CAPWAP Local IPv6 Address (see
<a href="#section-4.6.12">Section 4.6.12</a>) message element. Upon receiving one of these
messages, if the packet's source IP address differs from the address
found in either one of these message elements, it indicates that a
middlebox is present.
In order for CAPWAP to be compatible with potential middleboxes in
the network, CAPWAP implementations MUST send return traffic from the
same port on which it received traffic from a given peer. Further,
any unsolicited requests generated by a CAPWAP node MUST be sent on
the same port.
Note that this middlebox detection technique is not foolproof. If
the public IP address assigned to the NAT is identical to the private
IP address used by the AC, detection by the WTP would fail. This
failure can lead to various protocol errors, so it is therefore
necessary for deployments to ensure that the NAT's IP address is not
the same as the ACs.
<span class="grey">Calhoun, et al. Standards Track [Page 133]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-134" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
The CAPWAP protocol allows for all of the AC identities supporting a
group of WTPs to be communicated through the AC List message element.
This feature MUST be ignored by the WTP when it detects the AC is
behind a middlebox.
The CAPWAP protocol allows an AC to configure a static IP address on
a WTP using the WTP Static IP Address Information message element.
This message element SHOULD NOT be used in NAT'ed environments,
unless the administrator is familiar with the internal IP addressing
scheme within the WTP's private network, and does not rely on the
public address seen by the AC.
When a WTP detects the duplicate address condition, it generates a
message to the AC, which includes the Duplicate IP Address message
element. The IP address embedded within this message element is
different from the public IP address seen by the AC.
<span class="h2"><a class="selflink" id="section-12" href="#section-12">12</a>. Security Considerations</span>
This section describes security considerations for the CAPWAP
protocol. It also provides security recommendations for protocols
used in conjunction with CAPWAP.
<span class="h3"><a class="selflink" id="section-12.1" href="#section-12.1">12.1</a>. CAPWAP Security</span>
As it is currently specified, the CAPWAP protocol sits between the
security mechanisms specified by the wireless link layer protocol
(e.g., IEEE 802.11i) and Authentication, Authorization, and
Accounting (AAA). One goal of CAPWAP is to bootstrap trust between
the STA and WTP using a series of preestablished trust relationships:
STA WTP AC AAA
==============================================
DTLS Cred AAA Cred
<------------><------------->
EAP Credential
<------------------------------------------>
wireless link layer
(e.g., 802.11 PTK)
<--------------> or
<--------------------------->
(derived)
Figure 12: STA Session Setup
<span class="grey">Calhoun, et al. Standards Track [Page 134]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-135" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
Within CAPWAP, DTLS is used to secure the link between the WTP and
AC. In addition to securing control messages, it's also a link in
this chain of trust for establishing link layer keys. Consequently,
much rests on the security of DTLS.
In some CAPWAP deployment scenarios, there are two channels between
the WTP and AC: the control channel, carrying CAPWAP Control
messages, and the data channel, over which client data packets are
tunneled between the AC and WTP. Typically, the control channel is
secured by DTLS, while the data channel is not.
The use of parallel protected and unprotected channels deserves
special consideration, but does not create a threat. There are two
potential concerns: attempting to convert protected data into
unprotected data and attempting to convert un-protected data into
protected data. These concerns are addressed below.
<span class="h4"><a class="selflink" id="section-12.1.1" href="#section-12.1.1">12.1.1</a>. Converting Protected Data into Unprotected Data</span>
Since CAPWAP does not support authentication-only ciphers (i.e., all
supported ciphersuites include encryption and authentication), it is
not possible to convert protected data into unprotected data. Since
encrypted data is (ideally) indistinguishable from random data, the
probability of an encrypted packet passing for a well-formed packet
is effectively zero.
<span class="h4"><a class="selflink" id="section-12.1.2" href="#section-12.1.2">12.1.2</a>. Converting Unprotected Data into Protected Data (Insertion)</span>
The use of message authentication makes it impossible for the
attacker to forge protected records. This makes conversion of
unprotected records to protected records impossible.
<span class="h4"><a class="selflink" id="section-12.1.3" href="#section-12.1.3">12.1.3</a>. Deletion of Protected Records</span>
An attacker could remove protected records from the stream, though
not undetectably so, due the built-in reliability of the underlying
CAPWAP protocol. In the worst case, the attacker would remove the
same record repeatedly, resulting in a CAPWAP session timeout and
restart. This is effectively a DoS attack, and could be accomplished
by a man in the middle regardless of the CAPWAP protocol security
mechanisms chosen.
<span class="h4"><a class="selflink" id="section-12.1.4" href="#section-12.1.4">12.1.4</a>. Insertion of Unprotected Records</span>
An attacker could inject packets into the unprotected channel, but
this may become evident if sequence number desynchronization occurs
as a result. Only if the attacker is a man in the middle (MITM) can
<span class="grey">Calhoun, et al. Standards Track [Page 135]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-136" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
packets be inserted undetectably. This is a consequence of that
channel's lack of protection, and not a new threat resulting from the
CAPWAP security mechanism.
<span class="h4"><a class="selflink" id="section-12.1.5" href="#section-12.1.5">12.1.5</a>. Use of MD5</span>
The Image Information message element (<a href="#section-4.6.28">Section 4.6.28</a>) makes use of
MD5 to compute the hash field. The authenticity and integrity of the
image file is protected by DTLS, and in this context, MD5 is not used
as a cryptographically secure hash, but just as a basic checksum.
Therefore, the use of MD5 is not considered a security vulnerability,
and no mechanisms for algorithm agility are provided.
<span class="h4"><a class="selflink" id="section-12.1.6" href="#section-12.1.6">12.1.6</a>. CAPWAP Fragmentation</span>
<a href="./rfc4963">RFC 4963</a> [<a href="./rfc4963" title=""IPv4 Reassembly Errors at High Data Rates"">RFC4963</a>] describes a possible security vulnerability where
a malicious entity can "corrupt" a flow by injecting fragments. By
sending "high" fragments (those with offset greater than zero) with a
forged source address, the attacker can deliberately cause
corruption. The use of DTLS on the CAPWAP Data channel can be used
to avoid this possible vulnerability.
<span class="h3"><a class="selflink" id="section-12.2" href="#section-12.2">12.2</a>. Session ID Security</span>
Since DTLS does not export a unique session identifier, there can be
no explicit protocol binding between the DTLS layer and CAPWAP layer.
As a result, implementations MUST provide a mechanism for performing
this binding. For example, an AC MUST NOT associate decrypted DTLS
control packets with a particular WTP session based solely on the
Session ID in the packet header. Instead, identification should be
done based on which DTLS session decrypted the packet. Otherwise,
one authenticated WTP could spoof another authenticated WTP by
altering the Session ID in the encrypted CAPWAP Header.
It should be noted that when the CAPWAP Data channel is unencrypted,
the WTP Session ID is exposed and possibly known to adversaries and
other WTPs. This would allow the forgery of the source of data-
channel traffic. This, however, should not be a surprise for
unencrypted data channels. When the data channel is encrypted, the
Session ID is not exposed, and therefore can safely be used to
associate a data and control channel. The 128-bit length of the
Session ID mitigates online guessing attacks where an adversarial,
authenticated WTP tries to correlate his own data channel with
another WTP's control channel. Note that for encrypted data
channels, the Session ID should only be used for correlation for the
first packet immediately after the initial DTLS handshake. Future
correlation should instead be done via identification of a packet's
DTLS session.
<span class="grey">Calhoun, et al. Standards Track [Page 136]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-137" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
<span class="h3"><a class="selflink" id="section-12.3" href="#section-12.3">12.3</a>. Discovery or DTLS Setup Attacks</span>
Since the Discovery Request messages are sent in the clear, it is
important that AC implementations NOT assume that receiving a
Discovery Request message from a WTP implies that the WTP has
rebooted, and consequently tear down any active DTLS sessions.
Discovery Request messages can easily be spoofed by malicious
devices, so it is important that the AC maintain two separate sets of
states for the WTP until the DTLSSessionEstablished notification is
received, indicating that the WTP was authenticated. Once a new DTLS
session is successfully established, any state referring to the old
session can be cleared.
Similarly, when the AC is entering the DTLS Setup phase, it SHOULD
NOT assume that the WTP has reset, and therefore should not discard
active state until the DTLS session has been successfully
established. While the HelloVerifyRequest provides some protection
against denial-of-service (DoS) attacks on the AC, an adversary
capable of receiving packets at a valid address (or a malfunctioning
or misconfigured WTP) may repeatedly attempt DTLS handshakes with the
AC, potentially creating a resource shortage. If either the
FailedDTLSSessionCount or the FailedDTLSAuthFailCount counter reaches
the value of MaxFailedDTLSSessionRetry variable (see <a href="#section-4.8">Section 4.8</a>),
implementations MAY choose to rate-limit new DTLS handshakes for some
period of time. It is RECOMMENDED that implementations choosing to
implement rate-limiting use a random discard technique, rather than
mimicking the WTP's sulking behavior. This will ensure that messages
from valid WTPs will have some probability of eliciting a response,
even in the face of a significant DoS attack.
Some CAPWAP implementations may wish to restrict the DTLS setup
process to only those peers that have been configured in the access
control list, authorizing only those clients to initiate a DTLS
handshake. Note that the impact of this on mitigating denial-of-
service attacks against the DTLS layer is minimal, because DTLS
already uses client-side cookies to minimize processor consumption
attacks.
<span class="h3"><a class="selflink" id="section-12.4" href="#section-12.4">12.4</a>. Interference with a DTLS Session</span>
If a WTP or AC repeatedly receives packets that fail DTLS
authentication or decryption, this could indicate a DTLS
desynchronization between the AC and WTP, a link prone to
undetectable bit errors, or an attacker trying to disrupt a DTLS
session.
<span class="grey">Calhoun, et al. Standards Track [Page 137]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-138" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
In the state machine (<a href="#section-2.3">section 2.3</a>), transitions to the DTLS Tear Down
(TD) state can be triggered by frequently receiving DTLS packets with
authentication or decryption errors. The threshold or technique for
deciding when to move to the tear down state should be chosen
carefully. Being able to easily transition to DTLS TD allows easy
detection of malfunctioning devices, but allows for denial-of-service
attacks. Making it difficult to transition to DTLS TD prevents
denial-of-service attacks, but makes it more difficult to detect and
reset a malfunctioning session. Implementers should set this policy
with care.
<span class="h3"><a class="selflink" id="section-12.5" href="#section-12.5">12.5</a>. CAPWAP Pre-Provisioning</span>
In order for CAPWAP to establish a secure communication with a peer,
some level of pre-provisioning on both the WTP and AC is necessary.
This section will detail the minimal number of configuration
parameters.
When using pre-shared keys, it is necessary to configure the pre-
shared key for each possible peer with which a DTLS session may be
established. To support this mode of operation, one or more entries
of the following table may be configured on either the AC or WTP:
o Identity: The identity of the peering AC or WTP. This format MAY
be in the form of either an IP address or host name (the latter of
which needs to be resolved to an IP address using DNS).
o Key: The pre-shared key for use with the peer when establishing
the DTLS session (see <a href="#section-12.6">Section 12.6</a> for more information).
o PSK Identity: Identity hint associated with the provisioned key
(see <a href="#section-2.4.4.4">Section 2.4.4.4</a> for more information).
When using certificates, the following items need to be pre-
provisioned:
o Device Certificate: The local device's certificate (see
<a href="#section-12.7">Section 12.7</a> for more information).
o Trust Anchor: Trusted root certificate chain used to validate any
certificate received from CAPWAP peers. Note that one or more
root certificates MAY be configured on a given device.
Regardless of the authentication method, the following item needs to
be pre-provisioned:
<span class="grey">Calhoun, et al. Standards Track [Page 138]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-139" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
o Access Control List: The access control list table contains the
identities of one or more CAPWAP peers, along with a rule. The
rule is used to determine whether communication with the peer is
permitted (see <a href="#section-2.4.4.3">Section 2.4.4.3</a> for more information).
<span class="h3"><a class="selflink" id="section-12.6" href="#section-12.6">12.6</a>. Use of Pre-Shared Keys in CAPWAP</span>
While use of pre-shared keys may provide deployment and provisioning
advantages not found in public-key-based deployments, it also
introduces a number of operational and security concerns. In
particular, because the keys must typically be entered manually, it
is common for people to base them on memorable words or phrases.
These are referred to as "low entropy passwords/passphrases".
Use of low-entropy pre-shared keys, coupled with the fact that the
keys are often not frequently updated, tends to significantly
increase exposure. For these reasons, the following recommendations
are made:
o When DTLS is used with a pre-shared key (PSK) ciphersuite, each
WTP SHOULD have a unique PSK. Since WTPs will likely be widely
deployed, their physical security is not guaranteed. If PSKs are
not unique for each WTP, key reuse would allow the compromise of
one WTP to result in the compromise of others.
o Generating PSKs from low entropy passwords is NOT RECOMMENDED.
o It is RECOMMENDED that implementations that allow the
administrator to manually configure the PSK also provide a
capability for generation of new random PSKs, taking <a href="./rfc4086">RFC 4086</a>
[<a href="./rfc4086" title=""Randomness Requirements for Security"">RFC4086</a>] into account.
o Pre-shared keys SHOULD be periodically updated. Implementations
MAY facilitate this by providing an administrative interface for
automatic key generation and periodic update, or it MAY be
accomplished manually instead.
Every pairwise combination of WTP and AC on the network SHOULD have a
unique PSK. This prevents the domino effect (see "Guidance for
Authentication, Authorization, and Accounting (AAA) Key Management"
[<a href="./rfc4962" title=""Guidance for Authentication, Authorization, and Accounting (AAA) Key Management"">RFC4962</a>]). If PSKs are tied to specific WTPs, then knowledge of the
PSK implies a binding to a specified identity that can be authorized.
If PSKs are shared, this binding between device and identity is no
longer possible. Compromise of one WTP can yield compromise of
another WTP, violating the CAPWAP security hierarchy. Consequently,
sharing keys between WTPs is NOT RECOMMENDED.
<span class="grey">Calhoun, et al. Standards Track [Page 139]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-140" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
<span class="h3"><a class="selflink" id="section-12.7" href="#section-12.7">12.7</a>. Use of Certificates in CAPWAP</span>
For public-key-based DTLS deployments, each device SHOULD have unique
credentials, with an extended key usage authorizing the device to act
as either a WTP or AC. If devices do not have unique credentials, it
is possible that by compromising one device, any other device using
the same credential may also be considered to be compromised.
Certificate validation involves checking a large variety of things.
Since the necessary things to validate are often environment-
specific, many are beyond the scope of this document. In this
section, we provide some basic guidance on certificate validation.
Each device is responsible for authenticating and authorizing devices
with which they communicate. Authentication entails validation of
the chain of trust leading to the peer certificate, followed by the
peer certificate itself. Implementations SHOULD also provide a
secure method for verifying that the credential in question has not
been revoked.
Note that if the WTP relies on the AC for network connectivity (e.g.,
the AC is a Layer 2 switch to which the WTP is directly connected),
the WTP may not be able to contact an Online Certificate Status
Protocol (OCSP) server or otherwise obtain an up-to-date Certificate
Revocation List (CRL) if a compromised AC doesn't explicitly permit
this. This cannot be avoided, except through effective physical
security and monitoring measures at the AC.
Proper validation of certificates typically requires checking to
ensure the certificate has not yet expired. If devices have a real-
time clock, they SHOULD verify the certificate validity dates. If no
real-time clock is available, the device SHOULD make a best-effort
attempt to validate the certificate validity dates through other
means. Failure to check a certificate's temporal validity can make a
device vulnerable to man-in-the-middle attacks launched using
compromised, expired certificates, and therefore devices should make
every effort to perform this validation.
<span class="h3"><a class="selflink" id="section-12.8" href="#section-12.8">12.8</a>. Use of MAC Address in CN Field</span>
The CAPWAP protocol is an evolution of an existing protocol [<a href="#ref-LWAPP" title=""Lightweight Access Point Protocol"">LWAPP</a>],
which is implemented on a large number of already deployed ACs and
WTPs. Every one of these devices has an existing X.509 certificate,
which is provisioned at the time of manufacturing. These X.509
certificates use the device's MAC address in the Common Name (CN)
field. It is well understood that encoding the MAC address in the CN
field is less than optimal, and using the SubjectAltName field would
be preferable. However, at the time of publication, there is no URN
<span class="grey">Calhoun, et al. Standards Track [Page 140]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-141" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
specification that allows for the MAC address to be used in the
SubjectAltName field. As such a specification is published by the
IETF, future versions of the CAPWAP protocol MAY require support for
the new URN scheme.
<span class="h3"><a class="selflink" id="section-12.9" href="#section-12.9">12.9</a>. AAA Security</span>
The AAA protocol is used to distribute Extensible Authentication
Protocol (EAP) keys to the ACs, and consequently its security is
important to the overall system security. When used with Transport
Layer Security (TLS) or IPsec, security guidelines specified in <a href="./rfc3539">RFC</a>
<a href="./rfc3539">3539</a> [<a href="./rfc3539" title=""Authentication, Authorization and Accounting (AAA) Transport Profile"">RFC3539</a>] SHOULD be followed.
In general, the link between the AC and AAA server SHOULD be secured
using a strong ciphersuite keyed with mutually authenticated session
keys. Implementations SHOULD NOT rely solely on Basic RADIUS shared
secret authentication as it is often vulnerable to dictionary
attacks, but rather SHOULD use stronger underlying security
mechanisms.
<span class="h3"><a class="selflink" id="section-12.10" href="#section-12.10">12.10</a>. WTP Firmware</span>
The CAPWAP protocol defines a mechanism by which the AC downloads new
firmware to the WTP. During the session establishment process, the
WTP provides information about its current firmware to the AC. The
AC then decides whether the WTP's firmware needs to be updated. It
is important to note that the CAPWAP specification makes the explicit
assumption that the WTP is providing the correct firmware version to
the AC, and is therefore not lying. Further, during the firmware
download process, the CAPWAP protocol does not provide any mechanisms
to recognize whether the WTP is actually storing the firmware for
future use.
<span class="h2"><a class="selflink" id="section-13" href="#section-13">13</a>. Operational Considerations</span>
The CAPWAP protocol assumes that it is the only configuration
interface to the WTP to configure parameters that are specified in
the CAPWAP specifications. While the use of a separate management
protocol MAY be used for the purposes of monitoring the WTP directly,
configuring the WTP through a separate management interface is not
recommended. Configuring the WTP through a separate protocol, such
as via a command line interface (CLI) or Simple Network Management
Protocol (SNMP), could lead to the AC state being out of sync with
the WTP.
<span class="grey">Calhoun, et al. Standards Track [Page 141]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-142" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
The CAPWAP protocol does not deal with the management of the ACs.
The AC is assumed to be configured through some separate management
interface, which could be via a proprietary CLI, SNMP, Network
Configuration Protocol (NETCONF), or some other management protocol.
The CAPWAP protocol's control channel is fairly lightweight from a
traffic perspective. Once the WTP has been configured, the WTP sends
periodic statistics. Further, the specification calls for a keep-
alive packet to be sent on the protocol's data channel to make sure
that any possible middleboxes (e.g., NAT) maintain their UDP state.
The overhead associated with the control and data channel is not
expected to impact network traffic. That said, the CAPWAP protocol
does allow for the frequency of these packets to be modified through
the DataChannelKeepAlive and StatisticsTimer (see <a href="#section-4.7.2">Section 4.7.2</a> and
<a href="#section-4.7.14">Section 4.7.14</a>, respectively).
<span class="h2"><a class="selflink" id="section-14" href="#section-14">14</a>. Transport Considerations</span>
The CAPWAP WG carefully considered the congestion control
requirements of the CAPWAP protocol, both for the CAPWAP Control and
Data channels.
CAPWAP specifies a single-threaded command/response protocol to be
used on the control channel, and we have specified that an
exponential back-off algorithm should be used when commands are
retransmitted. When CAPWAP runs in its default mode (Local MAC), the
control channel is the only CAPWAP channel.
However, CAPWAP can also be run in Split MAC mode, in which case
there will be a DTLS-encrypted data channel between each WTP and the
AC. The WG discussed various options for providing congestion
control on this channel. However, due to performance problems with
TCP when it is run over another congestion control mechanism and the
fact that the vast majority of traffic run over the CAPWAP Data
channel is likely to be congestion-controlled IP traffic, the CAPWAP
WG felt that specifying a congestion control mechanism for the CAPWAP
Data channel would be more likely to cause problems than to resolve
any.
Because there is no congestion control mechanism specified for the
CAPWAP Data channel, it is RECOMMENDED that non-congestion-controlled
traffic not be tunneled over CAPWAP. When a significant amount of
non-congestion-controlled traffic is expected to be present on a
WLAN, the CAPWAP connection between the AC and the WTP for that LAN
should be configured to remain in Local MAC mode with Distribution
function at the WTP.
<span class="grey">Calhoun, et al. Standards Track [Page 142]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-143" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
The lock step nature of the CAPWAP protocol's control channel can
cause the firmware download process to take some time, depending upon
the round-trip time (RTT). This is not expected to be a problem
since the CAPWAP protocol allows firmware to be downloaded while the
WTP provides service to wireless clients/devices.
It is necessary for the WTP and AC to configure their MTU based on
the capabilities of the path. See <a href="#section-3.5">Section 3.5</a> for more information.
The CAPWAP protocol mandates support of the Explicit Congestion
Notification (ECN) through a mode of operation named "limited
functionality option", detailed in <a href="./rfc3168#section-9.1.1">section 9.1.1 of [RFC3168]</a>.
Future versions of the CAPWAP protocol should consider mandating
support for the "full functionality option".
<span class="h2"><a class="selflink" id="section-15" href="#section-15">15</a>. IANA Considerations</span>
This section details the actions that IANA has taken in preparation
for publication of the specification. Numerous registries have been
created, and the contents, document action (see [<a href="./rfc5226" title="">RFC5226</a>], and
registry format are all included below. Note that in cases where bit
fields are referred to, the bit numbering is left to right, where the
leftmost bit is labeled as bit zero (0).
For future registration requests where an Expert Review is required,
a Designated Expert should be consulted, which is appointed by the
responsible IESG Area Director. The intention is that any allocation
will be accompanied by a published RFC, but given that other SDOs may
want to create standards built on top of CAPWAP, a document the
Designated Expert can review is also acceptable. IANA should allow
for allocation of values prior to documents being approved for
publication, so the Designated Expert can approve allocations once it
seems clear that publication will occur. The Designated Expert will
post a request to the CAPWAP WG mailing list (or a successor
designated by the Area Director) for comment and review. Before a
period of 30 days has passed, the Designated Expert will either
approve or deny the registration request and publish a notice of the
decision to the CAPWAP WG mailing list or its successor, as well as
informing IANA. A denial notice must be justified by an explanation,
and in the cases where it is possible, concrete suggestions on how
the request can be modified so as to become acceptable should be
provided.
<span class="h3"><a class="selflink" id="section-15.1" href="#section-15.1">15.1</a>. IPv4 Multicast Address</span>
IANA has registered a new IPv4 multicast address called "capwap-ac"
from the Internetwork Control Block IPv4 multicast address registry;
see <a href="#section-3.3">Section 3.3</a>.
<span class="grey">Calhoun, et al. Standards Track [Page 143]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-144" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
<span class="h3"><a class="selflink" id="section-15.2" href="#section-15.2">15.2</a>. IPv6 Multicast Address</span>
IANA has registered a new organization local multicast address called
the "All ACs multicast address" in the Variable Scope IPv6 multicast
address registry; see <a href="#section-3.3">Section 3.3</a>.
<span class="h3"><a class="selflink" id="section-15.3" href="#section-15.3">15.3</a>. UDP Port</span>
IANA registered two new UDP Ports, which are organization-local
multicast addresses, in the registered port numbers registry; see
<a href="#section-3.1">Section 3.1</a>. The following values have been registered:
Keyword Decimal Description References
------- ------- ----------- ----------
capwap-control 5246/udp CAPWAP Control Protocol This Document
capwap-data 5247/udp CAPWAP Data Protocol This Document
<span class="h3"><a class="selflink" id="section-15.4" href="#section-15.4">15.4</a>. CAPWAP Message Types</span>
The Message Type field in the CAPWAP Header (see <a href="#section-4.5.1.1">Section 4.5.1.1</a>) is
used to identify the operation performed by the message. There are
multiple namespaces, which are identified via the first three octets
of the field containing the IANA Enterprise Number [<a href="./rfc5226" title="">RFC5226</a>].
IANA maintains the CAPWAP Message Types registry for all message
types whose Enterprise Number is set to zero (0). The namespace is 8
bits (0-255), where the value of zero (0) is reserved and must not be
assigned. The values one (1) through 26 are allocated in this
specification, and can be found in <a href="#section-4.5.1.1">Section 4.5.1.1</a>. Any new
assignments of a CAPWAP Message Type whose Enterprise Number is set
to zero (0) requires an Expert Review. The registry maintained by
IANA has the following format:
CAPWAP Control Message Message Type Reference
Value
<span class="h3"><a class="selflink" id="section-15.5" href="#section-15.5">15.5</a>. CAPWAP Header Flags</span>
The Flags field in the CAPWAP Header (see <a href="#section-4.3">Section 4.3</a>) is 9 bits in
length and is used to identify any special treatment related to the
message. This specification defines bits zero (0) through five (5),
while bits six (6) through eight (8) are reserved. There are
currently three unused, reserved bits that are managed by IANA and
whose assignment require an Expert Review. IANA created the CAPWAP
Header Flags registry, whose format is:
Flag Field Name Bit Position Reference
<span class="grey">Calhoun, et al. Standards Track [Page 144]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-145" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
<span class="h3"><a class="selflink" id="section-15.6" href="#section-15.6">15.6</a>. CAPWAP Control Message Flags</span>
The Flags field in the CAPWAP Control Message header (see
<a href="#section-4.5.1.4">Section 4.5.1.4</a>) is used to identify any special treatment related to
the control message. There are currently eight (8) unused, reserved
bits. The assignment of these bits is managed by IANA and requires
an Expert Review. IANA created the CAPWAP Control Message Flags
registry, whose format is:
Flag Field Name Bit Position Reference
<span class="h3"><a class="selflink" id="section-15.7" href="#section-15.7">15.7</a>. CAPWAP Message Element Type</span>
The Type field in the CAPWAP Message Element header (see <a href="#section-4.6">Section 4.6</a>)
is used to identify the data being transported. The namespace is 16
bits (0-65535), where the value of zero (0) is reserved and must not
be assigned. The values one (1) through 53 are allocated in this
specification, and can be found in <a href="#section-4.5.1.1">Section 4.5.1.1</a>.
The 16-bit namespace is further divided into blocks of addresses that
are reserved for specific CAPWAP wireless bindings. The following
blocks are reserved:
CAPWAP Protocol Message Elements 1 - 1023
IEEE 802.11 Message Elements 1024 - 2047
EPCGlobal Message Elements 3072 - 4095
This namespace is managed by IANA and assignments require an Expert
Review. IANA created the CAPWAP Message Element Type registry, whose
format is:
CAPWAP Message Element Type Value Reference
<span class="h3"><a class="selflink" id="section-15.8" href="#section-15.8">15.8</a>. CAPWAP Wireless Binding Identifiers</span>
The Wireless Binding Identifier (WBID) field in the CAPWAP Header
(see <a href="#section-4.3">Section 4.3</a>) is used to identify the wireless technology
associated with the packet. This specification allocates the values
one (1) and three (3). Due to the limited address space available, a
new WBID request requires Expert Review. IANA created the CAPWAP
Wireless Binding Identifier registry, whose format is:
CAPWAP Wireless Binding Identifier Type Value Reference
<span class="grey">Calhoun, et al. Standards Track [Page 145]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-146" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
<span class="h3"><a class="selflink" id="section-15.9" href="#section-15.9">15.9</a>. AC Security Types</span>
The Security field in the AC Descriptor message element (see
<a href="#section-4.6.1">Section 4.6.1</a>) is 8 bits in length and is used to identify the
authentication methods available on the AC. This specification
defines bits five (5) and six (6), while bits zero (0) through four
(4) as well as bit seven (7) are reserved and unused. These reserved
bits are managed by IANA and assignment requires Standards Action.
IANA created the AC Security Types registry, whose format is:
AC Security Type Bit Position Reference
<span class="h3"><a class="selflink" id="section-15.10" href="#section-15.10">15.10</a>. AC DTLS Policy</span>
The DTLS Policy field in the AC Descriptor message element (see
<a href="#section-4.6.1">Section 4.6.1</a>) is 8 bits in length and is used to identify whether
the CAPWAP Data Channel is to be secured. This specification defines
bits five (5) and six (6), while bits zero (0) through four (4) as
well as bit seven (7) are reserved and unused. These reserved bits
are managed by IANA and assignment requires Standards Action. IANA
created the AC DTLS Policy registry, whose format is:
AC DTLS Policy Bit Position Reference
<span class="h3"><a class="selflink" id="section-15.11" href="#section-15.11">15.11</a>. AC Information Type</span>
The Information Type field in the AC Descriptor message element (see
<a href="#section-4.6.1">Section 4.6.1</a>) is used to represent information about the AC. The
namespace is 16 bits (0-65535), where the value of zero (0) is
reserved and must not be assigned. This field, combined with the AC
Information Vendor ID, allows vendors to use a private namespace.
This specification defines the AC Information Type namespace when the
AC Information Vendor ID is set to zero (0), for which the values
four (4) and five (5) are allocated in this specification, and can be
found in <a href="#section-4.6.1">Section 4.6.1</a>. This namespace is managed by IANA and
assignments require an Expert Review. IANA created the AC
Information Type registry, whose format is:
AC Information Type Type Value Reference
<span class="h3"><a class="selflink" id="section-15.12" href="#section-15.12">15.12</a>. CAPWAP Transport Protocol Types</span>
The Transport field in the CAPWAP Transport Protocol message element
(see <a href="#section-4.6.14">Section 4.6.14</a>) is used to identify the transport to use for the
CAPWAP Data Channel. The namespace is 8 bits (0-255), where the
value of zero (0) is reserved and must not be assigned. The values
one (1) and two (2) are allocated in this specification, and can be
<span class="grey">Calhoun, et al. Standards Track [Page 146]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-147" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
found in <a href="#section-4.6.14">Section 4.6.14</a>. This namespace is managed by IANA and
assignments require an Expert Review. IANA created the CAPWAP
Transport Protocol Types registry, whose format is:
CAPWAP Transport Protocol Type Type Value Reference
<span class="h3"><a class="selflink" id="section-15.13" href="#section-15.13">15.13</a>. Data Transfer Type</span>
The Data Type field in the Data Transfer Data message element (see
<a href="#section-4.6.15">Section 4.6.15</a>) and Image Data message element (see <a href="#section-4.6.26">Section 4.6.26</a>)
is used to provide information about the data being carried. The
namespace is 8 bits (0-255), where the value of zero (0) is reserved
and must not be assigned. The values one (1), two (2), and five (5)
are allocated in this specification, and can be found in
<a href="#section-4.6.15">Section 4.6.15</a>. This namespace is managed by IANA and assignments
require an Expert Review. IANA created the Data Transfer Type
registry, whose format is:
Data Transfer Type Type Value Reference
<span class="h3"><a class="selflink" id="section-15.14" href="#section-15.14">15.14</a>. Data Transfer Mode</span>
The Data Mode field in the Data Transfer Data message element (see
<a href="#section-4.6.15">Section 4.6.15</a>) and Data Transfer Mode message element (see
<a href="#section-15.14">Section 15.14</a>) is used to provide information about the data being
carried. The namespace is 8 bits (0-255), where the value of zero
(0) is reserved and must not be assigned. The values one (1) and two
(2) are allocated in this specification, and can be found in
<a href="#section-15.14">Section 15.14</a>. This namespace is managed by IANA and assignments
require an Expert Review. IANA created the Data Transfer Mode
registry, whose format is:
Data Transfer Mode Type Value Reference
<span class="h3"><a class="selflink" id="section-15.15" href="#section-15.15">15.15</a>. Discovery Types</span>
The Discovery Type field in the Discovery Type message element (see
<a href="#section-4.6.21">Section 4.6.21</a>) is used by the WTP to indicate to the AC how it was
discovered. The namespace is 8 bits (0-255). The values zero (0)
through four (4) are allocated in this specification and can be found
in <a href="#section-4.6.21">Section 4.6.21</a>. This namespace is managed by IANA and assignments
require an Expert Review. IANA created the Discovery Types registry,
whose format is:
Discovery Types Type Value Reference
<span class="grey">Calhoun, et al. Standards Track [Page 147]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-148" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
<span class="h3"><a class="selflink" id="section-15.16" href="#section-15.16">15.16</a>. ECN Support</span>
The ECN Support field in the ECN Support message element (see
<a href="#section-4.6.25">Section 4.6.25</a>) is used by the WTP to represent its ECN Support. The
namespace is 8 bits (0-255). The values zero (0) and one (1) are
allocated in this specification, and can be found in <a href="#section-4.6.25">Section 4.6.25</a>.
This namespace is managed by IANA and assignments require an Expert
Review. IANA created the ECN Support registry, whose format is:
ECN Support Type Value Reference
<span class="h3"><a class="selflink" id="section-15.17" href="#section-15.17">15.17</a>. Radio Admin State</span>
The Radio Admin field in the Radio Administrative State message
element (see <a href="#section-4.6.33">Section 4.6.33</a>) is used by the WTP to represent the
state of its radios. The namespace is 8 bits (0-255), where the
value of zero (0) is reserved and must not be assigned. The values
one (1) and two (2) are allocated in this specification, and can be
found in <a href="#section-4.6.33">Section 4.6.33</a>. This namespace is managed by IANA and
assignments require an Expert Review. IANA created the Radio Admin
State registry, whose format is:
Radio Admin State Type Value Reference
<span class="h3"><a class="selflink" id="section-15.18" href="#section-15.18">15.18</a>. Radio Operational State</span>
The State field in the Radio Operational State message element (see
<a href="#section-4.6.34">Section 4.6.34</a>) is used by the WTP to represent the operational state
of its radios. The namespace is 8 bits (0-255), where the value of
zero (0) is reserved and must not be assigned. The values one (1)
and two (2) are allocated in this specification, and can be found in
<a href="#section-4.6.34">Section 4.6.34</a>. This namespace is managed by IANA and assignments
require an Expert Review. IANA created the Radio Operational State
registry, whose format is:
Radio Operational State Type Value Reference
<span class="h3"><a class="selflink" id="section-15.19" href="#section-15.19">15.19</a>. Radio Failure Causes</span>
The Cause field in the Radio Operational State message element (see
<a href="#section-4.6.34">Section 4.6.34</a>) is used by the WTP to represent the reason a radio
may have failed. The namespace is 8 bits (0-255), where the value of
zero (0) through three (3) are allocated in this specification, and
can be found in <a href="#section-4.6.34">Section 4.6.34</a>. This namespace is managed by IANA
and assignments require an Expert Review. IANA created the Radio
Failure Causes registry, whose format is:
Radio Failure Causes Type Value Reference
<span class="grey">Calhoun, et al. Standards Track [Page 148]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-149" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
<span class="h3"><a class="selflink" id="section-15.20" href="#section-15.20">15.20</a>. Result Code</span>
The Result Code field in the Result Code message element (see
<a href="#section-4.6.35">Section 4.6.35</a>) is used to indicate the success or failure of a
CAPWAP Control message. The namespace is 32 bits (0-4294967295),
where the value of zero (0) through 22 are allocated in this
specification, and can be found in <a href="#section-4.6.35">Section 4.6.35</a>. This namespace is
managed by IANA and assignments require an Expert Review. IANA
created the Result Code registry, whose format is:
Result Code Type Value Reference
<span class="h3"><a class="selflink" id="section-15.21" href="#section-15.21">15.21</a>. Returned Message Element Reason</span>
The Reason field in the Returned Message Element message element (see
<a href="#section-4.6.36">Section 4.6.36</a>) is used to indicate the reason why a message element
was not processed successfully. The namespace is 8 bits (0-255),
where the value of zero (0) is reserved and must not be assigned.
The values one (1) through four (4) are allocated in this
specification, and can be found in <a href="#section-4.6.36">Section 4.6.36</a>. This namespace is
managed by IANA and assignments require an Expert Review. IANA
created the Returned Message Element Reason registry, whose format
is:
Returned Message Element Reason Type Value Reference
<span class="h3"><a class="selflink" id="section-15.22" href="#section-15.22">15.22</a>. WTP Board Data Type</span>
The Board Data Type field in the WTP Board Data message element (see
<a href="#section-4.6.40">Section 4.6.40</a>) is used to represent information about the WTP
hardware. The namespace is 16 bits (0-65535). The WTP Board Data
Type values zero (0) through four (4) are allocated in this
specification, and can be found in <a href="#section-4.6.40">Section 4.6.40</a>. This namespace is
managed by IANA and assignments require an Expert Review. IANA
created the WTP Board Data Type registry, whose format is:
WTP Board Data Type Type Value Reference
<span class="h3"><a class="selflink" id="section-15.23" href="#section-15.23">15.23</a>. WTP Descriptor Type</span>
The Descriptor Type field in the WTP Descriptor message element (see
<a href="#section-4.6.41">Section 4.6.41</a>) is used to represent information about the WTP
software. The namespace is 16 bits (0-65535). This field, combined
with the Descriptor Vendor ID, allows vendors to use a private
namespace. This specification defines the WTP Descriptor Type
namespace when the Descriptor Vendor ID is set to zero (0), for which
the values zero (0) through three (3) are allocated in this
<span class="grey">Calhoun, et al. Standards Track [Page 149]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-150" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
specification, and can be found in <a href="#section-4.6.41">Section 4.6.41</a>. This namespace is
managed by IANA and assignments require an Expert Review. IANA
created the WTP Board Data Type registry, whose format is:
WTP Descriptor Type Type Value Reference
<span class="h3"><a class="selflink" id="section-15.24" href="#section-15.24">15.24</a>. WTP Fallback Mode</span>
The Mode field in the WTP Fallback message element (see
<a href="#section-4.6.42">Section 4.6.42</a>) is used to indicate the type of AC fallback mechanism
the WTP should employ. The namespace is 8 bits (0-255), where the
value of zero (0) is reserved and must not be assigned. The values
one (1) and two (2) are allocated in this specification, and can be
found in <a href="#section-4.6.42">Section 4.6.42</a>. This namespace is managed by IANA and
assignments require an Expert Review. IANA created the WTP Fallback
Mode registry, whose format is:
WTP Fallback Mode Type Value Reference
<span class="h3"><a class="selflink" id="section-15.25" href="#section-15.25">15.25</a>. WTP Frame Tunnel Mode</span>
The Tunnel Type field in the WTP Frame Tunnel Mode message element
(see <a href="#section-4.6.43">Section 4.6.43</a>) is 8 bits and is used to indicate the type of
tunneling to use between the WTP and the AC. This specification
defines bits four (4) through six (6), while bits zero (0) through
three (3) as well as bit seven (7) are reserved and unused. These
reserved bits are managed by IANA and assignment requires an Expert
Review. IANA created the WTP Frame Tunnel Mode registry, whose
format is:
WTP Frame Tunnel Mode Bit Position Reference
<span class="h3"><a class="selflink" id="section-15.26" href="#section-15.26">15.26</a>. WTP MAC Type</span>
The MAC Type field in the WTP MAC Type message element (see
<a href="#section-4.6.44">Section 4.6.44</a>) is used to indicate the type of MAC to use in
tunneled frames between the WTP and the AC. The namespace is 8 bits
(0-255), where the value of zero (0) through two (2) are allocated in
this specification, and can be found in <a href="#section-4.6.44">Section 4.6.44</a>. This
namespace is managed by IANA and assignments require an Expert
Review. IANA created the WTP MAC Type registry, whose format is:
WTP MAC Type Type Value Reference
<span class="grey">Calhoun, et al. Standards Track [Page 150]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-151" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
<span class="h3"><a class="selflink" id="section-15.27" href="#section-15.27">15.27</a>. WTP Radio Stats Failure Type</span>
The Last Failure Type field in the WTP Radio Statistics message
element (see <a href="#section-4.6.46">Section 4.6.46</a>) is used to indicate the last WTP
failure. The namespace is 8 bits (0-255), where the value of zero
(0) through three (3) as well as the value 255 are allocated in this
specification, and can be found in <a href="#section-4.6.46">Section 4.6.46</a>. This namespace is
managed by IANA and assignments require an Expert Review. IANA
created the WTP Radio Stats Failure Type registry, whose format is:
WTP Radio Stats Failure Type Type Value Reference
<span class="h3"><a class="selflink" id="section-15.28" href="#section-15.28">15.28</a>. WTP Reboot Stats Failure Type</span>
The Last Failure Type field in the WTP Reboot Statistics message
element (see <a href="#section-4.6.47">Section 4.6.47</a>) is used to indicate the last reboot
reason. The namespace is 8 bits (0-255), where the value of zero (0)
through five (5) as well as the value 255 are allocated in this
specification, and can be found in <a href="#section-4.6.47">Section 4.6.47</a>. This namespace is
managed by IANA and assignments require an Expert Review. IANA
created the WTP Reboot Stats Failure Type registry, whose format is:
WTP Reboot Stats Failure Type Type Value Reference
<span class="h2"><a class="selflink" id="section-16" href="#section-16">16</a>. Acknowledgments</span>
The following individuals are acknowledged for their contributions to
this protocol specification: Puneet Agarwal, Abhijit Choudhury, Pasi
Eronen, Saravanan Govindan, Peter Nilsson, David Perkins, and Yong
Zhang.
Michael Vakulenko contributed text to describe how CAPWAP can be used
over Layer 3 (IP/UDP) networks.
<span class="h2"><a class="selflink" id="section-17" href="#section-17">17</a>. References</span>
<span class="h3"><a class="selflink" id="section-17.1" href="#section-17.1">17.1</a>. Normative References</span>
[<a id="ref-RFC1191">RFC1191</a>] Mogul, J. and S. Deering, "Path MTU discovery",
<a href="./rfc1191">RFC 1191</a>, November 1990.
[<a id="ref-RFC1321">RFC1321</a>] Rivest, R., "The MD5 Message-Digest Algorithm",
<a href="./rfc1321">RFC 1321</a>, April 1992.
[<a id="ref-RFC1305">RFC1305</a>] Mills, D., "Network Time Protocol (Version 3)
Specification, Implementation", <a href="./rfc1305">RFC 1305</a>,
March 1992.
<span class="grey">Calhoun, et al. Standards Track [Page 151]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-152" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
[<a id="ref-RFC1981">RFC1981</a>] McCann, J., Deering, S., and J. Mogul, "Path MTU
Discovery for IP version 6", <a href="./rfc1981">RFC 1981</a>,
August 1996.
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to
Indicate Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>,
March 1997.
[<a id="ref-RFC2460">RFC2460</a>] Deering, S. and R. Hinden, "Internet Protocol,
Version 6 (IPv6) Specification", <a href="./rfc2460">RFC 2460</a>,
December 1998.
[<a id="ref-RFC2474">RFC2474</a>] Nichols, K., Blake, S., Baker, F., and D. Black,
"Definition of the Differentiated Services Field
(DS Field) in the IPv4 and IPv6 Headers",
<a href="./rfc2474">RFC 2474</a>, December 1998.
[<a id="ref-RFC2782">RFC2782</a>] Gulbrandsen, A., Vixie, P., and L. Esibov, "A DNS
RR for specifying the location of services (DNS
SRV)", <a href="./rfc2782">RFC 2782</a>, February 2000.
[<a id="ref-RFC3168">RFC3168</a>] Ramakrishnan, K., Floyd, S., and D. Black, "The
Addition of Explicit Congestion Notification (ECN)
to IP", <a href="./rfc3168">RFC 3168</a>, September 2001.
[<a id="ref-RFC3539">RFC3539</a>] Aboba, B. and J. Wood, "Authentication,
Authorization and Accounting (AAA) Transport
Profile", <a href="./rfc3539">RFC 3539</a>, June 2003.
[<a id="ref-RFC3629">RFC3629</a>] Yergeau, F., "UTF-8, a transformation format of
ISO 10646", STD 63, <a href="./rfc3629">RFC 3629</a>, November 2003.
[<a id="ref-RFC3828">RFC3828</a>] Larzon, L-A., Degermark, M., Pink, S., Jonsson,
L-E., and G. Fairhurst, "The Lightweight User
Datagram Protocol (UDP-Lite)", <a href="./rfc3828">RFC 3828</a>,
July 2004.
[<a id="ref-RFC4086">RFC4086</a>] Eastlake, D., Schiller, J., and S. Crocker,
"Randomness Requirements for Security", <a href="https://www.rfc-editor.org/bcp/bcp106">BCP 106</a>,
<a href="./rfc4086">RFC 4086</a>, June 2005.
[<a id="ref-RFC4279">RFC4279</a>] Eronen, P. and H. Tschofenig, "Pre-Shared Key
Ciphersuites for Transport Layer Security (TLS)",
<a href="./rfc4279">RFC 4279</a>, December 2005.
[<a id="ref-RFC5246">RFC5246</a>] Dierks, T. and E. Rescorla, "The Transport Layer
Security (TLS) Protocol Version 1.2", <a href="./rfc5246">RFC 5246</a>,
August 2008.
<span class="grey">Calhoun, et al. Standards Track [Page 152]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-153" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
[<a id="ref-RFC4347">RFC4347</a>] Rescorla, E. and N. Modadugu, "Datagram Transport
Layer Security", <a href="./rfc4347">RFC 4347</a>, April 2006.
[<a id="ref-RFC4821">RFC4821</a>] Mathis, M. and J. Heffner, "Packetization Layer
Path MTU Discovery", <a href="./rfc4821">RFC 4821</a>, March 2007.
[<a id="ref-RFC4963">RFC4963</a>] Heffner, J., Mathis, M., and B. Chandler, "IPv4
Reassembly Errors at High Data Rates", <a href="./rfc4963">RFC 4963</a>,
July 2007.
[<a id="ref-RFC5226">RFC5226</a>] Narten, T. and H. Alvestrand, "Guidelines for
Writing an IANA Considerations Section in RFCs",
<a href="https://www.rfc-editor.org/bcp/bcp26">BCP 26</a>, <a href="./rfc5226">RFC 5226</a>, May 2008.
[<a id="ref-RFC5280">RFC5280</a>] Cooper, D., Santesson, S., Farrell, S., Boeyen,
S., Housley, R., and W. Polk, "Internet X.509
Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile",
<a href="./rfc5280">RFC 5280</a>, May 2008.
[<a id="ref-ISO.9834-1.1993">ISO.9834-1.1993</a>] International Organization for Standardization,
"Procedures for the operation of OSI registration
authorities - part 1: general procedures",
ISO Standard 9834-1, 1993.
[<a id="ref-RFC5416">RFC5416</a>] Calhoun, P., Ed., Montemurro, M., Ed., and D.
Stanley, Ed., "Control And Provisioning of
Wireless Access Points (CAPWAP) Protocol Binding
for IEEE 802.11", <a href="./rfc5416">RFC 5416</a>, March 2009.
[<a id="ref-RFC5417">RFC5417</a>] Calhoun, P., "Control And Provisioning of Wireless
Access Points (CAPWAP) Access Controller DHCP
Option", <a href="./rfc5417">RFC 5417</a>, March 2009.
[<a id="ref-FRAME-EXT">FRAME-EXT</a>] IEEE, "IEEE Standard 802.3as-2006", 2005.
<span class="h3"><a class="selflink" id="section-17.2" href="#section-17.2">17.2</a>. Informative References</span>
[<a id="ref-RFC3232">RFC3232</a>] Reynolds, J., "Assigned Numbers: <a href="./rfc1700">RFC 1700</a> is
Replaced by an On-line Database", <a href="./rfc3232">RFC 3232</a>,
January 2002.
[<a id="ref-RFC3753">RFC3753</a>] Manner, J. and M. Kojo, "Mobility Related
Terminology", <a href="./rfc3753">RFC 3753</a>, June 2004.
<span class="grey">Calhoun, et al. Standards Track [Page 153]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-154" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
[<a id="ref-RFC4564">RFC4564</a>] Govindan, S., Cheng, H., Yao, ZH., Zhou, WH., and
L. Yang, "Objectives for Control and Provisioning
of Wireless Access Points (CAPWAP)", <a href="./rfc4564">RFC 4564</a>,
July 2006.
[<a id="ref-RFC4962">RFC4962</a>] Housley, R. and B. Aboba, "Guidance for
Authentication, Authorization, and Accounting
(AAA) Key Management", <a href="https://www.rfc-editor.org/bcp/bcp132">BCP 132</a>, <a href="./rfc4962">RFC 4962</a>,
July 2007.
[<a id="ref-LWAPP">LWAPP</a>] Calhoun, P., O'Hara, B., Suri, R., Cam Winget, N.,
Kelly, S., Williams, M., and S. Hares,
"Lightweight Access Point Protocol", Work in
Progress, March 2007.
[<a id="ref-SLAPP">SLAPP</a>] Narasimhan, P., Harkins, D., and S. Ponnuswamy,
"SLAPP: Secure Light Access Point Protocol", Work
in Progress, May 2005.
[<a id="ref-DTLS-DESIGN">DTLS-DESIGN</a>] Modadugu, et al., N., "The Design and
Implementation of Datagram TLS", Feb 2004.
[<a id="ref-EUI-48">EUI-48</a>] IEEE, "Guidelines for use of a 48-bit Extended
Unique Identifier", Dec 2005.
[<a id="ref-EUI-64">EUI-64</a>] IEEE, "GUIDELINES FOR 64-BIT GLOBAL IDENTIFIER
(EUI-64) REGISTRATION AUTHORITY".
[<a id="ref-EPCGlobal">EPCGlobal</a>] "See <a href="http://www.epcglobalinc.org/home">http://www.epcglobalinc.org/home</a>".
[<a id="ref-PacketCable">PacketCable</a>] "PacketCable Security Specification PKT-SP-SEC-
I12-050812", August 2005, <PacketCable>.
[<a id="ref-CableLabs">CableLabs</a>] "OpenCable System Security Specification OC-SP-
SEC-I07-061031", October 2006, <CableLabs>.
[<a id="ref-WiMAX">WiMAX</a>] "WiMAX Forum X.509 Device Certificate Profile
Approved Specification V1.0.1", April 2008,
<WiMAX>.
[<a id="ref-RFC5418">RFC5418</a>] Kelly, S. and C. Clancy, "Control And Provisioning
for Wireless Access Points (CAPWAP) Threat
Analysis for IEEE 802.11 Deployments", <a href="./rfc5418">RFC 5418</a>,
March 2009.
<span class="grey">Calhoun, et al. Standards Track [Page 154]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-155" ></span>
<span class="grey"><a href="./rfc5415">RFC 5415</a> CAPWAP Protocol Specification March 2009</span>
Editors' Addresses
Pat R. Calhoun (editor)
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134
Phone: +1 408-902-3240
EMail: pcalhoun@cisco.com
Michael P. Montemurro (editor)
Research In Motion
5090 Commerce Blvd
Mississauga, ON L4W 5M4
Canada
Phone: +1 905-629-4746 x4999
EMail: mmontemurro@rim.com
Dorothy Stanley (editor)
Aruba Networks
1322 Crossman Ave
Sunnyvale, CA 94089
Phone: +1 630-363-1389
EMail: dstanley@arubanetworks.com
Calhoun, et al. Standards Track [Page 155]
</pre>
|