1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
|
<pre>Network Working Group M. Bocci, Ed.
Request for Comments: 5586 M. Vigoureux, Ed.
Updates: <a href="./rfc3032">3032</a>, <a href="./rfc4385">4385</a>, <a href="./rfc5085">5085</a> Alcatel-Lucent
Category: Standards Track S. Bryant, Ed.
Cisco Systems
June 2009
<span class="h1">MPLS Generic Associated Channel</span>
Status of This Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (c) 2009 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to <a href="https://www.rfc-editor.org/bcp/bcp78">BCP 78</a> and the IETF Trust's Legal
Provisions Relating to IETF Documents in effect on the date of
publication of this document (<a href="http://trustee.ietf.org/license-info">http://trustee.ietf.org/license-info</a>).
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document.
Abstract
This document generalizes the applicability of the pseudowire (PW)
Associated Channel Header (ACH), enabling the realization of a
control channel associated to MPLS Label Switched Paths (LSPs) and
MPLS Sections in addition to MPLS pseudowires. In order to identify
the presence of this Associated Channel Header in the label stack,
this document also assigns one of the reserved MPLS label values to
the Generic Associated Channel Label (GAL), to be used as a label
based exception mechanism.
<span class="grey">Bocci, et al. Standards Track [Page 1]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-2" ></span>
<span class="grey"><a href="./rfc5586">RFC 5586</a> G-ACh and GAL June 2009</span>
Table of Contents
<a href="#section-1">1</a>. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-3">3</a>
<a href="#section-1.1">1.1</a>. Objectives . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-1.2">1.2</a>. Scope . . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-4">4</a>
<a href="#section-1.3">1.3</a>. Requirements Language and Terminology . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-2">2</a>. Generic Associated Channel Header . . . . . . . . . . . . . . <a href="#page-5">5</a>
<a href="#section-2.1">2.1</a>. Definition . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-6">6</a>
<a href="#section-2.2">2.2</a>. Allocation of Channel Types . . . . . . . . . . . . . . . <a href="#page-6">6</a>
<a href="#section-3">3</a>. ACH TLVs . . . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-7">7</a>
<a href="#section-3.1">3.1</a>. ACH TLV Payload Structure . . . . . . . . . . . . . . . . <a href="#page-7">7</a>
<a href="#section-3.2">3.2</a>. ACH TLV Header . . . . . . . . . . . . . . . . . . . . . . <a href="#page-8">8</a>
<a href="#section-3.3">3.3</a>. ACH TLV Object . . . . . . . . . . . . . . . . . . . . . . <a href="#page-8">8</a>
<a href="#section-4">4</a>. Generalized Exception Mechanism . . . . . . . . . . . . . . . <a href="#page-9">9</a>
<a href="#section-4.1">4.1</a>. Relationship with Existing MPLS OAM Alert Mechanisms . . . <a href="#page-9">9</a>
<a href="#section-4.2">4.2</a>. GAL Applicability and Usage . . . . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-4.2.1">4.2.1</a>. GAL Processing . . . . . . . . . . . . . . . . . . . . <a href="#page-10">10</a>
<a href="#section-4.3">4.3</a>. Relationship with <a href="./rfc3429">RFC 3429</a> . . . . . . . . . . . . . . . . <a href="#page-13">13</a>
<a href="#section-5">5</a>. Compatibility . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-14">14</a>
<a href="#section-6">6</a>. Congestion Considerations . . . . . . . . . . . . . . . . . . <a href="#page-15">15</a>
<a href="#section-7">7</a>. Major Contributing Authors . . . . . . . . . . . . . . . . . . <a href="#page-15">15</a>
<a href="#section-8">8</a>. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-15">15</a>
<a href="#section-9">9</a>. Security Considerations . . . . . . . . . . . . . . . . . . . <a href="#page-15">15</a>
<a href="#section-10">10</a>. IANA Considerations . . . . . . . . . . . . . . . . . . . . . <a href="#page-16">16</a>
<a href="#section-11">11</a>. References . . . . . . . . . . . . . . . . . . . . . . . . . . <a href="#page-17">17</a>
<a href="#section-11.1">11.1</a>. Normative References . . . . . . . . . . . . . . . . . . . <a href="#page-17">17</a>
<a href="#section-11.2">11.2</a>. Informative References . . . . . . . . . . . . . . . . . . <a href="#page-18">18</a>
<span class="grey">Bocci, et al. Standards Track [Page 2]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-3" ></span>
<span class="grey"><a href="./rfc5586">RFC 5586</a> G-ACh and GAL June 2009</span>
<span class="h2"><a class="selflink" id="section-1" href="#section-1">1</a>. Introduction</span>
There is a need for Operations, Administration, and Maintenance (OAM)
mechanisms that can be used for fault detection, diagnostics,
maintenance, and other functions on a pseudowire (PW) and a Label
Switched Path (LSP). These functions can be used between any two
Label Edge Routers (LERs)/Label Switching Router (LSRs) or
Terminating Provider Edge routers (T-PEs)/Switching Provider Edge
routers (S-PEs) along the path of an LSP or PW, respectively
[<a href="#ref-MPLS-TP" title=""A Framework for MPLS in Transport Networks"">MPLS-TP</a>]. Some of these functions can be supported using existing
tools such as Virtual Circuit Connectivity Verification (VCCV)
[<a href="./rfc5085" title=""Pseudowire Virtual Circuit Connectivity Verification (VCCV): A Control Channel for Pseudowires"">RFC5085</a>], Bidirectional Forwarding Detection for MPLS LSPs (BFD-
MPLS) [<a href="#ref-BFD-MPLS" title=""BFD For MPLS LSPs"">BFD-MPLS</a>], LSP-Ping [<a href="./rfc4379" title=""Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures"">RFC4379</a>], or BFD-VCCV [<a href="#ref-BFD-VCCV" title=""Bidirectional Forwarding Detection (BFD) for the Pseudowire Virtual Circuit Connectivity Verification (VCCV)"">BFD-VCCV</a>].
However, a requirement has been indicated to augment this set of
maintenance functions, in particular when MPLS networks are used for
packet transport services and transport network operations [<a href="#ref-OAM-REQ" title=""Requirements for OAM in MPLS Transport Networks"">OAM-REQ</a>].
Examples of these functions include performance monitoring, automatic
protection switching, and support for management and signaling
communication channels. These tools MUST be applicable to, and
function in essentially the same manner (from an operational point of
view) on MPLS PWs, MPLS LSPs, and MPLS Sections. They MUST also
operate in-band on the PW or LSP such that they do not depend on
Packet Switched Network (PSN) routing or on user traffic, and MUST
NOT depend on dynamic control plane functions.
VCCV [<a href="./rfc5085" title=""Pseudowire Virtual Circuit Connectivity Verification (VCCV): A Control Channel for Pseudowires"">RFC5085</a>] can use an Associated Channel Header (ACH) to provide
a PW associated control channel between a PW's endpoints, over which
OAM and other control messages can be exchanged. This document
generalizes the applicability of the ACH to enable the same
associated control channel mechanism to be used for Sections, LSPs,
and PWs. The associated control channel thus generalized is known as
the Generic Associated Channel (G-ACh). The ACH, specified in <a href="./rfc4385">RFC</a>
<a href="./rfc4385">4385</a> [<a href="./rfc4385" title=""Pseudowire Emulation Edge-to-Edge (PWE3) Control Word for Use over an MPLS PSN"">RFC4385</a>], may be used with additional code points to support
additional MPLS maintenance functions on the G-ACh.
Generalizing the applicability of the ACH to LSPs and Sections also
requires a method to identify that a packet contains an ACH followed
by a non-service payload. Therefore, this document also defines a
label-based exception mechanism that serves to inform an LSR (or LER)
that a packet it receives on an LSP or Section belongs to an
associated control channel. The label used for that purpose is one
of the MPLS reserved labels and is referred to as the GAL (G-ACh
Label). The GAL mechanism is defined to work together with the ACH
for LSPs and MPLS Sections.
<a href="./rfc4379">RFC 4379</a> [<a href="./rfc4379" title=""Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures"">RFC4379</a>] and BFD-MPLS [<a href="#ref-BFD-MPLS" title=""BFD For MPLS LSPs"">BFD-MPLS</a>] define alert mechanisms
that enable an MPLS LSR to identify and process MPLS OAM packets when
these are encapsulated in an IP header. These alert mechanisms are
<span class="grey">Bocci, et al. Standards Track [Page 3]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-4" ></span>
<span class="grey"><a href="./rfc5586">RFC 5586</a> G-ACh and GAL June 2009</span>
based, for example, on Time To Live (TTL) expiration and/or on the
use of an IP destination address in the range of 127.0.0.0/8 or 0:0:
0:0:0:FFFF:127.0.0.0/104 for IPv4 and IPv6, respectively. These
mechanisms are the default mechanisms for identifying MPLS OAM
packets when encapsulated in an IP header. However, it may not
always be possible to use these mechanisms in some MPLS applications,
e.g., MPLS Transport Profile (MPLS-TP) [<a href="#ref-MPLS-TP" title=""A Framework for MPLS in Transport Networks"">MPLS-TP</a>], particularly when
IP-based demultiplexing cannot be used. This document defines a
mechanism that is RECOMMENDED for identifying and encapsulating MPLS
OAM and other maintenance messages when IP based mechanisms such as
those used in [<a href="./rfc4379" title=""Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures"">RFC4379</a>] and [<a href="#ref-BFD-MPLS" title=""BFD For MPLS LSPs"">BFD-MPLS</a>] are not available. Yet, this
mechanism MAY be used in addition to IP-based mechanisms.
Note that, in this document, maintenance functions and packets should
be understood in the broad sense. That is, a set of maintenance and
management mechanisms that include OAM, Automatic Protection
Switching (APS), Signaling Communication Channel (SCC), and
Management Communication Channel (MCC) messages.
Also note that the GAL and ACH are applicable to MPLS and PWs in
general. This document specifies general mechanism and uses MPLS-TP
as an example application. The application of the GAL and ACH to
other specific MPLS uses is outside the scope of this document.
<span class="h3"><a class="selflink" id="section-1.1" href="#section-1.1">1.1</a>. Objectives</span>
This document defines a mechanism that provides a solution to the
extended maintenance needs of emerging applications for MPLS. It
creates a generic control channel mechanism that may be applied to
MPLS LSPs and Sections, while maintaining compatibility with the PW
associated channel. It also normalizes the use of the ACH for PWs in
a transport context, and defines a label-based exception mechanism to
alert LERs/LSRs of the presence of an ACH after the bottom of the
label stack.
<span class="h3"><a class="selflink" id="section-1.2" href="#section-1.2">1.2</a>. Scope</span>
This document defines the encapsulation header for Section, LSP, and
PW associated control channel messages.
This document does not define how associated control channel
capabilities are signaled or negotiated between LERs/LSRs or between
PEs, nor does it define the operation of various OAM functions.
This document does not deprecate existing MPLS and PW OAM mechanisms.
<span class="grey">Bocci, et al. Standards Track [Page 4]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-5" ></span>
<span class="grey"><a href="./rfc5586">RFC 5586</a> G-ACh and GAL June 2009</span>
<span class="h3"><a class="selflink" id="section-1.3" href="#section-1.3">1.3</a>. Requirements Language and Terminology</span>
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in <a href="./rfc2119">RFC 2119</a> [<a href="./rfc2119" title=""Key words for use in RFCs to Indicate Requirement Levels"">RFC2119</a>].
This document uses the following additional terminology:
ACH: Associated Channel Header
G-ACh: Generic Associated Channel
GAL: G-ACh Label
G-ACh packet: Any packet containing a message belonging to a protocol
that is carried on a PW, LSP, or MPLS Section associated control
channel. Examples include maintenance protocols such as OAM
functions, signaling communications, or management communications.
The terms "Section" and "Concatenated Segment" are defined in
[<a href="#ref-TP-REQ" title=""MPLS-TP Requirements"">TP-REQ</a>] as follows (note that the terms "Section" and "Section Layer
Network" are synonymous):
Section Layer Network: A section layer is a server layer (which may
be MPLS-TP or a different technology) that provides for the transfer
of the section layer client information between adjacent nodes in the
transport path layer or transport service layer. Note that G.805
[<a href="#ref-G805" title=""Generic Functional Architecture of Transport Networks"">G805</a>] defines the section layer as one of the two layer networks in
a transmission media layer network. The other layer network is the
physical media layer network.
Concatenated Segment: A serial-compound link connection as defined in
[<a href="#ref-G805" title=""Generic Functional Architecture of Transport Networks"">G805</a>]. A concatenated segment is a contiguous part of an LSP or
multi-segment PW that comprises a set of segments and their
interconnecting nodes in sequence.
<span class="h2"><a class="selflink" id="section-2" href="#section-2">2</a>. Generic Associated Channel Header</span>
VCCV [<a href="./rfc5085" title=""Pseudowire Virtual Circuit Connectivity Verification (VCCV): A Control Channel for Pseudowires"">RFC5085</a>] defines three Control Channel (CC) Types that may be
used to exchange OAM messages through a PW. CC Type 1 uses an ACH
and is referred to as "In-band VCCV"; CC Type 2 uses the MPLS Router
Alert Label to indicate VCCV packets and is referred to as "Out-of-
Band VCCV"; CC Type 3 uses the TTL to force the packet to be
processed by the targeted router control plane and is referred to as
"MPLS PW Label with TTL == 1".
<span class="grey">Bocci, et al. Standards Track [Page 5]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-6" ></span>
<span class="grey"><a href="./rfc5586">RFC 5586</a> G-ACh and GAL June 2009</span>
<span class="h3"><a class="selflink" id="section-2.1" href="#section-2.1">2.1</a>. Definition</span>
The use of the ACH, previously limited to PWs, is here generalized to
also apply to LSPs and to Sections. Note that for PWs, the PWE3
control word [<a href="./rfc4385" title=""Pseudowire Emulation Edge-to-Edge (PWE3) Control Word for Use over an MPLS PSN"">RFC4385</a>] MUST be present in the encapsulation of user
packets when the ACH is used to realize the associated control
channel.
The ACH used by CC Type 1 is depicted in figure below:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0 0 0 1|Version| Reserved | Channel Type |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 1: Associated Channel Header
In the above figure, the first nibble is set to 0001b to indicate a
control channel associated with a PW, LSP, or Section. The Version
field is set to 0, as specified in <a href="./rfc4385">RFC 4385</a> [<a href="./rfc4385" title=""Pseudowire Emulation Edge-to-Edge (PWE3) Control Word for Use over an MPLS PSN"">RFC4385</a>]. Bits 8 to 15
of the ACH are reserved and MUST be set to 0 and ignored on
reception. Bits 16 to 31 are used to encode the possible Channel
Types. This 16-bit field is in network byte order.
Note that VCCV [<a href="./rfc5085" title=""Pseudowire Virtual Circuit Connectivity Verification (VCCV): A Control Channel for Pseudowires"">RFC5085</a>] also includes mechanisms for negotiating the
Control Channel and Connectivity Verification (i.e., OAM function)
Types between PEs. It is anticipated that similar mechanisms will be
applied to LSPs. Such application will require further
specification. However, such specification is beyond the scope of
this document.
The G-ACh MUST NOT be used to transport user traffic.
<span class="h3"><a class="selflink" id="section-2.2" href="#section-2.2">2.2</a>. Allocation of Channel Types</span>
The Channel Type field indicates the type of message carried on the
associated control channel, e.g., IPv4 or IPv6 if IP demultiplexing
is used for messages sent on the associated control channel, or OAM
or other maintenance function if IP demultiplexing is not used. For
associated control channel packets where IP is not used as the
multiplexer, the Channel Type indicates the specific protocol carried
in the associated control channel.
Values for the Channel Type field currently used for VCCV are
specified elsewhere, e.g., in <a href="./rfc4446">RFC 4446</a> [<a href="./rfc4446" title=""IANA Allocations for Pseudowire Edge to Edge Emulation (PWE3)"">RFC4446</a>] and <a href="./rfc4385">RFC 4385</a>
[<a href="./rfc4385" title=""Pseudowire Emulation Edge-to-Edge (PWE3) Control Word for Use over an MPLS PSN"">RFC4385</a>]. Additional Channel Type values and the associated
<span class="grey">Bocci, et al. Standards Track [Page 6]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-7" ></span>
<span class="grey"><a href="./rfc5586">RFC 5586</a> G-ACh and GAL June 2009</span>
maintenance functionality will be defined in other documents. Each
document, specifying a protocol solution relying on the ACH, MUST
also specify the applicable Channel Type field value.
Note that these values are allocated from the PW Associated Channel
Type registry [<a href="./rfc4446" title=""IANA Allocations for Pseudowire Edge to Edge Emulation (PWE3)"">RFC4446</a>], but this document modifies the existing
policy to accommodate a level of experimentation. See <a href="#section-10">Section 10</a> for
further details.
<span class="h2"><a class="selflink" id="section-3" href="#section-3">3</a>. ACH TLVs</span>
In some applications of the generalized associated control channel,
it is necessary to include one or more ACH TLVs to provide additional
context information to the G-ACh packet. One use of these ACH TLVs
might be to identify the source and/or intended destination of the
associated channel message. However, the use of this construct is
not limited to providing addressing information nor is the
applicability restricted to transport network applications.
If the G-ACh message MAY be preceded by one or more ACH TLVs, then
this MUST be explicitly specified in the definition of an ACH Channel
Type. If the ACH Channel Type definition does state that one or more
ACH TLVs MAY precede the G-ACh message, an ACH TLV Header MUST follow
the ACH. If no ACH TLVs are required in a specific associated
channel packet, but the Channel Type nevertheless defines that ACH
TLVs MAY be used, an ACH TLV Header MUST be present but with a length
field set to zero to indicate that no ACH TLV follow this header.
If an ACH Channel Type specification does not explicitly specify that
ACH TLVs MAY be used, then the ACH TLV Header MUST NOT be used.
<span class="h3"><a class="selflink" id="section-3.1" href="#section-3.1">3.1</a>. ACH TLV Payload Structure</span>
This section defines and describes the structure of an ACH payload
when an ACH TLV Header is present.
The following figure (Figure 2) shows the structure of a G-ACh packet
payload.
<span class="grey">Bocci, et al. Standards Track [Page 7]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-8" ></span>
<span class="grey"><a href="./rfc5586">RFC 5586</a> G-ACh and GAL June 2009</span>
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ACH |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ACH TLV Header |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ~
~ zero or more ACH TLVs ~
~ |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ~
~ G-ACh Message ~
~ |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 2: G-ACh Packet Payload
<span class="h3"><a class="selflink" id="section-3.2" href="#section-3.2">3.2</a>. ACH TLV Header</span>
The ACH TLV Header defines the length of the set of ACH TLVs that
follow.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Length | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 3: ACH TLV Header
The Length field specifies the length in octets of the complete set
of TLVs including sub-TLVs that follow the ACH TLV Header. A length
of zero indicates that no ACH TLV follow this header. Note that no
padding is required for the set of ACH TLVs.
The Reserved field is for future use and MUST be set to zero on
transmission and ignored on reception.
<span class="h3"><a class="selflink" id="section-3.3" href="#section-3.3">3.3</a>. ACH TLV Object</span>
ACH TLVs MAY follow an ACH TLV Header. The structure of ACH TLVs is
defined and described in this section.
An ACH TLV consists of a 16-bit Type field, followed by a 16-bit
Length field that specifies the number of octets of the Value field,
which follows the Length field. This 32-bit word is followed by zero
or more octets of Value information. The format and semantics of the
Value information are defined by the TLV Type as recorded in the TLV
<span class="grey">Bocci, et al. Standards Track [Page 8]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-9" ></span>
<span class="grey"><a href="./rfc5586">RFC 5586</a> G-ACh and GAL June 2009</span>
Type registry. See <a href="#section-10">Section 10</a> for further details. Note that the
Value field of ACH TLVs MAY contain sub-TLVs. Note that no padding
is required for individual TLVs or sub-TLVs.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| TLV Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ~
~ Value ~
~ |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 4: ACH TLV Format
<span class="h2"><a class="selflink" id="section-4" href="#section-4">4</a>. Generalized Exception Mechanism</span>
Generalizing the associated control channel mechanism to LSPs and
Sections also requires a method to identify that a packet contains an
ACH followed by a non-service payload. This document specifies that
a label is used for that purpose and calls this special label the
G-ACh Label (GAL). One of the reserved label values defined in <a href="./rfc3032">RFC</a>
<a href="./rfc3032">3032</a> [<a href="./rfc3032" title=""MPLS Label Stack Encoding"">RFC3032</a>] is assigned for this purpose. IANA assigned the value
13 to the GAL.
The GAL provides an alert based exception mechanism to:
o differentiate specific packets (i.e., G-ACh packets) from others,
such as user-plane ones.
o indicate that the ACH appears immediately after the bottom of the
label stack.
The GAL MUST only be used where both these purposes apply.
<span class="h3"><a class="selflink" id="section-4.1" href="#section-4.1">4.1</a>. Relationship with Existing MPLS OAM Alert Mechanisms</span>
<a href="./rfc4379">RFC 4379</a> [<a href="./rfc4379" title=""Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures"">RFC4379</a>] and BFD-MPLS [<a href="#ref-BFD-MPLS" title=""BFD For MPLS LSPs"">BFD-MPLS</a>] define alert mechanisms
that enable an MPLS LSR to identify and process MPLS OAM packets when
these are encapsulated in an IP header. These alert mechanisms are
based, for example, on Time To Live (TTL) expiration and/or on the
use of an IP destination address in the range of 127.0.0.0/8 or 0:0:
0:0:0:FFFF:127.0.0.0/104 for IPv4 and IPv6, respectively.
These mechanisms are the default mechanisms for identifying MPLS OAM
packets when encapsulated in an IP header although the mechanism
defined in this document MAY also be used.
<span class="grey">Bocci, et al. Standards Track [Page 9]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-10" ></span>
<span class="grey"><a href="./rfc5586">RFC 5586</a> G-ACh and GAL June 2009</span>
<span class="h3"><a class="selflink" id="section-4.2" href="#section-4.2">4.2</a>. GAL Applicability and Usage</span>
In MPLS-TP, the GAL MUST be used with packets on a G-ACh on LSPs,
Concatenated Segments of LSPs, and with Sections, and MUST NOT be
used with PWs. It MUST always be at the bottom of the label stack
(i.e., S bit set to 1). However, in other MPLS environments, this
document places no restrictions on where the GAL may appear within
the label stack or its use with PWs. Where the GAL is at the bottom
of the label stack (i.e., S bit set to 1), then it MUST always be
followed by an ACH.
The GAL MUST NOT appear in the label stack when transporting normal
user-plane packets. Furthermore, when present, the GAL MUST NOT
appear more than once in the label stack.
A receiving LSR, LER, or PE MUST NOT forward a G-ACh packet to
another node based on the GAL label.
<span class="h4"><a class="selflink" id="section-4.2.1" href="#section-4.2.1">4.2.1</a>. GAL Processing</span>
The Traffic Class (TC) field (formerly known as the EXP field) of the
Label Stack Entry (LSE) containing the GAL follows the definition and
processing rules specified and referenced in [<a href="./rfc5462" title=""Multiprotocol Label Switching (MPLS) Label Stack Entry: "">RFC5462</a>].
The Time-To-Live (TTL) field of the LSE that contains the GAL follows
the definition and processing rules specified in [<a href="./rfc3443" title=""Time To Live (TTL) Processing in Multi-Protocol Label Switching (MPLS) Networks"">RFC3443</a>].
<span class="h5"><a class="selflink" id="section-4.2.1.1" href="#section-4.2.1.1">4.2.1.1</a>. MPLS Label Switched Paths and Segments</span>
The following figure (Figure 5) depicts two LERs (A and D) and two
LSRs (B and C) for a given LSP that is established from A to D and
switched in B and C.
+---+ +---+ +---+ +---+
| A |-------------| B |-------------| C |-------------| D |
+---+ +---+ +---+ +---+
Figure 5: Maintenance over an LSP
In this example, a G-ACh exists on the LSP that extends between LERs
A and D, via LSRs B and C. Only A and D may initiate new G-ACh
packets. A, B, C, and D may process and respond to G-ACh packets.
The following figure (Figure 6) depicts the format of an MPLS-TP
G-ACh packet when used for an LSP.
<span class="grey">Bocci, et al. Standards Track [Page 10]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-11" ></span>
<span class="grey"><a href="./rfc5586">RFC 5586</a> G-ACh and GAL June 2009</span>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LSP Label | TC |S| TTL |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| GAL | TC |S| TTL |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ACH |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ACH TLV Header (if present) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ~
~ Zero or more ACH TLVs ~
~ (if present) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ~
~ G-ACh Message ~
~ |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 6: G-ACh Packet Format for an LSP
Note that it is possible that the LSP may be tunneled in another LSP
(e.g., if an MPLS Tunnel exists between B and C), and as such other
LSEs may be present in the label stack.
To send a G-ACh message on the LSP associated control channel, the
LER (A) generates a G-ACh message, to which it MAY prepend an ACH TLV
Header and appropriate ACH TLVs. It then adds an ACH, onto which it
pushes a GAL LSE. Finally, the LSP Label LSE is pushed onto the
resulting packet.
o The TTL field of the GAL LSE MUST be set to at least 1. The exact
value of the TTL is application specific. See <a href="#section-4.2.1">Section 4.2.1</a> for
definition and processing rules.
o The S bit of the GAL MUST be set according to its position in the
label stack (see <a href="#section-4.2">Section 4.2</a>).
o The setting of the TC field of the GAL is application specific.
See <a href="#section-4.2.1">Section 4.2.1</a> for definition and processing rules.
LSRs MUST NOT modify the G-ACh message, the ACH or the GAL towards
the targeted destination.
<span class="grey">Bocci, et al. Standards Track [Page 11]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-12" ></span>
<span class="grey"><a href="./rfc5586">RFC 5586</a> G-ACh and GAL June 2009</span>
Note: This is because once a G-ACh packet has been sent on an LSP,
no node has visibility of it unless the LSP label TTL expires or
the GAL is exposed when the LSP label is popped. If this is at
the targeted destination, for example, indicated by an address in
an ACH TLV, then processing can proceed as specified below. If
this is not the targeted destination, but the node has agreed to
process packets on that ACH channel, then the processing applied
to the packet is out of scope of this document.
Upon reception of the labeled packet, the targeted destination, after
having checked both the LSP Label and GAL LSEs fields, SHOULD pass
the whole packet to the appropriate processing entity.
<span class="h5"><a class="selflink" id="section-4.2.1.2" href="#section-4.2.1.2">4.2.1.2</a>. MPLS Section</span>
The following figure (Figure 7) depicts an example of an MPLS
Section.
+---+ +---+
| A |-------------| Z |
+---+ +---+
Figure 7: Maintenance over an MPLS Section
With regard to the MPLS Section, a G-ACh exists between A and Z.
Only A and Z can insert, extract, or process packets on this G-ACh.
The following figure (Figure 8) depicts the format of a G-ACh packet
when used for an MPLS Section. The GAL MAY provide the exception
mechanism for a control channel in its own right without being
associated with a specific LSP, thus providing maintenance-related
communications across a specific link interconnecting two LSRs. In
this case, the GAL is the only label in the stack.
<span class="grey">Bocci, et al. Standards Track [Page 12]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-13" ></span>
<span class="grey"><a href="./rfc5586">RFC 5586</a> G-ACh and GAL June 2009</span>
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| GAL | TC |S| TTL |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ACH |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ACH TLV Header (if present) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ~
~ Zero or more ACH TLVs ~
~ (if present) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ~
~ G-ACh message ~
~ |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 8: G-ACh Packet Format for an MPLS Section
To send a G-ACh message on a control channel associated to the
Section, the head-end LSR (A) of the Section generates a G-ACh
message, to which it MAY prepend an ACH TLV Header and appropriate
ACH TLVs. Next, the LSR adds an ACH. Finally, it pushes a GAL LSE.
o The TTL field of the GAL MUST be set to at least 1. The exact
value of the TTL is application specific. See <a href="#section-4.2.1">Section 4.2.1</a> for
definition and processing rules.
o The S bit of the GAL MUST be set according to its position in the
label stack. (see <a href="#section-4.2">Section 4.2</a>).
o The setting of the TC field of the GAL is application specific.
See <a href="#section-4.2.1">Section 4.2.1</a> for definition and processing rules.
Intermediate nodes of the MPLS Section MUST NOT modify the G-ACh
message, the ACH and the GAL towards the tail-end LSR (Z). Upon
reception of the G-ACh packet, the tail-end LSR (Z), after having
checked the GAL LSE fields, SHOULD pass the whole packet to the
appropriate processing entity.
<span class="h3"><a class="selflink" id="section-4.3" href="#section-4.3">4.3</a>. Relationship with <a href="./rfc3429">RFC 3429</a></span>
<a href="./rfc3429">RFC 3429</a> [<a href="./rfc3429" title=""Assignment of the 'OAM Alert Label' for Multiprotocol Label Switching Architecture (MPLS) Operation and Maintenance (OAM) Functions"">RFC3429</a>] describes the assignment of one of the reserved
label values, defined in <a href="./rfc3032">RFC 3032</a> [<a href="./rfc3032" title=""MPLS Label Stack Encoding"">RFC3032</a>], to the "OAM Alert Label"
that is used by user-plane MPLS OAM functions for the identification
of MPLS OAM packets. The value of 14 is used for that purpose.
<span class="grey">Bocci, et al. Standards Track [Page 13]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-14" ></span>
<span class="grey"><a href="./rfc5586">RFC 5586</a> G-ACh and GAL June 2009</span>
Both this document and <a href="./rfc3429">RFC 3429</a> [<a href="./rfc3429" title=""Assignment of the 'OAM Alert Label' for Multiprotocol Label Switching Architecture (MPLS) Operation and Maintenance (OAM) Functions"">RFC3429</a>] therefore describe the
assignment of reserved label values for similar purposes. The
rationale for the assignment of a new reserved label can be
summarized as follows:
o Unlike the mechanisms described and referenced in <a href="./rfc3429">RFC 3429</a>
[<a href="./rfc3429" title=""Assignment of the 'OAM Alert Label' for Multiprotocol Label Switching Architecture (MPLS) Operation and Maintenance (OAM) Functions"">RFC3429</a>], G-ACh messages will not reside immediately after the
GAL but instead behind the ACH, which itself resides after the
bottom of the label stack.
o The set of maintenance functions potentially operated in the
context of the G-ACh is wider than the set of OAM functions
referenced in <a href="./rfc3429">RFC 3429</a> [<a href="./rfc3429" title=""Assignment of the 'OAM Alert Label' for Multiprotocol Label Switching Architecture (MPLS) Operation and Maintenance (OAM) Functions"">RFC3429</a>].
o It has been reported that there are existing implementations and
running deployments using the "OAM Alert Label" as described in
<a href="./rfc3429">RFC 3429</a> [<a href="./rfc3429" title=""Assignment of the 'OAM Alert Label' for Multiprotocol Label Switching Architecture (MPLS) Operation and Maintenance (OAM) Functions"">RFC3429</a>]. It is therefore not possible to modify the
"OAM Alert Label" allocation, purpose, or usage. Nevertheless, it
is RECOMMENDED that no further OAM extensions based on "OAM Alert
Label" (Label 14) usage be specified or developed.
<span class="h2"><a class="selflink" id="section-5" href="#section-5">5</a>. Compatibility</span>
Procedures for handling a packet received with an invalid incoming
label are specified in <a href="./rfc3031">RFC 3031</a> [<a href="./rfc3031" title=""Multiprotocol Label Switching Architecture"">RFC3031</a>].
An LER, LSR, or PE MUST discard received associated channel packets
on which all of the MPLS or PW labels have been popped if any one of
the following conditions is true:
o It is not capable of processing packets on the Channel Type
indicated by the ACH of the received packet.
o It has not, through means outside the scope of this document,
indicated to the sending LSR, LER, or PE that it will process
associated channel packets on the Channel Type indicated by the
ACH of the received packet.
o The packet is received on an Experimental Channel Type that is
locally disabled.
o If the ACH was indicated by the presence of a GAL, and the first
nibble of the ACH of the received packet is not 0001b.
o The ACH version is not recognized.
<span class="grey">Bocci, et al. Standards Track [Page 14]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-15" ></span>
<span class="grey"><a href="./rfc5586">RFC 5586</a> G-ACh and GAL June 2009</span>
In addition, the LER, LSR, or PE MAY increment an error counter and
MAY also issue a system and/or Simple Network Management Protocol
(SNMP) notification.
<span class="h2"><a class="selflink" id="section-6" href="#section-6">6</a>. Congestion Considerations</span>
The congestion considerations detailed in <a href="./rfc5085">RFC 5085</a> [<a href="./rfc5085" title=""Pseudowire Virtual Circuit Connectivity Verification (VCCV): A Control Channel for Pseudowires"">RFC5085</a>] apply.
<span class="h2"><a class="selflink" id="section-7" href="#section-7">7</a>. Major Contributing Authors</span>
The editors would like to thank George Swallow, David Ward, and Rahul
Aggarwal who made a major contribution to the development of this
document.
George Swallow
Cisco Systems
Email: swallow@cisco.com
David Ward
Cisco Systems
Email: dward@cisco.com
Rahul Aggarwal
Juniper Networks
Email: rahul@juniper.net
<span class="h2"><a class="selflink" id="section-8" href="#section-8">8</a>. Acknowledgments</span>
The editors gratefully acknowledge the contributions of Sami Boutros,
Italo Busi, Marc Lasserre, Lieven Levrau, and Siva Sivabalan.
The authors would also like to thank Malcolm Betts, ITU-T Study Group
15, and all members of the teams (the Joint Working Team, the MPLS
Interoperability Design Team in IETF and the MPLS-TP Ad Hoc Team in
ITU-T) involved in the definition and specification of the MPLS
Transport Profile.
<span class="h2"><a class="selflink" id="section-9" href="#section-9">9</a>. Security Considerations</span>
The security considerations for the associated control channel are
described in <a href="./rfc4385">RFC 4385</a> [<a href="./rfc4385" title=""Pseudowire Emulation Edge-to-Edge (PWE3) Control Word for Use over an MPLS PSN"">RFC4385</a>]. Further security considerations
MUST be described in the relevant associated channel type
specification.
<a href="./rfc5085">RFC 5085</a> [<a href="./rfc5085" title=""Pseudowire Virtual Circuit Connectivity Verification (VCCV): A Control Channel for Pseudowires"">RFC5085</a>] provides data plane related security
considerations. These also apply to a G-ACh, whether the alert
mechanism uses a GAL or only an ACH.
<span class="grey">Bocci, et al. Standards Track [Page 15]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-16" ></span>
<span class="grey"><a href="./rfc5586">RFC 5586</a> G-ACh and GAL June 2009</span>
<span class="h2"><a class="selflink" id="section-10" href="#section-10">10</a>. IANA Considerations</span>
IANA allocated label value 13 to the GAL from the pool of reserved
labels in the "Multiprotocol Label Switching Architecture (MPLS)
Label Values" registry.
Channel Types for the Associated Channel Header are allocated from
the IANA "PW Associated Channel Type" registry [<a href="./rfc4446" title=""IANA Allocations for Pseudowire Edge to Edge Emulation (PWE3)"">RFC4446</a>]. The PW
Associated Channel Type registry is currently allocated based on the
IETF consensus process (termed "IETF Review" in [<a href="./rfc5226" title="">RFC5226</a>]). This
allocation process was chosen based on the consensus reached in the
PWE3 working group that pseudowire associated channel mechanisms
should be reviewed by the IETF and only those that are consistent
with the PWE3 architecture and requirements should be allocated a
code point.
However, a requirement has emerged (see [<a href="#ref-OAM-REQ" title=""Requirements for OAM in MPLS Transport Networks"">OAM-REQ</a>]) to allow for
optimizations or extensions to OAM and other control protocols
running in an associated channel to be experimented without resorting
to the IETF standards process, by supporting experimental code
points. This would prevent code points used for such functions from
being used from the range allocated through the IETF standards and
thus protects an installed base of equipment from potential
inadvertent overloading of code points. In order to support this
requirement, IANA has changed the code point allocation scheme for
the PW Associated Channel Type be changed as follows:
0 - 32751 : IETF Review
32760 - 32767 : Experimental
Code points in the experimental range MUST be used according to the
guidelines of <a href="./rfc3692">RFC 3692</a> [<a href="./rfc3692" title=""Assigning Experimental and Testing Numbers Considered Useful"">RFC3692</a>]. Functions using experimental G-ACh
code points MUST be disabled by default. The Channel Type value used
for a given experimental OAM function MUST be configurable, and care
MUST be taken to ensure that different OAM functions that are not
inter-operable are configured to use different Channel Type values.
The PW Associated Channel Type registry has been updated to include a
column indicating whether the ACH is followed by a ACH TLV header
(Yes/No). There are two ACH Channel Type code-points currently
assigned and in both cases no ACH TLV header is used. Thus, the new
format of the PW Channel Type registry is:
<span class="grey">Bocci, et al. Standards Track [Page 16]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-17" ></span>
<span class="grey"><a href="./rfc5586">RFC 5586</a> G-ACh and GAL June 2009</span>
Registry:
Value Description TLV Follows Reference
----- ---------------------------- ----------- ---------
0x21 ACH carries an IPv4 packet No [<a href="./rfc4385" title=""Pseudowire Emulation Edge-to-Edge (PWE3) Control Word for Use over an MPLS PSN"">RFC4385</a>]
0x57 ACH carries an IPv6 packet No [<a href="./rfc4385" title=""Pseudowire Emulation Edge-to-Edge (PWE3) Control Word for Use over an MPLS PSN"">RFC4385</a>]
Figure 9: PW Channel Type Registry
IANA created a new registry called the Associated Channel Header TLV
Registry. The allocation policy for this registry is IETF review.
This registry MUST record the following information. There are no
initial entries.
Name Type Length Description Reference
(octets)
Figure 10: ACH TLV Registry
<span class="h2"><a class="selflink" id="section-11" href="#section-11">11</a>. References</span>
<span class="h3"><a class="selflink" id="section-11.1" href="#section-11.1">11.1</a>. Normative References</span>
[<a id="ref-RFC2119">RFC2119</a>] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", <a href="https://www.rfc-editor.org/bcp/bcp14">BCP 14</a>, <a href="./rfc2119">RFC 2119</a>, March 1997.
[<a id="ref-RFC3031">RFC3031</a>] Rosen, E., Viswanathan, A., and R. Callon, "Multiprotocol
Label Switching Architecture", <a href="./rfc3031">RFC 3031</a>, January 2001.
[<a id="ref-RFC3032">RFC3032</a>] Rosen, E., Tappan, D., Fedorkow, G., Rekhter, Y.,
Farinacci, D., Li, T., and A. Conta, "MPLS Label Stack
Encoding", <a href="./rfc3032">RFC 3032</a>, January 2001.
[<a id="ref-RFC3443">RFC3443</a>] Agarwal, P. and B. Akyol, "Time To Live (TTL) Processing
in Multi-Protocol Label Switching (MPLS) Networks",
<a href="./rfc3443">RFC 3443</a>, January 2003.
[<a id="ref-RFC3692">RFC3692</a>] Narten, T., "Assigning Experimental and Testing Numbers
Considered Useful", <a href="https://www.rfc-editor.org/bcp/bcp82">BCP 82</a>, <a href="./rfc3692">RFC 3692</a>, January 2004.
[<a id="ref-RFC4385">RFC4385</a>] Bryant, S., Swallow, G., Martini, L., and D. McPherson,
"Pseudowire Emulation Edge-to-Edge (PWE3) Control Word
for Use over an MPLS PSN", <a href="./rfc4385">RFC 4385</a>, February 2006.
[<a id="ref-RFC4446">RFC4446</a>] Martini, L., "IANA Allocations for Pseudowire Edge to
Edge Emulation (PWE3)", <a href="https://www.rfc-editor.org/bcp/bcp116">BCP 116</a>, <a href="./rfc4446">RFC 4446</a>, April 2006.
<span class="grey">Bocci, et al. Standards Track [Page 17]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-18" ></span>
<span class="grey"><a href="./rfc5586">RFC 5586</a> G-ACh and GAL June 2009</span>
[<a id="ref-RFC5085">RFC5085</a>] Nadeau, T. and C. Pignataro, "Pseudowire Virtual Circuit
Connectivity Verification (VCCV): A Control Channel for
Pseudowires", <a href="./rfc5085">RFC 5085</a>, December 2007.
[<a id="ref-RFC5226">RFC5226</a>] Narten, T. and H. Alvestrand, "Guidelines for Writing an
IANA Considerations Section in RFCs", <a href="https://www.rfc-editor.org/bcp/bcp26">BCP 26</a>, <a href="./rfc5226">RFC 5226</a>,
May 2008.
[<a id="ref-RFC5462">RFC5462</a>] Andersson, L. and R. Asati, "Multiprotocol Label
Switching (MPLS) Label Stack Entry: "EXP" Field Renamed
to "Traffic Class" Field", <a href="./rfc5462">RFC 5462</a>, February 2009.
<span class="h3"><a class="selflink" id="section-11.2" href="#section-11.2">11.2</a>. Informative References</span>
[<a id="ref-BFD-MPLS">BFD-MPLS</a>] Aggarwal, R., Kompella, K., Nadeau, T., and G. Swallow,
"BFD For MPLS LSPs", Work in Progress, June 2008.
[<a id="ref-BFD-VCCV">BFD-VCCV</a>] Nadeau, T. and C. Pignataro, "Bidirectional Forwarding
Detection (BFD) for the Pseudowire Virtual Circuit
Connectivity Verification (VCCV)", Work in Progress,
May 2009.
[<a id="ref-G805">G805</a>] International Telecommunication Union, "Generic
Functional Architecture of Transport Networks", ITU-
T G.805, March 2000.
[<a id="ref-MPLS-TP">MPLS-TP</a>] Bocci, M., Bryant, S., and L. Levrau, "A Framework for
MPLS in Transport Networks", Work in Progress,
November 2008.
[<a id="ref-OAM-REQ">OAM-REQ</a>] Vigoureux, M., Ed., Ward, D., Ed., and M. Betts, Ed.,
"Requirements for OAM in MPLS Transport Networks", Work
in Progress, March 2009.
[<a id="ref-RFC3429">RFC3429</a>] Ohta, H., "Assignment of the 'OAM Alert Label' for
Multiprotocol Label Switching Architecture (MPLS)
Operation and Maintenance (OAM) Functions", <a href="./rfc3429">RFC 3429</a>,
November 2002.
[<a id="ref-RFC4379">RFC4379</a>] Kompella, K. and G. Swallow, "Detecting Multi-Protocol
Label Switched (MPLS) Data Plane Failures", <a href="./rfc4379">RFC 4379</a>,
February 2006.
[<a id="ref-TP-REQ">TP-REQ</a>] Niven-Jenkins, B., Ed., Brungard, D., Ed., Betts, M.,
Ed., Sprecher, N., and S. Ueno, "MPLS-TP Requirements",
Work in Progress, May 2009.
<span class="grey">Bocci, et al. Standards Track [Page 18]</span></pre>
<hr class='noprint'/><!--NewPage--><pre class='newpage'><span id="page-19" ></span>
<span class="grey"><a href="./rfc5586">RFC 5586</a> G-ACh and GAL June 2009</span>
Authors' Addresses
Matthew Bocci (editor)
Alcatel-Lucent
Voyager Place, Shoppenhangers Road
Maidenhead, Berks SL6 2PJ
UK
EMail: matthew.bocci@alcatel-lucent.com
Martin Vigoureux (editor)
Alcatel-Lucent
Route de Villejust
Nozay, 91620
France
EMail: martin.vigoureux@alcatel-lucent.com
Stewart Bryant (editor)
Cisco Systems
EMail: stbryant@cisco.com
Bocci, et al. Standards Track [Page 19]
</pre>
|