1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253
|
<pre>Network Working Group P. Calhoun, Ed.
Request for Comments: 5416 Cisco Systems, Inc.
Category: Standards Track M. Montemurro, Ed.
Research In Motion
D. Stanley, Ed.
Aruba Networks
March 2009
<span class="h1">Control and Provisioning of Wireless Access Points (CAPWAP) Protocol</span>
<span class="h1">Binding for IEEE 802.11</span>
Status of This Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (c) 2009 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents in effect on the date of
publication of this document (<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>).
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document.
This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.
<span class="grey">Calhoun, et al. Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
Abstract
Wireless LAN product architectures have evolved from single
autonomous access points to systems consisting of a centralized
Access Controller (AC) and Wireless Termination Points (WTPs). The
general goal of centralized control architectures is to move access
control, including user authentication and authorization, mobility
management, and radio management from the single access point to a
centralized controller.
This specification defines the Control And Provisioning of Wireless
Access Points (CAPWAP) Protocol Binding Specification for use with
the IEEE 802.11 Wireless Local Area Network protocol.
Table of Contents
<a href="#section-1">1</a>. Introduction ....................................................<a href="#page-4">4</a>
<a href="#section-1.1">1.1</a>. Goals ......................................................<a href="#page-5">5</a>
<a href="#section-1.2">1.2</a>. Conventions Used in This Document ..........................<a href="#page-5">5</a>
<a href="#section-1.3">1.3</a>. Terminology ................................................<a href="#page-5">5</a>
<a href="#section-2">2</a>. IEEE 802.11 Binding .............................................<a href="#page-7">7</a>
<a href="#section-2.1">2.1</a>. CAPWAP Wireless Binding Identifier .........................<a href="#page-7">7</a>
<a href="#section-2.2">2.2</a>. Split MAC and Local MAC Functionality ......................<a href="#page-7">7</a>
<a href="#section-2.2.1">2.2.1</a>. Split MAC ...........................................<a href="#page-7">7</a>
<a href="#section-2.2.2">2.2.2</a>. Local MAC ..........................................<a href="#page-12">12</a>
<a href="#section-2.3">2.3</a>. Roaming Behavior ..........................................<a href="#page-15">15</a>
<a href="#section-2.4">2.4</a>. Group Key Refresh .........................................<a href="#page-16">16</a>
<a href="#section-2.5">2.5</a>. BSSID to WLAN ID Mapping ..................................<a href="#page-17">17</a>
<a href="#section-2.6">2.6</a>. CAPWAP Data Channel QoS Behavior ..........................<a href="#page-18">18</a>
<a href="#section-2.6.1">2.6.1</a>. IEEE 802.11 Data Frames ............................<a href="#page-18">18</a>
<a href="#section-2.6.1.1">2.6.1.1</a>. 802.1p Support ............................<a href="#page-19">19</a>
<a href="#section-2.6.1.2">2.6.1.2</a>. DSCP Support ..............................<a href="#page-19">19</a>
<a href="#section-2.6.2">2.6.2</a>. IEEE 802.11 MAC Management Messages ................<a href="#page-21">21</a>
<a href="#section-2.7">2.7</a>. Run State Operation .......................................<a href="#page-21">21</a>
<a href="#section-3">3</a>. IEEE 802.11 Specific CAPWAP Control Messages ...................<a href="#page-21">21</a>
<a href="#section-3.1">3.1</a>. IEEE 802.11 WLAN Configuration Request ....................<a href="#page-22">22</a>
<a href="#section-3.2">3.2</a>. IEEE 802.11 WLAN Configuration Response ...................<a href="#page-23">23</a>
<a href="#section-4">4</a>. CAPWAP Data Message Bindings ...................................<a href="#page-23">23</a>
<a href="#section-5">5</a>. CAPWAP Control Message Bindings ................................<a href="#page-25">25</a>
<a href="#section-5.1">5.1</a>. Discovery Request Message .................................<a href="#page-25">25</a>
<a href="#section-5.2">5.2</a>. Discovery Response Message ................................<a href="#page-25">25</a>
<a href="#section-5.3">5.3</a>. Primary Discovery Request Message .........................<a href="#page-25">25</a>
<a href="#section-5.4">5.4</a>. Primary Discovery Response Message ........................<a href="#page-26">26</a>
<a href="#section-5.5">5.5</a>. Join Request Message ......................................<a href="#page-26">26</a>
<a href="#section-5.6">5.6</a>. Join Response Message .....................................<a href="#page-26">26</a>
<a href="#section-5.7">5.7</a>. Configuration Status Request Message ......................<a href="#page-26">26</a>
<a href="#section-5.8">5.8</a>. Configuration Status Response Message .....................<a href="#page-27">27</a>
<a href="#section-5.9">5.9</a>. Configuration Update Request Message ......................<a href="#page-27">27</a>
<span class="grey">Calhoun, et al. Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
<a href="#section-5.10">5.10</a>. Station Configuration Request ............................<a href="#page-28">28</a>
<a href="#section-5.11">5.11</a>. Change State Event Request ...............................<a href="#page-28">28</a>
<a href="#section-5.12">5.12</a>. WTP Event Request ........................................<a href="#page-28">28</a>
<a href="#section-6">6</a>. IEEE 802.11 Message Element Definitions ........................<a href="#page-29">29</a>
<a href="#section-6.1">6.1</a>. IEEE 802.11 Add WLAN ......................................<a href="#page-29">29</a>
<a href="#section-6.2">6.2</a>. IEEE 802.11 Antenna .......................................<a href="#page-35">35</a>
<a href="#section-6.3">6.3</a>. IEEE 802.11 Assigned WTP BSSID ............................<a href="#page-36">36</a>
<a href="#section-6.4">6.4</a>. IEEE 802.11 Delete WLAN ...................................<a href="#page-37">37</a>
<a href="#section-6.5">6.5</a>. IEEE 802.11 Direct Sequence Control .......................<a href="#page-37">37</a>
<a href="#section-6.6">6.6</a>. IEEE 802.11 Information Element ...........................<a href="#page-38">38</a>
<a href="#section-6.7">6.7</a>. IEEE 802.11 MAC Operation .................................<a href="#page-39">39</a>
<a href="#section-6.8">6.8</a>. IEEE 802.11 MIC Countermeasures ...........................<a href="#page-41">41</a>
<a href="#section-6.9">6.9</a>. IEEE 802.11 Multi-Domain Capability .......................<a href="#page-42">42</a>
<a href="#section-6.10">6.10</a>. IEEE 802.11 OFDM Control .................................<a href="#page-43">43</a>
<a href="#section-6.11">6.11</a>. IEEE 802.11 Rate Set .....................................<a href="#page-44">44</a>
<a href="#section-6.12">6.12</a>. IEEE 802.11 RSNA Error Report From Station ...............<a href="#page-44">44</a>
<a href="#section-6.13">6.13</a>. IEEE 802.11 Station ......................................<a href="#page-46">46</a>
<a href="#section-6.14">6.14</a>. IEEE 802.11 Station QoS Profile ..........................<a href="#page-47">47</a>
<a href="#section-6.15">6.15</a>. IEEE 802.11 Station Session Key ..........................<a href="#page-48">48</a>
<a href="#section-6.16">6.16</a>. IEEE 802.11 Statistics ...................................<a href="#page-50">50</a>
<a href="#section-6.17">6.17</a>. IEEE 802.11 Supported Rates ..............................<a href="#page-54">54</a>
<a href="#section-6.18">6.18</a>. IEEE 802.11 Tx Power .....................................<a href="#page-54">54</a>
<a href="#section-6.19">6.19</a>. IEEE 802.11 Tx Power Level ...............................<a href="#page-55">55</a>
<a href="#section-6.20">6.20</a>. IEEE 802.11 Update Station QoS ...........................<a href="#page-56">56</a>
<a href="#section-6.21">6.21</a>. IEEE 802.11 Update WLAN ..................................<a href="#page-57">57</a>
<a href="#section-6.22">6.22</a>. IEEE 802.11 WTP Quality of Service .......................<a href="#page-61">61</a>
<a href="#section-6.23">6.23</a>. IEEE 802.11 WTP Radio Configuration ......................<a href="#page-63">63</a>
<a href="#section-6.24">6.24</a>. IEEE 802.11 WTP Radio Fail Alarm Indication ..............<a href="#page-65">65</a>
<a href="#section-6.25">6.25</a>. IEEE 802.11 WTP Radio Information ........................<a href="#page-66">66</a>
<a href="#section-7">7</a>. IEEE 802.11 Binding WTP Saved Variables ........................<a href="#page-67">67</a>
<a href="#section-7.1">7.1</a>. IEEE80211AntennaInfo ......................................<a href="#page-67">67</a>
<a href="#section-7.2">7.2</a>. IEEE80211DSControl ........................................<a href="#page-67">67</a>
<a href="#section-7.3">7.3</a>. IEEE80211MACOperation .....................................<a href="#page-67">67</a>
<a href="#section-7.4">7.4</a>. IEEE80211OFDMControl ......................................<a href="#page-67">67</a>
<a href="#section-7.5">7.5</a>. IEEE80211Rateset ..........................................<a href="#page-67">67</a>
<a href="#section-7.6">7.6</a>. IEEE80211TxPower ..........................................<a href="#page-67">67</a>
<a href="#section-7.7">7.7</a>. IEEE80211QoS ..............................................<a href="#page-68">68</a>
<a href="#section-7.8">7.8</a>. IEEE80211RadioConfig ......................................<a href="#page-68">68</a>
<a href="#section-8">8</a>. Technology Specific Message Element Values .....................<a href="#page-68">68</a>
8.1. WTP Descriptor Message Element, Encryption
Capabilities Field ........................................<a href="#page-68">68</a>
<a href="#section-9">9</a>. Security Considerations ........................................<a href="#page-68">68</a>
<a href="#section-9.1">9.1</a>. IEEE 802.11 Security ......................................<a href="#page-68">68</a>
<a href="#section-10">10</a>. IANA Considerations ...........................................<a href="#page-70">70</a>
<a href="#section-10.1">10.1</a>. CAPWAP Wireless Binding Identifier .......................<a href="#page-70">70</a>
<a href="#section-10.2">10.2</a>. CAPWAP IEEE 802.11 Message Types .........................<a href="#page-70">70</a>
<a href="#section-10.3">10.3</a>. CAPWAP Message Element Type ..............................<a href="#page-70">70</a>
<a href="#section-10.4">10.4</a>. IEEE 802.11 Key Status ...................................<a href="#page-71">71</a>
<span class="grey">Calhoun, et al. Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
<a href="#section-10.5">10.5</a>. IEEE 802.11 QoS ..........................................<a href="#page-71">71</a>
<a href="#section-10.6">10.6</a>. IEEE 802.11 Auth Type ....................................<a href="#page-71">71</a>
<a href="#section-10.7">10.7</a>. IEEE 802.11 Antenna Combiner .............................<a href="#page-71">71</a>
<a href="#section-10.8">10.8</a>. IEEE 802.11 Antenna Selection ............................<a href="#page-72">72</a>
<a href="#section-10.9">10.9</a>. IEEE 802.11 Session Key Flags ............................<a href="#page-72">72</a>
<a href="#section-10.10">10.10</a>. IEEE 802.11 Tagging Policy ..............................<a href="#page-72">72</a>
<a href="#section-10.11">10.11</a>. IEEE 802.11 WTP Radio Fail ..............................<a href="#page-72">72</a>
<a href="#section-10.12">10.12</a>. IEEE 802.11 WTP Radio Type ..............................<a href="#page-73">73</a>
<a href="#section-10.13">10.13</a>. WTP Encryption Capabilities .............................<a href="#page-73">73</a>
<a href="#section-11">11</a>. Acknowledgments ...............................................<a href="#page-73">73</a>
<a href="#section-12">12</a>. References ....................................................<a href="#page-73">73</a>
<a href="#section-12.1">12.1</a>. Normative References .....................................<a href="#page-73">73</a>
<a href="#section-12.2">12.2</a>. Informative References ...................................<a href="#page-75">75</a>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
The CAPWAP protocol [<a href="./rfc5415" title=""CAPWAP Protocol Specification"">RFC5415</a>] defines an extensible protocol to allow
an Access Controller to manage wireless agnostic Wireless Termination
Points. The CAPWAP protocol itself does not include any specific
wireless technologies; instead, it relies on a binding specification
to extend the technology to a particular wireless technology.
This specification defines the Control And Provisioning of Wireless
Access Points (CAPWAP) Protocol Binding Specification for use with
the IEEE 802.11 Wireless Local Area Network protocol. Use of CAPWAP
control message fields, new control messages, and message elements
are defined. The minimum required definitions for a binding-specific
Statistics message element, Station message element, and WTP Radio
Information message element are included.
Note that this binding only supports the IEEE 802.11-2007
specification. Of note, this binding does not support the ad hoc
network mode defined in the IEEE 802.11-2007 standard. This
specification also does not cover the use of data frames with the
four-address format, commonly referred to as Wireless Bridges, whose
use is not specified in the IEEE 802.11-2007 standard. This protocol
specification does not currently officially support IEEE 802.11n.
That said, the protocol does allow a WTP to advertise support for an
IEEE 802.11n radio; however, the protocol does not allow for any of
the protocol's additional features to be configured and/or used. New
IEEE protocol specifications published outside of this document
(e.g., IEEE 802.11v, IEEE 802.11r) are also not supported through
this binding, and in addition to IEEE 802.11n, must be addressed
either through a separate CAPWAP binding, or an update to this
binding.
<span class="grey">Calhoun, et al. Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
In order to address immediate market needs for standards still being
developed by the IEEE 802.11 standards body, the WiFi Alliance
created interim pseudo-standards specifications. Two such
specifications are widely used in the industry, namely the WiFi
Protect Access [<a href="#ref-WPA" title=""Deploying Wi-Fi Protected Access (WPA) and WPA2 in the Enterprise"">WPA</a>] and the WiFi MultiMedia [<a href="#ref-WMM" title=""Support for Multimedia Applications with Quality of Service in WiFi Networks)"">WMM</a>] specifications.
Given their widespread adoption, this CAPWAP binding requires the use
of these two specifications.
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. Goals</span>
The goals of this CAPWAP protocol binding are to make the
capabilities of the CAPWAP protocol available for use in conjunction
with IEEE 802.11 wireless networks. The capabilities to be made
available can be summarized as:
1. To centralize the authentication and policy enforcement functions
for an IEEE 802.11 wireless network. The AC may also provide
centralized bridging, forwarding, and encryption of user traffic.
Centralization of these functions will enable reduced cost and
higher efficiency by applying the capabilities of network
processing silicon to the wireless network, as in wired LANs.
2. To enable shifting of the higher-level protocol processing from
the WTP. This leaves the time-critical applications of wireless
control and access in the WTP, making efficient use of the
computing power available in WTPs that are subject to severe cost
pressure.
The CAPWAP protocol binding extensions defined herein apply solely to
the interface between the WTP and the AC. Inter-AC and station-to-AC
communication are strictly outside the scope of this document.
<span class="h3"><a class="selflink" id="section-1.2" href="#section-1.2">1.2</a>. Conventions Used in This Document</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in <a href="./rfc2119">RFC 2119</a> [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
<span class="h3"><a class="selflink" id="section-1.3" href="#section-1.3">1.3</a>. Terminology</span>
This section contains definitions for terms used frequently
throughout this document. However, many additional definitions can
be found in [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>].
Access Controller (AC): The network entity that provides WTP access
to the network infrastructure in the data plane, control plane,
management plane, or a combination therein.
<span class="grey">Calhoun, et al. Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
Basic Service Set (BSS): A set of stations controlled by a single
coordination function.
Distribution: The service that, by using association information,
delivers medium access control (MAC) service data units (MSDUs)
within the distribution system (DS).
Distribution System Service (DSS): The set of services provided by
the distribution system (DS) that enable the medium access control
(MAC) layer to transport MAC service data units (MSDUs) between
stations that are not in direct communication with each other over a
single instance of the wireless medium (WM). These services include
the transport of MSDUs between the access points (APs) of basic
service sets (BSSs) within an extended service set (ESS), transport
of MSDUs between portals and BSSs within an ESS, and transport of
MSDUs between stations in the same BSS in cases where the MSDU has a
multicast or broadcast destination address, or where the destination
is an individual address but the station sending the MSDU chooses to
involve the DSS. DSSs are provided between pairs of IEEE 802.11
MACs.
Integration: The service that enables delivery of medium access
control (MAC) service data units (MSDUs) between the distribution
system (DS) and an existing, non-IEEE 802.11 local area network (via
a portal).
Station (STA): A device that contains an IEEE 802.11 conformant
medium access control (MAC) and physical layer (PHY) interface to the
wireless medium (WM).
Portal: The logical point at which medium access control (MAC)
service data units (MSDUs) from a non-IEEE 802.11 local area network
(LAN) enter the distribution system (DS) of an extended service set
(ESS).
WLAN: In this document, WLAN refers to a logical component
instantiated on a WTP device. A single physical WTP may operate a
number of WLANs. Each Basic Service Set Identifier (BSSID) and its
constituent wireless terminal radios is denoted as a distinct WLAN on
a physical WTP.
Wireless Termination Point (WTP): The physical or network entity that
contains an IEEE 802.11 RF antenna and wireless PHY to transmit and
receive station traffic for wireless access networks.
<span class="grey">Calhoun, et al. Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. IEEE 802.11 Binding</span>
This section describes use of the CAPWAP protocol with the IEEE
802.11 Wireless Local Area Network protocol, including Local and
Split MAC operation, Group Key Refresh, Basic Service Set
Identification (BSSID) to WLAN Mapping, IEEE 802.11 MAC management
frame Quality of Service (Qos) tagging and Run State operation.
<span class="h3"><a class="selflink" id="section-2.1" href="#section-2.1">2.1</a>. CAPWAP Wireless Binding Identifier</span>
The CAPWAP Header, defined in <a href="./rfc5415#section-4.3">Section 4.3 of [RFC5415]</a> requires that
all CAPWAP binding specifications have a Wireless Binding Identifier
(WBID) assigned. This document, which defines the IEEE 802.11
binding, uses the value one (1).
<span class="h3"><a class="selflink" id="section-2.2" href="#section-2.2">2.2</a>. Split MAC and Local MAC Functionality</span>
The CAPWAP protocol, when used with IEEE 802.11 devices, requires
specific behavior from the WTP and the AC to support the required
IEEE 802.11 protocol functions.
For both the Split and Local MAC approaches, the CAPWAP functions, as
defined in the taxonomy specification [<a href="./rfc4118" title=""Architecture Taxonomy for Control and Provisioning of Wireless Access Points (CAPWAP)"">RFC4118</a>], reside in the AC.
To provide system component interoperability, the WTP and AC MUST
support 802.11 encryption/decryption at the WTP. The WTP and AC MAY
support 802.11 encryption/decryption at the AC.
<span class="h4"><a class="selflink" id="section-2.2.1" href="#section-2.2.1">2.2.1</a>. Split MAC</span>
This section shows the division of labor between the WTP and the AC
in a Split MAC architecture. Figure 1 shows the separation of
functionality between CAPWAP components.
<span class="grey">Calhoun, et al. Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
Function Location
Distribution Service AC
Integration Service AC
Beacon Generation WTP
Probe Response Generation WTP
Power Mgmt/Packet Buffering WTP
Fragmentation/Defragmentation WTP/AC
Assoc/Disassoc/Reassoc AC
IEEE 802.11 QoS
Classifying AC
Scheduling WTP/AC
Queuing WTP
IEEE 802.11 RSN
IEEE 802.1X/EAP AC
RSNA Key Management AC
IEEE 802.11 Encryption/Decryption WTP/AC
Figure 1: Mapping of 802.11 Functions for Split MAC Architecture
In a Split MAC Architecture, the Distribution and Integration
services reside on the AC, and therefore all user data is tunneled
between the WTP and the AC. As noted above, all real-time IEEE
802.11 services, including the Beacon and Probe Response frames, are
handled on the WTP.
All remaining IEEE 802.11 MAC management frames are supported on the
AC, including the Association Request frame that allows the AC to be
involved in the access policy enforcement portion of the IEEE 802.11
protocol. The IEEE 802.1X [<a href="#ref-IEEE.802-1X.2004" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Port-Based Network Access Control"">IEEE.802-1X.2004</a>], Extensible
Authentication Protocol (EAP) [<a href="./rfc3748" title=""Extensible Authentication Protocol (EAP)"">RFC3748</a>] and IEEE Robust Security
Network Association (RSNA) Key Management [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]
functions are also located on the AC. This implies that the
Authentication, Authorization, and Accounting (AAA) client also
resides on the AC.
While the admission control component of IEEE 802.11 resides on the
AC, the real-time scheduling and queuing functions are on the WTP.
Note that this does not prevent the AC from providing additional
policy and scheduling functionality.
Note that in the following figure, the use of '( - )' indicates that
processing of the frames is done on the WTP. This figure represents
a case where encryption services are provided by the AC.
<span class="grey">Calhoun, et al. Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
Client WTP AC
Beacon
<-----------------------------
Probe Request
----------------------------( - )------------------------->
Probe Response
<-----------------------------
802.11 AUTH/Association
<--------------------------------------------------------->
Station Configuration Request
[Add Station (Station MAC
Address), IEEE 802.11 Add
Station (WLAN ID), IEEE
802.11 Session Key(Flag=A)]
<-------------------------->
802.1X Authentication & 802.11 Key Exchange
<--------------------------------------------------------->
Station Configuration Request
[Add Station(Station MAC
Address), IEEE 802.11 Add
Station (WLAN ID), IEEE 802.11
Station Session Key(Flag=C)]
<-------------------------->
802.11 Action Frames
<--------------------------------------------------------->
802.11 DATA (1)
<---------------------------( - )------------------------->
Figure 2: Split MAC Message Flow
Figure 2 provides an illustration of the division of labor in a Split
MAC architecture. In this example, a WLAN has been created that is
configured for IEEE 802.11, using 802.1X-based end user
authentication and Advanced Encryption Standard-Counter Mode with
CBC-MAC Protocol (AES-CCMP) link layer encryption (CCMP, see
[<a href="#ref-FIPS.197.2001" title=""Advanced Encryption Standard (AES)"">FIPS.197.2001</a>]). The following process occurs:
o The WTP generates the IEEE 802.11 Beacon frames, using information
provided to it through the IEEE 802.11 Add WLAN (see <a href="#section-6.1">Section 6.1</a>)
message element, including the Robust Security Network Information
Element (RSNIE), which indicates support of 802.1X and AES-CCMP.
o The WTP processes the Probe Request frame and responds with a
corresponding Probe Response frame. The Probe Request frame is
then forwarded to the AC for optional processing.
<span class="grey">Calhoun, et al. Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
o The WTP forwards the IEEEE 802.11 Authentication and Association
frames to the AC, which is responsible for responding to the
client.
o Once the association is complete, the AC transmits a Station
Configuration Request message, which includes an Add Station
message element, to the WTP (see <a href="./rfc5415#section-4.6.8">Section 4.6.8 in [RFC5415]</a>). In
the above example, the WLAN was configured for IEEE 802.1X, and
therefore the IEEE 802.11 Station Session Key is included with the
flag field's 'A' bit set.
o If the WTP is providing encryption/decryption services, once the
client has completed the IEEE 802.11 key exchange, the AC
transmits another Station Configuration Request message, which
includes:
- An Add Station message element.
- An IEEE 802.11 Add Station message element, which includes the
WLAN Identifier with which the station has associated.
- An IEEE 802.11 Station Session Key message element, which
includes the pairwise encryption key.
- An IEEE 802.11 Information Element message element, which
includes the Robust Security Network Information Element
(RSNIE) to the WTP, stating the security policy to enforce for
the client (in this case AES-CCMP).
o If the WTP is providing encryption/decryption services, once the
client has completed the IEEE 802.11 key exchange, the AC
transmits another Station Configuration Request message, which
includes:
- An Add Station message element.
- An IEEE 802.11 Add Station message element, which includes the
WLAN Identifier with which the station has associated.
- An IEEE 802.11 Station Session Key message element, which
includes the pairwise encryption key.
- An IEEE 802.11 Information Element message element, which
includes the Robust Security Network Information Element
(RSNIE) to the WTP, stating the security policy to enforce for
the client (in this case AES-CCMP).
<span class="grey">Calhoun, et al. Standards Track [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
o If the AC is providing encryption/decryption services, once the
client has completed the IEEE 802.11 key exchange, the AC
transmits another Station Configuration Request message, which
includes:
- An Add Station message element.
- An IEEE 802.11 Add Station message element, which includes the
WLAN Identifier with which the station has associated.
- An IEEE 802.11 Station Session Key message element with the
flag field's 'C' bit enabled (indicating that the AC will
provide crypto services).
o The WTP forwards any IEEE 802.11 Management Action frames received
to the AC.
o All IEEE 802.11 station data frames are tunneled between the WTP
and the AC.
Note that during the EAP over LAN (EAPOL)-Key exchange between the
Station and the AC, the Receive Sequence Counter (RSC) field for the
Group Key (GTK) needs to be included in the frame. The value of zero
(0) is used by the AC during this exchange. Additional details are
available in <a href="#section-9.1">Section 9.1</a>.
The WTP SHALL include the IEEE 802.11 MAC header contents in all
frames transmitted to the AC.
When 802.11 encryption/decryption is performed at the WTP, the WTP
MUST decrypt the uplink frames, MUST set the Protected Frame field to
0, and MUST make the frame format consistent with that of an
unprotected 802.11 frame prior to transmitting the frames to the AC.
The fields added to an 802.11 protected frame (i.e., Initialization
Vector/Extended Initialization Vector (IV/EIV), Message Integrity
Code (MIC), and Integrity Check Value (ICV)) MUST be stripped off
prior to transmission from the WTP to AC. For downlink frames, the
Protected Frame field MUST be set to 0 by the AC as the frame being
sent is unencrypted. The WTP MUST apply the required protection
policy for the WLAN, and set the Protected Frame field on
transmission over the air. The Protected Frame field always needs to
accurately indicate the status of the 802.11 frame that is carrying
it.
When 802.11 encryption/decryption is performed at the AC, the WTP
SHALL NOT decrypt the uplink frames prior to transmitting the frames
to the AC. The AC and WTP SHALL populate the IEEE 802.11 MAC header
fields as described in Figure 3.
<span class="grey">Calhoun, et al. Standards Track [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
MAC header field Location
Frame Control:
Version AC
ToDS AC
FromDS AC
Type AC
SubType AC
MoreFrag WTP/AC
Retry WTP
Pwr Mgmt -
MoreData WTP
Protected WTP/AC
Order AC
Duration: WTP
Address 1: AC
Address 2: AC
Address 3: AC
Sequence Ctrl: WTP
Address 4: AC
QoS Control: AC
Frame Body: AC
FCS: WTP
Figure 3: Population of the IEEE 802.11 MAC Header Fields for
Downlink Frames
When 802.11 encryption/decryption is performed at the AC, the
MoreFrag bit is populated at the AC. The Pwr Mgmt bit is not
applicable to downlink frames, and is set to 0. Note that the Frame
Check Sequence (FCS) field is not included in 802.11 frames exchanged
between the WTP and the AC. Upon sending data frames to the AC, the
WTP is responsible for validating and stripping the FCS field. Upon
receiving data frames from the AC, the WTP is responsible for adding
the FCS field, and populating the field as described in
[<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>].
Note that when the WTP tunnels data packets to the AC (and vice
versa), the CAPWAP protocol does not guarantee in-order delivery.
When the protocol being transported over IEEE 802.11 is IP, out-of-
order delivery is not an issue as IP has no such requirements.
However, implementers need to be aware of this protocol
characteristic before deciding to use CAPWAP.
<span class="h4"><a class="selflink" id="section-2.2.2" href="#section-2.2.2">2.2.2</a>. Local MAC</span>
This section shows the division of labor between the WTP and the AC
in a Local MAC architecture. Figure 4 shows the separation of
functionality among CAPWAP components.
<span class="grey">Calhoun, et al. Standards Track [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
Function Location
Distribution Service WTP/AC
Integration Service WTP
Beacon Generation WTP
Probe Response Generation WTP
Power Mgmt/Packet Buffering WTP
Fragmentation/Defragmentation WTP
Assoc/Disassoc/Reassoc WTP/AC
IEEE 802.11 QoS
Classifying WTP
Scheduling WTP
Queuing WTP
IEEE 802.11 RSN
IEEE 802.1X/EAP AC
RSNA Key Management AC
IEEE 802.11 Encryption/Decryption WTP
Figure 4: Mapping of 802.11 Functions for Local AP Architecture
In the Local MAC mode, the integration service exists on the WTP,
while the distribution service MAY reside on either the WTP or the
AC. When it resides on the AC, station-generated frames are not
forwarded to the AC in their native format, but encapsulated as 802.3
frames.
While the MAC is terminated on the WTP, it is necessary for the AC to
be aware of mobility events within the WTPs. Thus, the WTP MUST
forward the IEEE 802.11 Association Request frames to the AC. The AC
MAY reply with a failed Association Response frame if it deems it
necessary, and upon receipt of a failed Association Response frame
from the AC, the WTP MUST send a Disassociation frame to the station.
The IEEE 802.1X [<a href="#ref-IEEE.802-1X.2004" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Port-Based Network Access Control"">IEEE.802-1X.2004</a>], EAP, and IEEE RSNA Key Management
[<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>] functions reside in the AC. Therefore, the WTP
MUST forward all IEEE 802.1X, EAP, and RSNA Key Management frames to
the AC and forward the corresponding responses to the station. This
implies that the AAA client also resides on the AC.
Note that in the following figure, the use of '( - )' indicates that
processing of the frames is done on the WTP.
<span class="grey">Calhoun, et al. Standards Track [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
Client WTP AC
Beacon
<-----------------------------
Probe
<---------------------------->
802.11 AUTH
<-----------------------------
802.11 Association
<---------------------------( - )------------------------->
Station Configuration Request
[Add Station (Station MAC
Address), IEEE 802.11 Add
Station (WLAN ID), IEEE
802.11 Session Key(Flag=A)]
<-------------------------->
802.1X Authentication & 802.11 Key Exchange
<--------------------------------------------------------->
Station Configuration Request
[Add Station(Station MAC
Address), IEEE 802.11 Add
Station (WLAN ID), IEEE 802.11
Station session Key (Key=x),
IEEE 802.11 Information
Element(RSNIE(Pairwise
Cipher=CCMP))]
<-------------------------->
802.11 Action Frames
<--------------------------------------------------------->
802.11 DATA
<----------------------------->
Figure 5: Local MAC Message Flow
Figure 5 provides an illustration of the division of labor in a Local
MAC architecture. In this example, a WLAN that is configured for
IEEE 802.11 has been created using AES-CCMP for privacy. The
following process occurs:
o The WTP generates the IEEE 802.11 Beacon frames, using information
provided to it through the Add WLAN (see <a href="#section-6.1">Section 6.1</a>) message
element.
o The WTP processes a Probe Request frame and responds with a
corresponding Probe Response frame.
o The WTP forwards the IEEE 802.11 Authentication and Association
frames to the AC.
<span class="grey">Calhoun, et al. Standards Track [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
o Once the association is complete, the AC transmits a Station
Configuration Request message, which includes the Add Station
message element, to the WTP (see <a href="./rfc5415#section-4.6.8">Section 4.6.8 in [RFC5415]</a>). In
the above example, the WLAN was configured for IEEE 802.1X, and
therefore the IEEE 802.11 Station Session Key is included with the
flag field's 'A' bit set.
o The WTP forwards all IEEE 802.1X and IEEE 802.11 key exchange
messages to the AC for processing.
o The AC transmits another Station Configuration Request message,
which includes:
- An Add Station message element, which MAY include a Virtual LAN
(VLAN) [<a href="#ref-IEEE.802-1Q.2005" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Virtual Bridged Local Area Networks"">IEEE.802-1Q.2005</a>] name, which when present is used by
the WTP to identify the VLAN on which the user's data frames
are to be bridged.
- An IEEE 802.11 Add Station message element, which includes the
WLAN Identifier with which the station has associated.
- An IEEE 802.11 Station Session Key message element, which
includes the pairwise encryption key.
- An IEEE 802.11 Information Element message element, which
includes the RSNIE to the WTP, stating the security policy to
enforce for the client (in this case AES-CCMP).
o The WTP forwards any IEEE 802.11 Management Action frames received
to the AC.
o The WTP MAY locally bridge client data frames (and provide the
necessary encryption and decryption services). The WTP MAY also
tunnel client data frames to the AC, using 802.3 frame tunnel mode
or 802.11 frame tunnel mode.
<span class="h3"><a class="selflink" id="section-2.3" href="#section-2.3">2.3</a>. Roaming Behavior</span>
This section expands upon the examples provided in the previous
section, and describes how the CAPWAP control protocol is used to
provide secure roaming.
Once a client has successfully associated with the network in a
secure fashion, it is likely to attempt to roam to another WTP.
Figure 6 shows an example of a currently associated station moving
from its "Old WTP" to a "New WTP". The figure is valid for multiple
different security policies, including IEEE 802.1X and Wireless
Protected Access (WPA) or Wireless Protected Access 2 (WPA2) [<a href="#ref-WPA" title=""Deploying Wi-Fi Protected Access (WPA) and WPA2 in the Enterprise"">WPA</a>].
<span class="grey">Calhoun, et al. Standards Track [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
In the event that key caching was employed, the 802.1X Authentication
step would be eliminated. Note that the example represents one where
crypto services are provided by the WTP, so in a case where the AC
provided this function the last Station Configuration Request would
be different.
Client Old WTP New WTP AC
Association Request/Response
<--------------------------------------( - )-------------->
Station Configuration Request
[Add Station (Station MAC
Address), IEEE 802.11 Add
Station (WLAN ID), IEEE
802.11 Session Key(Flag=A)]
<---------------->
802.1X Authentication (if no key cache entry exists)
<--------------------------------------( - )-------------->
802.11 4-way Key Exchange
<--------------------------------------( - )-------------->
Station Configuration Request
[Delete Station]
<---------------------------------->
Station Configuration Request
[Add Station(Station MAC
Address), IEEE 802.11 Add
Station (WLAN ID), IEEE 802.11
Station session Key (Key=x),
IEEE 802.11 Information
Element(RSNIE(Pairwise
Cipher=CCMP))]
<---------------->
Figure 6: Client Roaming Example
<span class="h3"><a class="selflink" id="section-2.4" href="#section-2.4">2.4</a>. Group Key Refresh</span>
Periodically, the Group Key (GTK) for the BSS needs to be updated.
The AC uses an EAPOL-Key frame to update the group key for each STA
in the BSS. While the AC is updating the GTK, each Layer 2 (L2)
broadcast frame transmitted to the BSS needs to be duplicated and
transmitted using both the current GTK and the new GTK. Once the GTK
update process has completed, broadcast frames transmitted to the BSS
will be encrypted using the new GTK.
In the case of Split MAC, the AC needs to duplicate all broadcast
packets and update the key index so that the packet is transmitted
using both the current and new GTK to ensure that all STAs in the BSS
<span class="grey">Calhoun, et al. Standards Track [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
receive the broadcast frames. In the case of Local MAC, the WTP
needs to duplicate and transmit broadcast frames using the
appropriate index to ensure that all STAs in the BSS continue to
receive broadcast frames.
The Group Key update procedure is shown in the following figure. The
AC will signal the update to the GTK using an IEEE 802.11
Configuration Request message, including an IEEE 802.11 Update WLAN
message element with the new GTK, its index, the Transmit Sequence
Counter (TSC) for the Group Key and the Key Status set to 3 (begin
GTK update). The AC will then begin updating the GTK for each STA.
During this time, the AC (for Split MAC) or WTP (for Local MAC) MUST
duplicate broadcast packets and transmit them encrypted with both the
current and new GTK. When the AC has completed the GTK update to all
STAs in the BSS, the AC MUST transmit an IEEE 802.11 Configuration
Request message including an IEEE 802.11 Update WLAN message element
containing the new GTK, its index, and the Key Status set to 4 (GTK
update complete).
Client WTP AC
IEEE 802.11 WLAN Configuration Request [Update
WLAN (GTK, GTK Index, GTK Start,
Group TSC) ]
<--------------------------------------------
802.1X EAPoL (GTK Message 1)
<-------------( - )-------------------------------------------
802.1X EAPoL (GTK Message 2)
-------------( - )------------------------------------------->
IEEE 802.11 WLAN Configuration Request [ Update
WLAN (GTK Index, GTK Complete) ]
<--------------------------------------------
Figure 7: Group Key Update Procedure
<span class="h3"><a class="selflink" id="section-2.5" href="#section-2.5">2.5</a>. BSSID to WLAN ID Mapping</span>
The CAPWAP protocol binding enables the WTP to assign BSSIDs upon
creation of a WLAN (see <a href="#section-6.1">Section 6.1</a>). While manufacturers are free
to assign BSSIDs using any arbitrary mechanism, it is advised that
where possible the BSSIDs are assigned as a contiguous block.
When assigned as a block, implementations can still assign any of the
available BSSIDs to any WLAN. One possible method is for the WTP to
assign the address using the following algorithm: base BSSID address
+ WLAN ID.
<span class="grey">Calhoun, et al. Standards Track [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
The WTP communicates the maximum number of BSSIDs that it supports
during configuration via the IEEE 802.11 WTP WLAN Radio Configuration
message element (see <a href="#section-6.23">Section 6.23</a>).
<span class="h3"><a class="selflink" id="section-2.6" href="#section-2.6">2.6</a>. CAPWAP Data Channel QoS Behavior</span>
The CAPWAP IEEE 802.11 binding specification provides procedures to
allow for the WTP to enforce Quality of Service on IEEE 802.11 Data
Frames and MAC Management messages.
<span class="h4"><a class="selflink" id="section-2.6.1" href="#section-2.6.1">2.6.1</a>. IEEE 802.11 Data Frames</span>
When the WLAN is created on the WTP, a default Quality of Service
policy is established through the IEEE 802.11 WTP Quality of Service
message element (see <a href="#section-6.22">Section 6.22</a>). This default policy will cause
the WTP to use the default QoS values for any station associated with
the WLAN in question. The AC MAY also override the policy for a
given station by sending the IEEE 802.11 Update Station QoS message
element (see <a href="#section-6.20">Section 6.20</a>), known as a station-specific QoS policy.
Beyond the default, and per station QoS policy, the IEEE 802.11
protocol also allows a station to request special QoS treatment for a
specific flow through the Traffic Specification (TSPEC) Information
Elements found in the IEEE 802.11-2007's QoS Action Frame.
Alternatively, stations MAY also use the WiFi Alliance's WMM
specification instead to request QoS treatment for a flow (see
[<a href="#ref-WMM" title=""Support for Multimedia Applications with Quality of Service in WiFi Networks)"">WMM</a>]). This requires the WTP to observe the Status Code in the IEEE
802.11-2007 and WMM QoS Action Add Traffic System (ADDTS) responses
from the AC, and provide the services requested in the TSPEC
Information Element. Similarly, the WTP MUST observe the Reason Code
Information Element in the IEEE 802.11-2007 and WMM QoS Action DELTS
responses from the AC by removing the policy associated with the
TSPEC.
The IEEE 802.11 WTP Quality of Service message element's Tagging
Policy field indicates how the packets are to be tagged, known as the
Tagging Policy. There are five bits defined, two of which are used
to indicate the type of QoS to be used by the WTP. The first is the
'P' bit, which is set to inform the WTP it is to use the 802.1p QoS
mechanism. When set, the 'Q' bit is used to inform the WTP which
802.1p priority values it is to use.
The 'D' bit is set to inform the WTP it is to use the Differentiated
Services Code Point (DSCP) QoS mechanism. When set, the 'I' and 'O'
bits are used to inform the WTP which values it is to use in the
inner header, in the station's original packet, or the outer header,
the latter of which is only valid when tunneling is enabled.
<span class="grey">Calhoun, et al. Standards Track [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
When an IEEE 802.11 Update Station QoS message element is received,
while the specific 802.1p priority or DSCP values may change for a
given station, known as the station specific policy, the original
Tagging Policy (the use of the five bits) remains the same.
The use of the DSCP and 802.1p QoS mechanisms are not mutually
exclusive. An AC MAY request that a WTP use none, one, or both types
of QoS mechanisms at the same time.
<span class="h5"><a class="selflink" id="section-2.6.1.1" href="#section-2.6.1.1">2.6.1.1</a>. 802.1p Support</span>
The IEEE 802.11 WTP Quality of Service and IEEE 802.11 Update Station
QoS message elements include the "802.1p Tag" field, which is the
802.1p priority value. This value is used by the WTP by adding an
802.1Q header (see [<a href="#ref-IEEE.802-1Q.2005" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Virtual Bridged Local Area Networks"">IEEE.802-1Q.2005</a>]) with the priority field set
according to the policy provided. Note that this tagging is only
valid for interfaces that support 802.1p. The actual treatment does
not change for either Split or Local MAC modes, or when tunneling is
used. The only exception is when tunneling is used, the 802.1Q
header is added to the outer packet (tunneled) header. The IEEE
802.11 standard does not permit the station's packet to include an
802.1Q header. Instead, the QoS mechanisms defined in the IEEE
802.11 standard are used by stations to mark a packet's priority.
When the 'P' bit is set in the Tagging Policy, the 'Q' bit has the
following behavior:
Q=1: The WTP marks the priority field in the 802.1Q header to
either the default or the station-specific 802.1p policy.
Q=0: The WTP marks the priority field in the 802.1Q header to the
value found in the User Priority field of the QoS Control
field of the IEEE 802.11 header. If the QoS Control field is
not present in the IEEE 802.11 header, then the behavior
described under 'Q=1' is used.
<span class="h5"><a class="selflink" id="section-2.6.1.2" href="#section-2.6.1.2">2.6.1.2</a>. DSCP Support</span>
The IEEE 802.11 WTP Quality of Service and IEEE 802.11 Update Station
QoS message elements also provide a "DSCP Tag", which is used by the
WTP when the 'D' bit is set to mark the DSCP field of both the IPv4
and IPv6 headers (see [<a href="./rfc2474" title=""Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers"">RFC2474</a>]). When DSCP is used, the WTP marks
the inner packet (the original packet received by the station) when
the 'I' bit is set. Similarly, the WTP marks the outer packet
(tunnel header's DSCP field) when the 'O' bit is set.
When the 'D' bit is set, the treatment of the packet differs based on
whether the WTP is tunneling the station's packets to the AC.
Tunneling does not occur in a Local MAC mode when the AC has
<span class="grey">Calhoun, et al. Standards Track [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
communicated that tunneling is not required, as part of the IEEE
802.11 Add WLAN message element, see <a href="#section-6.1">Section 6.1</a>. In the case where
tunneling is not used, the 'I' and 'O' bits have the following
behaviors:
O=1: This option is invalid when tunneling is not enabled for
station data frames.
O=0: This option is invalid when tunneling is not enabled for
station data frames.
I=1: The WTP sets the DSCP field in the station's packet to either
the default policy or the station-specific policy if one
exists.
I=0: The WTP MUST NOT modify the DSCP field in the station's
packet.
For Split MAC mode, or Local MAC with tunneling enabled, the WTP
needs to contend with both the inner packet (the station's original
packet) as well as the tunnel header (added by the WTP). In this
mode of operation, the bits are treated as follows:
O=1: The WTP sets the DSCP field in the tunnel header to either the
default policy or the station specific policy if one exists.
O=0: The WTP sets the DSCP field in the tunnel header to the value
found in the inner packet's DSCP field. If encryption
services are provided by the AC (see <a href="#section-6.15">Section 6.15</a>), the packet
is encrypted; therefore, the WTP cannot access the inner DSCP
field, in which case it uses the behavior described when the
'O' bit is set. This occurs also if the inner packet is not
IPv4 or IPv6, and thus does not have a DSCP field.
I=1: The WTP sets the DSCP field in the station's packet to either
the default policy or the station-specific policy if one
exists. If encryption services are provided by the AC (see
<a href="#section-6.15">Section 6.15</a>), the packet is encrypted; therefore, the WTP
cannot access the inner DSCP field, in which case it uses the
behavior described when the 'I' bit is not set. This occurs
also if the inner packet is not IPv4 or IPv6, and thus does
not have a DSCP field.
I=0: The WTP MUST NOT modify the DSCP field in the station's
packet.
<span class="grey">Calhoun, et al. Standards Track [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
The CAPWAP protocol supports the Explicit Congestion Notification
(ECN) bits [<a href="./rfc3168" title=""The Addition of Explicit Congestion Notification (ECN) to IP"">RFC3168</a>]. Additional details on ECN support can be found
in [<a href="./rfc5415" title=""CAPWAP Protocol Specification"">RFC5415</a>].
<span class="h4"><a class="selflink" id="section-2.6.2" href="#section-2.6.2">2.6.2</a>. IEEE 802.11 MAC Management Messages</span>
It is recommended that IEEE 802.11 MAC Management frames be sent by
both the AC and the WTP with appropriate Quality of Service values,
listed below, to ensure that congestion in the network minimizes
occurrences of packet loss. Note that the QoS Mechanism specified in
the Tagging Policy is used as specified by the AC in the IEEE 802.11
WTP Quality of Service message element (see <a href="#section-6.22">Section 6.22</a>). However,
the station-specific policy is not used for IEEE 802.11 MAC
Management frames.
802.1p: The precedence value of 7 (decimal) SHOULD be used for all
IEEE 802.11 MAC management frames, except for Probe
Requests, which SHOULD use 4.
DSCP: All IEEE 802.11 MAC management frames SHOULD use the CS6
per- hop behavior (see [<a href="./rfc2474" title=""Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers"">RFC2474</a>]), while IEEE 802.11 Probe
Requests should use the Low Drop Assured Forwarding per-hop
behavior (see [<a href="./rfc3246" title=""An Expedited Forwarding PHB (Per-Hop Behavior)"">RFC3246</a>]).
<span class="h3"><a class="selflink" id="section-2.7" href="#section-2.7">2.7</a>. Run State Operation</span>
The Run state is the normal state of operation for the CAPWAP
protocol in both the WTP and the AC.
When the WTP receives a WLAN Configuration Request message (see
<a href="#section-3.1">Section 3.1</a>), it MUST respond with a WLAN Configuration Response
message (see <a href="#section-3.2">Section 3.2</a>), and it remains in the Run state.
When the AC sends a WLAN Configuration Request message (see
<a href="#section-3.1">Section 3.1</a>) or receives the corresponding WLAN Configuration
Response message (see <a href="#section-3.2">Section 3.2</a>) from the WTP, it remains in the
Run state.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. IEEE 802.11 Specific CAPWAP Control Messages</span>
This section defines CAPWAP Control messages that are specific to the
IEEE 802.11 binding. Two messages are defined: IEEE 802.11 WLAN
Configuration Request and IEEE 802.11 WLAN Configuration Response.
See <a href="./rfc5415#section-4.5">Section 4.5 in [RFC5415]</a> for CAPWAP Control message definitions
and the derivation of the Message Type value from the IANA Enterprise
number.
<span class="grey">Calhoun, et al. Standards Track [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
The valid message types for IEEE 802.11-specific control messages are
listed below. The IANA Enterprise number used with these messages is
13277.
CAPWAP Control Message Message Type
Value
IEEE 802.11 WLAN Configuration Request 3398913
IEEE 802.11 WLAN Configuration Response 3398914
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. IEEE 802.11 WLAN Configuration Request</span>
The IEEE 802.11 WLAN Configuration Request is sent by the AC to the
WTP in order to change services provided by the WTP. This control
message is used to either create, update, or delete a WLAN on the
WTP.
The IEEE 802.11 WLAN Configuration Request is sent as a result of
either some manual administrative process (e.g., deleting a WLAN), or
automatically to create a WLAN on a WTP. When sent automatically to
create a WLAN, this control message is sent after the CAPWAP
Configuration Update Response message (see <a href="./rfc5415#section-8.5">Section 8.5 in [RFC5415]</a>)
has been received by the AC.
Upon receiving this control message, the WTP will modify the
necessary services and transmit an IEEE 802.11 WLAN Configuration
Response.
A WTP MAY provide service for more than one WLAN; therefore, every
WLAN is identified through a numerical index. For instance, a WTP
that is capable of supporting up to 16 Service Set Identifiers
(SSIDs), could accept up to 16 IEEE 802.11 WLAN Configuration Request
messages that include the Add WLAN message element.
Since the index is the primary identifier for a WLAN, an AC MAY
attempt to ensure that the same WLAN is identified through the same
index number on all of its WTPs. An AC that does not follow this
approach MUST find some other means of maintaining a WLAN-Identifier-
to-SSID mapping table.
The following message elements MAY be included in the IEEE 802.11
WLAN Configuration Request message. Only one message element MUST be
present.
o IEEE 802.11 Add WLAN, see <a href="#section-6.1">Section 6.1</a>
o IEEE 802.11 Delete WLAN, see <a href="#section-6.4">Section 6.4</a>
<span class="grey">Calhoun, et al. Standards Track [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
o IEEE 802.11 Update WLAN, see <a href="#section-6.21">Section 6.21</a>
The following message element MAY be present.
o IEEE 802.11 Information Element, see <a href="#section-6.6">Section 6.6</a>
o Vendor-Specific Payload, see [<a href="./rfc5415" title=""CAPWAP Protocol Specification"">RFC5415</a>]
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. IEEE 802.11 WLAN Configuration Response</span>
The IEEE 802.11 WLAN Configuration Response message is sent by the
WTP to the AC. It is used to acknowledge receipt of an IEEE 802.11
WLAN Configuration Request message, and to indicate that the
requested configuration was successfully applied or that an error
related to the processing of the IEEE 802.11 WLAN Configuration
Request message occurred on the WTP.
The following message element MUST be included in the IEEE 802.11
WLAN Configuration Response message.
o Result Code, see <a href="./rfc5415#section-4.6.34">Section 4.6.34 in [RFC5415]</a>
The following message element MAY be included in the IEEE 802.11 WLAN
Configuration Response message.
o IEEE 802.11 Assigned WTP BSSID, see <a href="#section-6.3">Section 6.3</a>
o Vendor-Specific Payload, see [<a href="./rfc5415" title=""CAPWAP Protocol Specification"">RFC5415</a>]
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. CAPWAP Data Message Bindings</span>
This section describes the CAPWAP data message bindings to support
transport of IEEE 802.11 frames.
Payload encapsulation: The CAPWAP protocol defines the CAPWAP data
message, which is used to encapsulate a wireless payload. For
IEEE 802.11, the IEEE 802.11 header and payload are encapsulated
(excluding the IEEE 802.11 FCS checksum). The IEEE 802.11 FCS
checksum is handled by the WTP. This allows the WTP to validate
an IEEE 802.11 frame prior to sending it to the AC. Similarly,
when an AC wishes to transmit a frame to a station, the WTP
computes and adds the FCS checksum.
Optional Wireless Specific Information: This optional CAPWAP header
field (see <a href="./rfc5415#section-4.3">Section 4.3 in [RFC5415]</a>) is only used with CAPWAP data
messages, and it serves two purposes, depending upon the direction
of the message. For messages from the WTP to the AC, the field
uses the format described in the "IEEE 802.11 Frame Info" field
<span class="grey">Calhoun, et al. Standards Track [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
(see below). However, for messages sent by the AC to the WTP, the
format used is described in the "Destination WLANs" field (also
defined below).
Note that in both cases, the two optional headers fit in the
"Data" field of the Wireless Specific Information header.
IEEE 802.11 Frame Info: When an IEEE 802.11 frame is received from a
station over the air, it is encapsulated and this field is used to
include radio and PHY-specific information associated with the
frame.
The IEEE 802.11 Frame Info field has the following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RSSI | SNR | Data Rate |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
RSSI: Received Signal Strength Indication (RSSI) is a signed,
8-bit value. It is the received signal strength indication, in
dBm.
SNR: SNR is a signed, 8-bit value. It is the signal-to-noise
ratio of the received IEEE 802.11 frame, in dB.
Data Rate: The data rate field is a 16-bit unsigned value. The
data rate field is a 16-bit unsigned value expressing the data
rate of the packets received by the WTP in units of 0.1 Mbps.
For instance, a packet received at 5.5 Mbps would be set to 55,
while 11 Mbps would be set to 110.
Destination WLANs: The Destination WLANs field is used to specify
the target WLANs for a given frame, and is only used with
broadcast and multicast frames. This field allows the AC to
transmit a single broadcast or multicast frame to the WTP and
allows the WTP to perform the necessary frame replication. The
field uses the following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| WLAN ID bitmap | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
<span class="grey">Calhoun, et al. Standards Track [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
WLAN ID bitmap: This bit field indicates the WLAN ID (see
<a href="#section-6.1">Section 6.1</a>) on which the WTP will transmit the included frame.
For instance, if a multicast packet is to be transmitted on
WLANs 1 and 3, the bits for WLAN 1 and 3 of this field would be
enabled. WLAN 1 is represented by bit 15 in the figure above,
or the least significant bit, while WLAN 16 would be
represented by bit zero (0), or the most significant bit, in
the figure. This field is to be set to all zeroes for unicast
packets and is unused if the WTP is not providing IEEE 802.11
encryption.
Reserved: All implementations complying with this protocol MUST
set to zero any bits that are reserved in the version of the
protocol supported by that implementation. Receivers MUST
ignore all bits not defined for the version of the protocol
they support.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. CAPWAP Control Message Bindings</span>
This section describes the IEEE 802.11-specific message elements
included in CAPWAP Control Messages.
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. Discovery Request Message</span>
The following IEEE 802.11-specific message element MUST be included
in the CAPWAP Discovery Request Message.
o IEEE 802.11 WTP Radio Information, see <a href="#section-6.25">Section 6.25</a>. An IEEE
802.11 WTP Radio Information message element MUST be present for
every radio in the WTP.
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. Discovery Response Message</span>
The following IEEE 802.11-specific message element MUST be included
in the CAPWAP Discovery Response Message.
o IEEE 802.11 WTP Radio Information, see <a href="#section-6.25">Section 6.25</a>. An IEEE
802.11 WTP Radio Information message element MUST be present for
every radio in the WTP.
<span class="h3"><a class="selflink" id="section-5.3" href="#section-5.3">5.3</a>. Primary Discovery Request Message</span>
The following IEEE 802.11 specific message element MUST be included
in the CAPWAP Primary Discovery Request message.
o IEEE 802.11 WTP Radio Information, see <a href="#section-6.25">Section 6.25</a>. An IEEE
802.11 WTP Radio Information message element MUST be present for
every radio in the WTP.
<span class="grey">Calhoun, et al. Standards Track [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
<span class="h3"><a class="selflink" id="section-5.4" href="#section-5.4">5.4</a>. Primary Discovery Response Message</span>
The following IEEE 802.11-specific message element MUST be included
in the CAPWAP Primary Discovery Response message.
o IEEE 802.11 WTP Radio Information, see <a href="#section-6.25">Section 6.25</a>. An IEEE
802.11 WTP Radio Information message element MUST be present for
every radio in the WTP.
<span class="h3"><a class="selflink" id="section-5.5" href="#section-5.5">5.5</a>. Join Request Message</span>
The following IEEE 802.11-specific message element MUST be included
in the CAPWAP Join Request message.
o IEEE 802.11 WTP Radio Information, see <a href="#section-6.25">Section 6.25</a>. An IEEE
802.11 WTP Radio Information message element MUST be present for
every radio in the WTP.
<span class="h3"><a class="selflink" id="section-5.6" href="#section-5.6">5.6</a>. Join Response Message</span>
The following IEEE 802.11-specific message element MUST be included
in the CAPWAP Join Response message.
o IEEE 802.11 WTP Radio Information, see <a href="#section-6.25">Section 6.25</a>. An IEEE
802.11 WTP Radio Information message element MUST be present for
every radio in the WTP.
<span class="h3"><a class="selflink" id="section-5.7" href="#section-5.7">5.7</a>. Configuration Status Request Message</span>
The following IEEE 802.11-specific message elements MAY be included
in the CAPWAP Configuration Status Request message. More than one of
each message element listed MAY be included.
o IEEE 802.11 Antenna, see <a href="#section-6.2">Section 6.2</a>
o IEEE 802.11 Direct Sequence Control, see <a href="#section-6.5">Section 6.5</a>
o IEEE 802.11 MAC Operation, see <a href="#section-6.7">Section 6.7</a>
o IEEE 802.11 Multi-Domain Capability, see <a href="#section-6.9">Section 6.9</a>
o IEEE 802.11 Orthogonal Frequency Division Multiplexing (OFDM)
Control, see <a href="#section-6.10">Section 6.10</a>
o IEEE 802.11 Supported Rates, see <a href="#section-6.17">Section 6.17</a>
o IEEE 802.11 Tx Power, see <a href="#section-6.18">Section 6.18</a>
<span class="grey">Calhoun, et al. Standards Track [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
o IEEE 802.11 TX Power Level, see <a href="#section-6.19">Section 6.19</a>
o IEEE 802.11 WTP Radio Configuration, see <a href="#section-6.23">Section 6.23</a>
o IEEE 802.11 WTP Radio Information, see <a href="#section-6.25">Section 6.25</a>. An IEEE
802.11 WTP Radio Information message element MUST be present for
every radio in the WTP.
<span class="h3"><a class="selflink" id="section-5.8" href="#section-5.8">5.8</a>. Configuration Status Response Message</span>
The following IEEE 802.11 specific message elements MAY be included
in the CAPWAP Configuration Status Response Message. More than one
of each message element listed MAY be included.
o IEEE 802.11 Antenna, see <a href="#section-6.2">Section 6.2</a>
o IEEE 802.11 Direct Sequence Control, see <a href="#section-6.5">Section 6.5</a>
o IEEE 802.11 MAC Operation, see <a href="#section-6.7">Section 6.7</a>
o IEEE 802.11 Multi-Domain Capability, see <a href="#section-6.9">Section 6.9</a>
o IEEE 802.11 OFDM Control, see <a href="#section-6.10">Section 6.10</a>
o IEEE 802.11 Rate Set, see <a href="#section-6.11">Section 6.11</a>
o IEEE 802.11 Supported Rates, see <a href="#section-6.17">Section 6.17</a>
o IEEE 802.11 Tx Power, see <a href="#section-6.18">Section 6.18</a>
o IEEE 802.11 WTP Quality of Service, see <a href="#section-6.22">Section 6.22</a>
o IEEE 802.11 WTP Radio Configuration, see <a href="#section-6.23">Section 6.23</a>
<span class="h3"><a class="selflink" id="section-5.9" href="#section-5.9">5.9</a>. Configuration Update Request Message</span>
The following IEEE 802.11-specific message elements MAY be included
in the CAPWAP Configuration Update Request message. More than one of
each message element listed MAY be included.
o IEEE 802.11 Antenna, see <a href="#section-6.2">Section 6.2</a>
o IEEE 802.11 Direct Sequence Control, see <a href="#section-6.5">Section 6.5</a>
o IEEE 802.11 MAC Operation, see <a href="#section-6.7">Section 6.7</a>
o IEEE 802.11 Multi-Domain Capability, see <a href="#section-6.9">Section 6.9</a>
<span class="grey">Calhoun, et al. Standards Track [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
o IEEE 802.11 OFDM Control, see <a href="#section-6.10">Section 6.10</a>
o IEEE 802.11 Rate Set, see <a href="#section-6.11">Section 6.11</a>
o IEEE 802.11 RSNA Error Report from Station, see <a href="#section-6.12">Section 6.12</a>
o IEEE 802.11 Tx Power, see <a href="#section-6.18">Section 6.18</a>
o IEEE 802.11 WTP Quality of Service, see <a href="#section-6.22">Section 6.22</a>
o IEEE 802.11 WTP Radio Configuration, see <a href="#section-6.23">Section 6.23</a>
<span class="h3"><a class="selflink" id="section-5.10" href="#section-5.10">5.10</a>. Station Configuration Request</span>
The following IEEE 802.11-specific message elements MAY be included
in the CAPWAP Station Configuration Request message. More than one
of each message element listed MAY be included.
o IEEE 802.11 Station, see <a href="#section-6.13">Section 6.13</a>
o IEEE 802.11 Station Session Key, see <a href="#section-6.15">Section 6.15</a>
o IEEE 802.11 Station QoS Profile, see <a href="#section-6.14">Section 6.14</a>
o IEEE 802.11 Update Station Qos, see <a href="#section-6.20">Section 6.20</a>
<span class="h3"><a class="selflink" id="section-5.11" href="#section-5.11">5.11</a>. Change State Event Request</span>
The following IEEE 802.11-specific message element MAY be included in
the CAPWAP Station Configuration Request message.
o IEEE 802.11 WTP Radio Fail Alarm Indication, see <a href="#section-6.24">Section 6.24</a>
<span class="h3"><a class="selflink" id="section-5.12" href="#section-5.12">5.12</a>. WTP Event Request</span>
The following IEEE 802.11-specific message elements MAY be included
in the CAPWAP WTP Event Request message. More than one of each
message element listed MAY be included.
o IEEE 802.11 MIC Countermeasures, see <a href="#section-6.8">Section 6.8</a>
o IEEE 802.11 RSNA Error Report from Station, see <a href="#section-6.12">Section 6.12</a>
o IEEE 802.11 Statistics, see <a href="#section-6.16">Section 6.16</a>
<span class="grey">Calhoun, et al. Standards Track [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. IEEE 802.11 Message Element Definitions</span>
The following IEEE 802.11-specific message elements are defined in
this section.
IEEE 802.11 Message Element Type Value
IEEE 802.11 Add WLAN 1024
IEEE 802.11 Antenna 1025
IEEE 802.11 Assigned WTP BSSID 1026
IEEE 802.11 Delete WLAN 1027
IEEE 802.11 Direct Sequence Control 1028
IEEE 802.11 Information Element 1029
IEEE 802.11 MAC Operation 1030
IEEE 802.11 MIC Countermeasures 1031
IEEE 802.11 Multi-Domain Capability 1032
IEEE 802.11 OFDM Control 1033
IEEE 802.11 Rate Set 1034
IEEE 802.11 RSNA Error Report From Station 1035
IEEE 802.11 Station 1036
IEEE 802.11 Station QoS Profile 1037
IEEE 802.11 Station Session Key 1038
IEEE 802.11 Statistics 1039
IEEE 802.11 Supported Rates 1040
IEEE 802.11 Tx Power 1041
IEEE 802.11 Tx Power Level 1042
IEEE 802.11 Update Station QoS 1043
IEEE 802.11 Update WLAN 1044
IEEE 802.11 WTP Quality of Service 1045
IEEE 802.11 WTP Radio Configuration 1046
IEEE 802.11 WTP Radio Fail Alarm Indication 1047
IEEE 802.11 WTP Radio Information 1048
Figure 8: IEEE 802.11 Binding Message Elements
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. IEEE 802.11 Add WLAN</span>
The IEEE 802.11 Add WLAN message element is used by the AC to define
a WLAN on the WTP. The inclusion of this message element MUST also
include IEEE 802.11 Information Element message elements, containing
the following IEEE 802.11 IEs:
Power Constraint information element
EDCA Parameter Set information element
QoS Capability information element
<span class="grey">Calhoun, et al. Standards Track [Page 29]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-30" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
WPA information element [<a href="#ref-WPA" title=""Deploying Wi-Fi Protected Access (WPA) and WPA2 in the Enterprise"">WPA</a>]
RSN information element
WMM information element [<a href="#ref-WMM" title=""Support for Multimedia Applications with Quality of Service in WiFi Networks)"">WMM</a>]
These IEEE 802.11 Information Elements are stored by the WTP and
included in any Probe Responses and Beacons generated, as specified
in the IEEE 802.11 standard [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]. If present, the RSN
Information Element is sent with the IEEE 802.11 Add WLAN message
element to instruct the WTP on the usage of the Key field.
If cryptographic services are provided at the WTP, the WTP MUST
observe the algorithm dictated in the Group Cipher Suite field of the
RSN Information Element sent by the AC. The RSN Information Element
is used to communicate any supported algorithm, including WEP,
Temporal Key Integrity Protocol (TKIP) and AES-CCMP. In the case of
static WEP keys, the RSN Information Element is still used to
indicate the cryptographic algorithm even though no key exchange
occurred.
An AC MAY include additional Information Elements as desired. The
message element uses the following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | WLAN ID | Capability |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Key Index | Key Status | Key Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Key... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Group TSC |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Group TSC | QoS | Auth Type |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAC Mode | Tunnel Mode | Suppress SSID | SSID ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 1024 for IEEE 802.11 Add WLAN
Length: >= 20
Radio ID: An 8-bit value representing the radio, whose value is
between one (1) and 31.
<span class="grey">Calhoun, et al. Standards Track [Page 30]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-31" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
WLAN ID: An 8-bit value specifying the WLAN Identifier. The value
MUST be between one (1) and 16.
Capability: A 16-bit value containing the Capability information
field to be advertised by the WTP in the Probe Request and Beacon
frames. Each bit of the Capability field represents a different
WTP capability, which are described in detail in
[<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]. The format of the field is:
0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|E|I|C|F|P|S|B|A|M|Q|T|D|V|O|K|L|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
E (ESS): The AC MUST set the Extended Service Set (ESS) subfield
to 1.
I (IBSS): The AC MUST set the Independent Basic Service Set
(IBSS) subfield to 0.
C (CF-Pollable): The AC sets the Contention Free Pollable (CF-
Pollable) subfield based on the table found in
[<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>].
F (CF-Poll Request): The AC sets the CF-Poll Request subfield
based on the table found in [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>].
P (Privacy): The AC sets the Privacy subfield based on the
confidentiality requirements of the WLAN, as defined in
[<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>].
S (Short Preamble): The AC sets the Short Preamble subfield
based on whether the use of short preambles is permitted on the
WLAN, as defined in [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>].
B (PBCC): The AC sets the Packet Binary Convolutional Code
(PBCC) modulation option subfield based on whether the use of
PBCC is permitted on the WLAN, as defined in [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>].
A (Channel Agility): The AC sets the Channel Agility subfield
based on whether the WTP is capable of supporting the High Rate
Direct Sequence Spread Spectrum (HR/DSSS), as defined in
[<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>].
<span class="grey">Calhoun, et al. Standards Track [Page 31]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-32" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
M (Spectrum Management): The AC sets the Spectrum Management
subfield according to the value of the
dot11SpectrumManagementRequired MIB variable, as defined in
[<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>].
Q (QoS): The AC sets the Quality of Service (QoS) subfield based
on the table found in [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>].
T (Short Slot Time): The AC sets the Short Slot Time subfield
according to the value of the WTP's currently used slot time
value, as defined in [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>].
D (APSD): The AC sets the Automatic Power Save Delivery (APSD)
subfield according to the value of the
dot11APSDOptionImplemented Management Information Base (MIB)
variable, as defined in [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>].
V (Reserved): The AC sets the Reserved subfield to zero, as
defined in [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>].
O (DSSS-OFDM): The AC sets the DSSS-OFDM subfield to indicate
the use of Direct Sequence Spread Spectrum with Orthogonal
Frequency Division Multiplexing (DSSS-OFDM), as defined in
[<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>].
K (Delayed Block ACK): The AC sets the Delayed Block ACK
subfield according to the value of the
dot11DelayedBlockAckOptionImplemented MIB variable, as defined
in [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>].
L (Immediate Block ACK): The AC sets the Delayed Block ACK
subfield according to the value of the
dot11ImmediateBlockAckOptionImplemented MIB variable, as defined
in [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>].
Key-Index: The Key Index associated with the key.
Key Status: A 1-byte value that specifies the state and usage of
the key that has been included. Note this field is ignored if the
Key Length field is set to zero (0). The following values
describe the key usage and its status:
0 - A value of zero, with the inclusion of the RSN Information
Element means that the WLAN uses per-station encryption keys,
and therefore the key in the 'Key' field is only used for
multicast traffic.
<span class="grey">Calhoun, et al. Standards Track [Page 32]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-33" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
1 - When set to one, the WLAN employs a shared Wired Equivalent
Privacy (WEP) key, also known as a static WEP key, and uses
the encryption key for both unicast and multicast traffic for
all stations.
2 - The value of 2 indicates that the AC will begin rekeying the
GTK with the STA's in the BSS. It is only valid when IEEE
802.11 is enabled as the security policy for the BSS.
3 - The value of 3 indicates that the AC has completed rekeying
the GTK and broadcast packets no longer need to be duplicated
and transmitted with both GTK's.
Key Length: A 16-bit value representing the length of the Key
field.
Key: A Session Key, whose length is known via the Key Length field,
used to provide data privacy. For encryption schemes that employ
a separate encryption key for unicast and multicast traffic, the
key included here only applies to multicast frames, and the cipher
suite is specified in an accompanied RSN Information Element. In
these scenarios, the key and cipher information is communicated
via the Add Station message element, see <a href="./rfc5415#section-4.6.8">Section 4.6.8 in
[RFC5415]</a> and the IEEE 802.11 Station Session Key message element,
see <a href="#section-6.15">Section 6.15</a>. When used with WEP, the key field includes the
broadcast key. When used with CCMP, the Key field includes the
128-bit Group Temporal Key. When used with TKIP, the Key field
includes the 256-bit Group Temporal Key (which consists of a 128-
bit key used as input for TKIP key mixing, and two 64-bit keys
used for Michael).
Group TSC: A 48-bit value containing the Transmit Sequence Counter
(TSC) for the updated group key. The WTP will set the TSC for
broadcast/multicast frames to this value for the updated group
key.
QoS: An 8-bit value specifying the default QoS policy for the WTP
to apply to network traffic received for a non-WMM enabled STA.
The following enumerated values are supported:
0 - Best Effort
1 - Video
<span class="grey">Calhoun, et al. Standards Track [Page 33]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-34" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
2 - Voice
3 - Background
Auth Type: An 8-bit value specifying the supported authentication
type.
The following enumerated values are supported:
0 - Open System
1 - WEP Shared Key
MAC Mode: This field specifies whether the WTP should support the
WLAN in Local or Split MAC mode. Note that the AC MUST NOT
request a mode of operation that was not advertised by the WTP
during the discovery process (see <a href="./rfc5415#section-4.6.43">Section 4.6.43 in [RFC5415]</a>).
The following enumerated values are supported:
0 - Local MAC: Service for the WLAN is to be provided in Local
MAC mode.
1 - Split MAC: Service for the WLAN is to be provided in Split
MAC mode.
Tunnel Mode: This field specifies the frame tunneling type to be
used for 802.11 data frames from all stations associated with the
WLAN. The AC MUST NOT request a mode of operation that was not
advertised by the WTP during the discovery process (see <a href="./rfc5415#section-4.6.42">Section</a>
<a href="./rfc5415#section-4.6.42">4.6.42 in [RFC5415]</a>). All IEEE 802.11 management frames MUST be
tunneled using 802.11 Tunnel mode. The following enumerated
values are supported:
0 - Local Bridging: All user traffic is to be locally bridged.
1 - 802.3 Tunnel: All user traffic is to be tunneled to the AC
in 802.3 format (see <a href="./rfc5415#section-4.4.2">Section 4.4.2 in [RFC5415]</a>). Note that
this option MUST NOT be selected with Split MAC mode.
2 - 802.11 Tunnel: All user traffic is to be tunneled to the AC
in 802.11 format.
Suppress SSID: A boolean indicating whether the SSID is to be
advertised by the WTP. A value of zero suppresses the SSID in the
802.11 Beacon and Probe Response frames, while a value of one will
cause the WTP to populate the field.
<span class="grey">Calhoun, et al. Standards Track [Page 34]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-35" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
SSID: The SSID attribute is the service set identifier that will be
advertised by the WTP for this WLAN. The SSID field contains any
ASCII character and MUST NOT exceed 32 octets in length, as
defined in [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>].
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>. IEEE 802.11 Antenna</span>
The IEEE 802.11 Antenna message element is communicated by the WTP to
the AC to provide information on the antennas available. The AC MAY
use this element to reconfigure the WTP's antennas. The message
element contains the following fields:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | Diversity | Combiner | Antenna Cnt |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Antenna Selection...
+-+-+-+-+-+-+-+-+
Type: 1025 for IEEE 802.11 Antenna
Length: >= 5
Radio ID: An 8-bit value representing the radio to configure, whose
value is between one (1) and 31.
Diversity: An 8-bit value specifying whether the antenna is to
provide receiver diversity. The value of this field is the same
as the IEEE 802.11 dot11DiversitySelectionRx MIB element, see
[<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]. The following enumerated values are
supported:
0 - Disabled
1 - Enabled (may only be true if the antenna can be used as a
receiving antenna)
Combiner: An 8-bit value specifying the combiner selection. The
following enumerated values are supported:
1 - Sectorized (Left)
2 - Sectorized (Right)
<span class="grey">Calhoun, et al. Standards Track [Page 35]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-36" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
3 - Omni
4 - Multiple Input/Multiple Output (MIMO)
Antenna Count: An 8-bit value specifying the number of Antenna
Selection fields. This value SHOULD be the same as the one found
in the IEEE 802.11 dot11CurrentTxAntenna MIB element (see
[<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]).
Antenna Selection: One 8-bit antenna configuration value per
antenna in the WTP, containing up to 255 antennas. The following
enumerated values are supported:
1 - Internal Antenna
2 - External Antenna
<span class="h3"><a class="selflink" id="section-6.3" href="#section-6.3">6.3</a>. IEEE 802.11 Assigned WTP BSSID</span>
The IEEE 802.11 Assigned WTP BSSID is only included by the WTP when
the IEEE 802.11 WLAN Configuration Request included the IEEE 802.11
Add WLAN message element. The BSSID value field of this message
element contains the BSSID that has been assigned by the WTP,
enabling the WTP to perform its own BSSID assignment.
The WTP is free to assign the BSSIDs the way it sees fit, but it is
highly recommended that the WTP assign the BSSID using the following
algorithm: BSSID = {base BSSID} + WLAN ID.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | WLAN ID | BSSID
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| BSSID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 1026 for IEEE 802.11 Assigned WTP BSSID
Length: 8
Radio ID: An 8-bit value representing the radio, whose value is
between one (1) and 31.
WLAN ID: An 8-bit value specifying the WLAN Identifier. The value
MUST be between one (1) and 16.
<span class="grey">Calhoun, et al. Standards Track [Page 36]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-37" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
BSSID: The BSSID assigned by the WTP for the WLAN created as a
result of receiving an IEEE 802.11 Add WLAN.
<span class="h3"><a class="selflink" id="section-6.4" href="#section-6.4">6.4</a>. IEEE 802.11 Delete WLAN</span>
The IEEE 802.11 Delete WLAN message element is used to inform the WTP
that a previously created WLAN is to be deleted, and contains the
following fields:
0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | WLAN ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 1027 for IEEE 802.11 Delete WLAN
Length: 2
Radio ID: An 8-bit value representing the radio, whose value is
between one (1) and 31.
WLAN ID: An 8-bit value specifying the WLAN Identifier. The value
MUST be between one (1) and 16.
<span class="h3"><a class="selflink" id="section-6.5" href="#section-6.5">6.5</a>. IEEE 802.11 Direct Sequence Control</span>
The IEEE 802.11 Direct Sequence Control message element is a bi-
directional element. When sent by the WTP, it contains the current
state. When sent by the AC, the WTP MUST adhere to the values
provided. This element is only used for IEEE 802.11b radios. The
message element has the following fields.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | Reserved | Current Chan | Current CCA |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Energy Detect Threshold |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 1028 for IEEE 802.11 Direct Sequence Control
Length: 8
<span class="grey">Calhoun, et al. Standards Track [Page 37]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-38" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
Radio ID: An 8-bit value representing the radio to configure, whose
value is between one (1) and 31.
Reserved: All implementations complying with this protocol MUST set
to zero any bits that are reserved in the version of the protocol
supported by that implementation. Receivers MUST ignore all bits
not defined for the version of the protocol they support.
Current Channel: This attribute contains the current operating
frequency channel of the Direct Sequence Spread Spectrum (DSSS)
PHY. This value comes from the IEEE 802.11 dot11CurrentChannel
MIB element (see [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]).
Current CCA: The current Clear Channel Assessment (CCA) method in
operation, whose value can be found in the IEEE 802.11
dot11CCAModeSupported MIB element (see [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]). Valid
values are:
1 - energy detect only (edonly)
2 - carrier sense only (csonly)
4 - carrier sense and energy detect (edandcs)
8 - carrier sense with timer (cswithtimer)
16 - high rate carrier sense and energy detect (hrcsanded)
Energy Detect Threshold: The current Energy Detect Threshold being
used by the DSSS PHY. The value can be found in the IEEE 802.11
dot11EDThreshold MIB element (see [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]).
<span class="h3"><a class="selflink" id="section-6.6" href="#section-6.6">6.6</a>. IEEE 802.11 Information Element</span>
The IEEE 802.11 Information Element is used to communicate any IE
defined in the IEEE 802.11 protocol. The data field contains the raw
IE as it would be included within an IEEE 802.11 MAC management
message.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | WLAN ID |B|P| Reserved |Info Element...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
<span class="grey">Calhoun, et al. Standards Track [Page 38]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-39" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
Type: 1029 for IEEE 802.11 Information Element
Length: >= 4
Radio ID: An 8-bit value representing the radio, whose value is
between one (1) and 31.
WLAN ID: An 8-bit value specifying the WLAN Identifier. The value
MUST be between one (1) and 16.
B: When set, the WTP is to include the Information Element in IEEE
802.11 Beacons associated with the WLAN.
P: When set, the WTP is to include the Information Element in Probe
Responses associated with the WLAN.
Reserved: All implementations complying with this protocol MUST set
to zero any bits that are reserved in the version of the protocol
supported by that implementation. Receivers MUST ignore all bits
not defined for the version of the protocol they support.
Info Element: The IEEE 802.11 Information Element, which includes
the type, length, and value field.
<span class="h3"><a class="selflink" id="section-6.7" href="#section-6.7">6.7</a>. IEEE 802.11 MAC Operation</span>
The IEEE 802.11 MAC Operation message element is sent by the AC to
set the IEEE 802.11 MAC parameters on the WTP, and contains the
following fields.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | Reserved | RTS Threshold |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Short Retry | Long Retry | Fragmentation Threshold |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Tx MSDU Lifetime |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Rx MSDU Lifetime |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 1030 for IEEE 802.11 MAC Operation
Length: 16
<span class="grey">Calhoun, et al. Standards Track [Page 39]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-40" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
Radio ID: An 8-bit value representing the radio to configure, whose
value is between one (1) and 31.
Reserved: All implementations complying with this protocol MUST set
to zero any bits that are reserved in the version of the protocol
supported by that implementation. Receivers MUST ignore all bits
not defined for the version of the protocol they support.
RTS Threshold: This attribute indicates the number of octets in an
MAC Protocol Data Unit (MPDU), below which a Request To Send/Clear
To Send (RTS/CTS) handshake MUST NOT be performed. An RTS/CTS
handshake MUST be performed at the beginning of any frame exchange
sequence where the MPDU is of type Data or Management, the MPDU
has an individual address in the Address1 field, and the length of
the MPDU is greater than this threshold. Setting this attribute
to be larger than the maximum MSDU size MUST have the effect of
turning off the RTS/CTS handshake for frames of Data or Management
type transmitted by this STA. Setting this attribute to zero MUST
have the effect of turning on the RTS/CTS handshake for all frames
of Data or Management type transmitted by this STA. The default
value of this attribute MUST be 2347. The value of this field
comes from the IEEE 802.11 dot11RTSThreshold MIB element, (see
[<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]).
Short Retry: This attribute indicates the maximum number of
transmission attempts of a frame, the length of which is less than
or equal to RTSThreshold, that MUST be made before a failure
condition is indicated. The default value of this attribute MUST
be 7. The value of this field comes from the IEEE 802.11
dot11ShortRetryLimit MIB element, (see [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]).
Long Retry: This attribute indicates the maximum number of
transmission attempts of a frame, the length of which is greater
than dot11RTSThreshold, that MUST be made before a failure
condition is indicated. The default value of this attribute MUST
be 4. The value of this field comes from the IEEE 802.11
dot11LongRetryLimit MIB element, (see [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]).
Fragmentation Threshold: This attribute specifies the current
maximum size, in octets, of the MPDU that MAY be delivered to the
PHY. A MAC Service Data Unit (MSDU) MUST be broken into fragments
if its size exceeds the value of this attribute after adding MAC
headers and trailers. An MSDU or MAC Management Protocol Data
Unit (MMPDU) MUST be fragmented when the resulting frame has an
individual address in the Address1 field, and the length of the
frame is larger than this threshold. The default value for this
attribute MUST be the lesser of 2346 or the aMPDUMaxLength of the
attached PHY and MUST never exceed the lesser of 2346 or the
<span class="grey">Calhoun, et al. Standards Track [Page 40]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-41" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
aMPDUMaxLength of the attached PHY. The value of this attribute
MUST never be less than 256. The value of this field comes from
the IEEE 802.11 dot11FragmentationThreshold MIB element, (see
[<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]).
Tx MSDU Lifetime: This attribute specifies the elapsed time in Time
Units (TUs), after the initial transmission of an MSDU, after
which further attempts to transmit the MSDU MUST be terminated.
The default value of this attribute MUST be 512. The value of
this field comes from the IEEE 802.11 dot11MaxTransmitMSDULifetime
MIB element, (see [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]).
Rx MSDU Lifetime: This attribute specifies the elapsed time in TU,
after the initial reception of a fragmented MMPDU or MSDU, after
which further attempts to reassemble the MMPDU or MSDU MUST be
terminated. The default value MUST be 512. The value of this
field comes from the IEEE 802.11 dot11MaxReceiveLifetime MIB
element, (see [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]).
<span class="h3"><a class="selflink" id="section-6.8" href="#section-6.8">6.8</a>. IEEE 802.11 MIC Countermeasures</span>
The IEEE 802.11 MIC Countermeasures message element is sent by the
WTP to the AC to indicate the occurrence of a MIC failure. For more
information on MIC failure events, see the
dot11RSNATKIPCounterMeasuresInvoked MIB element definition in
[<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>].
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | WLAN ID | MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 1031 for IEEE 802.11 MIC Countermeasures
Length: 8
Radio ID: The Radio Identifier, whose value is between one (1) and
31, typically refers to some interface index on the WTP.
WLAN ID: This 8-bit unsigned integer includes the WLAN Identifier,
on which the MIC failure occurred. The value MUST be between one
(1) and 16.
<span class="grey">Calhoun, et al. Standards Track [Page 41]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-42" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
MAC Address: The MAC Address of the station that caused the MIC
failure.
<span class="h3"><a class="selflink" id="section-6.9" href="#section-6.9">6.9</a>. IEEE 802.11 Multi-Domain Capability</span>
The IEEE 802.11 Multi-Domain Capability message element is used by
the AC to inform the WTP of regulatory limits. The AC will transmit
one message element per frequency band to indicate the regulatory
constraints in that domain. The message element contains the
following fields.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | Reserved | First Channel # |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Number of Channels | Max Tx Power Level |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 1032 for IEEE 802.11 Multi-Domain Capability
Length: 8
Radio ID: An 8-bit value representing the radio to configure, whose
value is between one (1) and 31.
Reserved: All implementations complying with this protocol MUST set
to zero any bits that are reserved in the version of the protocol
supported by that implementation. Receivers MUST ignore all bits
not defined for the version of the protocol they support.
First Channel #: This attribute indicates the value of the lowest
channel number in the sub-band for the associated domain country
string. The value of this field comes from the IEEE 802.11
dot11FirstChannelNumber MIB element (see [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]).
Number of Channels: This attribute indicates the value of the total
number of channels allowed in the sub-band for the associated
domain country string (see <a href="#section-6.23">Section 6.23</a>). The value of this field
comes from the IEEE 802.11 dot11NumberofChannels MIB element (see
[<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]).
Max Tx Power Level: This attribute indicates the maximum transmit
power, in dBm, allowed in the sub-band for the associated domain
country string (see <a href="#section-6.23">Section 6.23</a>). The value of this field comes
from the IEEE 802.11 dot11MaximumTransmitPowerLevel MIB element
(see [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]).
<span class="grey">Calhoun, et al. Standards Track [Page 42]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-43" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
<span class="h3"><a class="selflink" id="section-6.10" href="#section-6.10">6.10</a>. IEEE 802.11 OFDM Control</span>
The IEEE 802.11 Orthogonal Frequency Division Multiplexing (OFDM)
Control message element is a bi-directional element. When sent by
the WTP, it contains the current state. When sent by the AC, the WTP
MUST adhere to the received values. This message element is only
used for 802.11a radios and contains the following fields:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | Reserved | Current Chan | Band Support |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| TI Threshold |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 1033 for IEEE 802.11 OFDM Control
Length: 8
Radio ID: An 8-bit value representing the radio to configure, whose
value is between one (1) and 31.
Reserved: All implementations complying with this protocol MUST set
to zero any bits that are reserved in the version of the protocol
supported by that implementation. Receivers MUST ignore all bits
not defined for the version of the protocol they support.
Current Channel: This attribute contains the current operating
frequency channel of the OFDM PHY. The value of this field comes
from the IEEE 802.11 dot11CurrentFrequency MIB element (see
[<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]).
Band Supported: The capability of the OFDM PHY implementation to
operate in the three Unlicensed National Information
Infrastructure (U-NII) bands. The value of this field comes from
the IEEE 802.11 dot11FrequencyBandsSupported MIB element (see
[<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]), coded as a bit field, whose values are:
Bit 0 - capable of operating in the 5.15-5.25 GHz band
Bit 1 - capable of operating in the 5.25-5.35 GHz band
Bit 2 - capable of operating in the 5.725-5.825 GHz band
<span class="grey">Calhoun, et al. Standards Track [Page 43]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-44" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
Bit 3 - capable of operating in the 5.47-5.725 GHz band
Bit 4 - capable of operating in the lower Japanese 5.25 GHz band
Bit 5 - capable of operating in the 5.03-5.091 GHz band
Bit 6 - capable of operating in the 4.94-4.99 GHz band
For example, for an implementation capable of operating in the
5.15-5.35 GHz bands, this attribute would take the value 3.
TI Threshold: The threshold being used to detect a busy medium
(frequency). CCA MUST report a busy medium upon detecting the
RSSI above this threshold. The value of this field comes from the
IEEE 802.11 dot11TIThreshold MIB element (see [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]).
<span class="h3"><a class="selflink" id="section-6.11" href="#section-6.11">6.11</a>. IEEE 802.11 Rate Set</span>
The rate set message element value is sent by the AC and contains the
supported operational rates. It contains the following fields.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | Rate Set...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 1034 for IEEE 802.11 Rate Set
Length: >= 3
Radio ID: An 8-bit value representing the radio to configure, whose
value is between one (1) and 31.
Rate Set: The AC generates the Rate Set that the WTP is to include
in its Beacon and Probe messages. The length of this field is
between 2 and 8 bytes. The value of this field comes from the
IEEE 802.11 dot11OperationalRateSet MIB element (see
[<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]).
<span class="h3"><a class="selflink" id="section-6.12" href="#section-6.12">6.12</a>. IEEE 802.11 RSNA Error Report From Station</span>
The IEEE 802.11 RSN Error Report From Station message element is used
by a WTP to send RSN error reports to the AC. The WTP does not need
to transmit any reports that do not include any failures. The fields
from this message element come from the IEEE 802.11
Dot11RSNAStatsEntry table, see [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>].
<span class="grey">Calhoun, et al. Standards Track [Page 44]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-45" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Client MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Client MAC Address | BSSID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| BSSID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | WLAN ID | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| TKIP ICV Errors |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| TKIP Local MIC Failures |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| TKIP Remote MIC Failures |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| CCMP Replays |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| CCMP Decrypt Errors |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| TKIP Replays |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 1035 for IEEE 802.11 RSNA Error Report From Station
Length: 40
Client MAC Address: The Client MAC Address of the station.
BSSID: The BSSID on which the failures are being reported.
Radio ID: The Radio Identifier, whose value is between one (1) and
31, typically refers to some interface index on the WTP.
WLAN ID: The WLAN ID on which the RSNA failures are being reported.
The value MUST be between one (1) and 16.
Reserved: All implementations complying with this protocol MUST set
to zero any bits that are reserved in the version of the protocol
supported by that implementation. Receivers MUST ignore all bits
not defined for the version of the protocol they support.
<span class="grey">Calhoun, et al. Standards Track [Page 45]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-46" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
TKIP ICV Errors: A 32-bit value representing the number of Temporal
Key Integrity Protocol (TKIP) (as defined in [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>])
ICV errors encountered when decrypting packets from the station.
The value of this field comes from the IEEE 802.11
dot11RSNAStatsTKIPICVErrors MIB element (see [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]).
TKIP Local MIC Failures: A 32-bit value representing the number of
MIC failures encountered when checking the integrity of packets
received from the station. The value of this field comes from the
IEEE 802.11 dot11RSNAStatsTKIPLocalMICFailures MIB element (see
[<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]).
TKIP Remote MIC Failures: A 32-bit value representing the number of
MIC failures reported by the station encountered (possibly via the
EAPOL-Key frame). The value of this field comes from the IEEE
802.11 dot11RSNAStatsTKIPRemoteMICFailures MIB element (see
[<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]).
CCMP Replays: A 32-bit value representing the number of CCMP MPDUs
discarded by the replay detection mechanism. The value of this
field comes from the IEEE 802.11 dot11RSNACCMPReplays MIB element
(see [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]).
CCMP Decrypt Errors: A 32-bit value representing the number of CCMP
MDPUs discarded by the decryption algorithm. The value of this
field comes from the IEEE 802.11 dot11RSNACCMPDecryptErrors MIB
element (see [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]).
TKIP Replays: A 32-bit value representing the number of TKIP
Replays detected in frames received from the station. The value
of this field comes from the IEEE 802.11 dot11RSNAStatsTKIPReplays
MIB element (see [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]).
<span class="h3"><a class="selflink" id="section-6.13" href="#section-6.13">6.13</a>. IEEE 802.11 Station</span>
The IEEE 802.11 Station message element accompanies the Add Station
message element, and is used to deliver IEEE 802.11 station policy
from the AC to the WTP.
The latest IEEE 802.11 Station message element overrides any
previously received message elements.
If the QoS field is set, the WTP MUST observe and provide policing of
the 802.11e priority tag to ensure that it does not exceed the value
provided by the AC.
<span class="grey">Calhoun, et al. Standards Track [Page 46]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-47" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | Association ID | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAC Address | Capabilities |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| WLAN ID |Supported Rates|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 1036 for IEEE 802.11 Station
Length: >= 14
Radio ID: An 8-bit value representing the radio, whose value is
between one (1) and 31.
Association ID: A 16-bit value specifying the IEEE 802.11
Association Identifier.
Flags: All implementations complying with this protocol MUST set to
zero any bits that are reserved in the version of the protocol
supported by that implementation. Receivers MUST ignore all bits
not defined for the version of the protocol they support.
MAC Address: The station's MAC Address
Capabilities: A 16-bit field containing the IEEE 802.11
Capabilities Information Field to use with the station.
WLAN ID: An 8-bit value specifying the WLAN Identifier. The value
MUST be between one (1) and 16.
Supported Rates: The variable-length field containing the supported
rates to be used with the station, as found in the IEEE 802.11
dot11OperationalRateSet MIB element (see [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]).
This field MUST NOT exceed 126 octets and specifies the set of
data rates at which the station may transmit data, where each
octet represents a data rate.
<span class="h3"><a class="selflink" id="section-6.14" href="#section-6.14">6.14</a>. IEEE 802.11 Station QoS Profile</span>
The IEEE 802.11 Station QoS Profile message element contains the
maximum IEEE 802.11e priority tag that may be used by the station.
Any packet received that exceeds the value encoded in this message
element MUST be tagged using the maximum value permitted by to the
<span class="grey">Calhoun, et al. Standards Track [Page 47]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-48" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
user. The priority tag MUST be between zero (0) and seven (7). This
message element MUST NOT be present without the IEEE 802.11 Station
(see <a href="#section-6.13">Section 6.13</a>) message element.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAC Address | Reserved |8021p|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 1037 for IEEE 802.11 Station QoS Profile
Length: 8
MAC Address: The station's MAC Address
Reserved: All implementations complying with this protocol MUST set
to zero any bits that are reserved in the version of the protocol
supported by that implementation. Receivers MUST ignore all bits
not defined for the version of the protocol they support.
8021p: The maximum 802.1p priority value that the WTP will allow in
the Traffic Identifier (TID) field in the extended 802.11e QoS
Data header.
<span class="h3"><a class="selflink" id="section-6.15" href="#section-6.15">6.15</a>. IEEE 802.11 Station Session Key</span>
The IEEE 802.11 Station Session Key message element is sent by the AC
to provision encryption keys, or to configure an access policy, on
the WTP. This message element MUST NOT be present without the IEEE
802.11 Station (see <a href="#section-6.13">Section 6.13</a>) message element, and MUST NOT be
sent if the WTP had not specifically advertised support for the
requested encryption scheme, through the WTP Descriptor Message
Element's Encryption Capabilities field (see <a href="#section-8.1">Section 8.1</a>).
When the Key field is non-zero in length, the RSN Information Element
MUST be sent along with the IEEE 802.11 Station Session Key in order
to instruct the WTP on the usage of the Key field. The WTP MUST
observe the Authentication and Key Management (AKM) field of the RSN
Information Element in order to identify the authentication protocol
to be enforced with the station.
If cryptographic services are provided at the WTP, the WTP MUST
observe the algorithm dictated in the Pairwise Cipher Suite field of
the RSN Information Element sent by the AC. The RSN Information
Element included here is the one sent by the AC in the third message
<span class="grey">Calhoun, et al. Standards Track [Page 48]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-49" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
of the 4-Way Key Handshake, which specifies which cipher is to be
applied to provide encryption and decryption services with the
station. The RSN Information Element is used to communicate any
supported algorithm, including WEP, TKIP, and AES-CCMP. In the case
of static WEP keys, the RSN Information Element is still used to
indicate the cryptographic algorithm even though no key exchange
occurred.
If the IEEE 802.11 Station Session Key message element's 'AKM-Only'
bit is set, the WTP MUST drop all IEEE 802.11 packets that are not
part of the Authentication and Key Management (AKM), such as EAP.
Note that AKM-Only MAY be set while an encryption key is in force,
requiring that the AKM packets be encrypted. Once the station has
successfully completed authentication via the AKM, the AC MUST send a
new Add Station message element to remove the AKM-Only restriction,
and optionally push the session key down to the WTP.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAC Address |A|C| Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Pairwise TSC |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Pairwise TSC | Pairwise RSC |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Pairwise RSC |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Key...
+-+-+-+-+-+-+-+-
Type: 1038 for IEEE 802.11 Station Session Key
Length: >= 25
MAC Address: The station's MAC Address
Flags: All implementations complying with this protocol MUST set to
zero any bits that are reserved in the version of the protocol
supported by that implementation. Receivers MUST ignore all bits
not defined for the version of the protocol they support. The
following bits are defined:
<span class="grey">Calhoun, et al. Standards Track [Page 49]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-50" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
A: The 1-bit AKM-Only field is set by the AC to inform the WTP
that is MUST NOT accept any 802.11 Data Frames other than AKM
frames. This is the equivalent of the WTP's IEEE 802.1X port
for the station to be in the closed state. When set, the WTP
MUST drop any non-IEEE 802.1X packets it receives from the
station.
C: The 1-bit field is set by the AC to inform the WTP that
encryption services will be provided by the AC. When set,
the WTP SHOULD police frames received from stations to ensure
that they are properly encrypted as specified in the RSN
Information Element, but does not need to take specific
cryptographic action on the frame. Similarly, for
transmitted frames, the WTP only needs to forward already
encrypted frames. Since packets received by the WTP will be
encrypted, the WTP cannot modify the contents of the packets,
including modifying the DSCP markings of the encapsulated
packet. In this case, this function would be the
responsibility of the AC.
Pairwise TSC: The 6-byte Transmit Sequence Counter (TSC) field to
use for unicast packets transmitted to the station.
Pairwise RSC: The 6-byte Receive Sequence Counter (RSC) to use for
unicast packets received from the station.
Key: The pairwise key the WTP is to use when encrypting traffic to/
from the station. The format of the keys differs based on the
crypto algorithm used. For unicast WEP keys, the Key field
consists of the actual unicast encryption key (note, this is used
when WEP is used in conjunction with 802.1X, and therefore a
unicast encryption key exists). When used with CCMP, the Key
field includes the 128-bit Temporal Key. When used with TKIP, the
Key field includes the 256-bit Temporal Key (which consists of a
128-bit key used as input for TKIP key mixing, and two 64-bit keys
used for Michael).
<span class="h3"><a class="selflink" id="section-6.16" href="#section-6.16">6.16</a>. IEEE 802.11 Statistics</span>
The IEEE 802.11 Statistics message element is sent by the WTP to
transmit its current statistics, and it contains the following
fields. All of the fields in this message element are set to zero
upon WTP initialization. The fields will roll over when they reach
their maximum value of 4294967295. Due to the nature of each counter
representing different data points, the rollover event will vary
<span class="grey">Calhoun, et al. Standards Track [Page 50]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-51" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
greatly across each field. Applications or human operators using
these counters need to be aware of the minimal possible times between
rollover events in order to make sure that no consecutive rollover
events are missed.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Tx Fragment Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Multicast Tx Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Failed Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Retry Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Multiple Retry Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Frame Duplicate Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RTS Success Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RTS Failure Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ACK Failure Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Rx Fragment Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Multicast RX Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| FCS Error Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Tx Frame Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Decryption Errors |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Discarded QoS Fragment Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Associated Station Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| QoS CF Polls Received Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| QoS CF Polls Unused Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| QoS CF Polls Unusable Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
<span class="grey">Calhoun, et al. Standards Track [Page 51]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-52" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
Type: 1039 for IEEE 802.11 Statistics
Length: 80
Radio ID: An 8-bit value representing the radio, whose value is
between one (1) and 31.
Reserved: All implementations complying with this protocol MUST set
to zero any bits that are reserved in the version of the protocol
supported by that implementation. Receivers MUST ignore all bits
not defined for the version of the protocol they support.
Tx Fragment Count: A 32-bit value representing the number of
fragmented frames transmitted. The value of this field comes from
the IEEE 802.11 dot11TransmittedFragmentCount MIB element (see
[<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]).
Multicast Tx Count: A 32-bit value representing the number of
multicast frames transmitted. The value of this field comes from
the IEEE 802.11 dot11MulticastTransmittedFrameCount MIB element
(see [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]).
Failed Count: A 32-bit value representing the transmit excessive
retries. The value of this field comes from the IEEE 802.11
dot11FailedCount MIB element (see [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]).
Retry Count: A 32-bit value representing the number of transmit
retries. The value of this field comes from the IEEE 802.11
dot11RetryCount MIB element (see [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]).
Multiple Retry Count: A 32-bit value representing the number of
transmits that required more than one retry. The value of this
field comes from the IEEE 802.11 dot11MultipleRetryCount MIB
element (see [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]).
Frame Duplicate Count: A 32-bit value representing the duplicate
frames received. The value of this field comes from the IEEE
802.11 dot11FrameDuplicateCount MIB element (see
[<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]).
RTS Success Count: A 32-bit value representing the number of
successfully transmitted Ready To Send (RTS). The value of this
field comes from the IEEE 802.11 dot11RTSSuccessCount MIB element
(see [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]).
<span class="grey">Calhoun, et al. Standards Track [Page 52]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-53" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
RTS Failure Count: A 32-bit value representing the failed
transmitted RTS. The value of this field comes from the IEEE
802.11 dot11RTSFailureCount MIB element (see [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]).
ACK Failure Count: A 32-bit value representing the number of failed
acknowledgements. The value of this field comes from the IEEE
802.11 dot11ACKFailureCount MIB element (see [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]).
Rx Fragment Count: A 32-bit value representing the number of
fragmented frames received. The value of this field comes from
the IEEE 802.11 dot11ReceivedFragmentCount MIB element (see
[<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]).
Multicast RX Count: A 32-bit value representing the number of
multicast frames received. The value of this field comes from the
IEEE 802.11 dot11MulticastReceivedFrameCount MIB element (see
[<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]).
FCS Error Count: A 32-bit value representing the number of FCS
failures. The value of this field comes from the IEEE 802.11
dot11FCSErrorCount MIB element (see [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]).
Decryption Errors: A 32-bit value representing the number of
Decryption errors that occurred on the WTP. Note that this field
is only valid in cases where the WTP provides encryption/
decryption services. The value of this field comes from the IEEE
802.11 dot11WEPUndecryptableCount MIB element (see
[<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]).
Discarded QoS Fragment Count: A 32-bit value representing the
number of discarded QoS fragments received. The value of this
field comes from the IEEE 802.11 dot11QoSDiscardedFragmentCount
MIB element (see [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]).
Associated Station Count: A 32-bit value representing the number of
number of associated stations. The value of this field comes from
the IEEE 802.11 dot11AssociatedStationCount MIB element (see
[<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]).
QoS CF Polls Received Count: A 32-bit value representing the number
of (+)CF-Polls received. The value of this field comes from the
IEEE 802.11 dot11QosCFPollsReceivedCount MIB element (see
[<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]).
QoS CF Polls Unused Count: A 32-bit value representing the number
of (+)CF-Polls that have been received, but not used. The value
of this field comes from the IEEE 802.11
dot11QosCFPollsUnusedCount MIB element (see [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]).
<span class="grey">Calhoun, et al. Standards Track [Page 53]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-54" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
QoS CF Polls Unusable Count: A 32-bit value representing the number
of (+)CF-Polls that have been received, but could not be used due
to the Transmission Opportunity (TXOP) size being smaller than the
time that is required for one frame exchange sequence. The value
of this field comes from the IEEE 802.11
dot11QosCFPollsUnusableCount MIB element (see [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]).
<span class="h3"><a class="selflink" id="section-6.17" href="#section-6.17">6.17</a>. IEEE 802.11 Supported Rates</span>
The IEEE 802.11 Supported Rates message element is sent by the WTP to
indicate the rates that it supports, and contains the following
fields.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | Supported Rates...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 1040 for IEEE 802.11 Supported Rates
Length: >= 3
Radio ID: An 8-bit value representing the radio, whose value is
between one (1) and 31.
Supported Rates: The WTP includes the Supported Rates that its
hardware supports. The format is identical to the Rate Set
message element and is between 2 and 8 bytes in length.
<span class="h3"><a class="selflink" id="section-6.18" href="#section-6.18">6.18</a>. IEEE 802.11 Tx Power</span>
The IEEE 802.11 Tx Power message element value is bi-directional.
When sent by the WTP, it contains the current power level of the
radio in question. When sent by the AC, it contains the power level
to which the WTP MUST adhere.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | Reserved | Current Tx Power |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 1041 for IEEE 802.11 Tx Power
<span class="grey">Calhoun, et al. Standards Track [Page 54]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-55" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
Length: 4
Radio ID: An 8-bit value representing the radio to configure, whose
value is between one (1) and 31.
Reserved: All implementations complying with this protocol MUST set
to zero any bits that are reserved in the version of the protocol
supported by that implementation. Receivers MUST ignore all bits
not defined for the version of the protocol they support.
Current Tx Power: This attribute contains the current transmit
output power in mW, as described in the dot11CurrentTxPowerLevel
MIB variable, see [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>].
<span class="h3"><a class="selflink" id="section-6.19" href="#section-6.19">6.19</a>. IEEE 802.11 Tx Power Level</span>
The IEEE 802.11 Tx Power Level message element is sent by the WTP and
contains the different power levels supported. The values found in
this message element are found in the IEEE 802.11
Dot11PhyTxPowerEntry MIB table, see [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>].
The value field contains the following:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | Num Levels | Power Level [n] |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 1042 for IEEE 802.11 Tx Power Level
Length: >= 4
Radio ID: An 8-bit value representing the radio to configure, whose
value is between one (1) and 31.
Num Levels: The number of power level attributes. The value of
this field comes from the IEEE 802.11
dot11NumberSupportedPowerLevels MIB element (see
[<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]).
Power Level: Each power level field contains a supported power
level, in mW. The value of this field comes from the
corresponding IEEE 802.11 dot11TxPowerLevel[n] MIB element, see
[<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>].
<span class="grey">Calhoun, et al. Standards Track [Page 55]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-56" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
<span class="h3"><a class="selflink" id="section-6.20" href="#section-6.20">6.20</a>. IEEE 802.11 Update Station QoS</span>
The IEEE 802.11 Update Station QoS message element is used to change
the Quality of Service policy on the WTP for a given station. The
QoS tags included in this message element are to be applied to
packets received at the WTP from the station indicated through the
MAC Address field. This message element overrides the default values
provided through the IEEE 802.11 WTP Quality of Service message
element (see <a href="#section-6.22">Section 6.22</a>). Any tagging performed by the WTP MUST be
directly applied to the packets received from the station, as well as
the CAPWAP tunnel, if the packets are tunneled to the AC. See
<a href="#section-2.6">Section 2.6</a> for more information.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | MAC Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAC Address | QoS Sub-Element... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 1043 for IEEE 802.11 Update Station QoS
Length: 8
Radio ID: The Radio Identifier, whose value is between one (1) and
31, typically refers to some interface index on the WTP.
MAC Address: The station's MAC Address.
QoS Sub-Element: The IEEE 802.11 WTP Quality of Service message
element contains four QoS sub-elements, one for every QoS profile.
The order of the QoS profiles are Voice, Video, Best Effort, and
Background.
0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved|8021p|RSV| DSCP Tag |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Reserved: All implementations complying with this protocol MUST
set to zero any bits that are reserved in the version of the
protocol supported by that implementation. Receivers MUST
ignore all bits not defined for the version of the protocol
they support.
<span class="grey">Calhoun, et al. Standards Track [Page 56]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-57" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
8021p: The 3-bit 802.1p priority value to use if packets are to
be IEEE 802.1p tagged. This field is used only if the 'P' bit
in the WTP Quality of Service message element was set;
otherwise, its contents MUST be ignored.
RSV: All implementations complying with this protocol MUST set
to zero any bits that are reserved in the version of the
protocol supported by that implementation. Receivers MUST
ignore all bits not defined for the version of the protocol
they support.
DSCP Tag: The 6-bit DSCP label to use if packets are eligible to
be DSCP tagged, specifically an IPv4 or IPv6 packet (see
[<a href="./rfc2474" title=""Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers"">RFC2474</a>]). This field is used only if the 'D' bit in the WTP
Quality of Service message element was set; otherwise, its
contents MUST be ignored.
<span class="h3"><a class="selflink" id="section-6.21" href="#section-6.21">6.21</a>. IEEE 802.11 Update WLAN</span>
The IEEE 802.11 Update WLAN message element is used by the AC to
define a wireless LAN on the WTP. The inclusion of this message
element MUST also include the IEEE 802.11 Information Element message
element, containing the following 802.11 IEs:
Power Constraint information element
WPA information element [<a href="#ref-WPA" title=""Deploying Wi-Fi Protected Access (WPA) and WPA2 in the Enterprise"">WPA</a>]
RSN information element
Enhanced Distributed Channel Access (EDCA) Parameter Set information
element
QoS Capability information element
WMM information element [<a href="#ref-WMM" title=""Support for Multimedia Applications with Quality of Service in WiFi Networks)"">WMM</a>]
These IEEE 802.11 Information Elements are stored by the WTP and
included in any Probe Responses and Beacons generated, as specified
in the IEEE 802.11 standard [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>].
If cryptographic services are provided at the WTP, the WTP MUST
observe the algorithm dictated in the Group Cipher Suite field of the
RSN Information Element sent by the AC. The RSN Information Element
is used to communicate any supported algorithm, including WEP, TKIP,
and AES-CCMP. In the case of static WEP keys, the RSN Information
Element is still used to indicate the cryptographic algorithm even
though no key exchange occurred.
<span class="grey">Calhoun, et al. Standards Track [Page 57]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-58" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
The message element uses the following format:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | WLAN ID | Capability |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Key Index | Key Status | Key Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Key... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 1044 for IEEE 802.11 Update WLAN
Length: >= 8
Radio ID: An 8-bit value representing the radio, whose value is
between one (1) and 31.
WLAN ID: An 8-bit value specifying the WLAN Identifier. The value
MUST be between one (1) and 16.
Capability: A 16-bit value containing the Capability information
field to be advertised by the WTP in the Probe Request and Beacon
frames. Each bit of the Capability field represents a different
WTP capability, which are described in detail in
[<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]. The format of the field is:
0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|E|I|C|F|P|S|B|A|M|Q|T|D|V|O|K|L|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
E (ESS): The AC MUST set the Extended Service Set (ESS) subfield
to 1.
I (IBSS): The AC MUST set the Independent Basic Service Set
(IBSS) subfield to 0.
C (CF-Pollable): The AC sets the Contention Free Pollable (CF-
Pollable) subfield based on the table found in
[<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>].
F (CF-Poll Request): The AC sets the CF-Poll Request subfield
based on the table found in [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>].
<span class="grey">Calhoun, et al. Standards Track [Page 58]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-59" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
P (Privacy): The AC sets the Privacy subfield based on the
confidentiality requirements of the WLAN, as defined in
[<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>].
S (Short Preamble): The AC sets the Short Preamble subfield
based on whether the use of short preambles are permitted on the
WLAN, as defined in [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>].
B (PBCC): The AC sets the Packet Binary Convolutional Code
(PBCC) modulation option subfield based on whether the use of
PBCC is permitted on the WLAN, as defined in [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>].
A (Channel Agility): The AC sets the Channel Agility subfield
based on whether the WTP is capable of supporting the High Rate
Direct Sequence Spread Spectrum (HR/DSSS), as defined in
[<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>].
M (Spectrum Management): The AC sets the Spectrum Management
subfield according to the value of the
dot11SpectrumManagementRequired MIB variable, as defined in
[<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>].
Q (QoS): The AC sets the Quality of Service (QoS) subfield based
on the table found in [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>].
T (Short Slot Time): The AC sets the Short Slot Time subfield
according to the value of the WTP's currently used slot time
value, as defined in [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>].
D (APSD): The AC sets the APSD subfield according to the value
of the dot11APSDOptionImplemented Management Information Base
(MIB) variable, as defined in [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>].
V (Reserved): The AC sets the Reserved subfield to zero, as
defined in [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>].
O (DSSS-OFDM): The AC sets the DSSS-OFDM subfield to indicate
the use of Direct Sequence Spread Spectrum with Orthogonal
Frequency Division Multiplexing (DSSS-OFDM), as defined in
[<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>].
K (Delayed Block ACK): The AC sets the Delayed Block ACK
subfield according to the value of the
dot11DelayedBlockAckOptionImplemented MIB variable, as defined
in [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>].
<span class="grey">Calhoun, et al. Standards Track [Page 59]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-60" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
L (Immediate Block ACK): The AC sets the Delayed Block ACK
subfield according to the value of the
dot11ImmediateBlockAckOptionImplemented MIB variable, as defined
in [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>].
Key-Index: The Key-Index associated with the key.
Key Status: A 1-byte value that specifies the state and usage of
the key that has been included. The following values describe the
key usage and its status:
0 - A value of zero, with the inclusion of the RSN Information
Element means that the WLAN uses per-station encryption keys,
and therefore the key in the 'Key' field is only used for
multicast traffic.
1 - When set to one, the WLAN employs a shared WEP key, also
known as a static WEP key, and uses the encryption key for
both unicast and multicast traffic for all stations.
2 - The value of 2 indicates that the AC will begin rekeying the
GTK with the STA's in the BSS. It is only valid when IEEE
802.11 is enabled as the security policy for the BSS.
3 - The value of 3 indicates that the AC has completed rekeying
the GTK and broadcast packets no longer need to be duplicated
and transmitted with both GTK's.
Key Length: A 16-bit value representing the length of the Key
field.
Key: A Session Key, whose length is known via the Key Length field,
used to provide data privacy. For static WEP keys, which is true
when the 'Key Status' bit is set to one, this key is used for both
unicast and multicast traffic. For encryption schemes that employ
a separate encryption key for unicast and multicast traffic, the
key included here only applies to multicast data, and the cipher
suite is specified in an accompanied RSN Information Element. In
these scenarios, the key, and cipher information, is communicated
via the Add Station message element, see <a href="./rfc5415#section-4.6.8">Section 4.6.8 in
[RFC5415]</a>. When used with WEP, the Key field includes the
broadcast key. When used with CCMP, the Key field includes the
128-bit Group Temporal Key. When used with TKIP, the Key field
includes the 256-bit Group Temporal Key (which consists of a 128-
bit key used as input for TKIP key mixing, and two 64-bit keys
used for Michael).
<span class="grey">Calhoun, et al. Standards Track [Page 60]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-61" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
<span class="h3"><a class="selflink" id="section-6.22" href="#section-6.22">6.22</a>. IEEE 802.11 WTP Quality of Service</span>
The IEEE 802.11 WTP Quality of Service message element value is sent
by the AC to the WTP to communicate Quality of Service configuration
information. The QoS tags included in this message element are the
default QoS values to be applied to packets received by the WTP from
stations on a particular radio. Any tagging performed by the WTP
MUST be directly applied to the packets received from the station, as
well as the CAPWAP tunnel, if the packets are tunneled to the AC.
See <a href="#section-2.6">Section 2.6</a> for more information.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID |Tagging Policy | QoS Sub-Element ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 1045 for IEEE 802.11 WTP Quality of Service
Length: 34
Radio ID: The Radio Identifier, whose value is between one (1) and
31, typically refers to some interface index on the WTP.
Tagging Policy: A bit field indicating how the WTP is to mark
packets for QoS purposes. The required WTP behavior is defined in
<a href="#section-2.6.1">Section 2.6.1</a>. The field has the following format:
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
|Rsvd |P|Q|D|O|I|
+-+-+-+-+-+-+-+-+
Rsvd: A set of reserved bits for future use. All implementations
complying with this protocol MUST set to zero any bits that are
reserved in the version of the protocol supported by that
implementation. Receivers MUST ignore all bits not defined for
the version of the protocol they support.
P: When set, the WTP is to employ the 802.1p QoS mechanism (see
<a href="#section-2.6.1.1">Section 2.6.1.1</a>), and the WTP is to use the 'Q' bit.
Q: When the 'P' bit is set, the 'Q' bit is used by the AC to
communicate to the WTP how 802.1p QoS is to be enforced.
Details on the behavior of the 'Q' bit are specified in
<a href="#section-2.6.1.1">Section 2.6.1.1</a>.
<span class="grey">Calhoun, et al. Standards Track [Page 61]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-62" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
D: When set, the WTP is to employ the DSCP QoS mechanism (see
<a href="#section-2.6.1.2">Section 2.6.1.2</a>), and the WTP is to use the 'O' and 'I' bits.
O: When the 'D' bit is set, the 'O' bit is used by the AC to
communicate to the WTP how DSCP QoS is to be enforced on the
outer (tunneled) header. Details on the behavior of the 'O'
bit are specified in <a href="#section-2.6.1.2">Section 2.6.1.2</a>.
I: When the 'D' bit is set, the 'I' bit is used by the AC to
communicate to the WTP how DSCP QoS is to be enforced on the
station's packet (inner) header. Details on the behavior of
the 'I' bit are specified in <a href="#section-2.6.1.2">Section 2.6.1.2</a>.
QoS Sub-Element: The IEEE 802.11 WTP Quality of Service message
element contains four QoS sub-elements, one for every QoS profile.
The order of the QoS profiles are Voice, Video, Best Effort, and
Background.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Queue Depth | CWMin | CWMax |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| CWMax | AIFS | Reserved|8021p|RSV| DSCP Tag |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Queue Depth: The number of packets that can be on the specific
QoS transmit queue at any given time.
CWMin: The Contention Window minimum (CWmin) value for the QoS
transmit queue. The value of this field comes from the IEEE
802.11 dot11EDCATableCWMin MIB element (see
[<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]).
CWMax: The Contention Window maximum (CWmax) value for the QoS
transmit queue. The value of this field comes from the IEEE
802.11 dot11EDCATableCWMax MIB element (see
[<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]).
AIFS: The Arbitration Inter Frame Spacing (AIFS) to use for the
QoS transmit queue. The value of this field comes from the
IEEE 802.11 dot11EDCATableAIFSN MIB element (see
[<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]).
<span class="grey">Calhoun, et al. Standards Track [Page 62]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-63" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
Reserved: All implementations complying with this protocol MUST
set to zero any bits that are reserved in the version of the
protocol supported by that implementation. Receivers MUST
ignore all bits not defined for the version of the protocol
they support.
8021p: The 3-bit 802.1p priority value to use if packets are to
be IEEE 802.1p tagged. This field is used only if the 'P' bit
is set; otherwise, its contents MUST be ignored.
RSV: All implementations complying with this protocol MUST set
to zero any bits that are reserved in the version of the
protocol supported by that implementation. Receivers MUST
ignore all bits not defined for the version of the protocol
they support.
DSCP Tag: The 6-bit DSCP label to use if packets are eligible to
be DSCP tagged, specifically an IPv4 or IPv6 packet (see
[<a href="./rfc2474" title=""Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers"">RFC2474</a>]). This field is used only if the 'D' bit is set;
otherwise, its contents MUST be ignored.
<span class="h3"><a class="selflink" id="section-6.23" href="#section-6.23">6.23</a>. IEEE 802.11 WTP Radio Configuration</span>
The IEEE 802.11 WTP WLAN Radio Configuration message element is used
by the AC to configure a Radio on the WTP, and by the WTP to deliver
its radio configuration to the AC. The message element value
contains the following fields:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID |Short Preamble| Num of BSSIDs | DTIM Period |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| BSSID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| BSSID | Beacon Period |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Country String |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 1046 for IEEE 802.11 WTP WLAN Radio Configuration
Length: 16
Radio ID: An 8-bit value representing the radio to configure, whose
value is between one (1) and 31.
<span class="grey">Calhoun, et al. Standards Track [Page 63]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-64" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
Short Preamble: An 8-bit value indicating whether short preamble is
supported. The following enumerated values are currently
supported:
0 - Short preamble not supported.
1 - Short preamble is supported.
BSSID: The WLAN Radio's base MAC Address.
Number of BSSIDs: This attribute contains the maximum number of
BSSIDs supported by the WTP. This value restricts the number of
logical networks supported by the WTP, and is between 1 and 16.
DTIM Period: This attribute specifies the number of Beacon
intervals that elapse between transmission of Beacons frames
containing a Traffic Indication Map (TIM) element whose Delivery
Traffic Indication Message (DTIM) Count field is 0. This value is
transmitted in the DTIM Period field of Beacon frames. The value
of this field comes from the IEEE 802.11 dot11DTIMPeriod MIB
element (see [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]).
Beacon Period: This attribute specifies the number of Time Unit
(TU) that a station uses for scheduling Beacon transmissions.
This value is transmitted in Beacon and Probe Response frames.
The value of this field comes from the IEEE 802.11
dot11BeaconPeriod MIB element (see [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]).
Country String: This attribute identifies the country in which the
station is operating. The value of this field comes from the IEEE
802.11 dot11CountryString MIB element (see [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]).
Some regulatory domains do not allow WTPs to have user
configurable country string, and require that it be a fixed value
during the manufacturing process. Therefore, WTP vendors that
wish to allow for the configuration of this field will need to
validate this behavior during its radio certification process.
Other WTP vendors may simply wish to treat this WTP configuration
parameter as read-only. The country strings can be found in
[<a href="#ref-ISO.3166-1" title=""International Organization for Standardization, Codes for the representation of names of countries and their subdivisions - Part 1: Country codes"">ISO.3166-1</a>].
The WTP and AC MAY ignore the value of this field, depending upon
regulatory requirements, for example to avoid classification as a
Software-Defined Radio. When this field is used, the first two
octets of this string is the two-character country string as
described in [<a href="#ref-ISO.3166-1" title=""International Organization for Standardization, Codes for the representation of names of countries and their subdivisions - Part 1: Country codes"">ISO.3166-1</a>], and the third octet MUST either be a
space, 'O', 'I', or X' as defined below. When the value of the
<span class="grey">Calhoun, et al. Standards Track [Page 64]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-65" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
third octet is 255 (HEX 0xff), the country string field is not
used, and MUST be ignored. The following are the possible values
for the third octet:
1. an ASCII space character, if the regulations under which the
station is operating encompass all environments in the
country,
2. an ASCII 'O' character, if the regulations under which the
station is operating are for an outdoor environment only, or
3. an ASCII 'I' character, if the regulations under which the
station is operating are for an indoor environment only,
4. an ASCII 'X' character, if the station is operating under a
non-country entity. The first two octets of the non-country
entity shall be two ASCII 'XX' characters,
5. a HEX 0xff character means that the country string field is
not used and MUST be ignored.
Note that the last byte of the Country String MUST be set to NULL.
<span class="h3"><a class="selflink" id="section-6.24" href="#section-6.24">6.24</a>. IEEE 802.11 WTP Radio Fail Alarm Indication</span>
The IEEE 802.11 WTP Radio Fail Alarm Indication message element is
sent by the WTP to the AC when it detects a radio failure.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | Type | Status | Pad |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type: 1047 for IEEE 802.11 WTP Radio Fail Alarm Indication
Length: 4
Radio ID: The Radio Identifier, whose value is between one (1) and
31, typically refers to some interface index on the WTP.
Type: The type of radio failure detected. The following enumerated
values are supported:
1 - Receiver
2 - Transmitter
<span class="grey">Calhoun, et al. Standards Track [Page 65]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-66" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
Status: An 8-bit boolean indicating whether the radio failure is
being reported or cleared. A value of zero is used to clear the
event, while a value of one is used to report the event.
Pad: All implementations complying with version zero of this
protocol MUST set these bits to zero. Receivers MUST ignore all
bits not defined for the version of the protocol they support.
<span class="h3"><a class="selflink" id="section-6.25" href="#section-6.25">6.25</a>. IEEE 802.11 WTP Radio Information</span>
The IEEE 802.11 WTP Radio Information message element is used to
communicate the radio information for each IEEE 802.11 radio in the
WTP. The Discovery Request message, Primary Discovery Request
message, and Join Request message MUST include one such message
element per radio in the WTP. The Radio-Type field is used by the AC
in order to determine which IEEE 802.11 technology specific binding
is to be used with the WTP.
The message element contains two fields, as shown below.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio ID | Radio Type |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Radio Type |
+-+-+-+-+-+-+-+-+
Type: 1048 for IEEE 802.11 WTP Radio Information
Length: 5
Radio ID: The Radio Identifier, whose value is between one (1) and
31, which typically refers to an interface index on the WTP.
Radio Type: The type of radio present. Note this is a bit field
that is used to specify support for more than a single type of
PHY/MAC. The field has the following format:
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
|Reservd|N|G|A|B|
+-+-+-+-+-+-+-+-+
<span class="grey">Calhoun, et al. Standards Track [Page 66]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-67" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
Reservd: A set of reserved bits for future use. All
implementations complying with this protocol MUST set to zero
any bits that are reserved in the version of the protocol
supported by that implementation. Receivers MUST ignore all
bits not defined for the version of the protocol they support.
N: An IEEE 802.11n radio.
G: An IEEE 802.11g radio.
A: An IEEE 802.11a radio.
B: An IEEE 802.11b radio.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. IEEE 802.11 Binding WTP Saved Variables</span>
This section contains the IEEE 802.11 binding specific variables that
SHOULD be saved in non-volatile memory on the WTP.
<span class="h3"><a class="selflink" id="section-7.1" href="#section-7.1">7.1</a>. IEEE80211AntennaInfo</span>
The WTP-per-radio antenna configuration, defined in <a href="#section-6.2">Section 6.2</a>.
<span class="h3"><a class="selflink" id="section-7.2" href="#section-7.2">7.2</a>. IEEE80211DSControl</span>
The WTP-per-radio Direct Sequence Control configuration, defined in
<a href="#section-6.5">Section 6.5</a>.
<span class="h3"><a class="selflink" id="section-7.3" href="#section-7.3">7.3</a>. IEEE80211MACOperation</span>
The WTP-per-radio MAC Operation configuration, defined in
<a href="#section-6.7">Section 6.7</a>.
<span class="h3"><a class="selflink" id="section-7.4" href="#section-7.4">7.4</a>. IEEE80211OFDMControl</span>
The WTP-per-radio OFDM MAC Operation configuration, defined in
<a href="#section-6.10">Section 6.10</a>.
<span class="h3"><a class="selflink" id="section-7.5" href="#section-7.5">7.5</a>. IEEE80211Rateset</span>
The WTP-per-radio Basic Rate Set configuration, defined in
<a href="#section-6.11">Section 6.11</a>.
<span class="h3"><a class="selflink" id="section-7.6" href="#section-7.6">7.6</a>. IEEE80211TxPower</span>
The WTP-per-radio Transmit Power configuration, defined in
<a href="#section-6.18">Section 6.18</a>.
<span class="grey">Calhoun, et al. Standards Track [Page 67]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-68" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
<span class="h3"><a class="selflink" id="section-7.7" href="#section-7.7">7.7</a>. IEEE80211QoS</span>
The WTP-per-radio Quality of Service configuration, defined in
<a href="#section-6.22">Section 6.22</a>.
<span class="h3"><a class="selflink" id="section-7.8" href="#section-7.8">7.8</a>. IEEE80211RadioConfig</span>
The WTP-per-radio Radio Configuration, defined in <a href="#section-6.23">Section 6.23</a>.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Technology Specific Message Element Values</span>
This section lists IEEE 802.11-specific values for the generic CAPWAP
message elements that include fields whose values are technology
specific.
<span class="h3"><a class="selflink" id="section-8.1" href="#section-8.1">8.1</a>. WTP Descriptor Message Element, Encryption Capabilities Field</span>
This specification defines two new bits for the WTP Descriptor's
Encryption Capabilities field, as defined in [<a href="./rfc5415" title=""CAPWAP Protocol Specification"">RFC5415</a>]. Note that
only the bits defined in this specification are described below. WEP
is not explicitly advertised as a WTP capability since all WTPs are
expected to support the encryption cipher. The format of the
Encryption Capabilities field is:
1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |A|T| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
A: WTP supports AES-CCMP, as defined in [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>].
T: WTP supports TKIP and Michael, as defined in [<a href="#ref-IEEE.802-11.2007" title=""Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications"">IEEE.802-11.2007</a>]
and [<a href="#ref-WPA" title=""Deploying Wi-Fi Protected Access (WPA) and WPA2 in the Enterprise"">WPA</a>], respectively.
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. Security Considerations</span>
This section describes security considerations for using IEEE 802.11
with the CAPWAP protocol. A complete threat analysis of the CAPWAP
protocol can also be found in [<a href="./rfc5418" title=""Control And Provisioning for Wireless Access Points (CAPWAP) Threat Analysis for IEEE 802.11 Deployments"">RFC5418</a>].
<span class="h3"><a class="selflink" id="section-9.1" href="#section-9.1">9.1</a>. IEEE 802.11 Security</span>
When used with an IEEE 802.11 infrastructure with WEP encryption, the
CAPWAP protocol does not add any new vulnerabilities. Derived
Session Keys between the STA and WTP can be compromised, resulting in
<span class="grey">Calhoun, et al. Standards Track [Page 68]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-69" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
many well-documented attacks. Implementers SHOULD discourage the use
of WEP and encourage the use of technically-sound cryptographic
solutions such as those in an IEEE 802.11 RSN.
STA authentication is performed using IEEE 802.lX, and consequently
EAP. Implementers SHOULD use EAP methods meeting the requirements
specified [<a href="./rfc4017" title=""Extensible Authentication Protocol (EAP) Method Requirements for Wireless LANs"">RFC4017</a>].
When used with IEEE 802.11 RSN security, the CAPWAP protocol may
introduce new vulnerabilities, depending on whether the link security
(packet encryption and integrity verification) is provided by the WTP
or the AC. When the link security function is provided by the AC, no
new security concerns are introduced.
However, when the WTP provides link security, a new vulnerability
will exist when the following conditions are true:
o The client is not the first to associate to the WTP/ESSID (i.e.,
other clients are associated), a GTK already exists, and
o traffic has been broadcast under the existing GTK.
Under these circumstances, the receive sequence counter (KeyRSC)
associated with the GTK is non-zero, but because the AC anchors the
4-way handshake with the client, the exact value of the KeyRSC is not
known when the AC constructs the message containing the GTK. The
client will update its Key RSC value to the current valid KeyRSC upon
receipt of a valid multicast/broadcast message, but prior to this,
previous multicast/broadcast traffic that was secured with the
existing GTK may be replayed, and the client will accept this traffic
as valid.
Typically, busy networks will produce numerous multicast or broadcast
frames per second, so the window of opportunity with respect to such
replay is expected to be very small. In most conditions, it is
expected that replayed frames could be detected (and logged) by the
WTP.
The only way to completely close this window is to provide the exact
KeyRSC value in message 3 of the 4-way handshake; any other approach
simply narrows the window to varying degrees. Given the low relative
threat level this presents, the additional complexity introduced by
providing the exact KeyRSC value is not warranted. That is, this
specification provides for a calculated risk in this regard.
<span class="grey">Calhoun, et al. Standards Track [Page 69]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-70" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
The AC SHOULD use an RSC of 0 when computing message-3 of the 4-way
802.11i handshake, unless the AC has knowledge of a more optimal RSC
value to use. Mechanisms for determining a more optimal RSC value
are outside the scope of this specification.
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. IANA Considerations</span>
This section details the actions IANA has taken per this
specification. There are numerous registries that have been be
created, and the contents, document action (see [<a href="./rfc5226" title="">RFC5226</a>], and
registry format are all included below. Note that in cases where bit
fields are referred to, the bit numbering is left to right, where the
leftmost bit is labeled as bit zero (0).
<span class="h3"><a class="selflink" id="section-10.1" href="#section-10.1">10.1</a>. CAPWAP Wireless Binding Identifier</span>
This specification requires a value assigned from the Wireless
Binding Identifier namespace, defined in [<a href="./rfc5415" title=""CAPWAP Protocol Specification"">RFC5415</a>]. (1) has been
assigned (see <a href="#section-2.1">Section 2.1</a>, as it is used in implementations.
<span class="h3"><a class="selflink" id="section-10.2" href="#section-10.2">10.2</a>. CAPWAP IEEE 802.11 Message Types</span>
IANA created a new sub-registry in the existing CAPWAP Message Type
registry, which is defined in [<a href="./rfc5415" title=""CAPWAP Protocol Specification"">RFC5415</a>].
IANA created and maintains the CAPWAP IEEE 802.11 Message Types
sub-registry for all message types whose Enterprise Number is set to
13277. The namespace is 8 bits (3398912-3399167), where the value
3398912 is reserved and must not be assigned. The values 3398913 and
3398914 are allocated in this specification, and can be found in
<a href="#section-3">Section 3</a>. Any new assignments of a CAPWAP IEEE 802.11 Message Type
(whose Enterprise Number is set to 13277) require an Expert Review.
The format of the registry maintained by IANA is as follows:
CAPWAP IEEE 802.11 Message Type Reference
Control Message Value
<span class="h3"><a class="selflink" id="section-10.3" href="#section-10.3">10.3</a>. CAPWAP Message Element Type</span>
This specification defines new values to be registered to the
existing CAPWAP Message Element Type registry, defined in [<a href="./rfc5415" title=""CAPWAP Protocol Specification"">RFC5415</a>].
The values used in this document, 1024 through 1048, as listed in
Figure 8 are recommended as implementations already exist that make
use of these values.
<span class="grey">Calhoun, et al. Standards Track [Page 70]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-71" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
<span class="h3"><a class="selflink" id="section-10.4" href="#section-10.4">10.4</a>. IEEE 802.11 Key Status</span>
The Key Status field in the IEEE 802.11 Add WLAN message element (see
<a href="#section-6.1">Section 6.1</a>) and IEEE 802.11 Update WLAN message element (see
<a href="#section-6.21">Section 6.21</a>) is used to provide information about the status of the
keying exchange. This document defines four values, zero (0) through
three (3), and the remaining values (4-255) are controlled and
maintained by IANA and requires an Expert Review.
<span class="h3"><a class="selflink" id="section-10.5" href="#section-10.5">10.5</a>. IEEE 802.11 QoS</span>
The QoS field in the IEEE 802.11 Add WLAN message element (see
<a href="#section-6.1">Section 6.1</a>) is used to configure a QoS policy for the WLAN. The
namespace is 8 bits (0-255), where the values zero (0) through three
(3) are allocated in this specification, and can be found in
<a href="#section-6.1">Section 6.1</a>. This namespace is managed by IANA and assignments
require an Expert Review. IANA created the IEEE 802.11 QoS registry,
whose format is:
IEEE 802.11 QoS Type Value Reference
<span class="h3"><a class="selflink" id="section-10.6" href="#section-10.6">10.6</a>. IEEE 802.11 Auth Type</span>
The Auth Type field in the IEEE 802.11 Add WLAN message element (see
<a href="#section-6.1">Section 6.1</a>) is 8 bits and is used to configure the IEEE 802.11
authentication policy for the WLAN. The namespace is 8 bits (0-255),
where the values zero (0) and one (1) are allocated in this
specification, and can be found in <a href="#section-6.1">Section 6.1</a>. This namespace is
managed by IANA and assignments require an Expert Review. IANA
created the IEEE 802.11 Auth Type registry, whose format is:
IEEE 802.11 Auth Type Type Value Reference
<span class="h3"><a class="selflink" id="section-10.7" href="#section-10.7">10.7</a>. IEEE 802.11 Antenna Combiner</span>
The Combiner field in the IEEE 802.11 Antenna message element (see
<a href="#section-6.2">Section 6.2</a>) is used to provide information about the WTP's antennas.
The namespace is 8 bits (0-255), where the values one (1) through
four (4) are allocated in this specification, and can be found in
<a href="#section-6.2">Section 6.2</a>. This namespace is managed by IANA and assignments
require an Expert Review. IANA created the IEEE 802.11 Antenna
Combiner registry, whose format is:
IEEE 802.11 Antenna Combiner Type Value Reference
<span class="grey">Calhoun, et al. Standards Track [Page 71]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-72" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
<span class="h3"><a class="selflink" id="section-10.8" href="#section-10.8">10.8</a>. IEEE 802.11 Antenna Selection</span>
The Antenna Selection field in the IEEE 802.11 Antenna message
element (see <a href="#section-6.2">Section 6.2</a>) is used to provide information about the
WTP's antennas. The namespace is 8 bits (0-255), where the values
zero (0) is reserved and used and the values one (1) through two (2)
are allocated in this specification, and can be found in <a href="#section-6.2">Section 6.2</a>.
This namespace is managed by IANA and assignments require an Expert
Review. IANA created the IEEE 802.11 Antenna Selection registry,
whose format is:
IEEE 802.11 Antenna Selection Type Value Reference
<span class="h3"><a class="selflink" id="section-10.9" href="#section-10.9">10.9</a>. IEEE 802.11 Session Key Flags</span>
The flags field in the IEEE 802.11 Station Session Key message
element (see <a href="#section-6.15">Section 6.15</a>) is 16 bits and is used to configure the
session key association with the mobile device. This specification
defines bits zero (0) and one (1), while bits two (2) through fifteen
are reserved. The reserved bits are managed by IANA and assignment
requires an Expert Review. IANA created the IEEE 802.11 Session Key
Flags registry, whose format is:
IEEE 802.11 Station Session Key Bit Position Reference
<span class="h3"><a class="selflink" id="section-10.10" href="#section-10.10">10.10</a>. IEEE 802.11 Tagging Policy</span>
The Tagging Policy field in the IEEE 802.11 WTP Quality of Service
message element (see <a href="#section-6.22">Section 6.22</a>) is 8 bits and is used to specify
how the CAPWAP Data Channel packets are to be tagged. This
specification defines bits three (3) through seven (7). The
remaining bits are managed by IANA and assignment requires an Expert
Review. IANA created the IEEE 802.11 Tagging Policy registry, whose
format is:
IEEE 802.11 Tagging Policy Bit Position Reference
<span class="h3"><a class="selflink" id="section-10.11" href="#section-10.11">10.11</a>. IEEE 802.11 WTP Radio Fail</span>
The Type field in the IEEE 802.11 WTP Radio Fail Alarm Indication
message element (see <a href="#section-6.24">Section 6.24</a>) is used to provide information on
why a WTP's radio has failed. The namespace is 8 bits (0-255), where
the value zero (0) is reserved and unused, while the values one (1)
and two (2) are allocated in this specification, and can be found in
<a href="#section-6.24">Section 6.24</a>. This namespace is managed by IANA and assignments
require an Expert Review. IANA created the IEEE 802.11 WTP Radio
Fail registry, whose format is:
<span class="grey">Calhoun, et al. Standards Track [Page 72]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-73" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
IEEE 802.11 WTP Radio Fail Type Value Reference
<span class="h3"><a class="selflink" id="section-10.12" href="#section-10.12">10.12</a>. IEEE 802.11 WTP Radio Type</span>
The Radio Type field in the IEEE 802.11 WTP Radio Information message
element (see <a href="#section-6.25">Section 6.25</a>) is 8 bits and is used to provide
information about the WTP's radio type. This specification defines
bits four (4) through seven (7). The remaining bits are managed by
IANA and assignment requires an Expert Review. IANA created the IEEE
802.11 WTP Radio Type registry, whose format is:
IEEE 802.11 WTP Radio Type Bit Position Reference
<span class="h3"><a class="selflink" id="section-10.13" href="#section-10.13">10.13</a>. WTP Encryption Capabilities</span>
The WTP Encryption Capabilities field in the WTP Descriptor message
element (see <a href="#section-8.1">Section 8.1</a>) is 16 bits and is used by the WTP to
indicate its IEEE 802.11 encryption capabilities. This specification
defines bits 12 and 13. The reserved bits are managed by IANA and
assignment requires an Expert Review. IANA created the IEEE 802.11
Encryption Capabilities registry, whose format is:
IEEE 802.11 Encryption Capabilities Bit Position Reference
<span class="h2"><a class="selflink" id="section-11" href="#section-11">11</a>. Acknowledgments</span>
The following individuals are acknowledged for their contributions to
this binding specification: Puneet Agarwal, Charles Clancy, Pasi
Eronen, Saravanan Govindan, Scott Kelly, Peter Nilsson, Bob O'Hara,
David Perkins, Margaret Wasserman, and Yong Zhang.
<span class="h2"><a class="selflink" id="section-12" href="#section-12">12</a>. References</span>
<span class="h3"><a class="selflink" id="section-12.1" href="#section-12.1">12.1</a>. Normative References</span>
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to
Indicate Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>,
March 1997.
[<a id="ref-RFC2474">RFC2474</a>] Nichols, K., Blake, S., Baker, F., and D. Black,
"Definition of the Differentiated Services Field
(DS Field) in the IPv4 and IPv6 Headers",
<a href="./rfc2474">RFC 2474</a>, December 1998.
[<a id="ref-RFC3246">RFC3246</a>] Davie, B., Charny, A., Bennet, J., Benson, K., Le
Boudec, J., Courtney, W., Davari, S., Firoiu, V.,
and D. Stiliadis, "An Expedited Forwarding PHB
(Per-Hop Behavior)", <a href="./rfc3246">RFC 3246</a>, March 2002.
<span class="grey">Calhoun, et al. Standards Track [Page 73]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-74" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
[<a id="ref-RFC3168">RFC3168</a>] Ramakrishnan, K., Floyd, S., and D. Black, "The
Addition of Explicit Congestion Notification
(ECN) to IP", <a href="./rfc3168">RFC 3168</a>, September 2001.
[<a id="ref-RFC3748">RFC3748</a>] Aboba, B., Blunk, L., Vollbrecht, J., Carlson,
J., and H. Levkowetz, "Extensible Authentication
Protocol (EAP)", <a href="./rfc3748">RFC 3748</a>, June 2004.
[<a id="ref-RFC5226">RFC5226</a>] Narten, T. and H. Alvestrand, "Guidelines for
Writing an IANA Considerations Section in RFCs",
<a href="https://www.rfc-editor.org/bcp/bcp26">BCP 26</a>, <a href="./rfc5226">RFC 5226</a>, May 2008.
[<a id="ref-FIPS.197.2001">FIPS.197.2001</a>] National Institute of Standards and Technology,
"Advanced Encryption Standard (AES)", FIPS PUB
197, November 2001, <<a href="http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf">http://csrc.nist.gov/</a>
<a href="http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf">publications/fips/fips197/fips-197.pdf</a>>.
[<a id="ref-ISO.3166-1">ISO.3166-1</a>] ISO Standard, "International Organization for
Standardization, Codes for the representation of
names of countries and their subdivisions - Part
1: Country codes", ISO Standard 3166-1:1997,
1997.
[<a id="ref-IEEE.802-11.2007">IEEE.802-11.2007</a>] "Information technology - Telecommunications and
information exchange between systems - Local and
metropolitan area networks - Specific
requirements - Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY)
specifications", IEEE Standard 802.11, 2007,
<<a href="http://standards.ieee.org/getieee802/download/802.11-2007.pdf">http://standards.ieee.org/getieee802/download/</a>
<a href="http://standards.ieee.org/getieee802/download/802.11-2007.pdf">802.11-2007.pdf</a>>.
[<a id="ref-RFC5415">RFC5415</a>] Montemurro, M., Stanley, D., and P. Calhoun,
"CAPWAP Protocol Specification", <a href="./rfc5415">RFC 5415</a>, March
2009.
[<a id="ref-IEEE.802-1X.2004">IEEE.802-1X.2004</a>] "Information technology - Telecommunications and
information exchange between systems - Local and
metropolitan area networks - Specific
requirements - Port-Based Network Access
Control", IEEE Standard 802.1X, 2004, <<a href="http://standards.ieee.org/getieee802/download/802.1X-2004.pdf">http://</a>
<a href="http://standards.ieee.org/getieee802/download/802.1X-2004.pdf">standards.ieee.org/getieee802/download/</a>
<a href="http://standards.ieee.org/getieee802/download/802.1X-2004.pdf">802.1X-2004.pdf</a>>.
<span class="grey">Calhoun, et al. Standards Track [Page 74]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-75" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
[<a id="ref-IEEE.802-1Q.2005">IEEE.802-1Q.2005</a>] "Information technology - Telecommunications and
information exchange between systems - Local and
metropolitan area networks - Specific
requirements - Virtual Bridged Local Area
Networks", IEEE Standard 802.1Q, 2005, <<a href="http://standards.ieee.org/getieee802/download/802.1Q-2005.pdf">http://</a>
<a href="http://standards.ieee.org/getieee802/download/802.1Q-2005.pdf">standards.ieee.org/getieee802/download/</a>
<a href="http://standards.ieee.org/getieee802/download/802.1Q-2005.pdf">802.1Q-2005.pdf</a>>.
<span class="h3"><a class="selflink" id="section-12.2" href="#section-12.2">12.2</a>. Informative References</span>
[<a id="ref-RFC4017">RFC4017</a>] Stanley, D., Walker, J., and B. Aboba,
"Extensible Authentication Protocol (EAP) Method
Requirements for Wireless LANs", <a href="./rfc4017">RFC 4017</a>,
March 2005.
[<a id="ref-RFC4118">RFC4118</a>] Yang, L., Zerfos, P., and E. Sadot, "Architecture
Taxonomy for Control and Provisioning of Wireless
Access Points (CAPWAP)", <a href="./rfc4118">RFC 4118</a>, June 2005.
[<a id="ref-RFC5418">RFC5418</a>] Kelly, S. and C. Clancy, "Control And
Provisioning for Wireless Access Points (CAPWAP)
Threat Analysis for IEEE 802.11 Deployments",
<a href="./rfc5418">RFC 5418</a>, March 2009.
[<a id="ref-WPA">WPA</a>] "Deploying Wi-Fi Protected Access (WPA) and WPA2
in the Enterprise", March 2005, <www.wi-fi.org>.
[<a id="ref-WMM">WMM</a>] "Support for Multimedia Applications with Quality
of Service in WiFi Networks)", September 2004,
<www.wi-fi.org>.
<span class="grey">Calhoun, et al. Standards Track [Page 75]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-76" ></span>
<span class="grey"><a href="./rfc5416">RFC 5416</a> CAPWAP Protocol Binding for IEEE 802.11 March 2009</span>
Editors' Addresses
Pat R. Calhoun (editor)
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134
Phone: +1 408-902-3240
EMail: pcalhoun@cisco.com
Michael P. Montemurro (editor)
Research In Motion
5090 Commerce Blvd
Mississauga, ON L4W 5M4
Canada
Phone: +1 905-629-4746 x4999
EMail: mmontemurro@rim.com
Dorothy Stanley (editor)
Aruba Networks
1322 Crossman Ave
Sunnyvale, CA 94089
Phone: +1 630-363-1389
EMail: dstanley@arubanetworks.com
Calhoun, et al. Standards Track [Page 76]
</pre>
|