1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
|
<pre>Independent Submission M. Blanchet
Request for Comments: 5572 Viagenie
Category: Experimental F. Parent
ISSN: 2070-1721 Beon Solutions
February 2010
<span class="h1">IPv6 Tunnel Broker with the Tunnel Setup Protocol (TSP)</span>
Abstract
A tunnel broker with the Tunnel Setup Protocol (TSP) enables the
establishment of tunnels of various inner protocols, such as IPv6 or
IPv4, inside various outer protocols packets, such as IPv4, IPv6, or
UDP over IPv4 for IPv4 NAT traversal. The control protocol (TSP) is
used by the tunnel client to negotiate the tunnel with the broker. A
mobile node implementing TSP can be connected to both IPv4 and IPv6
networks whether it is on IPv4 only, IPv4 behind a NAT, or on IPv6
only. A tunnel broker may terminate the tunnels on remote tunnel
servers or on itself. This document describes the TSP within the
model of the tunnel broker model.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for examination, experimental implementation, and
evaluation.
This document defines an Experimental Protocol for the Internet
community. This is a contribution to the RFC Series, independently
of any other RFC stream. The RFC Editor has chosen to publish this
document at its discretion and makes no statement about its value for
implementation or deployment. Documents approved for publication by
the RFC Editor are not a candidate for any level of Internet
Standard; see <a href="./rfc5741#section-2">Section 2 of RFC 5741</a>.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
<a href="http://www.rfc-editor.org/info/rfc5572">http://www.rfc-editor.org/info/rfc5572</a>.
IESG Note
The content of this RFC was at one time considered by the IETF, and
therefore it may resemble a current IETF work in progress or a
published IETF work.
<span class="grey">Blanchet & Parent Experimental [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc5572">RFC 5572</a> Tunnel Setup Protocol (TSP) February 2010</span>
Copyright Notice
Copyright (c) 2010 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents
(<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document.
<span class="grey">Blanchet & Parent Experimental [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc5572">RFC 5572</a> Tunnel Setup Protocol (TSP) February 2010</span>
Table of Contents
<a href="#section-1">1</a>. Introduction ....................................................<a href="#page-4">4</a>
<a href="#section-2">2</a>. Description of the TSP Framework ................................<a href="#page-4">4</a>
<a href="#section-2.1">2.1</a>. NAT Discovery ..............................................<a href="#page-6">6</a>
<a href="#section-2.2">2.2</a>. Any Encapsulation ..........................................<a href="#page-6">6</a>
<a href="#section-2.3">2.3</a>. Mobility ...................................................<a href="#page-6">6</a>
<a href="#section-3">3</a>. Advantages of TSP ...............................................<a href="#page-7">7</a>
<a href="#section-4">4</a>. Protocol Description ............................................<a href="#page-7">7</a>
<a href="#section-4.1">4.1</a>. Terminology ................................................<a href="#page-7">7</a>
<a href="#section-4.2">4.2</a>. Topology ...................................................<a href="#page-8">8</a>
<a href="#section-4.3">4.3</a>. Overview ...................................................<a href="#page-8">8</a>
<a href="#section-4.4">4.4</a>. TSP Signaling ..............................................<a href="#page-9">9</a>
<a href="#section-4.4.1">4.4.1</a>. Signaling Transport .................................<a href="#page-9">9</a>
<a href="#section-4.4.2">4.4.2</a>. Authentication Phase ...............................<a href="#page-11">11</a>
<a href="#section-4.4.3">4.4.3</a>. Command and Response Phase .........................<a href="#page-14">14</a>
<a href="#section-4.5">4.5</a>. Tunnel Establishment ......................................<a href="#page-16">16</a>
<a href="#section-4.5.1">4.5.1</a>. IPv6-over-IPv4 Tunnels .............................<a href="#page-16">16</a>
<a href="#section-4.5.2">4.5.2</a>. IPv6-over-UDP Tunnels ..............................<a href="#page-16">16</a>
<a href="#section-4.6">4.6</a>. Tunnel Keep-Alive .........................................<a href="#page-16">16</a>
<a href="#section-4.7">4.7</a>. XML Messaging .............................................<a href="#page-17">17</a>
<a href="#section-4.7.1">4.7.1</a>. Tunnel .............................................<a href="#page-17">17</a>
<a href="#section-4.7.2">4.7.2</a>. Client Element .....................................<a href="#page-18">18</a>
<a href="#section-4.7.3">4.7.3</a>. Server Element .....................................<a href="#page-19">19</a>
<a href="#section-4.7.4">4.7.4</a>. Broker Element .....................................<a href="#page-19">19</a>
<a href="#section-5">5</a>. Tunnel Request Examples ........................................<a href="#page-19">19</a>
<a href="#section-5.1">5.1</a>. Host Tunnel Request and Reply .............................<a href="#page-19">19</a>
5.2. Router Tunnel Request with a /48 Prefix Delegation
and Reply .................................................<a href="#page-20">20</a>
<a href="#section-5.3">5.3</a>. IPv4 over IPv6 Tunnel Request .............................<a href="#page-22">22</a>
<a href="#section-5.4">5.4</a>. NAT Traversal Tunnel Request ..............................<a href="#page-23">23</a>
<a href="#section-6">6</a>. Applicability of TSP in Different Networks .....................<a href="#page-24">24</a>
<a href="#section-6.1">6.1</a>. Provider Networks with Enterprise Customers ...............<a href="#page-24">24</a>
<a href="#section-6.2">6.2</a>. Provider Networks with Home/Small Office Customers ........<a href="#page-25">25</a>
<a href="#section-6.3">6.3</a>. Enterprise Networks .......................................<a href="#page-25">25</a>
<a href="#section-6.4">6.4</a>. Wireless Networks .........................................<a href="#page-25">25</a>
<a href="#section-6.5">6.5</a>. Unmanaged Networks ........................................<a href="#page-26">26</a>
<a href="#section-6.6">6.6</a>. Mobile Hosts and Mobile Networks ..........................<a href="#page-26">26</a>
<a href="#section-7">7</a>. IANA Considerations ............................................<a href="#page-26">26</a>
<a href="#section-8">8</a>. Security Considerations ........................................<a href="#page-27">27</a>
<a href="#section-9">9</a>. Conclusion .....................................................<a href="#page-27">27</a>
<a href="#section-10">10</a>. Acknowledgements ..............................................<a href="#page-27">27</a>
<a href="#section-11">11</a>. References ....................................................<a href="#page-28">28</a>
<a href="#section-11.1">11.1</a>. Normative References .....................................<a href="#page-28">28</a>
<a href="#section-11.2">11.2</a>. Informative References ...................................<a href="#page-28">28</a>
<a href="#appendix-A">Appendix A</a>. The TSP DTD ..........................................<a href="#page-30">30</a>
<a href="#appendix-B">Appendix B</a>. Error Codes ..........................................<a href="#page-31">31</a>
<span class="grey">Blanchet & Parent Experimental [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc5572">RFC 5572</a> Tunnel Setup Protocol (TSP) February 2010</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
This document first describes the TSP framework, the protocol
details, and the different profiles used. It then describes the
applicability of TSP in different environments, some of which were
described in the v6ops scenario documents.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Description of the TSP Framework</span>
Tunnel Setup Protocol (TSP) is a signaling protocol to set up tunnel
parameters between two tunnel endpoints. TSP is implemented as a
tiny client code in the requesting tunnel endpoint. The other
endpoint is the server that will set up the tunnel service. TSP uses
XML [<a href="#ref-W3C.REC-xml-2004" title=""Extensible Markup Language (XML) 1.0 (Third Edition)"">W3C.REC-xml-2004</a>] basic messaging over TCP or UDP. The use of
XML gives extensibility and easy option processing.
TSP negotiates tunnel parameters between the two tunnel endpoints.
Parameters that are always negotiated are:
o Authentication of the users, using any kind of authentication
mechanism (through Simple Authentication and Security Layer (SASL)
[<a href="./rfc4422" title=""Simple Authentication and Security Layer (SASL)"">RFC4422</a>]) including anonymous
o Tunnel encapsulation:
* IPv6 over IPv4 tunnels [<a href="./rfc4213" title=""Basic Transition Mechanisms for IPv6 Hosts and Routers"">RFC4213</a>]
* IPv4 over IPv6 tunnels [<a href="./rfc2473" title=""Generic Packet Tunneling in IPv6 Specification"">RFC2473</a>]
* IPv6 over UDP-IPv4 tunnels for NAT traversal
o IP address assignment for the tunnel endpoints
o DNS registration of the IP endpoint address (AAAA)
Other tunnel parameters that may be negotiated are:
o Tunnel keep-alive
o IPv6 prefix assignment when the client is a router
o DNS delegation of the inverse tree, based on the IPv6 prefix
assigned
<span class="grey">Blanchet & Parent Experimental [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc5572">RFC 5572</a> Tunnel Setup Protocol (TSP) February 2010</span>
o Routing protocols
The tunnel encapsulation can be explicitly specified by the client,
or can be determined during the TSP exchange by the broker. The
latter is used to detect the presence of NAT in the path and select
IPv6 over UDP-IPv4 encapsulation.
The TSP connection can be established between two nodes, where each
node can control a tunnel endpoint.
The nodes involved in the framework are:
1. the TSP client
2. the client tunnel endpoint
3. the TSP server
4. the server tunnel endpoint
1,3, and 4 form the tunnel broker model [<a href="./rfc3053" title=""IPv6 Tunnel Broker"">RFC3053</a>], where 3 is the
tunnel broker and 4 is the tunnel server (Figure 1). The tunnel
broker may control one or many tunnel servers.
In its simplest model, one node is the client configured as a tunnel
endpoint (1 and 2 on the same node), and the second node is the
server configured as the other tunnel endpoint (3 and 4 on the same
node). This model is shown in Figure 2:
_______________
| TUNNEL BROKER |--> Databases (DNS)
| |
| TSP |
| SERVER |
|_______________|
| |
__________ | | ________
| | | | | |
| TSP |--[TSP]-- +---------| |
| CLIENT | | TUNNEL |--[NETWORK]--
[HOST]--| |<==[CONFIGURED TUNNEL]==>| SERVER |
|___________| | |
|________|
Figure 1: Tunnel Setup Protocol Used on Tunnel Broker Model
<span class="grey">Blanchet & Parent Experimental [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc5572">RFC 5572</a> Tunnel Setup Protocol (TSP) February 2010</span>
___________ ________
| | | TSP |
| TSP |-----------[TSP]---------| SERVER |
| CLIENT | | |--[NETWORK]--
[HOST]--| |<==[CONFIGURED TUNNEL]==>| TUNNEL |
|___________| | SERVER |
|________|
Figure 2: Tunnel Setup Protocol Used on Tunnel Server Model
From the point of view of an operating system, TSP is implemented as
a client application that is able to configure network parameters of
the operating system.
<span class="h3"><a class="selflink" id="section-2.1" href="#section-2.1">2.1</a>. NAT Discovery</span>
TSP is also used to discover if a NAT is in the path. In this
discovery mode, the client sends a TSP message over UDP, containing
its tunnel request information (such as its source IPv4 address) to
the TSP server. The TSP server compares the IPv4 source address of
the packet with the address in the TSP message. If they differ, one
or many IPv4 NATs are in the path.
If an IPv4 NAT is discovered, then IPv6 over UDP-IPv4 tunnel
encapsulation is selected. Once the TSP signaling is done, the
tunnel is established over the same UDP channel used for TSP, so the
same NAT address-port mapping is used for both the TSP session and
the IPv6 traffic. If no IPv4 NAT is detected in the path by the TSP
server, then IPv6 over IPv4 encapsulation is used.
A keep-alive mechanism is also included to keep the NAT mapping
active.
The IPv4 NAT discovery builds the most effective tunnel for all
cases, including in a dynamic situation where the client moves.
<span class="h3"><a class="selflink" id="section-2.2" href="#section-2.2">2.2</a>. Any Encapsulation</span>
TSP is used to negotiate IPv6 over IPv4 tunnels, IPv6 over UDP-IPv4
tunnels, and IPv4 over IPv6 tunnels. IPv4 over IPv6 tunnels is used
in the Dual-Stack Transition Mechanism (DSTM) together with TSP
[<a href="#ref-DSTM" title=""Dual Stack IPv6 Dominant Transition Mechanism"">DSTM</a>].
<span class="h3"><a class="selflink" id="section-2.3" href="#section-2.3">2.3</a>. Mobility</span>
When a node moves to a different IP network (i.e., change of its IPv4
address when doing IPv6 over IPv4 encapsulation), the TSP client
reconnects automatically to the broker to re-establish the tunnel
<span class="grey">Blanchet & Parent Experimental [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc5572">RFC 5572</a> Tunnel Setup Protocol (TSP) February 2010</span>
(keep-alive mechanism). On the IPv6 layer, if the client uses user
authentication, the same IPv6 address and prefix are kept and re-
established, even if the IPv4 address or tunnel encapsulation type
changes.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. Advantages of TSP</span>
o Tunnels established by TSP are static tunnels, which are more
secure than automated tunnels [<a href="./rfc3964" title=""Security Considerations for 6to4"">RFC3964</a>]; no third-party relay
required.
o Stability of the IP address and prefix, enabling applications
needing stable address to be deployed and used. For example, when
tunneling IPv6, there is no dependency on the underlying IPv4
address.
o Prefix assignment supported. Can use provider address space.
o Signaling protocol flexible and extensible (XML, SASL)
o One solution to many encapsulation techniques: IPv6 in IPv4, IPv4
in IPv6, IPv6 over UDP over IPv4. Can be extended to other
encapsulation types, such as IPv6 in IPv6.
o Discovery of IPv4 NAT in the path, establishing the most optimized
tunneling technique depending on the discovery.
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Protocol Description</span>
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. Terminology</span>
Tunnel Broker: In a tunnel broker model, the broker is taking charge
of all communication between tunnel servers (TSs) and tunnel
clients (TCs). Tunnel clients query brokers for a tunnel and the
broker finds a suitable tunnel server, asks the tunnel server to
set up the tunnel, and sends the tunnel information to the tunnel
Client.
Tunnel Server: Tunnel servers are providing the specific tunnel
service to a tunnel client. It can receive the tunnel request
from a tunnel broker (as in the tunnel broker model) or directly
from the tunnel client. The tunnel server is the tunnel endpoint.
Tunnel Client: The tunnel client is the entity that needs a tunnel
for a particular service or connectivity. A tunnel client can be
either a host or a router. The tunnel client is the other tunnel
endpoint.
<span class="grey">Blanchet & Parent Experimental [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc5572">RFC 5572</a> Tunnel Setup Protocol (TSP) February 2010</span>
v6v4: IPv6-over-IPv4 tunnel encapsulation
v6udpv4: IPv6-over-UDP-over-IPv4 tunnel encapsulation
v4v6: IPv4-over-IPv6 tunnel encapsulation
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. Topology</span>
The following diagrams describe typical TSP scenarios. The goal is
to establish a tunnel between tunnel client and tunnel server.
<span class="h3"><a class="selflink" id="section-4.3" href="#section-4.3">4.3</a>. Overview</span>
The Tunnel Setup Protocol is initiated from a client node to a tunnel
broker. The Tunnel Setup Protocol has three phases:
Authentication phase: The Authentication phase is when the tunnel
broker/server advertises its capability to a tunnel client and
when a tunnel client authenticate to the broker/server.
Command phase: The command phase is where the client requests or
updates a tunnel.
Response phase: The response phase is where the tunnel client
receives the request response from the tunnel broker/server, and
the client accepts or rejects the tunnel offered.
For each command sent by a tunnel client, there is an expected
response from the server.
After the response phase is completed, a tunnel is established as
requested by the client. If requested, periodic keep-alive packets
can be sent from the client to the server.
<span class="grey">Blanchet & Parent Experimental [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc5572">RFC 5572</a> Tunnel Setup Protocol (TSP) February 2010</span>
tunnel tunnel
client broker
+| Send version +
||---------------------------------> ||
|| Send capabilities ||
||<--------------------------------- +| Authentication
|| SASL authentication || phase
||<--------------------------------> ||
TSP || Authentication OK ||
signaling||<--------------------------------- +
|| Tunnel request || Command
||---------------------------------> || phase
|| Tunnel response +
||<--------------------------------- || Response
|| Tunnel acknowledge || phase
||---------------------------------> +
+| |
|| Tunnel established |
Data ||===================================|
phase || |
+| (keep-alive) |
Figure 3: Tunnel Setup Protocol Exchange
<span class="h3"><a class="selflink" id="section-4.4" href="#section-4.4">4.4</a>. TSP Signaling</span>
The following sections describe in detail the TSP and the different
phases in the TSP signaling.
<span class="h4"><a class="selflink" id="section-4.4.1" href="#section-4.4.1">4.4.1</a>. Signaling Transport</span>
TSP signaling can be transported over TCP or UDP, and over IPv4 or
IPv6. The tunnel client selects the transport according to the
tunnel encapsulation being requested. Figure 4 shows the transport
used for TSP signaling with possible tunnel encapsulation requested.
TSP signaling over UDP/v4 MUST be used if a v6 over UDP over IPv4
(v6udpv4) tunnel is to be requested (e.g., for NAT traversal).
<span class="grey">Blanchet & Parent Experimental [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc5572">RFC 5572</a> Tunnel Setup Protocol (TSP) February 2010</span>
Tunnel
Encapsulation Valid Valid
Requested Transport Address family
------------------------------------------
v6anyv4 TCP UDP IPv4
v6v4 TCP UDP IPv4
v6udpv4 UDP IPv4
v4v6 TCP UDP IPv6
Figure 4: TSP Signaling Transport
Note that the TSP framework allows for other type of encapsulation to
be defined, such as IPv6 over Generic Routing Encapsulation (GRE) or
IPv6 over IPv6.
<span class="h5"><a class="selflink" id="section-4.4.1.1" href="#section-4.4.1.1">4.4.1.1</a>. TSP Signaling over TCP</span>
TSP over TCP is sent over port number 3653 (IANA assigned). TSP data
used during signaling is detailed in the next sections.
+------+-----------+----------+
| IP | TCP | TSP data |
| | port 3653 | |
+------+-----------+----------+
where IP is IPv4 or IPv6
Figure 5: Tunnel Setup Protocol Packet Format (TCP)
<span class="h5"><a class="selflink" id="section-4.4.1.2" href="#section-4.4.1.2">4.4.1.2</a>. TSP Signaling over UDP/v4</span>
While TCP provides the connection-oriented and reliable data delivery
features required during the TSP signaling session, UDP does not
offer any reliability. This reliability is added inside the TSP
session as an extra header at the beginning of the UDP payload.
+------+-----------+------------+----------+
| IPv4 | UDP | TSP header | TSP data |
| | port 3653 | | |
+------+-----------+------------+----------+
Figure 6: Tunnel Setup Protocol Packet Format (UDP)
The algorithm used to add reliability to TSP packets sent over UDP is
described in Section 22.5 of [<a href="#ref-UNP" title=""Unix Network Programming, 3rd edition"">UNP</a>].
<span class="grey">Blanchet & Parent Experimental [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc5572">RFC 5572</a> Tunnel Setup Protocol (TSP) February 2010</span>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0xF | Sequence Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Timestamp |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| TSP data |
...
Figure 7: TSP Header for Reliable UDP
The 4-bit field (0-3) is set to 0xF. This marker is used by the
tunnel broker to identify a TSP signaling packet that is sent
after an IPv6 over UDP is established. This is explained in
<a href="#section-4.5.2">Section 4.5.2</a>
Sequence Number: 28-bit field. Set by the tunnel client. Value is
increased by one for every new packet sent to the tunnel broker.
The return packet from the broker contains the unaltered sequence
number.
Timestamp: 32-bit field. Set by the tunnel client. Generated from
the client local-time value. The return packet from the broker
contains the unaltered timestamp.
TSP data: Same as in the TCP/v4 case. Content described in later
sections.
The TSP client builds its UDP packet as described above and sends it
to the tunnel broker. When the tunnel broker responds, the same
values for the sequence number and timestamp MUST be sent back to the
client. The TSP client can use the timestamp to determine the
retransmission timeout (current time minus the packet timestamp).
The client SHOULD retransmit the packet when the retransmission
timeout is reached. The retransmitted packet MUST use the same
sequence number as the original packet so that the server can detect
duplicate packets. The client SHOULD use exponential backoff when
retransmitting packets to avoid network congestion.
<span class="h4"><a class="selflink" id="section-4.4.2" href="#section-4.4.2">4.4.2</a>. Authentication Phase</span>
The authentication phase has 3 steps:
o Client's protocol version identification
<span class="grey">Blanchet & Parent Experimental [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc5572">RFC 5572</a> Tunnel Setup Protocol (TSP) February 2010</span>
o Server's capability advertisement
o Client authentication
When a TCP or UDP session is established to a tunnel broker, the
tunnel client sends the current protocol version it is supporting.
The version number syntax is:
VERSION=2.0.0 CR LF
Version 2.0.0 is the version number of this specification. Version
1.0.0 was defined in earlier documents.
If the server doesn't support the protocol version, it sends an error
message and closes the session. The server can optionally send a
server list that may support the protocol version of the client.
Example of an unsupported client version (without a server list):
-- Successful TCP Connection --
C:VERSION=0.1 CR LF
S:302 Unsupported client version CR LF
-- Connection closed --
Figure 8: Example of Unsupported Client Version
Example of a version not supported (with a server list):
-- Successful TCP Connection --
C:VERSION=1.1 CR LF
S:1302 Unsupported client version CR LF
<tunnel action="list" type="broker">
<broker>
<address type="ipv4">1.2.3.4</address>
</broker>
<broker>
<address type="dn">ts1.isp1.com</address>
</broker>
</tunnel>
-- Connection closed --
Figure 9: Example of Unsupported Client Version, with Server
Redirection
If the server supports the version sent by the client, then the
server sends a list of the capabilities supported for authentication
and tunnels.
<span class="grey">Blanchet & Parent Experimental [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc5572">RFC 5572</a> Tunnel Setup Protocol (TSP) February 2010</span>
CAPABILITY TUNNEL=V6V4 TUNNEL=V6UDPV4 AUTH=ANONYMOUS AUTH=PLAIN
AUTH=DIGEST-MD5 CR LF
Tunnel types must be registered with IANA and their profiles are
defined in <a href="#section-7">Section 7</a>. Authentication is done using SASL [<a href="./rfc4422" title=""Simple Authentication and Security Layer (SASL)"">RFC4422</a>].
Each authentication mechanism should be a registered SASL mechanism.
Description of such mechanisms is not in the scope of this document.
The tunnel client can then choose to close the session if none of the
capabilities fit its needs. If the tunnel client chooses to
continue, it authenticates to the server using one of the advertised
mechanisms using SASL. If the authentication fails, the server sends
an error message and closes the session.
The example in Figure 10 shows a failed authentication where the
tunnel client requests an anonymous authentication that is not
supported by the server.
Note that linebreaks and indentation within a "C:" or "S:" are
editorial and not part of the protocol.
-- Successful TCP Connection --
C:VERSION=2.0.0 CR LF
S:CAPABILITY TUNNEL=V6V4 AUTH=DIGEST-MD5 CR LF
C:AUTHENTICATE ANONYMOUS CR LF
S:300 Authentication failed CR LF
Figure 10: Example of Failed Authentication
Figure 11 shows a successful anonymous authentication.
-- Successful TCP Connection --
C:VERSION=2.0.0 CR LF
S:CAPABILITY TUNNEL=V6V4 TUNNEL=V6UDPV4 AUTH=ANONYMOUS AUTH=PLAIN
AUTH=DIGEST-MD5 CR LF
C:AUTHENTICATE ANONYMOUS CR LF
S:200 Success CR LF
Figure 11: Successful Anonymous Authentication
<span class="grey">Blanchet & Parent Experimental [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc5572">RFC 5572</a> Tunnel Setup Protocol (TSP) February 2010</span>
Digest-MD5 authentication with SASL follows [<a href="./rfc2831" title=""Using Digest Authentication as a SASL Mechanism"">RFC2831</a>]. Figure 12
shows a successful digest-MD5 SASL authentication.
-- Successful TCP Connection --
C:VERSION=2.0.0 CR LF
S:CAPABILITY TUNNEL=V6V4 TUNNEL=V6UDPV4 AUTH=ANONYMOUS AUTH=PLAIN
AUTH=DIGEST-MD5 CR LF
C:AUTHENTICATE DIGEST-MD5 CR LF
S:cmVhbG09aGV4b3Msbm9uY2U9MTExMzkwODk2OCxxb3A9YXV0aCxhbGdvcml0aG09bWQ
1LXNlc3MsY2hhcnNldD11dGY4
C:Y2hhcnNldD11dGY4LHVzZXJuYW1lPSJ1c2VybmFtZTEiLHJlYWxtPSJoZXhvcyIsbm9
uY2U9IjExMTM5MDg5NjgiLG5jPTAwMDAwMDAxLGNub25jZT0iMTExMzkyMzMxMSIsZG
lnZXN0LXVyaT0idHNwL2hleG9zIixyZXNwb25zZT1mOGU0MmIzYzUwYzU5NzcxODUzZ
jYyNzRmY2ZmZDFjYSxxb3A9YXV0aA==
S:cnNwYXV0aD03MGQ1Y2FiYzkyMzU1NjhiZTM4MGJhMmM5MDczODFmZQ==
S:200 Success CR LF
Figure 12: Successful Digest-MD5 Authentication
The base64-decoded version of the SASL exchange is:
S:realm="hexos",nonce="1113908968",qop="auth",algorithm=md5-sess,
charset=utf8
C:charset=utf8,username="username1",realm="hexos",nonce="1113908968",
nc=00000001,cnonce="1113923311",digest-uri="tsp/hexos",
response=f8e42b3c50c59771853f6274fcffd1ca,qop=auth
S:rspauth=70d5cabc9235568be380ba2c907381fe
Once the authentication succeeds, the server sends a success return
code and the protocol enters the Command phase.
<span class="h4"><a class="selflink" id="section-4.4.3" href="#section-4.4.3">4.4.3</a>. Command and Response Phase</span>
The Command phase is where the tunnel client sends a tunnel request
or a tunnel update to the server. In this phase, commands are sent
as XML messages. The first line is a "Content-length" directive that
indicates the size of the following XML message. When the server
sends a response, the first line is the "Content-length" directive,
the second is the return code, and third one is the XML message, if
any. The "Content-length" is calculated from the first character of
the return code line to the last character of the XML message,
inclusively.
Spaces can be inserted freely.
<span class="grey">Blanchet & Parent Experimental [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc5572">RFC 5572</a> Tunnel Setup Protocol (TSP) February 2010</span>
-- UDP session established --
C:VERSION=2.0.0 CR LF
S:CAPABILITY TUNNEL=V6V4 TUNNEL=V6UDPV4 AUTH=ANONYMOUS
AUTH=PLAIN AUTH=DIGEST-MD5 CR LF
C:AUTHENTICATE ANONYMOUS CR LF
S:200 Success CR LF
C:Content-length: 205 CR LF
<tunnel action="create" type="v6udpv4">
<client>
<address type="ipv4">192.0.2.135</address>
<keepalive interval="30"></keepalive>
</client>
</tunnel> CR LF
S:Content-length: 501 CR LF
200 Success CR LF
<tunnel action="info" type="v6udpv4" lifetime="604800">
<server>
<address type="ipv4">192.0.2.115</address>
<address type="ipv6">
2001:db8:8000:0000:0000:0000:0000:38b2
</address>
</server>
<client>
<address type="ipv4">192.0.2.135</address>
<address type="ipv6">
2001:db8:8000:0000:0000:0000:0000:38b3
</address>
<keepalive interval="30">
<address type="ipv6">
2001:db8:8000:0000:0000:0000:0000:38b2
</address>
</keepalive>
</client>
</tunnel> CR LF
C:Content-length: 35 CR LF
<tunnel action="accept"></tunnel> CR LF
Figure 13: Example of a Command/Response Sequence
The example in Figure 13 shows a client requesting an anonymous
v6udpv4 tunnel, indicating that a keep-alive packet will be sent
every 30 seconds. The tunnel broker responds with the tunnel
<span class="grey">Blanchet & Parent Experimental [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc5572">RFC 5572</a> Tunnel Setup Protocol (TSP) February 2010</span>
parameters and indicates its acceptance of the keep-alive period
(<a href="#section-4.6">Section 4.6</a>). Finally, the client sends an accept message to the
server.
Once the accept message has been sent, the server and client
configure their tunnel endpoint based on the negotiated tunnel
parameters.
<span class="h3"><a class="selflink" id="section-4.5" href="#section-4.5">4.5</a>. Tunnel Establishment</span>
<span class="h4"><a class="selflink" id="section-4.5.1" href="#section-4.5.1">4.5.1</a>. IPv6-over-IPv4 Tunnels</span>
Once the TSP signaling is complete, a tunnel can be established on
the tunnel server and client node. If a v6v4 tunnel has been
negotiated, then an IPv6-over-IPv4 tunnel [<a href="./rfc4213" title=""Basic Transition Mechanisms for IPv6 Hosts and Routers"">RFC4213</a>] is established
using the operating system tunneling interface. On the client node,
this is accomplished by the TSP client calling the appropriate OS
commands or system calls.
<span class="h4"><a class="selflink" id="section-4.5.2" href="#section-4.5.2">4.5.2</a>. IPv6-over-UDP Tunnels</span>
If a v6udpv4 tunnel is configured, the same source/destination
address and port used during the TSP signaling are used to configure
the v6udpv4 tunnel. If a NAT is in the path between the TSP client
and the tunnel broker, the TSP signaling session will have created a
UDP state in the NAT. By reusing the same UDP socket parameters to
transport IPv6, the traffic will flow across the NAT using the same
state.
+------+-----------+--------+
| IPv4 | UDP | IPv6 |
| hdr. | port 3653 | |
+------+-----------+--------+
Figure 14: IPv6 Transport over UDP
At any time, a client may re-establish a TSP signaling session. The
client disconnects the current tunnel and starts a new TSP signaling
session as described in <a href="#section-4.4.1.2">Section 4.4.1.2</a>. If a NAT is present and the
new TSP session uses the same UDP mapping in the NAT as for the
tunnel, the tunnel broker will need to disconnect the client tunnel
before the client can establish a new TSP session.
<span class="h3"><a class="selflink" id="section-4.6" href="#section-4.6">4.6</a>. Tunnel Keep-Alive</span>
A TSP client may select to send periodic keep-alive messages to the
server in order to maintain its tunnel connectivity. This allows the
client to detect network changes and enable automatic tunnel
<span class="grey">Blanchet & Parent Experimental [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc5572">RFC 5572</a> Tunnel Setup Protocol (TSP) February 2010</span>
re-establishment. In the case of IPv6-over-UDP tunnels, periodic
keep-alive messages can help refresh the connection state in a NAT if
such a device is in the tunnel path.
For IPv6-over-IPv4 and IPv6-over-UDP tunnels, the keep-alive message
is an ICMPv6 echo request [<a href="./rfc4443" title=""Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification"">RFC4443</a>] sent from the client to the
tunnel server. The IPv6 destination address of the echo message MUST
be the address from the 'keepalive' element sent in the tunnel
response during the TSP signaling (<a href="#section-4.4.3">Section 4.4.3</a>). The echo message
is sent over the configured tunnel.
The tunnel server responds to the ICMPv6 echo requests and can keep
track of which tunnel is active. Any client traffic can also be used
to verify if the tunnel is active. This can be used by the broker to
disconnect tunnels that are no longer in use.
The broker can send a different keep-alive interval from the value
specified in the client request. The client MUST conform to the
broker-specified keep-alive interval. The client SHOULD apply a
random "jitter" value to avoid synchronization of keep-alive messages
from many clients to the server [<a href="#ref-FJ93" title=""The Synchronization of Periodic Routing Messages"">FJ93</a>]. This is achieved by using an
interval value in the range of [0.75T - T], where T is the keep-alive
interval specified by the server.
<span class="h3"><a class="selflink" id="section-4.7" href="#section-4.7">4.7</a>. XML Messaging</span>
This section describes the XML messaging used in the TSP signaling
during the command and response phase. The XML elements and
attributes are listed in the DTD (Appendix A).
<span class="h4"><a class="selflink" id="section-4.7.1" href="#section-4.7.1">4.7.1</a>. Tunnel</span>
The client and server use the tunnel token with an action attribute.
Valid actions for this profile are: 'create', 'delete', 'info',
'accept', and 'reject'.
create: action used to request a new tunnel or update an existing
tunnel. Sent by the tunnel client.
delete: action used to remove an existing tunnel from the server.
Sent by the tunnel client.
info: action used to request current properties of an existing
tunnel. This action is also used by the tunnel broker to send
tunnel parameters following a client 'create' action.
<span class="grey">Blanchet & Parent Experimental [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc5572">RFC 5572</a> Tunnel Setup Protocol (TSP) February 2010</span>
accept: action used by the client to acknowledge the server that the
tunnel parameters are accepted. The client will establish a
tunnel.
reject: action used by the client to signal the server that the
tunnel parameters offered are rejected and no tunnel will be
established.
The tunnel 'lifetime' attribute is set by the tunnel broker and
specifies the lifetime of the tunnel in minutes. The lifetime is an
administratively set value. When a tunnel lifetime has expired, it
is disconnected on the tunnel server.
The 'tunnel' message contains three elements:
<client>: Client's information
<server>: Server's information
<broker>: List of other servers
<span class="h4"><a class="selflink" id="section-4.7.2" href="#section-4.7.2">4.7.2</a>. Client Element</span>
The 'client' element contains 3 sub-elements: 'address', 'router',
and 'keepalive'. These elements are used to describe the client
request and will be used by the server to create the appropriate
tunnel. The client element is the only element sent by a client.
The 'address' element is used to identify the client IP endpoint of
the tunnel. When tunneling over IPv4, the client MUST send only its
IPv4 address to the server. When tunneling over IPv6, the client
MUST only send its IPv6 address to the server.
The broker then returns the assigned IPv6 or IPv4 address endpoint
and domain name inside the 'client' element when the tunnel is
created or updated. If supported by the broker, the 'client' element
MAY contain the registered DNS name for the address endpoint assigned
to the client.
Optionally, a client MAY send a 'router' element to ask for a prefix
delegation.
Optionally, a client MAY send a 'keepalive' element that contains the
keep-alive time interval requested by the client.
<span class="grey">Blanchet & Parent Experimental [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc5572">RFC 5572</a> Tunnel Setup Protocol (TSP) February 2010</span>
<span class="h4"><a class="selflink" id="section-4.7.3" href="#section-4.7.3">4.7.3</a>. Server Element</span>
The 'server' element contains two elements: 'address' and 'router'.
These elements are used to describe the server's tunnel endpoint.
The 'address' element is used to provide both IPv4 and IPv6 addresses
of the server's tunnel endpoint, while the 'router' element provides
information for the routing method chosen by the client.
<span class="h4"><a class="selflink" id="section-4.7.4" href="#section-4.7.4">4.7.4</a>. Broker Element</span>
The 'broker' element is used by a tunnel broker to provide an
alternate list of brokers to a client in the case where the server is
not able to provide the requested tunnel.
The 'broker' element contains an 'address' element or a series of
'address' elements.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Tunnel Request Examples</span>
This section presents multiple examples of requests.
<span class="h3"><a class="selflink" id="section-5.1" href="#section-5.1">5.1</a>. Host Tunnel Request and Reply</span>
A simple tunnel request consist of a 'tunnel' element that contains
only an 'address' element. The tunnel action is 'create', specifying
a 'v6v4' tunnel encapsulation type. The response sent by the tunnel
broker is an 'info' action. Note that the registered Fully-Qualified
Domain Name (FQDN) of the assigned client IPv6 address is also
returned to the tunnel client.
<span class="grey">Blanchet & Parent Experimental [Page 19]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-20" ></span>
<span class="grey"><a href="./rfc5572">RFC 5572</a> Tunnel Setup Protocol (TSP) February 2010</span>
-- Successful TCP Connection --
C:VERSION=2.0.0 CR LF
S:CAPABILITY TUNNEL=V6V4 AUTH=ANONYMOUS CR LF
C:AUTHENTICATE ANONYMOUS CR LF
S:200 Authentication successful CR LF
C:Content-length: 123 CR LF
<tunnel action="create" type="v6v4">
<client>
<address type="ipv4">1.1.1.1</address>
</client>
</tunnel> CR LF
S: Content-length: 234 CR LF
200 OK CR LF
<tunnel action="info" type="v6v4" lifetime="1440">
<server>
<address type="ipv4">192.0.2.114</address>
<address type="ipv6">
2001:db8:c18:ffff:0000:0000:0000:0000
</address>
</server>
<client>
<address type="ipv4">1.1.1.1</address>
<address type="ipv6">
2001:db8:c18:ffff::0000:0000:0000:0001
</address>
<address type="dn">userid.domain</address>
</client>
</tunnel> CR LF
C: Content-length: 35 CR LF
<tunnel action="accept"></tunnel> CR LF
Figure 15: Simple Tunnel Request Made by a Client
<span class="h3"><a class="selflink" id="section-5.2" href="#section-5.2">5.2</a>. Router Tunnel Request with a /48 Prefix Delegation and Reply</span>
A tunnel request with a prefix consists of a 'tunnel' element that
contains an 'address' element and a 'router' element. The 'router'
element also contains the 'dns_server' element that is used to
request a DNS delegation of the assigned IPv6 prefix. The
'dns_server' element lists the IP address of the DNS servers to be
registered for the reverse-mapping zone.
<span class="grey">Blanchet & Parent Experimental [Page 20]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-21" ></span>
<span class="grey"><a href="./rfc5572">RFC 5572</a> Tunnel Setup Protocol (TSP) February 2010</span>
Tunnel request with prefix and static routes.
C: Content-length: 234 CR LF
<tunnel action="create" type="v6v4">
<client>
<address type="ipv4">192.0.2.9</address>
<router>
<prefix length="48"/>
<dns_server>
<address type="ipv4">192.0.2.5</address>
<address type="ipv4">192.0.2.4</address>
<address type="ipv6">2001:db8::1</address>
</dns_server>
</router>
</client>
</tunnel> CR LF
S: Content-length: 234 CR LF
200 OK CR LF
<tunnel action="info" type="v6v4" lifetime="1440">
<server>
<address type="ipv4">192.0.2.114</address>
<address type="ipv6">
2001:db8:c18:ffff:0000:0000:0000:0000
</address>
</server>
<client>
<address type="ipv4">192.0.2.9</address>
<address type="ipv6">
2001:db8:c18:ffff::0000:0000:0000:0001
</address>
<address type="dn">userid.domain</address>
<router>
<prefix length="48">2001:db8:c18:1234::</prefix>
<dns_server>
<address type="ipv4">192.0.2.5</address>
<address type="ipv4">192.0.2.4</address>
<address type="ipv6">2001:db8::1</address>
</dns_server>
</router>
</client>
</tunnel> CR LF
C: Content-length: 35 CR LF
<tunnel action="accept"></tunnel> CR LF
Figure 16: Tunnel Request with Prefix and DNS Delegation
<span class="grey">Blanchet & Parent Experimental [Page 21]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-22" ></span>
<span class="grey"><a href="./rfc5572">RFC 5572</a> Tunnel Setup Protocol (TSP) February 2010</span>
<span class="h3"><a class="selflink" id="section-5.3" href="#section-5.3">5.3</a>. IPv4 over IPv6 Tunnel Request</span>
This is similar to the previous 'create' action, but with the tunnel
type is set to 'v4v6'.
-- Successful TCP Connection --
C:VERSION=1.0 CR LF
S:CAPABILITY TUNNEL=V4V6 AUTH=DIGEST-MD5 AUTH=ANONYMOUS
CR LF
C:AUTHENTICATE ANONYMOUS CR LF
S:OK Authentication successful CR LF
C:Content-length: 228 CR LF
<tunnel action="create" type="v4v6">
<client>
<address type="ipv6">
2001:db8:0c18:ffff:0000:0000:0000:0001
</address>
</client>
</tunnel> CR LF
Figure 17: Simple Tunnel Request Made by a Client
If the allocation request is accepted, the broker will acknowledge
the allocation to the client by sending a 'tunnel' element with the
attribute 'action' set to 'info', 'type' set to 'v4v6' and the
'lifetime' attribute set to the period of validity or lease time of
the allocation. The 'tunnel' element contains 'server' and 'client'
elements.
<span class="grey">Blanchet & Parent Experimental [Page 22]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-23" ></span>
<span class="grey"><a href="./rfc5572">RFC 5572</a> Tunnel Setup Protocol (TSP) February 2010</span>
S: Content-length: 370 CR LF
200 OK CR LF
<tunnel action="info" type="v4v6" lifetime="1440">
<server>
<address type="ipv4" length="30">
192.0.2.2
</address>
<address type="ipv6">
2001:db8:c18:ffff:0000:0000:0000:0002
</address>
</server>
<client>
<address type="ipv4" length="30">
192.0.2.1
</address>
<address type="ipv6">
2001:db8:c18:ffff::0000:0000:0000:0001
</address>
</client>
</tunnel> CR LF
Figure 18: IPv4 over IPv6 Tunnel Response
In DSTM [<a href="#ref-DSTM" title=""Dual Stack IPv6 Dominant Transition Mechanism"">DSTM</a>] terminology, the DSTM server is the TSP broker and the
Tunnel Endpoint (TEP) is the tunnel server.
<span class="h3"><a class="selflink" id="section-5.4" href="#section-5.4">5.4</a>. NAT Traversal Tunnel Request</span>
When a client is capable of both IPv6 over IPv4 and IPv6 over UDP
over IPv4 encapsulation, it can request the broker, by using the
"v6anyv4" tunnel mode, to determine if it is behind a NAT and to send
the appropriate tunnel encapsulation mode as part of the response.
The client can also explicitly request an IPv6 over UDP over IPv4
tunnel by specifying "v6udpv4" in its request.
In the following example, the client informs the broker that it
requests to send keep-alives every 30 seconds. In its response, the
broker accepted the client-suggested keep-alive interval, and the
IPv6 destination address for the keep-alive packets is specified.
<span class="grey">Blanchet & Parent Experimental [Page 23]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-24" ></span>
<span class="grey"><a href="./rfc5572">RFC 5572</a> Tunnel Setup Protocol (TSP) February 2010</span>
C:VERSION=2.0.0 CR LF
S:CAPABILITY TUNNEL=V6V4 TUNNEL=V6UDPV4 AUTH=DIGEST-MD5 CR LF
C:AUTHENTICATE ... CR LF
S:200 Authentication successful CR LF
C:Content-length: ... CR LF
<tunnel action="create" type="v6anyv4">
<client>
<address type="ipv4">10.1.1.1</address>
<keepalive interval="30"></keepalive>
</client>
</tunnel> CR LF
S: Content-length: ... CR LF
200 OK CR LF
<tunnel action="info" type="v6udpv4" lifetime="1440">
<server>
<address type="ipv4">192.0.2.114</address>
<address type="ipv6">
2001:db8:c18:ffff:0000:0000:0000:0002
</address>
</server>
<client>
<address type="ipv4">10.1.1.1</address>
<address type="ipv6">
2001:db8:c18:ffff::0000:0000:0000:0003
</address>
<keepalive interval="30">
<address type="ipv6">
2001:db8:c18:ffff:0000:0000:0000:0002
</address>
</keepalive>
</client>
</tunnel> CR LF
Figure 19: Tunnel Request Using v6anyv4 Mode
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Applicability of TSP in Different Networks</span>
This section describes the applicability of TSP in different
networks.
<span class="h3"><a class="selflink" id="section-6.1" href="#section-6.1">6.1</a>. Provider Networks with Enterprise Customers</span>
In a provider network where IPv4 is dominant, a tunneled
infrastructure can be used to provide IPv6 services to the enterprise
customers, before a full IPv6 native infrastructure is built. In
order to start deploying in a controlled manner and to give
enterprise customers a prefix, the TSP framework is used. The TSP
server can be in the core, in the aggregation points or in the Points
<span class="grey">Blanchet & Parent Experimental [Page 24]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-25" ></span>
<span class="grey"><a href="./rfc5572">RFC 5572</a> Tunnel Setup Protocol (TSP) February 2010</span>
of Presence (PoPs) to offer the service to the customers. IPv6 over
IPv4 encapsulation can be used. If the customers are behind an IPv4
NAT, then IPv6 over UDP-IPv4 encapsulation can be used. TSP can be
used in combination with other techniques.
<span class="h3"><a class="selflink" id="section-6.2" href="#section-6.2">6.2</a>. Provider Networks with Home/Small Office Customers</span>
In a provider network where IPv4 is dominant, a tunneled
infrastructure can be used to provide IPv6 services to the home/small
office customers, before a full IPv6 native infrastructure is built.
The small networks such as Home/Small offices have a non-upgradable
gateway with NAT. TSP with NAT traversal is used to offer IPv6
connectivity and a prefix to the internal network.
Automation of the prefix assignment and DNS delegation, done by TSP,
is a very important feature for a provider in order to substantially
decrease support costs. The provider can use the same
Authentication, Authorization, and Accounting (AAA) database that is
used to authenticate the IPv4 broadband users. Customers can deploy
home IPv6 networks without any intervention of the provider support
people.
With the NAT discovery function of TSP, providers can use the same
TSP infrastructure for both NAT and non-NAT parts of the network.
<span class="h3"><a class="selflink" id="section-6.3" href="#section-6.3">6.3</a>. Enterprise Networks</span>
In an enterprise network where IPv4 is dominant, a tunneled
infrastructure can be used to provide IPv6 services to the IPv6
islands (hosts or networks) inside the enterprise, before a full IPv6
native infrastructure is built [<a href="./rfc4057" title=""IPv6 Enterprise Network Scenarios"">RFC4057</a>]. TSP can be used to give
IPv6 connectivity, prefix, and routing for the islands. This gives
the enterprise a fully controlled deployment of IPv6 while
maintaining automation and permanence of the IPv6 assignments to the
islands.
<span class="h3"><a class="selflink" id="section-6.4" href="#section-6.4">6.4</a>. Wireless Networks</span>
In a wireless network where IPv4 is dominant, hosts and networks move
and change IPv4 address. TSP enables the automatic re-establishment
of the tunnel when the IPv4 address changes.
In a wireless network where IPv6 is dominant, hosts and networks
move. TSP enables the automatic re-establishment of the IPv4 over
IPv6 tunnel.
<span class="grey">Blanchet & Parent Experimental [Page 25]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-26" ></span>
<span class="grey"><a href="./rfc5572">RFC 5572</a> Tunnel Setup Protocol (TSP) February 2010</span>
<span class="h3"><a class="selflink" id="section-6.5" href="#section-6.5">6.5</a>. Unmanaged Networks</span>
An unmanaged network is where no network manager or staff is
available to configure network devices [<a href="./rfc3904" title=""Evaluation of IPv6 Transition Mechanisms for Unmanaged Networks"">RFC3904</a>]. TSP is
particularly useful in this context where automation of all necessary
information for the IPv6 connectivity is handled by TSP: tunnel
endpoint parameters, prefix assignment, DNS delegation, and routing.
An unmanaged network may (or may not) be behind a NAT. With the NAT
discovery function, TSP works automatically in both cases.
<span class="h3"><a class="selflink" id="section-6.6" href="#section-6.6">6.6</a>. Mobile Hosts and Mobile Networks</span>
Mobile hosts are common and used. Laptops moving from wireless,
wired in an office, home, etc., are examples. They often have IPv4
connectivity, but not necessarily IPv6. The TSP framework enables
the mobile hosts to have IPv6 connectivity wherever they are, by
having the TSP client send updated information of the new environment
to the TSP server, when a change occurs. Together with NAT discovery
and traversal, the mobile host can always be IPv6 connected wherever
it is.
Mobile here means only the change of IPv4 address. Mobile-IP
mechanisms and fast hand-off take care of additional constraints in
mobile environments.
Mobile networks share the applicability of the mobile hosts.
Moreover, in the TSP framework, they also keep their prefix
assignment and can control the routing. NAT discovery can also be
used.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. IANA Considerations</span>
A tunnel type registry has been created by IANA. The following
strings are defined in this document:
o "v6v4" for IPv6 in IPv4 encapsulation (using IPv4 protocol 41)
o "v6udpv4" for IPv6 in UDP in IPv4 encapsulation
o "v6anyv4" for IPv6 in IPv4 or IPv6 in UDP in IPv4 encapsulation
o "v4v6" for IPv4 in IPv6 encapsulation
Registration of a new tunnel type can be obtained on a first come,
first served policy [<a href="./rfc5226" title="">RFC5226</a>]. A new registration should provide a
point of contact, the tunnel type string, and a brief description on
the applicability.
<span class="grey">Blanchet & Parent Experimental [Page 26]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-27" ></span>
<span class="grey"><a href="./rfc5572">RFC 5572</a> Tunnel Setup Protocol (TSP) February 2010</span>
IANA assigned 3653 as the TSP port number.
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Security Considerations</span>
Authentication of the TSP session uses the SASL [<a href="./rfc4422" title=""Simple Authentication and Security Layer (SASL)"">RFC4422</a>] framework,
where the authentication mechanism is negotiated between the client
and the server. The framework uses the level of authentication
needed for securing the session, based on the policies.
Static tunnels are created when the TSP negotiation is terminated.
Static tunnels are not open gateways and exhibit less security issues
than automated tunnels. Static IPv6 in IPv4 tunnel security
considerations are described in [<a href="./rfc4213" title=""Basic Transition Mechanisms for IPv6 Hosts and Routers"">RFC4213</a>].
In order to help ensure that the traffic is traceable to its correct
source network, a tunnel server implementation should allow ingress
filtering on the user tunnel [<a href="./rfc3704" title=""Ingress Filtering for Multihomed Networks"">RFC3704</a>].
A customer A behind a NAT can use a large number of (private) IPv4
addresses and/or source ports and request multiple v6udpv4 tunnels.
That would quickly saturate the tunnel server capacity. The tunnel
broker implementation should offer a way to throttle and limit the
number of tunnel established to the same IPv4 address.
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. Conclusion</span>
The Tunnel Setup Protocol (TSP) is applicable in many environments,
such as: providers, enterprises, wireless, unmanaged networks, mobile
hosts, and networks. TSP gives the two tunnel endpoints the ability
to negotiate tunnel parameters, as well as prefix assignment, DNS
delegation and routing in an authenticated session. It also provides
an IPv4 NAT discovery function by using the most effective
encapsulation. It also supports the IPv4 mobility of the nodes.
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. Acknowledgements</span>
This document is the merge of many previous documents about TSP.
Octavio Medina has contributed to an earlier document (IPv4 in IPv6).
Thanks to the following people for comments on improving and
clarifying this document: Pekka Savola, Alan Ford, Jeroen Massar, and
Jean-Francois Tremblay.
<span class="grey">Blanchet & Parent Experimental [Page 27]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-28" ></span>
<span class="grey"><a href="./rfc5572">RFC 5572</a> Tunnel Setup Protocol (TSP) February 2010</span>
<span class="h2"><a class="selflink" id="section-11" href="#section-11">11</a>. References</span>
<span class="h3"><a class="selflink" id="section-11.1" href="#section-11.1">11.1</a>. Normative References</span>
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to
Indicate Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>,
March 1997.
[<a id="ref-RFC2473">RFC2473</a>] Conta, A. and S. Deering, "Generic Packet
Tunneling in IPv6 Specification", <a href="./rfc2473">RFC 2473</a>,
December 1998.
[<a id="ref-RFC2831">RFC2831</a>] Leach, P. and C. Newman, "Using Digest
Authentication as a SASL Mechanism", <a href="./rfc2831">RFC 2831</a>,
May 2000.
[<a id="ref-RFC4213">RFC4213</a>] Nordmark, E. and R. Gilligan, "Basic Transition
Mechanisms for IPv6 Hosts and Routers", <a href="./rfc4213">RFC 4213</a>,
October 2005.
[<a id="ref-RFC4422">RFC4422</a>] Melnikov, A. and K. Zeilenga, "Simple
Authentication and Security Layer (SASL)",
<a href="./rfc4422">RFC 4422</a>, June 2006.
[<a id="ref-RFC4443">RFC4443</a>] Conta, A., Deering, S., and M. Gupta, "Internet
Control Message Protocol (ICMPv6) for the
Internet Protocol Version 6 (IPv6)
Specification", <a href="./rfc4443">RFC 4443</a>, March 2006.
[<a id="ref-W3C.REC-xml-2004">W3C.REC-xml-2004</a>] Yergeau, F., Paoli, J., Sperberg-McQueen, C.,
Bray, T., and E. Maler, "Extensible Markup
Language (XML) 1.0 (Third Edition)", W3C REC REC-
xml-20040204, February 2004.
<span class="h3"><a class="selflink" id="section-11.2" href="#section-11.2">11.2</a>. Informative References</span>
[<a id="ref-DSTM">DSTM</a>] Bound, J., Toutain, L., and JL. Richier, "Dual
Stack IPv6 Dominant Transition Mechanism", Work
in Progress, October 2005.
[<a id="ref-FJ93">FJ93</a>] Floyd, S. and V. Jacobson, "The Synchronization
of Periodic Routing Messages", Proceedings of
ACM SIGCOMM, September 1993.
[<a id="ref-RFC3053">RFC3053</a>] Durand, A., Fasano, P., Guardini, I., and D.
Lento, "IPv6 Tunnel Broker", <a href="./rfc3053">RFC 3053</a>,
January 2001.
<span class="grey">Blanchet & Parent Experimental [Page 28]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-29" ></span>
<span class="grey"><a href="./rfc5572">RFC 5572</a> Tunnel Setup Protocol (TSP) February 2010</span>
[<a id="ref-RFC3704">RFC3704</a>] Baker, F. and P. Savola, "Ingress Filtering for
Multihomed Networks", <a href="https://www.rfc-editor.org/bcp/bcp84">BCP 84</a>, <a href="./rfc3704">RFC 3704</a>,
March 2004.
[<a id="ref-RFC3904">RFC3904</a>] Huitema, C., Austein, R., Satapati, S., and R.
van der Pol, "Evaluation of IPv6 Transition
Mechanisms for Unmanaged Networks", <a href="./rfc3904">RFC 3904</a>,
September 2004.
[<a id="ref-RFC3964">RFC3964</a>] Savola, P. and C. Patel, "Security Considerations
for 6to4", <a href="./rfc3964">RFC 3964</a>, December 2004.
[<a id="ref-RFC4057">RFC4057</a>] Bound, J., "IPv6 Enterprise Network Scenarios",
<a href="./rfc4057">RFC 4057</a>, June 2005.
[<a id="ref-RFC5226">RFC5226</a>] Narten, T. and H. Alvestrand, "Guidelines for
Writing an IANA Considerations Section in RFCs",
<a href="https://www.rfc-editor.org/bcp/bcp26">BCP 26</a>, <a href="./rfc5226">RFC 5226</a>, May 2008.
[<a id="ref-UNP">UNP</a>] Stevens, R., Fenner, B., and A. Rudoff, "Unix
Network Programming, 3rd edition", Addison
Wesley ISBN 0-13-141155-1, 2004.
<span class="grey">Blanchet & Parent Experimental [Page 29]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-30" ></span>
<span class="grey"><a href="./rfc5572">RFC 5572</a> Tunnel Setup Protocol (TSP) February 2010</span>
<span class="h2"><a class="selflink" id="appendix-A" href="#appendix-A">Appendix A</a>. The TSP DTD</span>
<?xml version="1.0"?>
<!DOCTYPE tunnel [
<!ELEMENT tunnel (server?,client?,broker?)>
<!ATTLIST tunnel action
(create|delete|info|accept|reject) #REQUIRED >
<!ATTLIST tunnel type
(v6v4|v4v6|v6anyv4|v6udpv4) #REQUIRED >
<!ATTLIST tunnel lifetime CDATA "1440" >
<!ELEMENT server (address+,router?)>
<!ELEMENT client (address+,router?)>
<!ELEMENT broker (address+)>
<!ELEMENT router (prefix?,dns_server?)>
<!ELEMENT dns_server (address+)>
<!ELEMENT prefix (#PCDATA)>
<!ATTLIST prefix length CDATA #REQUIRED>
<!ELEMENT address (#PCDATA)>
<!ATTLIST address type (ipv4|ipv6|dn) #REQUIRED>
<!ATTLIST address length CDATA "">
<!ELEMENT keepalive (address?)>
<!ATTLIST keepalive interval CDATA #REQUIRED>
]>
Figure 20: TSP DTD
<span class="grey">Blanchet & Parent Experimental [Page 30]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-31" ></span>
<span class="grey"><a href="./rfc5572">RFC 5572</a> Tunnel Setup Protocol (TSP) February 2010</span>
<span class="h2"><a class="selflink" id="appendix-B" href="#appendix-B">Appendix B</a>. Error Codes</span>
Error codes are sent as a numeric value followed by a text message
describing the code, similar to SMTP. The codes are sent from the
broker to the client. The currently defined error codes are shown
below. Upon receiving an error, the client will display the
appropriate message to the user.
New error messages may be defined in the future. For
interoperability purpose, the error code range to use should be from
300 to 599.
The reply code 200 is used to inform the client that an action
successfully completed. For example, this reply code is used in
response to an authentication request and a tunnel creation request.
The server may redirect the client to another broker. The details on
how these brokers are known or discovered is beyond the scope of this
document. When a list of tunnel brokers follows the error code as a
referral service, then 1000 is added to the error code.
The predefined values are:
200 Success: Successful operation.
300 Authentication failed: Invalid userid, password, or
authentication mechanism.
301 No more tunnels available: The server has reached its capacity
limit.
302 Unsupported client version: The client version is not supported
by the server.
303 Unsupported tunnel type: The server does not provide the
requested tunnel type.
310 Server side error: Undefined server error.
500 Invalid request format or specified length: The received request
has invalid syntax or is truncated.
501 Invalid IPv4 address: The IPv4 address specified by the client
is invalid.
502 Invalid IPv6 address: The IPv6 address specified by the client
is invalid.
<span class="grey">Blanchet & Parent Experimental [Page 31]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-32" ></span>
<span class="grey"><a href="./rfc5572">RFC 5572</a> Tunnel Setup Protocol (TSP) February 2010</span>
506 IPv4 address already used for existing tunnel: An IPv6-over-IPv4
tunnel already exists using the same IPv4 address endpoints.
507 Requested prefix length cannot be assigned: The requested prefix
length cannot be allocated on the server.
521 Request already in progress: The client tunnel request is being
processed by the server. Temporary error.
530 Server too busy: Request cannot be processed, insufficient
resources. Temporary error.
Authors' Addresses
Marc Blanchet
Viagenie
2600 boul. Laurier, suite 625
Quebec, QC G1V 4W1
Canada
Phone: +1-418-656-9254
EMail: Marc.Blanchet@viagenie.ca
Florent Parent
Beon Solutions
Quebec, QC
Canada
Phone: +1 418 265 7357
EMail: Florent.Parent@beon.ca
Blanchet & Parent Experimental [Page 32]
</pre>
|