1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
  
     | 
    
      <pre>Network Working Group                                          T. Clancy
Request for Comments: 5433                                           LTS
Category: Standards Track                                  H. Tschofenig
                                                  Nokia Siemens Networks
                                                           February 2009
                 <span class="h1">Extensible Authentication Protocol -</span>
              <span class="h1">Generalized Pre-Shared Key (EAP-GPSK) Method</span>
Status of This Memo
   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.
Copyright Notice
   Copyright (c) 2009 IETF Trust and the persons identified as the
   document authors.  All rights reserved.
   This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
   Provisions Relating to IETF Documents in effect on the date of
   publication of this document (<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>).
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.
Abstract
   This memo defines an Extensible Authentication Protocol (EAP) method
   called EAP Generalized Pre-Shared Key (EAP-GPSK).  This method is a
   lightweight shared-key authentication protocol supporting mutual
   authentication and key derivation.
<span class="grey">Clancy & Tschofenig         Standards Track                     [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc5433">RFC 5433</a>                        EAP-GPSK                   February 2009</span>
Table of Contents
   <a href="#section-1">1</a>. Introduction ....................................................<a href="#page-3">3</a>
   <a href="#section-2">2</a>. Terminology .....................................................<a href="#page-4">4</a>
   <a href="#section-3">3</a>. Overview ........................................................<a href="#page-6">6</a>
   <a href="#section-4">4</a>. Key Derivation ..................................................<a href="#page-8">8</a>
   <a href="#section-5">5</a>. Key Management .................................................<a href="#page-11">11</a>
   <a href="#section-6">6</a>. Ciphersuites ...................................................<a href="#page-11">11</a>
   <a href="#section-7">7</a>. Generalized Key Derivation Function (GKDF) .....................<a href="#page-12">12</a>
   <a href="#section-8">8</a>. Ciphersuites Processing Rules ..................................<a href="#page-13">13</a>
      <a href="#section-8.1">8.1</a>. Ciphersuite #1 ............................................<a href="#page-13">13</a>
           <a href="#section-8.1.1">8.1.1</a>. Encryption .........................................<a href="#page-13">13</a>
           <a href="#section-8.1.2">8.1.2</a>. Integrity ..........................................<a href="#page-13">13</a>
      <a href="#section-8.2">8.2</a>. Ciphersuite #2 ............................................<a href="#page-14">14</a>
           <a href="#section-8.2.1">8.2.1</a>. Encryption .........................................<a href="#page-14">14</a>
           <a href="#section-8.2.2">8.2.2</a>. Integrity ..........................................<a href="#page-14">14</a>
   <a href="#section-9">9</a>. Packet Formats .................................................<a href="#page-15">15</a>
      <a href="#section-9.1">9.1</a>. Header Format .............................................<a href="#page-15">15</a>
      <a href="#section-9.2">9.2</a>. Ciphersuite Formatting ....................................<a href="#page-16">16</a>
      <a href="#section-9.3">9.3</a>. Payload Formatting ........................................<a href="#page-16">16</a>
      <a href="#section-9.4">9.4</a>. Protected Data ............................................<a href="#page-21">21</a>
   <a href="#section-10">10</a>. Packet Processing Rules .......................................<a href="#page-24">24</a>
   <a href="#section-11">11</a>. Example Message Exchanges .....................................<a href="#page-25">25</a>
   <a href="#section-12">12</a>. Security Considerations .......................................<a href="#page-28">28</a>
      <a href="#section-12.1">12.1</a>. Security Claims ..........................................<a href="#page-28">28</a>
      <a href="#section-12.2">12.2</a>. Mutual Authentication ....................................<a href="#page-29">29</a>
      <a href="#section-12.3">12.3</a>. Protected Result Indications .............................<a href="#page-29">29</a>
      <a href="#section-12.4">12.4</a>. Integrity Protection .....................................<a href="#page-29">29</a>
      <a href="#section-12.5">12.5</a>. Replay Protection ........................................<a href="#page-30">30</a>
      <a href="#section-12.6">12.6</a>. Reflection Attacks .......................................<a href="#page-30">30</a>
      <a href="#section-12.7">12.7</a>. Dictionary Attacks .......................................<a href="#page-30">30</a>
      <a href="#section-12.8">12.8</a>. Key Derivation and Key Strength ..........................<a href="#page-31">31</a>
      <a href="#section-12.9">12.9</a>. Denial-of-Service Resistance .............................<a href="#page-31">31</a>
      <a href="#section-12.10">12.10</a>. Session Independence ....................................<a href="#page-32">32</a>
      <a href="#section-12.11">12.11</a>. Compromise of the PSK ...................................<a href="#page-32">32</a>
      <a href="#section-12.12">12.12</a>. Fragmentation ...........................................<a href="#page-32">32</a>
      <a href="#section-12.13">12.13</a>. Channel Binding .........................................<a href="#page-32">32</a>
      <a href="#section-12.14">12.14</a>. Fast Reconnect ..........................................<a href="#page-33">33</a>
      <a href="#section-12.15">12.15</a>. Identity Protection .....................................<a href="#page-33">33</a>
      <a href="#section-12.16">12.16</a>. Protected Ciphersuite Negotiation .......................<a href="#page-33">33</a>
      <a href="#section-12.17">12.17</a>. Confidentiality .........................................<a href="#page-34">34</a>
      <a href="#section-12.18">12.18</a>. Cryptographic Binding ...................................<a href="#page-34">34</a>
   <a href="#section-13">13</a>. IANA Considerations ...........................................<a href="#page-34">34</a>
   <a href="#section-14">14</a>. Contributors ..................................................<a href="#page-35">35</a>
   <a href="#section-15">15</a>. Acknowledgments ...............................................<a href="#page-36">36</a>
   <a href="#section-16">16</a>. References ....................................................<a href="#page-37">37</a>
      <a href="#section-16.1">16.1</a>. Normative References .....................................<a href="#page-37">37</a>
      <a href="#section-16.2">16.2</a>. Informative References ...................................<a href="#page-38">38</a>
<span class="grey">Clancy & Tschofenig         Standards Track                     [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc5433">RFC 5433</a>                        EAP-GPSK                   February 2009</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>.  Introduction</span>
   EAP Generalized Pre-Shared Key (EAP-GPSK) is an EAP method defining a
   generalized pre-shared key authentication technique.  Mutual
   authentication is achieved through a nonce-based exchange that is
   secured by a pre-shared key.
   EAP-GPSK addresses a large number of design goals with the intention
   of being applicable in a broad range of usage scenarios.
   The main design goals of EAP-GPSK are:
   Simplicity:
      EAP-GPSK should be easy to implement.
   Security Model:
      EAP-GPSK has been designed in a threat model where the attacker
      has full control over the communication channel.  This EAP threat
      model is presented in <a href="./rfc3748#section-7.1">Section 7.1 of [RFC3748]</a>.
   Efficiency:
      EAP-GPSK does not make use of public key cryptography and fully
      relies of symmetric cryptography.  The restriction of symmetric
      cryptographic computations allows for low computational overhead.
      Hence, EAP-GPSK is lightweight and well suited for any type of
      device, especially those with processing power, memory, and
      battery constraints.  Additionally, it seeks to minimize the
      number of round trips.
   Flexibility:
      EAP-GPSK offers cryptographic flexibility.  At the beginning, the
      EAP server proposes a list of ciphersuites.  The client then
      selects one.  The current version of EAP-GPSK includes two
      ciphersuites, but additional ones can be easily added.
   Extensibility:
      The design of EAP-GPSK allows to securely exchange information
      between the EAP peer and the EAP server using protected data
      fields.  These fields might, for example, be used to exchange
      channel binding information or to provide support for identity
      confidentiality.
<span class="grey">Clancy & Tschofenig         Standards Track                     [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc5433">RFC 5433</a>                        EAP-GPSK                   February 2009</span>
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>.  Terminology</span>
   In this document, several words are used to signify the requirements
   of the specification.  These words are often capitalized.  The key
   words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
   "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document
   are to be interpreted as described in [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
   This section describes the various variables and functions used in
   the EAP-GPSK method.
   Variables:
   CSuite_List:  An octet array listing available ciphersuites (variable
      length).
   CSuite_Sel:  Ciphersuite selected by the peer (6 octets).
   ID_Peer:  Peer Network Access Identifier (NAI) [<a href="./rfc4282" title=""The Network Access Identifier"">RFC4282</a>].
   ID_Server:  Server identity as an opaque blob.
   KS:  Integer representing the input key size, in octets, of the
      selected ciphersuite CSuite_Sel.  The key size is one of the
      ciphersuite parameters.
   ML:  Integer representing the length of the Message Authentication
      Code (MAC) output, in octets, of the selected ciphersuite
      CSuite_Sel.
   PD_Payload:  Data carried within the protected data payload.
   PD_Payload_Block:  Block of possibly multiple PD_Payloads carried by
      a GPSK packet.
   PL:  Integer representing the length of the PSK in octets (2 octets).
      PL MUST be larger than or equal to KS.
   RAND_Peer:  Random integer generated by the peer (32 octets).
   RAND_Server:  Random integer generated by the server (32 octets).
<span class="grey">Clancy & Tschofenig         Standards Track                     [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc5433">RFC 5433</a>                        EAP-GPSK                   February 2009</span>
   Operations:
   A || B:  Concatenation of octet strings A and B.
   A**B:  Integer exponentiation.
   truncate(A,B):  Returns the first B octets of A.
   ENC_X(Y):  Encryption of message Y with a symmetric key X, using a
      defined block cipher.
   KDF-X(Y):  Key Derivation Function that generates an arbitrary number
      of octets of output using secret X and seed Y.
   length(X):  Function that returns the length of input X in octets,
      encoded as a 2-octet integer in network byte order.
   MAC_X(Y):  Keyed message authentication code computed over Y with
      symmetric key X.
   SEC_X(Y):  SEC is a function that provides integrity protection based
      on the chosen ciphersuite.  The function SEC uses the algorithm
      defined by the selected ciphersuite and applies it to the message
      content Y with key X.  In short, SEC_X(Y) = Y || MAC_X(Y).
   X[A..B]:  Notation representing octets A through B of octet array X
      where the first octet of the array has index zero.
   The following abbreviations are used for the keying material:
   EMSK:  Extended Master Session Key is exported by the EAP method (64
          octets).
   MK:    A session-specific Master Key between the peer and EAP server
          from which all other EAP method session keys are derived (KS
          octets).
   MSK:   Master Session Key exported by the EAP method (64 octets).
   PK:    Session key generated from the MK and used during protocol
          exchange to encrypt protected data (KS octets).
   PSK:   Long-term key shared between the peer and the server (PL
          octets).
   SK:    Session key generated from the MK and used during protocol
          exchange to demonstrate knowledge of the PSK (KS octets).
<span class="grey">Clancy & Tschofenig         Standards Track                     [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc5433">RFC 5433</a>                        EAP-GPSK                   February 2009</span>
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>.  Overview</span>
   The EAP framework (see <a href="./rfc3748#section-1.3">Section 1.3 of [RFC3748]</a>) defines three basic
   steps that occur during the execution of an EAP conversation between
   the EAP peer, the Authenticator, and the EAP server.
   1.  The first phase, discovery, is handled by the underlying
       protocol, e.g., IEEE 802.1X as utilized by IEEE 802.11 [<a href="#ref-80211" title=""Information technology - Telecommunications and Information Exchange Between Systems - Local and Metropolitan Area Networks - Specific Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications"">80211</a>].
   2.  The EAP authentication phase with EAP-GPSK is defined in this
       document.
   3.  The secure association distribution and secure association phases
       are handled differently depending on the underlying protocol.
   EAP-GPSK performs mutual authentication between the EAP peer ("Peer")
   and EAP server ("Server") based on a pre-shared key (PSK).  The
   protocol consists of the message exchanges (GPSK-1, ..., GPSK-4) in
   which both sides exchange nonces and their identities, and compute
   and exchange a Message Authentication Code (MAC) over the previously
   exchanged values, keyed with the pre-shared key.  This MAC is
   considered as proof of possession of the pre-shared key.  Two further
   messages, namely GPSK-Fail and GPSK-Protected-Fail, are used to deal
   with error situations.
   A successful protocol exchange is shown in Figure 1.
<span class="grey">Clancy & Tschofenig         Standards Track                     [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc5433">RFC 5433</a>                        EAP-GPSK                   February 2009</span>
   +--------+                                     +--------+
   |        |                EAP-Request/Identity |        |
   |  EAP   |<------------------------------------|  EAP   |
   |  peer  |                                     | server |
   |        | EAP-Response/Identity               |        |
   |        |------------------------------------>|        |
   |        |                                     |        |
   |        |                  EAP-Request/GPSK-1 |        |
   |        |<------------------------------------|        |
   |        |                                     |        |
   |        | EAP-Response/GPSK-2                 |        |
   |        |------------------------------------>|        |
   |        |                                     |        |
   |        |                  EAP-Request/GPSK-3 |        |
   |        |<------------------------------------|        |
   |        |                                     |        |
   |        | EAP-Response/GPSK-4                 |        |
   |        |------------------------------------>|        |
   |        |                                     |        |
   |        |          EAP-Success                |        |
   |        |<------------------------------------|        |
   +--------+                                     +--------+
                Figure 1: EAP-GPSK: Successful Exchange
   The full EAP-GPSK protocol is as follows:
   GPSK-1:
      ID_Server, RAND_Server, CSuite_List
   GPSK-2:
      SEC_SK(ID_Peer, ID_Server, RAND_Peer, RAND_Server, CSuite_List,
      CSuite_Sel, [ ENC_PK(PD_Payload_Block) ] )
   GPSK-3:
      SEC_SK(RAND_Peer, RAND_Server, ID_Server, CSuite_Sel, [
      ENC_PK(PD_Payload_Block) ] )
   GPSK-4:
      SEC_SK( [ ENC_PK(PD_Payload_Block) ] )
<span class="grey">Clancy & Tschofenig         Standards Track                     [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc5433">RFC 5433</a>                        EAP-GPSK                   February 2009</span>
   The EAP server begins EAP-GPSK by selecting a random number
   RAND_Server and encoding the supported ciphersuites into CSuite_List.
   A ciphersuite consists of an encryption algorithm, a key derivation
   function, and a message authentication code.
   In GPSK-1, the EAP server sends its identity ID_Server, a random
   number RAND_Server, and a list of supported ciphersuites CSuite_List.
   The decision of which ciphersuite to offer and which ciphersuite to
   pick is policy- and implementation-dependent and, therefore, outside
   the scope of this document.
   In GPSK-2, the peer sends its identity ID_Peer and a random number
   RAND_Peer.  Furthermore, it repeats the received parameters of the
   GPSK-1 message (ID_Server, RAND_Server, CSuite_List) and the selected
   ciphersuite.  It computes a Message Authentication Code over all the
   transmitted parameters.
   The EAP server verifies the received Message Authentication Code and
   the consistency of the identities, nonces, and ciphersuite parameters
   transmitted in GPSK-1.  In case of successful verification, the EAP
   server computes a Message Authentication Code over the session
   parameter and returns it to the peer (within GPSK-3).  Within GPSK-2
   and GPSK-3, the EAP peer and EAP server have the possibility to
   exchange encrypted protected data parameters.
   The peer verifies the received Message Authentication Code and the
   consistency of the identities, nonces, and ciphersuite parameters
   transmitted in GPSK-2.  If the verification is successful, GPSK-4 is
   prepared.  This message can optionally contain the peer's protected
   data parameters.
   Upon receipt of GPSK-4, the server processes any included
   PD_Payload_Block.  Then, the EAP server sends an EAP Success message
   to indicate the successful outcome of the authentication.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>.  Key Derivation</span>
   EAP-GPSK provides key derivation in compliance to the requirements of
   [<a href="./rfc3748" title=""Extensible Authentication Protocol (EAP)"">RFC3748</a>] and [<a href="./rfc5247" title=""Extensible Authentication Protocol (EAP) Key Management Framework"">RFC5247</a>].  Note that this section provides an abstract
   description for the key derivation procedure that needs to be
   instantiated with a specific ciphersuite.
   The long-term credential shared between EAP peer and EAP server
   SHOULD be a strong pre-shared key PSK of at least 16 octets, though
   its length and entropy are variable.  While it is possible to use a
   password or passphrase, doing so is NOT RECOMMENDED as EAP-GPSK is
   vulnerable to dictionary attacks.
<span class="grey">Clancy & Tschofenig         Standards Track                     [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc5433">RFC 5433</a>                        EAP-GPSK                   February 2009</span>
   During an EAP-GPSK authentication, a Master Key MK, a Session Key SK,
   and a Protected Data Encryption Key PK (if using an encrypting
   ciphersuite) are derived using the ciphersuite-specified KDF and data
   exchanged during the execution of the protocol, namely 'RAND_Peer ||
   ID_Peer || RAND_Server || ID_Server', referred to as inputString in
   its short-hand form.
   In case of successful completion, EAP-GPSK derives and exports an MSK
   and an EMSK, each 64 octets in length.
   The following notation is used: KDF-X(Y, Z)[<a href="#ref-A..B">A..B</a>], whereby
   X  is the length, in octets, of the desired output,
   Y  is a secret key,
   Z  is the inputString,
   [<a id="ref-A..B">A..B</a>]  extracts the string of octets starting with octet A and
      finishing with octet B from the output of the KDF function.
   This keying material is derived using the ciphersuite-specified KDF
   as follows:
   o  inputString = RAND_Peer || ID_Peer || RAND_Server || ID_Server
   o  MK = KDF-KS(PSK[0..KS-1], PL || PSK || CSuite_Sel ||
      inputString)[0..KS-1]
   o  MSK = KDF-{128+2*KS}(MK, inputString)[0..63]
   o  EMSK = KDF-{128+2*KS}(MK, inputString)[64..127]
   o  SK = KDF-{128+2*KS}(MK, inputString)[128..127+KS]
   o  PK = KDF-{128+2*KS}(MK, inputString)[128+KS..127+2*KS] (if using
      an encrypting ciphersuite)
   The value for PL (the length of the PSK in octets) is encoded as a
   2-octet integer in network byte order.  Recall that KS is the length
   of the ciphersuite input key size in octets.
   Additionally, the EAP keying framework [<a href="./rfc5247" title=""Extensible Authentication Protocol (EAP) Key Management Framework"">RFC5247</a>] requires the
   definition of a Method-ID, Session-ID, Peer-ID, and Server-ID.  These
   values are defined as:
   o  Method-ID = KDF-16(PSK[0..KS-1], "Method ID" || EAP_Method_Type ||
      CSuite_Sel || inputString)[0..15]
<span class="grey">Clancy & Tschofenig         Standards Track                     [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc5433">RFC 5433</a>                        EAP-GPSK                   February 2009</span>
   o  Session-ID = EAP_Method_Type || Method_ID
   o  Peer-ID = ID_Peer
   o  Server-ID = ID_Server
   EAP_Method_Type refers to the 1-octet, IANA-allocated EAP Type code
   value.
   Figure 2 depicts the key derivation procedure of EAP-GPSK.
   +-------------+     +-------------------------------+
   |   PL-octet  |     | RAND_Peer || ID_Peer ||       |
   |     PSK     |     | RAND_Server || ID_Server      |
   +-------------+     +-------------------------------+
          |                            |            |
          |     +------------+         |            |
          |     | CSuite_Sel |         |            |
          |     +------------+         |            |
          |           |                |            |
          v           v                v            |
   +--------------------------------------------+   |
   |                    KDF                     |   |
   +--------------------------------------------+   |
                             |                      |
                             v                      |
                      +-------------+               |
                      |   KS-octet  |               |
                      |     MK      |               |
                      +-------------+               |
                             |                      |
                             v                      v
   +---------------------------------------------------+
   |                      KDF                          |
   +---------------------------------------------------+
        |             |             |            |
        v             v             v            v
   +---------+   +---------+  +----------+  +----------+
   | 64-octet|   | 64-octet|  | KS-octet |  | KS-octet |
   |   MSK   |   |  EMSK   |  |    SK    |  |   PK     |
   +---------+   +---------+  +----------+  +----------+
                     Figure 2: EAP-GPSK Key Derivation
<span class="grey">Clancy & Tschofenig         Standards Track                    [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc5433">RFC 5433</a>                        EAP-GPSK                   February 2009</span>
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>.  Key Management</span>
   In order to be interoperable, PSKs must be entered in the same way on
   both the peer and server.  The management interface for entering PSKs
   MUST support entering PSKs up to 64 octets in length as ASCII strings
   and in hexadecimal encoding.
   Additionally, the ID_Peer and ID_Server MUST be provisioned with the
   PSK.  Validation of these values is by an octet-wise comparison.  The
   management interface SHOULD support entering non-ASCII octets for the
   ID_Peer and ID_Server up to 254 octets in length.  For more
   information, the reader is advised to read <a href="./rfc4282#section-2.4">Section 2.4 of RFC 4282</a>
   [<a href="./rfc4282" title=""The Network Access Identifier"">RFC4282</a>].
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>.  Ciphersuites</span>
   The design of EAP-GPSK allows cryptographic algorithms and key sizes,
   called ciphersuites, to be negotiated during the protocol run.  The
   ability to specify block-based and hash-based ciphersuites is
   offered.  Extensibility is provided with the introduction of new
   ciphersuites; this document specifies an initial set.  The CSuite/
   Specifier column in Figure 3 uniquely identifies a ciphersuite.
   For a vendor-specific ciphersuite, the first four octets are the
   vendor-specific enterprise number that contains the IANA-assigned
   "SMI Network Management Private Enterprise Codes" value (see
   [<a href="#ref-ENTNUM" title=""SMI Network Management Private Enterprise Codes"">ENTNUM</a>]), encoded in network byte order.  The last two octets are
   vendor assigned for the specific ciphersuite.  A vendor code of
   0x00000000 indicates ciphersuites standardized by the IETF in an
   IANA-maintained registry.
   The following ciphersuites are specified in this document (recall
   that KS is the length of the ciphersuite input key length in octets,
   and ML is the length of the MAC output in octets):
   +-----------+----+-------------+----+--------------+----------------+
   | CSuite/   | KS | Encryption  | ML | Integrity /  | Key Derivation |
   | Specifier |    |             |    | KDF MAC      | Function       |
   +-----------+----+-------------+----+--------------+----------------+
   | 0x0001    | 16 | AES-CBC-128 | 16 | AES-CMAC-128 | GKDF           |
   +-----------+----+-------------+----+--------------+----------------+
   | 0x0002    | 32 | NULL        | 32 | HMAC-SHA256  | GKDF           |
   +-----------+----+-------------+----+--------------+----------------+
                          Figure 3: Ciphersuites
<span class="grey">Clancy & Tschofenig         Standards Track                    [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc5433">RFC 5433</a>                        EAP-GPSK                   February 2009</span>
   Ciphersuite 1, which is based on the Advanced Encryption Standard
   (AES) as a cryptographic primitive, MUST be implemented.  This
   document specifies also a second ciphersuite, which MAY be
   implemented.  Both ciphersuites defined in this document make use of
   the Generalized Key Derivation Function (GKDF), as defined in
   <a href="#section-7">Section 7</a>.  The following aspects need to be considered to ensure
   that the PSK that is used as input to the GKDF is sufficiently long:
   1.  The PSK used with ciphersuite 1 MUST be 128 bits in length.  Keys
       longer than 128 bits will be truncated.
   2.  The PSK used with ciphersuite 2 MUST be 256 bits in length.  Keys
       longer than 256 bits will be truncated.
   3.  It is RECOMMENDED that 256 bit keys be provisioned in all cases
       to provide enough entropy for all current and many possible
       future ciphersuites.
   Ciphersuites defined in the future that make use of the GKDF need to
   specify a minimum PSK size (as is done with the ciphersuites listed
   in this document).
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>.  Generalized Key Derivation Function (GKDF)</span>
   Each ciphersuite needs to specify a key derivation function.  The
   ciphersuites defined in this document make use of the Generalized Key
   Derivation Function (GKDF) that utilizes the MAC function defined in
   the ciphersuite.  Future ciphersuites can use any other formally
   specified KDF that takes as arguments a key and a seed value, and
   produces at least 128+2*KS octets of output.
   GKDF has the following structure:
   GKDF-X(Y, Z)
   X  length, in octets, of the desired output
   Y  secret key
   Z  inputString
   GKDF-X (Y, Z)
   {
     n = ceiling integer of ( X / ML );
        /* determine number of output blocks */
<span class="grey">Clancy & Tschofenig         Standards Track                    [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc5433">RFC 5433</a>                        EAP-GPSK                   February 2009</span>
     result = "";
     for i = 1 to n {
       result = result || MAC_Y (i || Z);
     }
     return truncate(result, X)
   }
   Note that the variable 'i' in M_i is represented as a 2-octet value
   in network byte order.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>.  Ciphersuites Processing Rules</span>
<span class="h3"><a class="selflink" id="section-8.1" href="#section-8.1">8.1</a>.  Ciphersuite #1</span>
<span class="h4"><a class="selflink" id="section-8.1.1" href="#section-8.1.1">8.1.1</a>.  Encryption</span>
   With this ciphersuite, all cryptography is built around a single
   cryptographic primitive, AES-128 ([<a href="#ref-AES" title=""Specification for the Advanced Encryption Standard (AES)"">AES</a>]).  Within the protected data
   frames, AES-128 is used in the Cipher Block Chaining (CBC) mode of
   operation (see [<a href="#ref-CBC" title=""Recommendation for Block Cipher Modes of Encryption -- Methods and Techniques"">CBC</a>]).  This EAP method uses encryption in a single
   payload, in the protected data payload (see <a href="#section-9.4">Section 9.4</a>).
   In a nutshell, the CBC mode proceeds as follows.  The IV is XORed
   with the first plaintext block before it is encrypted.  Then for
   successive blocks, the previous ciphertext block is XORed with the
   current plaintext, before it is encrypted.
<span class="h4"><a class="selflink" id="section-8.1.2" href="#section-8.1.2">8.1.2</a>.  Integrity</span>
   Ciphersuite 1 uses CMAC as Message Authentication Code.  CMAC is
   recommended by NIST.  Among its advantages, CMAC is capable to work
   with messages of arbitrary length.  A detailed description of CMAC
   can be found in [<a href="#ref-CMAC" title=""Recommendation for Block Cipher Modes of Operation: The CMAC Mode for Authentication"">CMAC</a>].
   The following instantiation is used: AES-CMAC-128(SK, Input) denotes
   the MAC of Input under the key SK where Input refers to the following
   content:
   o  Parameter within SEC_SK(Parameter) in message GPSK-2
   o  Parameter within SEC_SK(Parameter) in message GPSK-3
   o  Parameter within SEC_SK(Parameter) in message GPSK-4
<span class="grey">Clancy & Tschofenig         Standards Track                    [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc5433">RFC 5433</a>                        EAP-GPSK                   February 2009</span>
<span class="h3"><a class="selflink" id="section-8.2" href="#section-8.2">8.2</a>.  Ciphersuite #2</span>
<span class="h4"><a class="selflink" id="section-8.2.1" href="#section-8.2.1">8.2.1</a>.  Encryption</span>
   Ciphersuite 2 does not include an algorithm for encryption.  With a
   NULL encryption algorithm, encryption is defined as:
   E_X(Y) = Y
   When using this ciphersuite, the data exchanged inside the protected
   data block is not encrypted.  Therefore, this mode MUST NOT be used
   if confidential information appears inside the protected data block.
<span class="h4"><a class="selflink" id="section-8.2.2" href="#section-8.2.2">8.2.2</a>.  Integrity</span>
   Ciphersuite 2 uses the keyed MAC function HMAC, with the SHA256 hash
   algorithm (see [<a href="./rfc4634" title=""US Secure Hash Algorithms (SHA and HMAC-SHA)"">RFC4634</a>]).
   For integrity protection, the following instantiation is used:
   HMAC-SHA256(SK, Input) denotes the MAC of Input under the key SK
   where Input refers to the following content:
   o  Parameter within SEC_SK(Parameter) in message GPSK-2
   o  Parameter within SEC_SK(Parameter) in message GPSK-3
   o  Parameter within SEC_SK(Parameter) in message GPSK-4
<span class="grey">Clancy & Tschofenig         Standards Track                    [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc5433">RFC 5433</a>                        EAP-GPSK                   February 2009</span>
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>.  Packet Formats</span>
   This section defines the packet format of the EAP-GPSK messages.
<span class="h3"><a class="selflink" id="section-9.1" href="#section-9.1">9.1</a>.  Header Format</span>
   The EAP-GPSK header has the following structure:
   --- bit offset --->
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Code      |  Identifier   |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Type      |    OP-Code    |                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
   |                                                               |
   ...                         Payload                           ...
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                         Figure 4: EAP-GPSK Header
   The Code, Identifier, Length, and Type fields are all part of the EAP
   header and are defined in [<a href="./rfc3748" title=""Extensible Authentication Protocol (EAP)"">RFC3748</a>].  The Type field in the EAP
   header MUST be the value allocated by IANA for EAP-GPSK.
   The OP-Code field is one of 6 values:
   o  0x00 : Reserved
   o  0x01 : GPSK-1
   o  0x02 : GPSK-2
   o  0x03 : GPSK-3
   o  0x04 : GPSK-4
   o  0x05 : GPSK-Fail
   o  0x06 : GPSK-Protected-Fail
   All other values of this OP-Code field are available via IANA
   registration.
<span class="grey">Clancy & Tschofenig         Standards Track                    [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc5433">RFC 5433</a>                        EAP-GPSK                   February 2009</span>
<span class="h3"><a class="selflink" id="section-9.2" href="#section-9.2">9.2</a>.  Ciphersuite Formatting</span>
   Ciphersuites are encoded as 6-octet arrays.  The first four octets
   indicate the CSuite/Vendor field.  For vendor-specific ciphersuites,
   this represents the vendor enterprise number and contains the IANA-
   assigned "SMI Network Management Private Enterprise Codes" value (see
   [<a href="#ref-ENTNUM" title=""SMI Network Management Private Enterprise Codes"">ENTNUM</a>]), encoded in network byte order.  The last two octets
   indicate the CSuite/Specifier field, which identifies the particular
   ciphersuite.  The 4-octet CSuite/Vendor value 0x00000000 indicates
   ciphersuites allocated by the IETF.
   Graphically, they are represented as:
   --- bit offset --->
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       CSuite/Vendor = 0x00000000 or enterprise number         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      CSuite/Specifier         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                     Figure 5: Ciphersuite Formatting
   CSuite_Sel is encoded as a 6-octet ciphersuite CSuite/Vendor and
   CSuite/Specifier pair.
   CSuite_List is a variable-length octet array of ciphersuites.  It is
   encoded by concatenating encoded ciphersuite values.  Its length in
   octets MUST be a multiple of 6.
<span class="h3"><a class="selflink" id="section-9.3" href="#section-9.3">9.3</a>.  Payload Formatting</span>
   Payload formatting is based on the protocol exchange description in
   <a href="#section-3">Section 3</a>.
<span class="grey">Clancy & Tschofenig         Standards Track                    [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc5433">RFC 5433</a>                        EAP-GPSK                   February 2009</span>
   The GPSK-1 payload format is defined as follows:
   --- bit offset --->
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       length(ID_Server)       |                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
   |                                                               |
   ...                         ID_Server                         ...
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   ...                   32-octet RAND_Server                    ...
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      length(CSuite_List)      |                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
   |                                                               |
   ...                        CSuite_List                        ...
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                         Figure 6: GPSK-1 Payload
<span class="grey">Clancy & Tschofenig         Standards Track                    [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc5433">RFC 5433</a>                        EAP-GPSK                   February 2009</span>
   The GPSK-2 payload format is defined as follows:
   --- bit offset --->
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |        length(ID_Peer)        |                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
   |                                                               |
   ...                         ID_Peer                         ...
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       length(ID_Server)       |                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
   |                                                               |
   ...                         ID_Server                         ...
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   ...                     32-octet RAND_Peer                    ...
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   ...                    32-octet RAND_Server                   ...
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      length(CSuite_List)      |                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
   |                                                               |
   ...                        CSuite_List                        ...
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           CSuite_Sel                          |
   +                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                               |   length(PD_Payload_Block)    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   ...                 optional PD_Payload_Block                 ...
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   ...                   ML-octet payload MAC                    ...
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                         Figure 7: GPSK-2 Payload
<span class="grey">Clancy & Tschofenig         Standards Track                    [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc5433">RFC 5433</a>                        EAP-GPSK                   February 2009</span>
   If the optional protected data payload is not included, then
   length(PD_Payload_Block)=0 and the PD payload is excluded.  The
   payload MAC covers the entire packet, from the ID_Peer length through
   the optional PD_Payload_Block.
   The GPSK-3 payload is defined as follows:
   --- bit offset --->
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   ...                    32-octet RAND_Peer                   ...
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   ...                    32-octet RAND_Server                   ...
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |       length(ID_Server)       |                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
   |                                                               |
   ...                         ID_Server                         ...
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           CSuite_Sel                          |
   +                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                               |   length(PD_Payload_Block)    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   ...                 optional PD_Payload_Block                 ...
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   ...                   ML-octet payload MAC                    ...
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                         Figure 8: GPSK-3 Payload
   If the optional protected data payload is not included, then
   length(PD_Payload_Block)=0 and the PD payload is excluded.  The
   payload MAC covers the entire packet, from the RAND_Peer through the
   optional PD_Payload_Block.
<span class="grey">Clancy & Tschofenig         Standards Track                    [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc5433">RFC 5433</a>                        EAP-GPSK                   February 2009</span>
   The GPSK-4 payload format is defined as follows:
   --- bit offset --->
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   length(PD_Payload_Block)    |                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
   |                                                               |
   ...                 optional PD_Payload_Block                 ...
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   ...                   ML-octet payload MAC                    ...
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                         Figure 9: GPSK-4 Payload
   If the optional protected data payload is not included, then
   length(PD_Payload_Block)=0 and the PD payload is excluded.  The MAC
   MUST always be included, regardless of the presence of
   PD_Payload_Block.  The payload MAC covers the entire packet, from the
   PD_Payload_Block length through the optional PD_Payload_Block.
   The GPSK-Fail payload format is defined as follows:
   --- bit offset --->
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                         Failure-Code                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                       Figure 10: GPSK-Fail Payload
<span class="grey">Clancy & Tschofenig         Standards Track                    [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc5433">RFC 5433</a>                        EAP-GPSK                   February 2009</span>
   The GPSK-Protected-Fail payload format is defined as follows:
   --- bit offset --->
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                         Failure-Code                          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   ...                   ML-octet payload MAC                    ...
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                  Figure 11: GPSK-Protected-Fail Payload
   The Failure-Code field is one of three values, but can be extended:
   o  0x00000000 : Reserved
   o  0x00000001 : PSK Not Found
   o  0x00000002 : Authentication Failure
   o  0x00000003 : Authorization Failure
   All other values of this field are available via IANA registration.
   "PSK Not Found" indicates a key for a particular user could not be
   located, making authentication impossible.  "Authentication Failure"
   indicates a MAC failure due to a PSK mismatch.  "Authorization
   Failure" indicates that while the PSK being used is correct, the user
   is not authorized to connect.
<span class="h3"><a class="selflink" id="section-9.4" href="#section-9.4">9.4</a>.  Protected Data</span>
   The protected data blocks are a generic mechanism for the peer and
   server to securely exchange data.  If the specified ciphersuite has a
   NULL encryption primitive, then this channel only offers
   authenticity, not confidentiality.
   These payloads are encoded as the concatenation of type-length-value
   (TLV) triples called PD_Payloads.
   Type values are encoded as a 6-octet string and represented by a
   4-octet vendor and a 2-octet specifier field.  The vendor field
   indicates the type as either standards-specified or vendor-specific.
<span class="grey">Clancy & Tschofenig         Standards Track                    [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc5433">RFC 5433</a>                        EAP-GPSK                   February 2009</span>
   If these four octets are 0x00000000, then the value is standards-
   specified, and any other value represents a vendor-specific
   enterprise number.
   The specifier field indicates the actual type.  For vendor field
   0x00000000, the specifier field is maintained by IANA.  For any other
   vendor field, the specifier field is maintained by the vendor.
   Length fields are specified as 2-octet integers in network byte
   order, reflect only the length of the value, and do not include the
   length of the type and length fields.
   Graphically, this can be depicted as follows:
   --- bit offset --->
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                   PData/Vendor                                |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
            PData/Specifier        |         PData/Length          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   ...                        PData/Value                        ...
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
         Figure 12: Protected Data Payload (PD_Payload) Formatting
   These PD_Payloads are concatenated together to form a
   PD_Payload_Block.  If the CSuite_Sel includes support for encryption,
   then the PD_Payload_Block includes fields specifying an
   Initialization Vector (IV) and the necessary padding.  This can be
   depicted as follows:
<span class="grey">Clancy & Tschofenig         Standards Track                    [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc5433">RFC 5433</a>                        EAP-GPSK                   February 2009</span>
   --- bit offset --->
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   IV Length   |                                               |
   +-+-+-+-+-+-+-+-+      Initialization Vector                    +
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   ...                        PD_Payload                         ...
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   ...                 optional PD_Payload, etc                  ...
   |                                                               |
   +               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |               |             Padding (0-255 octets)            |
   +-+-+-+-+-+-+-+-+                               +-+-+-+-+-+-+-+-+
   |                                               |  Pad Length   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
            Figure 13: Protected Data Block (PD_Payload_Block)
                   Formatting if Encryption is Supported
   The Initialization Vector is a randomly chosen value whose length is
   equal to the specified IV Length.  The required length is defined by
   the ciphersuite.  Recipients MUST accept any value.  Senders SHOULD
   either pick this value pseudo-randomly and independently for each
   message or use the final ciphertext block of the previous message
   sent.  Senders MUST NOT use the same value for each message, use a
   sequence of values with low hamming distance (e.g., a sequence
   number), or use ciphertext from a received message.  IVs should be
   selected per the security requirements of the underlying cipher.  If
   the data is not being encrypted, then the IV Length MUST be 0.  If
   the ciphersuite does not require an IV, or has a self-contained way
   of communicating the IV, then the IV Length field MUST be 0.  In
   these cases, the ciphersuite definition defines how the IV is
   encapsulated in the PD_Payload.
   The concatenation of PD_Payloads along with the padding and padding
   length are all encrypted using the negotiated block cipher.  If no
   block cipher is specified, then these fields are not encrypted.
   The Padding field MAY contain any value chosen by the sender.  For
   block-based cipher modes, the padding MUST have a length that makes
   the combination of the concatenation of PD_Payloads, the Padding, and
   the Pad Length to be a multiple of the encryption block size.  If the
<span class="grey">Clancy & Tschofenig         Standards Track                    [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc5433">RFC 5433</a>                        EAP-GPSK                   February 2009</span>
   underlying ciphersuite does not require padding (e.g., a stream-based
   cipher mode) or no encryption is being used, then the padding length
   MUST still be present and be 0.
   The Pad Length field is the length of the Padding field.  The sender
   SHOULD set the Pad Length to the minimum value that makes the
   combination of the PD_Payloads, the Padding, and the Pad Length a
   multiple of the block size (in the case of block-based cipher modes),
   but the recipient MUST accept any length that results in proper
   alignment.  This field is encrypted with the negotiated cipher.
   If the negotiated ciphersuite does not support encryption, then the
   IV field MUST be of length 0 and the padding field MUST be of length
   0.  The IV length and padding length fields MUST still be present,
   and contain the value 0.  The rationale for still requiring the
   length fields is to allow for modular implementations where the
   crypto processing is independent of the payload processing.  This is
   depicted in the following figure.
   --- bit offset --->
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      0x00     |                                               |
   +-+-+-+-+-+-+-+-+          PD_Payload                         ...
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   ...                 optional PD_Payload, etc    +-+-+-+-+-+-+-+-+
   |                                               |      0x00     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
            Figure 14: Protected Data Block (PD_Payload_Block)
                       Formatting Without Encryption
   For PData/Vendor field 0x00000000, the following PData/Specifier
   fields are defined:
   o  0x0000 : Reserved
   All other values of this field are available via IANA registration.
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>.  Packet Processing Rules</span>
   This section defines how the EAP peer and EAP server MUST behave when
   a received packet is deemed invalid.
<span class="grey">Clancy & Tschofenig         Standards Track                    [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc5433">RFC 5433</a>                        EAP-GPSK                   February 2009</span>
   Any EAP-GPSK packet that cannot be parsed by the EAP peer or the EAP
   server MUST be silently discarded.  An EAP peer or EAP server
   receiving any unexpected packet (e.g., an EAP peer receiving GPSK-3
   before receiving GPSK-1 or before transmitting GPSK-2) MUST silently
   discard the packet.
   GPSK-1 contains no MAC protection, so provided it properly parses, it
   MUST be accepted by the peer.  If the EAP peer has no ciphersuites in
   common with the server or decides the ID_Server is that of an
   Authentication, Authorization, and Accounting (AAA) server to which
   it does not wish to authenticate, the EAP peer MUST respond with an
   EAP-NAK.
   For GPSK-2, if the ID_Peer is for an unknown user, the EAP server
   MUST send either a "PSK Not Found" GPSK-Fail message or an
   "Authentication Failure" GPSK-Fail, depending on its policy.  If the
   MAC validation fails, the server MUST transmit a GPSK-Fail message
   specifying "Authentication Failure".  If the RAND_Server or
   CSuite_List field in GPSK-2 does not match the values in GPSK-1, the
   server MUST silently discard the packet.  If server policy determines
   the peer is not authorized and the MAC is correct, the server MUST
   transmit a GPSK-Protected-Fail message indicating "Authorization
   Failure", and discard the received packet.
   A peer receiving a GPSK-Fail / GPSK-Protected-Fail message in
   response to a GPSK-2 message MUST replay the received GPSK-Fail /
   GPSK-Protected-Fail message.  Then, the EAP server returns an EAP-
   Failure after receiving the GPSK-Fail / GPSK-Protected-Fail message
   to correctly finish the EAP conversation.  If MAC validation on a
   GPSK-Protected-Fail packet fails, then the received packet MUST be
   silently discarded.
   For GPSK-3, a peer MUST silently discard messages where the
   RAND_Peer, ID_Server, or the CSuite_Sel fields do not match those
   transmitted in GPSK-2.  An EAP peer MUST silently discard any packet
   whose MAC fails.
   For GPSK-4, a server MUST silently discard any packet whose MAC fails
   validation.
   If a decryption failure of a protected payload is detected, the
   recipient MUST silently discard the GPSK packet.
<span class="h2"><a class="selflink" id="section-11" href="#section-11">11</a>.  Example Message Exchanges</span>
   This section shows a couple of example message flows.
   A successful EAP-GPSK message exchange is shown in Figure 1.
<span class="grey">Clancy & Tschofenig         Standards Track                    [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc5433">RFC 5433</a>                        EAP-GPSK                   February 2009</span>
   +--------+                                     +--------+
   |        |                EAP-Request/Identity |        |
   |  EAP   |<------------------------------------|  EAP   |
   |  peer  |                                     | server |
   |        | EAP-Response/Identity               |        |
   |        |------------------------------------>|        |
   |        |                                     |        |
   |        |                  EAP-Request/GPSK-1 |        |
   |        |<------------------------------------|        |
   |        |                                     |        |
   |        | EAP-Response/EAP-NAK                |        |
   |        |------------------------------------>|        |
   |        |                                     |        |
   |        |          EAP-Failure                |        |
   |        |<------------------------------------|        |
   +--------+                                     +--------+
                Figure 15: EAP-GPSK: Unsuccessful Exchange
               (Unacceptable AAA Server Identity; ID_Server)
   +--------+                                     +--------+
   |        |                EAP-Request/Identity |        |
   |  EAP   |<------------------------------------|  EAP   |
   |  peer  |                                     | server |
   |        | EAP-Response/Identity               |        |
   |        |------------------------------------>|        |
   |        |                                     |        |
   |        |                  EAP-Request/GPSK-1 |        |
   |        |<------------------------------------|        |
   |        |                                     |        |
   |        | EAP-Response/GPSK-2                 |        |
   |        |------------------------------------>|        |
   |        |                                     |        |
   |        | EAP-Request/GPSK-Fail               |        |
   |        | (PSK Not Found or Authentication    |        |
   |        | Failure)                            |        |
   |        |<------------------------------------|        |
   |        |                                     |        |
   |        | EAP-Response/GPSK-Fail              |        |
   |        | (PSK Not Found or Authentication    |        |
   |        | Failure)                            |        |
   |        |------------------------------------>|        |
   |        |                                     |        |
   |        |          EAP-Failure                |        |
   |        |<------------------------------------|        |
   +--------+                                     +--------+
         Figure 16: EAP-GPSK: Unsuccessful Exchange (Unknown User)
<span class="grey">Clancy & Tschofenig         Standards Track                    [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc5433">RFC 5433</a>                        EAP-GPSK                   February 2009</span>
   +--------+                                     +--------+
   |        |                EAP-Request/Identity |        |
   |  EAP   |<------------------------------------|  EAP   |
   |  peer  |                                     | server |
   |        | EAP-Response/Identity               |        |
   |        |------------------------------------>|        |
   |        |                                     |        |
   |        |                  EAP-Request/GPSK-1 |        |
   |        |<------------------------------------|        |
   |        |                                     |        |
   |        | EAP-Response/GPSK-2                 |        |
   |        |------------------------------------>|        |
   |        |                                     |        |
   |        | EAP-Request/GPSK-Fail               |        |
   |        | (Authentication Failure)            |        |
   |        |<------------------------------------|        |
   |        |                                     |        |
   |        | EAP-Response/GPSK-Fail              |        |
   |        | (Authentication Failure)            |        |
   |        |------------------------------------>|        |
   |        |                                     |        |
   |        |          EAP-Failure                |        |
   |        |<------------------------------------|        |
   +--------+                                     +--------+
    Figure 17: EAP-GPSK: Unsuccessful Exchange (Invalid MAC in GPSK-2)
<span class="grey">Clancy & Tschofenig         Standards Track                    [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc5433">RFC 5433</a>                        EAP-GPSK                   February 2009</span>
   +--------+                                     +--------+
   |        |                EAP-Request/Identity |        |
   |  EAP   |<------------------------------------|  EAP   |
   |  peer  |                                     | server |
   |        | EAP-Response/Identity               |        |
   |        |------------------------------------>|        |
   |        |                                     |        |
   |        |                  EAP-Request/GPSK-1 |        |
   |        |<------------------------------------|        |
   |        |                                     |        |
   |        | EAP-Response/GPSK-2                 |        |
   |        |------------------------------------>|        |
   |        |                                     |        |
   |        | EAP-Request/                        |        |
   |        | GPSK-Protected-Fail                 |        |
   |        | (Authorization Failure)             |        |
   |        |<------------------------------------|        |
   |        |                                     |        |
   |        | EAP-Request/                        |        |
   |        | GPSK-Protected-Fail                 |        |
   |        | (Authorization Failure)             |        |
   |        |------------------------------------>|        |
   |        |                                     |        |
   |        |          EAP-Failure                |        |
   |        |<------------------------------------|        |
   +--------+                                     +--------+
    Figure 18: EAP-GPSK: Unsuccessful Exchange (Authorization Failure)
<span class="h2"><a class="selflink" id="section-12" href="#section-12">12</a>.  Security Considerations</span>
   [<a id="ref-RFC3748">RFC3748</a>] highlights several attacks that are possible against EAP
   since EAP itself does not provide any security.
   This section discusses the claimed security properties of EAP-GPSK as
   well as vulnerabilities and security recommendations in the threat
   model of [<a href="./rfc3748" title=""Extensible Authentication Protocol (EAP)"">RFC3748</a>].
<span class="h3"><a class="selflink" id="section-12.1" href="#section-12.1">12.1</a>.  Security Claims</span>
   Authentication mechanism:  Shared Keys
   Ciphersuite negotiation:  Yes (<a href="#section-12.16">Section 12.16</a>)
   Mutual authentication:  Yes (<a href="#section-12.2">Section 12.2</a>)
   Integrity protection:  Yes (<a href="#section-12.4">Section 12.4</a>)
   Replay protection:  Yes (<a href="#section-12.5">Section 12.5</a>)
   Confidentiality:  No (<a href="#section-12.17">Section 12.17</a>, <a href="#section-12.15">Section 12.15</a>)
   Key derivation:  Yes (<a href="#section-12.8">Section 12.8</a>)
   Key strength:  Varies (<a href="#section-12.8">Section 12.8</a>)
<span class="grey">Clancy & Tschofenig         Standards Track                    [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc5433">RFC 5433</a>                        EAP-GPSK                   February 2009</span>
   Dictionary attack protection:  No (<a href="#section-12.7">Section 12.7</a>)
   Fast reconnect:  No (<a href="#section-12.14">Section 12.14</a>)
   Cryptographic binding:  N/A (<a href="#section-12.18">Section 12.18</a>)
   Session independence:  Yes (<a href="#section-12.10">Section 12.10</a>)
   Fragmentation:  No (<a href="#section-12.12">Section 12.12</a>)
   Channel binding:  Extensible (<a href="#section-12.13">Section 12.13</a>)
<span class="h3"><a class="selflink" id="section-12.2" href="#section-12.2">12.2</a>.  Mutual Authentication</span>
   EAP-GPSK provides mutual authentication.
   The server believes that the peer is authentic when it successfully
   verifies the MAC in the GPSK-2 message; the peer believes that the
   server is authentic when it successfully verifies the MAC it receives
   with the GPSK-3 message.
   The key used for mutual authentication is derived based on the long-
   term secret PSK, nonces contributed by both parties, and other
   parameters.  The long-term secret PSK has to provide sufficient
   entropy and, therefore, sufficient strength.  The nonces (RAND_Peer
   and RAND_Server) need to be fresh and unique for every session.  In
   this way, EAP-GPSK is not different than other authentication
   protocols based on pre-shared keys.
<span class="h3"><a class="selflink" id="section-12.3" href="#section-12.3">12.3</a>.  Protected Result Indications</span>
   EAP-GPSK supports protected result indications via the GPSK-
   Protected-Fail message.  This allows a server to provide additional
   information to the peer as to why the session failed, and to do so in
   an authenticated way (if possible).  In particular, the server can
   indicate the lack of PSK (account not present), failed authentication
   (PSK incorrect), or authorization failure (account disabled or
   unauthorized).  Only the third message could be integrity protected.
   It should be noted that these options make debugging network and
   account errors easier, but they also leak information about accounts
   to attackers.  An attacker can determine if a particular ID_Peer is a
   valid user on the network or not.  Thus, implementers should use care
   in enabling this particular option on their servers.  If they are in
   an environment where such attacks are of concern, then protected
   result indication capabilities should be disabled.
<span class="h3"><a class="selflink" id="section-12.4" href="#section-12.4">12.4</a>.  Integrity Protection</span>
   EAP-GPSK provides integrity protection based on the ciphersuites
   suggested in this document.  Integrity protection is a minimum
   feature every ciphersuite must provide.
<span class="grey">Clancy & Tschofenig         Standards Track                    [Page 29]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-30" ></span>
<span class="grey"><a href="./rfc5433">RFC 5433</a>                        EAP-GPSK                   February 2009</span>
<span class="h3"><a class="selflink" id="section-12.5" href="#section-12.5">12.5</a>.  Replay Protection</span>
   EAP-GPSK provides replay protection of its mutual authentication part
   thanks to the use of random numbers RAND_Server and RAND_Peer.  Since
   RAND_Server is 32 octets long, one expects to have to record 2**64
   (i.e., approximately 1.84*10**19) EAP-GPSK successful authentications
   before a protocol run can be replayed.  Hence, EAP-GPSK provides
   replay protection of its mutual authentication part as long as
   RAND_Server and RAND_Peer are chosen at random; randomness is
   critical for replay protection.  <a href="./rfc4086">RFC 4086</a> [<a href="./rfc4086" title=""Randomness Requirements for Security"">RFC4086</a>] describes
   techniques for producing random quantities.
<span class="h3"><a class="selflink" id="section-12.6" href="#section-12.6">12.6</a>.  Reflection Attacks</span>
   Reflection attacks occur in bi-directional, challenge-response,
   mutual authentication protocols where an attacker, upon being issued
   a challenge by an authenticator, responds by issuing the same
   challenge back to the authenticator, obtaining the response, and then
   "reflecting" that same response to the original challenge.
   EAP-GPSK provides protection against reflection attacks because the
   message formats for the challenges differ.  The protocol does not
   consist of two independent authentications, but rather the
   authentications are tightly coupled.
   Also note that EAP-GPSK does not provide MAC protection of the OP-
   Code field, but again since each message is constructed differently,
   it would not be possible to change the OP-Code of a valid message and
   still have it be parseable and accepted by the recipient.
<span class="h3"><a class="selflink" id="section-12.7" href="#section-12.7">12.7</a>.  Dictionary Attacks</span>
   EAP-GPSK relies on a long-term shared secret (PSK) that SHOULD be
   based on at least 16 octets of entropy to be fully secure.  The EAP-
   GPSK protocol makes no special provisions to ensure keys based on
   passwords are used securely.  Users who use passwords as the basis of
   their PSK are not protected against dictionary attacks.  Derivation
   of the long-term shared secret from a password is strongly
   discouraged.
   The success of a dictionary attack against EAP-GPSK depends on the
   strength of the long-term shared secret (PSK) it uses.  The PSK used
   by EAP-GPSK SHOULD be drawn from a pool of secrets that is at least
   2^128 bits large and whose distribution is uniformly random.  Note
   that this does not imply resistance to dictionary attacks -- only
   that the probability of success in such an attack is acceptably
   remote.
<span class="grey">Clancy & Tschofenig         Standards Track                    [Page 30]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-31" ></span>
<span class="grey"><a href="./rfc5433">RFC 5433</a>                        EAP-GPSK                   February 2009</span>
<span class="h3"><a class="selflink" id="section-12.8" href="#section-12.8">12.8</a>.  Key Derivation and Key Strength</span>
   EAP-GPSK supports key derivation as shown in <a href="#section-4">Section 4</a>.
   Keys used within EAP-GPSK are all based on the security of the
   originating PSK.  PSKs SHOULD have at least 16 octets of entropy.
   Independent of the protocol exchange (i.e., without knowing RAND_Peer
   and RAND_Server), the keys have been derived with sufficient input
   entropy to make them as secure as the underlying KDF output key
   length.
<span class="h3"><a class="selflink" id="section-12.9" href="#section-12.9">12.9</a>.  Denial-of-Service Resistance</span>
   There are three forms of denial-of-service (DoS) attacks relevant for
   this document, namely (1) attacks that lead to a vast amount of state
   being allocated, (2) attacks that attempt to prevent communication
   between the peer and server, and (3) attacks against computational
   resources.
   In an EAP-GPSK conversation the server has to maintain state, namely
   the 32-octet RAND_Server, when transmitting the GPSK-1 message to the
   peer.  An adversary could therefore flood a server with a large
   number of EAP-GPSK communication attempts.  An EAP server may
   therefore ensure that an established state times out after a
   relatively short period of time when no further messages are
   received.  This enables a sort of garbage collection.
   The client has to keep state information after receiving the GPSK-1
   message.  To prevent a replay attack, all the client needs to do is
   ensure that the value of RAND_Peer is consistent between GPSK-2 and
   GPSK-3.  Message GPSK-3 contains all the material required to
   re-compute the keying material.  Thus, if a client chooses to
   implement this client-side DoS protection mechanism, it may manage
   RAND_Peer and CSuite_Sel on a per-server basis for servers it knows,
   instead of on a per-message basis.
   Attacks that disrupt communication between the peer and server are
   mitigated by silently discarding messages with invalid MACs.  Attacks
   against computational resources are mitigated by having very light-
   weight cryptographic operations required during each protocol round.
   The security considerations of EAP itself, see Sections <a href="#section-5.2">5.2</a> and <a href="#section-7">7</a> of
   <a href="./rfc3748">RFC 3748</a> [<a href="./rfc3748" title=""Extensible Authentication Protocol (EAP)"">RFC3748</a>], are also applicable to this specification (e.g.,
   for example concerning EAP-based notifications).
<span class="grey">Clancy & Tschofenig         Standards Track                    [Page 31]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-32" ></span>
<span class="grey"><a href="./rfc5433">RFC 5433</a>                        EAP-GPSK                   February 2009</span>
<span class="h3"><a class="selflink" id="section-12.10" href="#section-12.10">12.10</a>.  Session Independence</span>
   Thanks to its key derivation mechanisms, EAP-GPSK provides session
   independence: passive attacks (such as capture of the EAP
   conversation) or active attacks (including compromise of the MSK or
   EMSK) do not enable compromise of subsequent or prior MSKs or EMSKs.
   The assumption that RAND_Peer and RAND_Server are random is central
   for the security of EAP-GPSK in general and session independence in
   particular.
<span class="h3"><a class="selflink" id="section-12.11" href="#section-12.11">12.11</a>.  Compromise of the PSK</span>
   EAP-GPSK does not provide perfect forward secrecy.  Compromise of the
   PSK leads to compromise of recorded past sessions.
   Compromise of the PSK enables the attacker to impersonate the peer
   and the server, and it allows the adversary to compromise future
   sessions.
   EAP-GPSK provides no protection against a legitimate peer sharing its
   PSK with a third party.  Such protection may be provided by
   appropriate repositories for the PSK, the choice of which is outside
   the scope of this document.  The PSK used by EAP-GPSK must only be
   shared between two parties: the peer and the server.  In particular,
   this PSK must not be shared by a group of peers (e.g., those with
   different ID_Peer values) communicating with the same server.
   The PSK used by EAP-GPSK must be cryptographically separated from
   keys used by other protocols, otherwise the security of EAP-GPSK may
   be compromised.
<span class="h3"><a class="selflink" id="section-12.12" href="#section-12.12">12.12</a>.  Fragmentation</span>
   EAP-GPSK does not support fragmentation and reassembly since the
   message size is relatively small.  However, it should be noted that
   this impacts the length of protected data payloads that can be
   attached to messages.  Also, if the EAP frame is larger than the MTU
   of the underlying transport, and that transport does not support
   fragmentation, the frame will most likely not be transported.
   Consequently, implementers and deployers should take care to ensure
   EAP-GPSK frames are short enough to work properly on the target
   underlying transport mechanism.
<span class="h3"><a class="selflink" id="section-12.13" href="#section-12.13">12.13</a>.  Channel Binding</span>
   This document enables the ability to exchange channel binding
   information.  It does not, however, define the encoding of channel
   binding information in the document.
<span class="grey">Clancy & Tschofenig         Standards Track                    [Page 32]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-33" ></span>
<span class="grey"><a href="./rfc5433">RFC 5433</a>                        EAP-GPSK                   February 2009</span>
<span class="h3"><a class="selflink" id="section-12.14" href="#section-12.14">12.14</a>.  Fast Reconnect</span>
   EAP-GPSK does not provide fast reconnect capability since this method
   is already at (or close to) the lower limit of the number of
   roundtrips and the cryptographic operations.
<span class="h3"><a class="selflink" id="section-12.15" href="#section-12.15">12.15</a>.  Identity Protection</span>
   Identity protection is not specified in this document.  Extensions
   can be defined that enhance this protocol to provide this feature.
<span class="h3"><a class="selflink" id="section-12.16" href="#section-12.16">12.16</a>.  Protected Ciphersuite Negotiation</span>
   EAP-GPSK provides protected ciphersuite negotiation via the
   indication of available ciphersuites by the server in the first
   message, and a confirmation by the peer in the subsequent message.
   Note, however, that the GPSK-2 message may optionally contain a
   payload, ENC_PK(PD_Payload_Block), protected with an algorithm based
   on a selected ciphersuite before the ciphersuite list has actually
   been authenticated.  In the classical downgrading attack, an
   adversary would choose a ciphersuite that is so weak that it can be
   broken in real time or would attempt to disable cryptographic
   protection altogether.  The latter is not possible since any
   ciphersuite defined for EAP-GPSK must at least provide authentication
   and integrity protection.  Confidentiality protection is optional.
   When, at some time in the future, a ciphersuite contains algorithms
   that can be broken in real-time, then a policy on peers and the
   server needs to indicate that such a ciphersuite must not be selected
   by any of parties.
   Furthermore, an adversary may modify the selection of the ciphersuite
   for the client to select a ciphersuite that does not provide
   confidentiality protection.  As a result, this would cause the
   content of PD_Payload_Block to be transmitted in cleartext.  When
   protocol designers extend EAP-GPSK to carry information in the
   PD_Payload_Block of the GPSK-2 message, then it must be indicated
   whether confidentiality protection is mandatory.  In case such an
   extension requires a ciphersuite with confidentiality protection,
   then the policy at the peer must be to not transmit information of
   that extension in the PD_Payload_Block of the GPSK-2 message.  The
   peer may, if possible, delay the transmission of this information
   element to the GPSK-4 message where the ciphersuite negotiation has
   been confirmed already.  In general, when a ciphersuite is selected
   that does not provide confidentiality protection, then information
   that demands confidentiality protection must not be included in any
   of the PD_Payload_Block objects.
<span class="grey">Clancy & Tschofenig         Standards Track                    [Page 33]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-34" ></span>
<span class="grey"><a href="./rfc5433">RFC 5433</a>                        EAP-GPSK                   February 2009</span>
<span class="h3"><a class="selflink" id="section-12.17" href="#section-12.17">12.17</a>.  Confidentiality</span>
   Although EAP-GPSK provides confidentiality in its protected data
   payloads, it cannot claim to do so, per <a href="./rfc3748#section-7.2.1">Section 7.2.1 of [RFC3748]</a>,
   since it does not support identity protection.
<span class="h3"><a class="selflink" id="section-12.18" href="#section-12.18">12.18</a>.  Cryptographic Binding</span>
   Since EAP-GPSK does not tunnel another EAP method, it does not
   implement cryptographic binding.
<span class="h2"><a class="selflink" id="section-13" href="#section-13">13</a>.  IANA Considerations</span>
   IANA has allocated a new EAP Type for EAP-GPSK (51).
   IANA has created a new registry for ciphersuites, protected data
   types, failure codes, and op-codes.  IANA has added the specified
   ciphersuites, protected data types, failure codes, and op-codes to
   these registries as defined below.  Values defining ciphersuites
   (block-based or hash-based), protected data payloads, failure codes,
   and op-codes can be added or modified per IETF Review [<a href="./rfc5226" title="">RFC5226</a>].
   Figure 3 represents the initial contents of the "EAP-GPSK
   Ciphersuites" registry.  The CSuite/Specifier field is 16 bits long.
   All other values are available via IANA registration.  Each
   ciphersuite needs to provide processing rules and needs to specify
   how the following algorithms are instantiated: encryption, integrity,
   key derivation, and key length.
   The following are the initial contents of the "EAP-GPSK Protected
   Data Payloads" registry:
   o  0x0000 : Reserved
   The PData/Specifier field is 16 bits long, and all other values are
   available via IANA registration.  Each extension needs to indicate
   whether confidentiality protection for transmission between the EAP
   peer and the EAP server is mandatory.
   The following are the initial contents of the "EAP-GPSK Failure
   Codes" registry:
   o  0x00000000 : Reserved
   o  0x00000001 : PSK Not Found
   o  0x00000002 : Authentication Failure
<span class="grey">Clancy & Tschofenig         Standards Track                    [Page 34]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-35" ></span>
<span class="grey"><a href="./rfc5433">RFC 5433</a>                        EAP-GPSK                   February 2009</span>
   o  0x00000003 : Authorization Failure
   The Failure-Code field is 32 bits long, and all other values are
   available via IANA registration.
   The following are the initial contents of the "EAP-GPSK OP Codes"
   registry:
   o  0x00 : Reserved
   o  0x01 : GPSK-1
   o  0x02 : GPSK-2
   o  0x03 : GPSK-3
   o  0x04 : GPSK-4
   o  0x05 : GPSK-Fail
   o  0x06 : GPSK-Protected-Fail
   The OP-Code field is 8 bits long, and all other values are available
   via IANA registration.
<span class="h2"><a class="selflink" id="section-14" href="#section-14">14</a>.  Contributors</span>
   This work is a joint effort of the EAP Method Update (EMU) design
   team of the EMU Working Group that was created to develop a mechanism
   based on strong shared secrets that meets <a href="./rfc3748">RFC 3748</a> [<a href="./rfc3748" title=""Extensible Authentication Protocol (EAP)"">RFC3748</a>] and <a href="./rfc4017">RFC</a>
   <a href="./rfc4017">4017</a> [<a href="./rfc4017" title=""Extensible Authentication Protocol (EAP) Method Requirements for Wireless LANs"">RFC4017</a>] requirements.  The design team members (in
   alphabetical order) were:
   o  Jari Arkko
   o  Mohamad Badra
   o  Uri Blumenthal
   o  Charles Clancy
   o  Lakshminath Dondeti
   o  David McGrew
   o  Joe Salowey
   o  Sharma Suman
<span class="grey">Clancy & Tschofenig         Standards Track                    [Page 35]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-36" ></span>
<span class="grey"><a href="./rfc5433">RFC 5433</a>                        EAP-GPSK                   February 2009</span>
   o  Hannes Tschofenig
   o  Jesse Walker
   Finally, we would like to thank Thomas Otto for his reviews,
   feedback, and text contributions.
<span class="h2"><a class="selflink" id="section-15" href="#section-15">15</a>.  Acknowledgments</span>
   We would like to thank:
   o  Jouni Malinen and Bernard Aboba for their early comments on the
      document in June 2006.  Jouni Malinen developed the first
      prototype implementation.
   o  Lakshminath Dondeti, David McGrew, Bernard Aboba, Michaela
      Vanderveen, and Ray Bell for their input to the ciphersuite
      discussions between July and August 2006.
   o  Lakshminath Dondeti for his detailed review (sent to the EMU
      mailing list on 12 July 2006).
   o  Based on a review requested from NIST, Quynh Dang suggested
      changes to the GKDF function (December 2006).
   o  Jouni Malinen and Victor Fajardo for their review in January 2007.
   o  Jouni Malinen for his suggestions regarding the examples and the
      key derivation function in February 2007.
   o  Bernard Aboba and Jouni Malinen for their review in February 2007.
   o  Vidya Narayanan for her review in March 2007.
   o  Pasi Eronen for his IESG review in March and July 2008.
   o  Dan Harkins for his review in June 2008.
   o  Joe Salowey, the EMU working group chair, provided a document
      review in April 2007.  Jouni Malinen also reviewed the document
      during the same month.
   o  We would like to thank Paul Rowe, Arnab Roy, Prof. Andre Scedrov,
      and Prof. John C. Mitchell for their analysis of EAP-GPSK, for
      their input to the key derivation function, and for pointing us to
      a client-side DoS attack and to a downgrading attack.  Based on
      their input, the key derivation function has been modified and the
      text in the security considerations section has been updated.
<span class="grey">Clancy & Tschofenig         Standards Track                    [Page 36]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-37" ></span>
<span class="grey"><a href="./rfc5433">RFC 5433</a>                        EAP-GPSK                   February 2009</span>
   o  Finally, we would like to thank our working group chair, Joe
      Salowey, for his support and for the time he spent discussing open
      issues with us.
<span class="h2"><a class="selflink" id="section-16" href="#section-16">16</a>.  References</span>
<span class="h3"><a class="selflink" id="section-16.1" href="#section-16.1">16.1</a>.  Normative References</span>
   [<a id="ref-AES">AES</a>]      National Institute of Standards and Technology,
              "Specification for the Advanced Encryption Standard
              (AES)", Federal Information Processing Standards
              (FIPS) 197, November 2001.
   [<a id="ref-CBC">CBC</a>]      National Institute of Standards and Technology,
              "Recommendation for Block Cipher Modes of Encryption --
              Methods and Techniques", Special Publication (SP) 800-38A,
              December 2001.
   [<a id="ref-CMAC">CMAC</a>]     National Institute of Standards and Technology,
              "Recommendation for Block Cipher Modes of Operation: The
              CMAC Mode for Authentication", Special Publication
              (SP) 800-38B, May 2005.
   [<a id="ref-RFC2119">RFC2119</a>]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
   [<a id="ref-RFC3748">RFC3748</a>]  Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
              Levkowetz, "Extensible Authentication Protocol (EAP)",
              <a href="./rfc3748">RFC 3748</a>, June 2004.
   [<a id="ref-RFC4282">RFC4282</a>]  Aboba, B., Beadles, M., Arkko, J., and P. Eronen, "The
              Network Access Identifier", <a href="./rfc4282">RFC 4282</a>, December 2005.
   [<a id="ref-RFC4634">RFC4634</a>]  Eastlake, D. and T. Hansen, "US Secure Hash Algorithms
              (SHA and HMAC-SHA)", <a href="./rfc4634">RFC 4634</a>, July 2006.
   [<a id="ref-RFC5226">RFC5226</a>]  Narten, T. and H. Alvestrand, "Guidelines for Writing an
              IANA Considerations Section in RFCs", <a href="https://www.rfc-editor.org/bcp/bcp26">BCP 26</a>, <a href="./rfc5226">RFC 5226</a>,
              May 2008.
   [<a id="ref-RFC5247">RFC5247</a>]  Aboba, B., Simon, D., and P. Eronen, "Extensible
              Authentication Protocol (EAP) Key Management Framework",
              <a href="./rfc5247">RFC 5247</a>, August 2008.
<span class="grey">Clancy & Tschofenig         Standards Track                    [Page 37]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-38" ></span>
<span class="grey"><a href="./rfc5433">RFC 5433</a>                        EAP-GPSK                   February 2009</span>
<span class="h3"><a class="selflink" id="section-16.2" href="#section-16.2">16.2</a>.  Informative References</span>
   [<a id="ref-80211">80211</a>]    "Information technology - Telecommunications and
              Information Exchange Between Systems - Local and
              Metropolitan Area Networks - Specific Requirements - Part
              11: Wireless LAN Medium Access Control (MAC) and Physical
              Layer (PHY) Specifications", IEEE Standard 802.11-2007,
              March 2007.
   [<a id="ref-ENTNUM">ENTNUM</a>]   IANA, "SMI Network Management Private Enterprise Codes",
              Private Enterprise Numbers, <<a href="http://www.iana.org">http://www.iana.org</a>>.
   [<a id="ref-RFC4017">RFC4017</a>]  Stanley, D., Walker, J., and B. Aboba, "Extensible
              Authentication Protocol (EAP) Method Requirements for
              Wireless LANs", <a href="./rfc4017">RFC 4017</a>, March 2005.
   [<a id="ref-RFC4086">RFC4086</a>]  Eastlake, D., Schiller, J., and S. Crocker, "Randomness
              Requirements for Security", <a href="https://www.rfc-editor.org/bcp/bcp106">BCP 106</a>, <a href="./rfc4086">RFC 4086</a>, June 2005.
Authors' Addresses
   T. Charles Clancy
   DoD Laboratory for Telecommunications Sciences
   8080 Greenmead Drive
   College Park, MD  20740
   USA
   EMail: clancy@ltsnet.net
   Hannes Tschofenig
   Nokia Siemens Networks
   Linnoitustie 6
   Espoo  02600
   Finland
   EMail: Hannes.Tschofenig@gmx.net
Clancy & Tschofenig         Standards Track                    [Page 38]
</pre>
 
     |